1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Benoit Jacob <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #include "main.h"
11 #include <Eigen/LU>
12 #include <algorithm>
13
inverse_permutation_4x4()14 template<typename MatrixType> void inverse_permutation_4x4()
15 {
16 typedef typename MatrixType::Scalar Scalar;
17 Vector4i indices(0,1,2,3);
18 for(int i = 0; i < 24; ++i)
19 {
20 MatrixType m = PermutationMatrix<4>(indices);
21 MatrixType inv = m.inverse();
22 double error = double( (m*inv-MatrixType::Identity()).norm() / NumTraits<Scalar>::epsilon() );
23 EIGEN_DEBUG_VAR(error)
24 VERIFY(error == 0.0);
25 std::next_permutation(indices.data(),indices.data()+4);
26 }
27 }
28
inverse_general_4x4(int repeat)29 template<typename MatrixType> void inverse_general_4x4(int repeat)
30 {
31 using std::abs;
32 typedef typename MatrixType::Scalar Scalar;
33 double error_sum = 0., error_max = 0.;
34 for(int i = 0; i < repeat; ++i)
35 {
36 MatrixType m;
37 bool is_invertible;
38 do {
39 m = MatrixType::Random();
40 is_invertible = Eigen::FullPivLU<MatrixType>(m).isInvertible();
41 } while(!is_invertible);
42 MatrixType inv = m.inverse();
43 double error = double( (m*inv-MatrixType::Identity()).norm());
44 error_sum += error;
45 error_max = (std::max)(error_max, error);
46 }
47 std::cerr << "inverse_general_4x4, Scalar = " << type_name<Scalar>() << std::endl;
48 double error_avg = error_sum / repeat;
49 EIGEN_DEBUG_VAR(error_avg);
50 EIGEN_DEBUG_VAR(error_max);
51 // FIXME that 1.25 used to be a 1.0 until the NumTraits changes on 28 April 2010, what's going wrong??
52 // FIXME that 1.25 used to be 1.2 until we tested gcc 4.1 on 30 June 2010 and got 1.21.
53 VERIFY(error_avg < (NumTraits<Scalar>::IsComplex ? 8.0 : 1.25));
54 VERIFY(error_max < (NumTraits<Scalar>::IsComplex ? 64.0 : 20.0));
55
56 {
57 int s = 5;//internal::random<int>(4,10);
58 int i = 0;//internal::random<int>(0,s-4);
59 int j = 0;//internal::random<int>(0,s-4);
60 Matrix<Scalar,5,5> mat(s,s);
61 mat.setRandom();
62 MatrixType submat = mat.template block<4,4>(i,j);
63 MatrixType mat_inv = mat.template block<4,4>(i,j).inverse();
64 VERIFY_IS_APPROX(mat_inv, submat.inverse());
65 mat.template block<4,4>(i,j) = submat.inverse();
66 VERIFY_IS_APPROX(mat_inv, (mat.template block<4,4>(i,j)));
67 }
68 }
69
EIGEN_DECLARE_TEST(prec_inverse_4x4)70 EIGEN_DECLARE_TEST(prec_inverse_4x4)
71 {
72 CALL_SUBTEST_1((inverse_permutation_4x4<Matrix4f>()));
73 CALL_SUBTEST_1(( inverse_general_4x4<Matrix4f>(200000 * g_repeat) ));
74 CALL_SUBTEST_1(( inverse_general_4x4<Matrix<float,4,4,RowMajor> >(200000 * g_repeat) ));
75
76 CALL_SUBTEST_2((inverse_permutation_4x4<Matrix<double,4,4,RowMajor> >()));
77 CALL_SUBTEST_2(( inverse_general_4x4<Matrix<double,4,4,ColMajor> >(200000 * g_repeat) ));
78 CALL_SUBTEST_2(( inverse_general_4x4<Matrix<double,4,4,RowMajor> >(200000 * g_repeat) ));
79
80 CALL_SUBTEST_3((inverse_permutation_4x4<Matrix4cf>()));
81 CALL_SUBTEST_3((inverse_general_4x4<Matrix4cf>(50000 * g_repeat)));
82 }
83