1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2010 Benoit Jacob <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #include "main.h"
11
map_class_vector(const VectorType & m)12 template<int Alignment,typename VectorType> void map_class_vector(const VectorType& m)
13 {
14 typedef typename VectorType::Scalar Scalar;
15
16 Index size = m.size();
17
18 VectorType v = VectorType::Random(size);
19
20 Index arraysize = 3*size;
21
22 Scalar* a_array = internal::aligned_new<Scalar>(arraysize+1);
23 Scalar* array = a_array;
24 if(Alignment!=Aligned)
25 array = (Scalar*)(internal::IntPtr(a_array) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real)));
26
27 {
28 Map<VectorType, Alignment, InnerStride<3> > map(array, size);
29 map = v;
30 for(int i = 0; i < size; ++i)
31 {
32 VERIFY(array[3*i] == v[i]);
33 VERIFY(map[i] == v[i]);
34 }
35 }
36
37 {
38 Map<VectorType, Unaligned, InnerStride<Dynamic> > map(array, size, InnerStride<Dynamic>(2));
39 map = v;
40 for(int i = 0; i < size; ++i)
41 {
42 VERIFY(array[2*i] == v[i]);
43 VERIFY(map[i] == v[i]);
44 }
45 }
46
47 internal::aligned_delete(a_array, arraysize+1);
48 }
49
map_class_matrix(const MatrixType & _m)50 template<int Alignment,typename MatrixType> void map_class_matrix(const MatrixType& _m)
51 {
52 typedef typename MatrixType::Scalar Scalar;
53
54 Index rows = _m.rows(), cols = _m.cols();
55
56 MatrixType m = MatrixType::Random(rows,cols);
57 Scalar s1 = internal::random<Scalar>();
58
59 Index arraysize = 4*(rows+4)*(cols+4);
60
61 Scalar* a_array1 = internal::aligned_new<Scalar>(arraysize+1);
62 Scalar* array1 = a_array1;
63 if(Alignment!=Aligned)
64 array1 = (Scalar*)(internal::IntPtr(a_array1) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real)));
65
66 Scalar a_array2[256];
67 Scalar* array2 = a_array2;
68 if(Alignment!=Aligned)
69 array2 = (Scalar*)(internal::IntPtr(a_array2) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real)));
70 else
71 array2 = (Scalar*)(((internal::UIntPtr(a_array2)+EIGEN_MAX_ALIGN_BYTES-1)/EIGEN_MAX_ALIGN_BYTES)*EIGEN_MAX_ALIGN_BYTES);
72 Index maxsize2 = a_array2 - array2 + 256;
73
74 // test no inner stride and some dynamic outer stride
75 for(int k=0; k<2; ++k)
76 {
77 if(k==1 && (m.innerSize()+1)*m.outerSize() > maxsize2)
78 break;
79 Scalar* array = (k==0 ? array1 : array2);
80
81 Map<MatrixType, Alignment, OuterStride<Dynamic> > map(array, rows, cols, OuterStride<Dynamic>(m.innerSize()+1));
82 map = m;
83 VERIFY(map.outerStride() == map.innerSize()+1);
84 for(int i = 0; i < m.outerSize(); ++i)
85 for(int j = 0; j < m.innerSize(); ++j)
86 {
87 VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j));
88 VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j));
89 }
90 VERIFY_IS_APPROX(s1*map,s1*m);
91 map *= s1;
92 VERIFY_IS_APPROX(map,s1*m);
93 }
94
95 // test no inner stride and an outer stride of +4. This is quite important as for fixed-size matrices,
96 // this allows to hit the special case where it's vectorizable.
97 for(int k=0; k<2; ++k)
98 {
99 if(k==1 && (m.innerSize()+4)*m.outerSize() > maxsize2)
100 break;
101 Scalar* array = (k==0 ? array1 : array2);
102
103 enum {
104 InnerSize = MatrixType::InnerSizeAtCompileTime,
105 OuterStrideAtCompileTime = InnerSize==Dynamic ? Dynamic : InnerSize+4
106 };
107 Map<MatrixType, Alignment, OuterStride<OuterStrideAtCompileTime> >
108 map(array, rows, cols, OuterStride<OuterStrideAtCompileTime>(m.innerSize()+4));
109 map = m;
110 VERIFY(map.outerStride() == map.innerSize()+4);
111 for(int i = 0; i < m.outerSize(); ++i)
112 for(int j = 0; j < m.innerSize(); ++j)
113 {
114 VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j));
115 VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j));
116 }
117 VERIFY_IS_APPROX(s1*map,s1*m);
118 map *= s1;
119 VERIFY_IS_APPROX(map,s1*m);
120 }
121
122 // test both inner stride and outer stride
123 for(int k=0; k<2; ++k)
124 {
125 if(k==1 && (2*m.innerSize()+1)*(m.outerSize()*2) > maxsize2)
126 break;
127 Scalar* array = (k==0 ? array1 : array2);
128
129 Map<MatrixType, Alignment, Stride<Dynamic,Dynamic> > map(array, rows, cols, Stride<Dynamic,Dynamic>(2*m.innerSize()+1, 2));
130 map = m;
131 VERIFY(map.outerStride() == 2*map.innerSize()+1);
132 VERIFY(map.innerStride() == 2);
133 for(int i = 0; i < m.outerSize(); ++i)
134 for(int j = 0; j < m.innerSize(); ++j)
135 {
136 VERIFY(array[map.outerStride()*i+map.innerStride()*j] == m.coeffByOuterInner(i,j));
137 VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j));
138 }
139 VERIFY_IS_APPROX(s1*map,s1*m);
140 map *= s1;
141 VERIFY_IS_APPROX(map,s1*m);
142 }
143
144 // test inner stride and no outer stride
145 for(int k=0; k<2; ++k)
146 {
147 if(k==1 && (m.innerSize()*2)*m.outerSize() > maxsize2)
148 break;
149 Scalar* array = (k==0 ? array1 : array2);
150
151 Map<MatrixType, Alignment, InnerStride<Dynamic> > map(array, rows, cols, InnerStride<Dynamic>(2));
152 map = m;
153 VERIFY(map.outerStride() == map.innerSize()*2);
154 for(int i = 0; i < m.outerSize(); ++i)
155 for(int j = 0; j < m.innerSize(); ++j)
156 {
157 VERIFY(array[map.innerSize()*i*2+j*2] == m.coeffByOuterInner(i,j));
158 VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j));
159 }
160 VERIFY_IS_APPROX(s1*map,s1*m);
161 map *= s1;
162 VERIFY_IS_APPROX(map,s1*m);
163 }
164
165 // test negative strides
166 {
167 Matrix<Scalar,Dynamic,1>::Map(a_array1, arraysize+1).setRandom();
168 Index outerstride = m.innerSize()+4;
169 Scalar* array = array1;
170
171 {
172 Map<MatrixType, Alignment, OuterStride<> > map1(array, rows, cols, OuterStride<>( outerstride));
173 Map<MatrixType, Unaligned, OuterStride<> > map2(array+(m.outerSize()-1)*outerstride, rows, cols, OuterStride<>(-outerstride));
174 if(MatrixType::IsRowMajor) VERIFY_IS_APPROX(map1.colwise().reverse(), map2);
175 else VERIFY_IS_APPROX(map1.rowwise().reverse(), map2);
176 }
177
178 {
179 Map<MatrixType, Alignment, OuterStride<> > map1(array, rows, cols, OuterStride<>( outerstride));
180 Map<MatrixType, Unaligned, Stride<Dynamic,Dynamic> > map2(array+(m.outerSize()-1)*outerstride+m.innerSize()-1, rows, cols, Stride<Dynamic,Dynamic>(-outerstride,-1));
181 VERIFY_IS_APPROX(map1.reverse(), map2);
182 }
183
184 {
185 Map<MatrixType, Alignment, OuterStride<> > map1(array, rows, cols, OuterStride<>( outerstride));
186 Map<MatrixType, Unaligned, Stride<Dynamic,-1> > map2(array+(m.outerSize()-1)*outerstride+m.innerSize()-1, rows, cols, Stride<Dynamic,-1>(-outerstride,-1));
187 VERIFY_IS_APPROX(map1.reverse(), map2);
188 }
189 }
190
191 internal::aligned_delete(a_array1, arraysize+1);
192 }
193
194 // Additional tests for inner-stride but no outer-stride
195 template<int>
bug1453()196 void bug1453()
197 {
198 const int data[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31};
199 typedef Matrix<int,Dynamic,Dynamic,RowMajor> RowMatrixXi;
200 typedef Matrix<int,2,3,ColMajor> ColMatrix23i;
201 typedef Matrix<int,3,2,ColMajor> ColMatrix32i;
202 typedef Matrix<int,2,3,RowMajor> RowMatrix23i;
203 typedef Matrix<int,3,2,RowMajor> RowMatrix32i;
204
205 VERIFY_IS_APPROX(MatrixXi::Map(data, 2, 3, InnerStride<2>()), MatrixXi::Map(data, 2, 3, Stride<4,2>()));
206 VERIFY_IS_APPROX(MatrixXi::Map(data, 2, 3, InnerStride<>(2)), MatrixXi::Map(data, 2, 3, Stride<4,2>()));
207 VERIFY_IS_APPROX(MatrixXi::Map(data, 3, 2, InnerStride<2>()), MatrixXi::Map(data, 3, 2, Stride<6,2>()));
208 VERIFY_IS_APPROX(MatrixXi::Map(data, 3, 2, InnerStride<>(2)), MatrixXi::Map(data, 3, 2, Stride<6,2>()));
209
210 VERIFY_IS_APPROX(RowMatrixXi::Map(data, 2, 3, InnerStride<2>()), RowMatrixXi::Map(data, 2, 3, Stride<6,2>()));
211 VERIFY_IS_APPROX(RowMatrixXi::Map(data, 2, 3, InnerStride<>(2)), RowMatrixXi::Map(data, 2, 3, Stride<6,2>()));
212 VERIFY_IS_APPROX(RowMatrixXi::Map(data, 3, 2, InnerStride<2>()), RowMatrixXi::Map(data, 3, 2, Stride<4,2>()));
213 VERIFY_IS_APPROX(RowMatrixXi::Map(data, 3, 2, InnerStride<>(2)), RowMatrixXi::Map(data, 3, 2, Stride<4,2>()));
214
215 VERIFY_IS_APPROX(ColMatrix23i::Map(data, InnerStride<2>()), MatrixXi::Map(data, 2, 3, Stride<4,2>()));
216 VERIFY_IS_APPROX(ColMatrix23i::Map(data, InnerStride<>(2)), MatrixXi::Map(data, 2, 3, Stride<4,2>()));
217 VERIFY_IS_APPROX(ColMatrix32i::Map(data, InnerStride<2>()), MatrixXi::Map(data, 3, 2, Stride<6,2>()));
218 VERIFY_IS_APPROX(ColMatrix32i::Map(data, InnerStride<>(2)), MatrixXi::Map(data, 3, 2, Stride<6,2>()));
219
220 VERIFY_IS_APPROX(RowMatrix23i::Map(data, InnerStride<2>()), RowMatrixXi::Map(data, 2, 3, Stride<6,2>()));
221 VERIFY_IS_APPROX(RowMatrix23i::Map(data, InnerStride<>(2)), RowMatrixXi::Map(data, 2, 3, Stride<6,2>()));
222 VERIFY_IS_APPROX(RowMatrix32i::Map(data, InnerStride<2>()), RowMatrixXi::Map(data, 3, 2, Stride<4,2>()));
223 VERIFY_IS_APPROX(RowMatrix32i::Map(data, InnerStride<>(2)), RowMatrixXi::Map(data, 3, 2, Stride<4,2>()));
224 }
225
EIGEN_DECLARE_TEST(mapstride)226 EIGEN_DECLARE_TEST(mapstride)
227 {
228 for(int i = 0; i < g_repeat; i++) {
229 int maxn = 3;
230 CALL_SUBTEST_1( map_class_vector<Aligned>(Matrix<float, 1, 1>()) );
231 CALL_SUBTEST_1( map_class_vector<Unaligned>(Matrix<float, 1, 1>()) );
232 CALL_SUBTEST_2( map_class_vector<Aligned>(Vector4d()) );
233 CALL_SUBTEST_2( map_class_vector<Unaligned>(Vector4d()) );
234 CALL_SUBTEST_3( map_class_vector<Aligned>(RowVector4f()) );
235 CALL_SUBTEST_3( map_class_vector<Unaligned>(RowVector4f()) );
236 CALL_SUBTEST_4( map_class_vector<Aligned>(VectorXcf(internal::random<int>(1,maxn))) );
237 CALL_SUBTEST_4( map_class_vector<Unaligned>(VectorXcf(internal::random<int>(1,maxn))) );
238 CALL_SUBTEST_5( map_class_vector<Aligned>(VectorXi(internal::random<int>(1,maxn))) );
239 CALL_SUBTEST_5( map_class_vector<Unaligned>(VectorXi(internal::random<int>(1,maxn))) );
240
241 CALL_SUBTEST_1( map_class_matrix<Aligned>(Matrix<float, 1, 1>()) );
242 CALL_SUBTEST_1( map_class_matrix<Unaligned>(Matrix<float, 1, 1>()) );
243 CALL_SUBTEST_2( map_class_matrix<Aligned>(Matrix4d()) );
244 CALL_SUBTEST_2( map_class_matrix<Unaligned>(Matrix4d()) );
245 CALL_SUBTEST_3( map_class_matrix<Aligned>(Matrix<float,3,5>()) );
246 CALL_SUBTEST_3( map_class_matrix<Unaligned>(Matrix<float,3,5>()) );
247 CALL_SUBTEST_3( map_class_matrix<Aligned>(Matrix<float,4,8>()) );
248 CALL_SUBTEST_3( map_class_matrix<Unaligned>(Matrix<float,4,8>()) );
249 CALL_SUBTEST_4( map_class_matrix<Aligned>(MatrixXcf(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
250 CALL_SUBTEST_4( map_class_matrix<Unaligned>(MatrixXcf(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
251 CALL_SUBTEST_5( map_class_matrix<Aligned>(MatrixXi(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
252 CALL_SUBTEST_5( map_class_matrix<Unaligned>(MatrixXi(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
253 CALL_SUBTEST_6( map_class_matrix<Aligned>(MatrixXcd(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
254 CALL_SUBTEST_6( map_class_matrix<Unaligned>(MatrixXcd(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
255
256 CALL_SUBTEST_5( bug1453<0>() );
257
258 TEST_SET_BUT_UNUSED_VARIABLE(maxn);
259 }
260 }
261