xref: /aosp_15_r20/external/eigen/test/mapstride.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2010 Benoit Jacob <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 
map_class_vector(const VectorType & m)12 template<int Alignment,typename VectorType> void map_class_vector(const VectorType& m)
13 {
14   typedef typename VectorType::Scalar Scalar;
15 
16   Index size = m.size();
17 
18   VectorType v = VectorType::Random(size);
19 
20   Index arraysize = 3*size;
21 
22   Scalar* a_array = internal::aligned_new<Scalar>(arraysize+1);
23   Scalar* array = a_array;
24   if(Alignment!=Aligned)
25     array = (Scalar*)(internal::IntPtr(a_array) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real)));
26 
27   {
28     Map<VectorType, Alignment, InnerStride<3> > map(array, size);
29     map = v;
30     for(int i = 0; i < size; ++i)
31     {
32       VERIFY(array[3*i] == v[i]);
33       VERIFY(map[i] == v[i]);
34     }
35   }
36 
37   {
38     Map<VectorType, Unaligned, InnerStride<Dynamic> > map(array, size, InnerStride<Dynamic>(2));
39     map = v;
40     for(int i = 0; i < size; ++i)
41     {
42       VERIFY(array[2*i] == v[i]);
43       VERIFY(map[i] == v[i]);
44     }
45   }
46 
47   internal::aligned_delete(a_array, arraysize+1);
48 }
49 
map_class_matrix(const MatrixType & _m)50 template<int Alignment,typename MatrixType> void map_class_matrix(const MatrixType& _m)
51 {
52   typedef typename MatrixType::Scalar Scalar;
53 
54   Index rows = _m.rows(), cols = _m.cols();
55 
56   MatrixType m = MatrixType::Random(rows,cols);
57   Scalar s1 = internal::random<Scalar>();
58 
59   Index arraysize = 4*(rows+4)*(cols+4);
60 
61   Scalar* a_array1 = internal::aligned_new<Scalar>(arraysize+1);
62   Scalar* array1 = a_array1;
63   if(Alignment!=Aligned)
64     array1 = (Scalar*)(internal::IntPtr(a_array1) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real)));
65 
66   Scalar a_array2[256];
67   Scalar* array2 = a_array2;
68   if(Alignment!=Aligned)
69     array2 = (Scalar*)(internal::IntPtr(a_array2) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real)));
70   else
71     array2 = (Scalar*)(((internal::UIntPtr(a_array2)+EIGEN_MAX_ALIGN_BYTES-1)/EIGEN_MAX_ALIGN_BYTES)*EIGEN_MAX_ALIGN_BYTES);
72   Index maxsize2 = a_array2 - array2 + 256;
73 
74   // test no inner stride and some dynamic outer stride
75   for(int k=0; k<2; ++k)
76   {
77     if(k==1 && (m.innerSize()+1)*m.outerSize() > maxsize2)
78       break;
79     Scalar* array = (k==0 ? array1 : array2);
80 
81     Map<MatrixType, Alignment, OuterStride<Dynamic> > map(array, rows, cols, OuterStride<Dynamic>(m.innerSize()+1));
82     map = m;
83     VERIFY(map.outerStride() == map.innerSize()+1);
84     for(int i = 0; i < m.outerSize(); ++i)
85       for(int j = 0; j < m.innerSize(); ++j)
86       {
87         VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j));
88         VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j));
89       }
90     VERIFY_IS_APPROX(s1*map,s1*m);
91     map *= s1;
92     VERIFY_IS_APPROX(map,s1*m);
93   }
94 
95   // test no inner stride and an outer stride of +4. This is quite important as for fixed-size matrices,
96   // this allows to hit the special case where it's vectorizable.
97   for(int k=0; k<2; ++k)
98   {
99     if(k==1 && (m.innerSize()+4)*m.outerSize() > maxsize2)
100       break;
101     Scalar* array = (k==0 ? array1 : array2);
102 
103     enum {
104       InnerSize = MatrixType::InnerSizeAtCompileTime,
105       OuterStrideAtCompileTime = InnerSize==Dynamic ? Dynamic : InnerSize+4
106     };
107     Map<MatrixType, Alignment, OuterStride<OuterStrideAtCompileTime> >
108       map(array, rows, cols, OuterStride<OuterStrideAtCompileTime>(m.innerSize()+4));
109     map = m;
110     VERIFY(map.outerStride() == map.innerSize()+4);
111     for(int i = 0; i < m.outerSize(); ++i)
112       for(int j = 0; j < m.innerSize(); ++j)
113       {
114         VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j));
115         VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j));
116       }
117     VERIFY_IS_APPROX(s1*map,s1*m);
118     map *= s1;
119     VERIFY_IS_APPROX(map,s1*m);
120   }
121 
122   // test both inner stride and outer stride
123   for(int k=0; k<2; ++k)
124   {
125     if(k==1 && (2*m.innerSize()+1)*(m.outerSize()*2) > maxsize2)
126       break;
127     Scalar* array = (k==0 ? array1 : array2);
128 
129     Map<MatrixType, Alignment, Stride<Dynamic,Dynamic> > map(array, rows, cols, Stride<Dynamic,Dynamic>(2*m.innerSize()+1, 2));
130     map = m;
131     VERIFY(map.outerStride() == 2*map.innerSize()+1);
132     VERIFY(map.innerStride() == 2);
133     for(int i = 0; i < m.outerSize(); ++i)
134       for(int j = 0; j < m.innerSize(); ++j)
135       {
136         VERIFY(array[map.outerStride()*i+map.innerStride()*j] == m.coeffByOuterInner(i,j));
137         VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j));
138       }
139     VERIFY_IS_APPROX(s1*map,s1*m);
140     map *= s1;
141     VERIFY_IS_APPROX(map,s1*m);
142   }
143 
144   // test inner stride and no outer stride
145   for(int k=0; k<2; ++k)
146   {
147     if(k==1 && (m.innerSize()*2)*m.outerSize() > maxsize2)
148       break;
149     Scalar* array = (k==0 ? array1 : array2);
150 
151     Map<MatrixType, Alignment, InnerStride<Dynamic> > map(array, rows, cols, InnerStride<Dynamic>(2));
152     map = m;
153     VERIFY(map.outerStride() == map.innerSize()*2);
154     for(int i = 0; i < m.outerSize(); ++i)
155       for(int j = 0; j < m.innerSize(); ++j)
156       {
157         VERIFY(array[map.innerSize()*i*2+j*2] == m.coeffByOuterInner(i,j));
158         VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j));
159       }
160     VERIFY_IS_APPROX(s1*map,s1*m);
161     map *= s1;
162     VERIFY_IS_APPROX(map,s1*m);
163   }
164 
165   // test negative strides
166   {
167     Matrix<Scalar,Dynamic,1>::Map(a_array1, arraysize+1).setRandom();
168     Index outerstride = m.innerSize()+4;
169     Scalar* array = array1;
170 
171     {
172       Map<MatrixType, Alignment, OuterStride<> > map1(array, rows, cols, OuterStride<>( outerstride));
173       Map<MatrixType, Unaligned, OuterStride<> > map2(array+(m.outerSize()-1)*outerstride, rows, cols, OuterStride<>(-outerstride));
174       if(MatrixType::IsRowMajor)  VERIFY_IS_APPROX(map1.colwise().reverse(), map2);
175       else                        VERIFY_IS_APPROX(map1.rowwise().reverse(), map2);
176     }
177 
178     {
179       Map<MatrixType, Alignment, OuterStride<> > map1(array, rows, cols, OuterStride<>( outerstride));
180       Map<MatrixType, Unaligned, Stride<Dynamic,Dynamic> > map2(array+(m.outerSize()-1)*outerstride+m.innerSize()-1, rows, cols, Stride<Dynamic,Dynamic>(-outerstride,-1));
181       VERIFY_IS_APPROX(map1.reverse(), map2);
182     }
183 
184     {
185       Map<MatrixType, Alignment, OuterStride<> > map1(array, rows, cols, OuterStride<>( outerstride));
186       Map<MatrixType, Unaligned, Stride<Dynamic,-1> > map2(array+(m.outerSize()-1)*outerstride+m.innerSize()-1, rows, cols, Stride<Dynamic,-1>(-outerstride,-1));
187       VERIFY_IS_APPROX(map1.reverse(), map2);
188     }
189   }
190 
191   internal::aligned_delete(a_array1, arraysize+1);
192 }
193 
194 // Additional tests for inner-stride but no outer-stride
195 template<int>
bug1453()196 void bug1453()
197 {
198   const int data[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31};
199   typedef Matrix<int,Dynamic,Dynamic,RowMajor> RowMatrixXi;
200   typedef Matrix<int,2,3,ColMajor> ColMatrix23i;
201   typedef Matrix<int,3,2,ColMajor> ColMatrix32i;
202   typedef Matrix<int,2,3,RowMajor> RowMatrix23i;
203   typedef Matrix<int,3,2,RowMajor> RowMatrix32i;
204 
205   VERIFY_IS_APPROX(MatrixXi::Map(data, 2, 3, InnerStride<2>()), MatrixXi::Map(data, 2, 3, Stride<4,2>()));
206   VERIFY_IS_APPROX(MatrixXi::Map(data, 2, 3, InnerStride<>(2)), MatrixXi::Map(data, 2, 3, Stride<4,2>()));
207   VERIFY_IS_APPROX(MatrixXi::Map(data, 3, 2, InnerStride<2>()), MatrixXi::Map(data, 3, 2, Stride<6,2>()));
208   VERIFY_IS_APPROX(MatrixXi::Map(data, 3, 2, InnerStride<>(2)), MatrixXi::Map(data, 3, 2, Stride<6,2>()));
209 
210   VERIFY_IS_APPROX(RowMatrixXi::Map(data, 2, 3, InnerStride<2>()), RowMatrixXi::Map(data, 2, 3, Stride<6,2>()));
211   VERIFY_IS_APPROX(RowMatrixXi::Map(data, 2, 3, InnerStride<>(2)), RowMatrixXi::Map(data, 2, 3, Stride<6,2>()));
212   VERIFY_IS_APPROX(RowMatrixXi::Map(data, 3, 2, InnerStride<2>()), RowMatrixXi::Map(data, 3, 2, Stride<4,2>()));
213   VERIFY_IS_APPROX(RowMatrixXi::Map(data, 3, 2, InnerStride<>(2)), RowMatrixXi::Map(data, 3, 2, Stride<4,2>()));
214 
215   VERIFY_IS_APPROX(ColMatrix23i::Map(data, InnerStride<2>()), MatrixXi::Map(data, 2, 3, Stride<4,2>()));
216   VERIFY_IS_APPROX(ColMatrix23i::Map(data, InnerStride<>(2)), MatrixXi::Map(data, 2, 3, Stride<4,2>()));
217   VERIFY_IS_APPROX(ColMatrix32i::Map(data, InnerStride<2>()), MatrixXi::Map(data, 3, 2, Stride<6,2>()));
218   VERIFY_IS_APPROX(ColMatrix32i::Map(data, InnerStride<>(2)), MatrixXi::Map(data, 3, 2, Stride<6,2>()));
219 
220   VERIFY_IS_APPROX(RowMatrix23i::Map(data, InnerStride<2>()), RowMatrixXi::Map(data, 2, 3, Stride<6,2>()));
221   VERIFY_IS_APPROX(RowMatrix23i::Map(data, InnerStride<>(2)), RowMatrixXi::Map(data, 2, 3, Stride<6,2>()));
222   VERIFY_IS_APPROX(RowMatrix32i::Map(data, InnerStride<2>()), RowMatrixXi::Map(data, 3, 2, Stride<4,2>()));
223   VERIFY_IS_APPROX(RowMatrix32i::Map(data, InnerStride<>(2)), RowMatrixXi::Map(data, 3, 2, Stride<4,2>()));
224 }
225 
EIGEN_DECLARE_TEST(mapstride)226 EIGEN_DECLARE_TEST(mapstride)
227 {
228   for(int i = 0; i < g_repeat; i++) {
229     int maxn = 3;
230     CALL_SUBTEST_1( map_class_vector<Aligned>(Matrix<float, 1, 1>()) );
231     CALL_SUBTEST_1( map_class_vector<Unaligned>(Matrix<float, 1, 1>()) );
232     CALL_SUBTEST_2( map_class_vector<Aligned>(Vector4d()) );
233     CALL_SUBTEST_2( map_class_vector<Unaligned>(Vector4d()) );
234     CALL_SUBTEST_3( map_class_vector<Aligned>(RowVector4f()) );
235     CALL_SUBTEST_3( map_class_vector<Unaligned>(RowVector4f()) );
236     CALL_SUBTEST_4( map_class_vector<Aligned>(VectorXcf(internal::random<int>(1,maxn))) );
237     CALL_SUBTEST_4( map_class_vector<Unaligned>(VectorXcf(internal::random<int>(1,maxn))) );
238     CALL_SUBTEST_5( map_class_vector<Aligned>(VectorXi(internal::random<int>(1,maxn))) );
239     CALL_SUBTEST_5( map_class_vector<Unaligned>(VectorXi(internal::random<int>(1,maxn))) );
240 
241     CALL_SUBTEST_1( map_class_matrix<Aligned>(Matrix<float, 1, 1>()) );
242     CALL_SUBTEST_1( map_class_matrix<Unaligned>(Matrix<float, 1, 1>()) );
243     CALL_SUBTEST_2( map_class_matrix<Aligned>(Matrix4d()) );
244     CALL_SUBTEST_2( map_class_matrix<Unaligned>(Matrix4d()) );
245     CALL_SUBTEST_3( map_class_matrix<Aligned>(Matrix<float,3,5>()) );
246     CALL_SUBTEST_3( map_class_matrix<Unaligned>(Matrix<float,3,5>()) );
247     CALL_SUBTEST_3( map_class_matrix<Aligned>(Matrix<float,4,8>()) );
248     CALL_SUBTEST_3( map_class_matrix<Unaligned>(Matrix<float,4,8>()) );
249     CALL_SUBTEST_4( map_class_matrix<Aligned>(MatrixXcf(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
250     CALL_SUBTEST_4( map_class_matrix<Unaligned>(MatrixXcf(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
251     CALL_SUBTEST_5( map_class_matrix<Aligned>(MatrixXi(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
252     CALL_SUBTEST_5( map_class_matrix<Unaligned>(MatrixXi(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
253     CALL_SUBTEST_6( map_class_matrix<Aligned>(MatrixXcd(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
254     CALL_SUBTEST_6( map_class_matrix<Unaligned>(MatrixXcd(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
255 
256     CALL_SUBTEST_5( bug1453<0>() );
257 
258     TEST_SET_BUT_UNUSED_VARIABLE(maxn);
259   }
260 }
261