1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2008 Gael Guennebaud <[email protected]>
5*bf2c3715SXin Li // Copyright (C) 2009 Benoit Jacob <[email protected]>
6*bf2c3715SXin Li //
7*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
8*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
9*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10*bf2c3715SXin Li
11*bf2c3715SXin Li #include "main.h"
12*bf2c3715SXin Li #include <Eigen/SVD>
13*bf2c3715SXin Li
14*bf2c3715SXin Li template<typename MatrixType, typename JacobiScalar>
jacobi(const MatrixType & m=MatrixType ())15*bf2c3715SXin Li void jacobi(const MatrixType& m = MatrixType())
16*bf2c3715SXin Li {
17*bf2c3715SXin Li Index rows = m.rows();
18*bf2c3715SXin Li Index cols = m.cols();
19*bf2c3715SXin Li
20*bf2c3715SXin Li enum {
21*bf2c3715SXin Li RowsAtCompileTime = MatrixType::RowsAtCompileTime,
22*bf2c3715SXin Li ColsAtCompileTime = MatrixType::ColsAtCompileTime
23*bf2c3715SXin Li };
24*bf2c3715SXin Li
25*bf2c3715SXin Li typedef Matrix<JacobiScalar, 2, 1> JacobiVector;
26*bf2c3715SXin Li
27*bf2c3715SXin Li const MatrixType a(MatrixType::Random(rows, cols));
28*bf2c3715SXin Li
29*bf2c3715SXin Li JacobiVector v = JacobiVector::Random().normalized();
30*bf2c3715SXin Li JacobiScalar c = v.x(), s = v.y();
31*bf2c3715SXin Li JacobiRotation<JacobiScalar> rot(c, s);
32*bf2c3715SXin Li
33*bf2c3715SXin Li {
34*bf2c3715SXin Li Index p = internal::random<Index>(0, rows-1);
35*bf2c3715SXin Li Index q;
36*bf2c3715SXin Li do {
37*bf2c3715SXin Li q = internal::random<Index>(0, rows-1);
38*bf2c3715SXin Li } while (q == p);
39*bf2c3715SXin Li
40*bf2c3715SXin Li MatrixType b = a;
41*bf2c3715SXin Li b.applyOnTheLeft(p, q, rot);
42*bf2c3715SXin Li VERIFY_IS_APPROX(b.row(p), c * a.row(p) + numext::conj(s) * a.row(q));
43*bf2c3715SXin Li VERIFY_IS_APPROX(b.row(q), -s * a.row(p) + numext::conj(c) * a.row(q));
44*bf2c3715SXin Li }
45*bf2c3715SXin Li
46*bf2c3715SXin Li {
47*bf2c3715SXin Li Index p = internal::random<Index>(0, cols-1);
48*bf2c3715SXin Li Index q;
49*bf2c3715SXin Li do {
50*bf2c3715SXin Li q = internal::random<Index>(0, cols-1);
51*bf2c3715SXin Li } while (q == p);
52*bf2c3715SXin Li
53*bf2c3715SXin Li MatrixType b = a;
54*bf2c3715SXin Li b.applyOnTheRight(p, q, rot);
55*bf2c3715SXin Li VERIFY_IS_APPROX(b.col(p), c * a.col(p) - s * a.col(q));
56*bf2c3715SXin Li VERIFY_IS_APPROX(b.col(q), numext::conj(s) * a.col(p) + numext::conj(c) * a.col(q));
57*bf2c3715SXin Li }
58*bf2c3715SXin Li }
59*bf2c3715SXin Li
EIGEN_DECLARE_TEST(jacobi)60*bf2c3715SXin Li EIGEN_DECLARE_TEST(jacobi)
61*bf2c3715SXin Li {
62*bf2c3715SXin Li for(int i = 0; i < g_repeat; i++) {
63*bf2c3715SXin Li CALL_SUBTEST_1(( jacobi<Matrix3f, float>() ));
64*bf2c3715SXin Li CALL_SUBTEST_2(( jacobi<Matrix4d, double>() ));
65*bf2c3715SXin Li CALL_SUBTEST_3(( jacobi<Matrix4cf, float>() ));
66*bf2c3715SXin Li CALL_SUBTEST_3(( jacobi<Matrix4cf, std::complex<float> >() ));
67*bf2c3715SXin Li
68*bf2c3715SXin Li int r = internal::random<int>(2, internal::random<int>(1,EIGEN_TEST_MAX_SIZE)/2),
69*bf2c3715SXin Li c = internal::random<int>(2, internal::random<int>(1,EIGEN_TEST_MAX_SIZE)/2);
70*bf2c3715SXin Li CALL_SUBTEST_4(( jacobi<MatrixXf, float>(MatrixXf(r,c)) ));
71*bf2c3715SXin Li CALL_SUBTEST_5(( jacobi<MatrixXcd, double>(MatrixXcd(r,c)) ));
72*bf2c3715SXin Li CALL_SUBTEST_5(( jacobi<MatrixXcd, std::complex<double> >(MatrixXcd(r,c)) ));
73*bf2c3715SXin Li // complex<float> is really important to test as it is the only way to cover conjugation issues in certain unaligned paths
74*bf2c3715SXin Li CALL_SUBTEST_6(( jacobi<MatrixXcf, float>(MatrixXcf(r,c)) ));
75*bf2c3715SXin Li CALL_SUBTEST_6(( jacobi<MatrixXcf, std::complex<float> >(MatrixXcf(r,c)) ));
76*bf2c3715SXin Li
77*bf2c3715SXin Li TEST_SET_BUT_UNUSED_VARIABLE(r);
78*bf2c3715SXin Li TEST_SET_BUT_UNUSED_VARIABLE(c);
79*bf2c3715SXin Li }
80*bf2c3715SXin Li }
81