xref: /aosp_15_r20/external/eigen/test/qr.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <Eigen/QR>
12 #include "solverbase.h"
13 
qr(const MatrixType & m)14 template<typename MatrixType> void qr(const MatrixType& m)
15 {
16   Index rows = m.rows();
17   Index cols = m.cols();
18 
19   typedef typename MatrixType::Scalar Scalar;
20   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
21 
22   MatrixType a = MatrixType::Random(rows,cols);
23   HouseholderQR<MatrixType> qrOfA(a);
24 
25   MatrixQType q = qrOfA.householderQ();
26   VERIFY_IS_UNITARY(q);
27 
28   MatrixType r = qrOfA.matrixQR().template triangularView<Upper>();
29   VERIFY_IS_APPROX(a, qrOfA.householderQ() * r);
30 }
31 
qr_fixedsize()32 template<typename MatrixType, int Cols2> void qr_fixedsize()
33 {
34   enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
35   typedef typename MatrixType::Scalar Scalar;
36   Matrix<Scalar,Rows,Cols> m1 = Matrix<Scalar,Rows,Cols>::Random();
37   HouseholderQR<Matrix<Scalar,Rows,Cols> > qr(m1);
38 
39   Matrix<Scalar,Rows,Cols> r = qr.matrixQR();
40   // FIXME need better way to construct trapezoid
41   for(int i = 0; i < Rows; i++) for(int j = 0; j < Cols; j++) if(i>j) r(i,j) = Scalar(0);
42 
43   VERIFY_IS_APPROX(m1, qr.householderQ() * r);
44 
45   check_solverbase<Matrix<Scalar,Cols,Cols2>, Matrix<Scalar,Rows,Cols2> >(m1, qr, Rows, Cols, Cols2);
46 }
47 
qr_invertible()48 template<typename MatrixType> void qr_invertible()
49 {
50   using std::log;
51   using std::abs;
52   using std::pow;
53   using std::max;
54   typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
55   typedef typename MatrixType::Scalar Scalar;
56 
57   STATIC_CHECK(( internal::is_same<typename HouseholderQR<MatrixType>::StorageIndex,int>::value ));
58 
59   int size = internal::random<int>(10,50);
60 
61   MatrixType m1(size, size), m2(size, size), m3(size, size);
62   m1 = MatrixType::Random(size,size);
63 
64   if (internal::is_same<RealScalar,float>::value)
65   {
66     // let's build a matrix more stable to inverse
67     MatrixType a = MatrixType::Random(size,size*4);
68     m1 += a * a.adjoint();
69   }
70 
71   HouseholderQR<MatrixType> qr(m1);
72 
73   check_solverbase<MatrixType, MatrixType>(m1, qr, size, size, size);
74 
75   // now construct a matrix with prescribed determinant
76   m1.setZero();
77   for(int i = 0; i < size; i++) m1(i,i) = internal::random<Scalar>();
78   RealScalar absdet = abs(m1.diagonal().prod());
79   m3 = qr.householderQ(); // get a unitary
80   m1 = m3 * m1 * m3;
81   qr.compute(m1);
82   VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant());
83   // This test is tricky if the determinant becomes too small.
84   // Since we generate random numbers with magnitude range [0,1], the average determinant is 0.5^size
85   VERIFY_IS_MUCH_SMALLER_THAN( abs(absdet-qr.absDeterminant()), numext::maxi(RealScalar(pow(0.5,size)),numext::maxi<RealScalar>(abs(absdet),abs(qr.absDeterminant()))) );
86 
87 }
88 
qr_verify_assert()89 template<typename MatrixType> void qr_verify_assert()
90 {
91   MatrixType tmp;
92 
93   HouseholderQR<MatrixType> qr;
94   VERIFY_RAISES_ASSERT(qr.matrixQR())
95   VERIFY_RAISES_ASSERT(qr.solve(tmp))
96   VERIFY_RAISES_ASSERT(qr.transpose().solve(tmp))
97   VERIFY_RAISES_ASSERT(qr.adjoint().solve(tmp))
98   VERIFY_RAISES_ASSERT(qr.householderQ())
99   VERIFY_RAISES_ASSERT(qr.absDeterminant())
100   VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
101 }
102 
EIGEN_DECLARE_TEST(qr)103 EIGEN_DECLARE_TEST(qr)
104 {
105   for(int i = 0; i < g_repeat; i++) {
106    CALL_SUBTEST_1( qr(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
107    CALL_SUBTEST_2( qr(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2),internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
108    CALL_SUBTEST_3(( qr_fixedsize<Matrix<float,3,4>, 2 >() ));
109    CALL_SUBTEST_4(( qr_fixedsize<Matrix<double,6,2>, 4 >() ));
110    CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,2,5>, 7 >() ));
111    CALL_SUBTEST_11( qr(Matrix<float,1,1>()) );
112   }
113 
114   for(int i = 0; i < g_repeat; i++) {
115     CALL_SUBTEST_1( qr_invertible<MatrixXf>() );
116     CALL_SUBTEST_6( qr_invertible<MatrixXd>() );
117     CALL_SUBTEST_7( qr_invertible<MatrixXcf>() );
118     CALL_SUBTEST_8( qr_invertible<MatrixXcd>() );
119   }
120 
121   CALL_SUBTEST_9(qr_verify_assert<Matrix3f>());
122   CALL_SUBTEST_10(qr_verify_assert<Matrix3d>());
123   CALL_SUBTEST_1(qr_verify_assert<MatrixXf>());
124   CALL_SUBTEST_6(qr_verify_assert<MatrixXd>());
125   CALL_SUBTEST_7(qr_verify_assert<MatrixXcf>());
126   CALL_SUBTEST_8(qr_verify_assert<MatrixXcd>());
127 
128   // Test problem size constructors
129   CALL_SUBTEST_12(HouseholderQR<MatrixXf>(10, 20));
130 }
131