xref: /aosp_15_r20/external/eigen/unsupported/test/special_packetmath.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2009 Gael Guennebaud <[email protected]>
5 // Copyright (C) 2006-2008 Benoit Jacob <[email protected]>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include <limits>
12 #include "packetmath_test_shared.h"
13 #include "../Eigen/SpecialFunctions"
14 
packetmath_real()15 template<typename Scalar,typename Packet> void packetmath_real()
16 {
17   using std::abs;
18   typedef internal::packet_traits<Scalar> PacketTraits;
19   const int PacketSize = internal::unpacket_traits<Packet>::size;
20 
21   const int size = PacketSize*4;
22   EIGEN_ALIGN_MAX Scalar data1[PacketSize*4];
23   EIGEN_ALIGN_MAX Scalar data2[PacketSize*4];
24   EIGEN_ALIGN_MAX Scalar ref[PacketSize*4];
25 
26 #if EIGEN_HAS_C99_MATH
27   {
28     data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
29     test::packet_helper<internal::packet_traits<Scalar>::HasLGamma,Packet> h;
30     h.store(data2, internal::plgamma(h.load(data1)));
31     VERIFY((numext::isnan)(data2[0]));
32   }
33   if (internal::packet_traits<Scalar>::HasErf) {
34     data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
35     test::packet_helper<internal::packet_traits<Scalar>::HasErf,Packet> h;
36     h.store(data2, internal::perf(h.load(data1)));
37     VERIFY((numext::isnan)(data2[0]));
38   }
39   {
40     data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
41     test::packet_helper<internal::packet_traits<Scalar>::HasErfc,Packet> h;
42     h.store(data2, internal::perfc(h.load(data1)));
43     VERIFY((numext::isnan)(data2[0]));
44   }
45   {
46     for (int i=0; i<size; ++i) {
47       data1[i] = internal::random<Scalar>(Scalar(0),Scalar(1));
48     }
49     CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasNdtri, numext::ndtri, internal::pndtri);
50   }
51 #endif  // EIGEN_HAS_C99_MATH
52 
53   // For bessel_i*e and bessel_j*, the valid range is negative reals.
54   {
55     const int max_exponent = numext::mini(std::numeric_limits<Scalar>::max_exponent10-1, 6);
56     for (int i=0; i<size; ++i)
57     {
58       data1[i] = internal::random<Scalar>(Scalar(-1),Scalar(1)) * Scalar(std::pow(Scalar(10), internal::random<Scalar>(Scalar(-max_exponent),Scalar(max_exponent))));
59       data2[i] = internal::random<Scalar>(Scalar(-1),Scalar(1)) * Scalar(std::pow(Scalar(10), internal::random<Scalar>(Scalar(-max_exponent),Scalar(max_exponent))));
60     }
61 
62     CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i0e, internal::pbessel_i0e);
63     CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i1e, internal::pbessel_i1e);
64     CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_j0, internal::pbessel_j0);
65     CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_j1, internal::pbessel_j1);
66   }
67 
68   // Use a smaller data range for the bessel_i* as these can become very large.
69   // Following #1693, we also restrict this range further to avoid inf's due to
70   // differences in pexp and exp.
71   for (int i=0; i<size; ++i) {
72       data1[i] = internal::random<Scalar>(Scalar(0.01),Scalar(1)) *
73                   Scalar(std::pow(Scalar(9), internal::random<Scalar>(Scalar(-1),Scalar(2))));
74       data2[i] = internal::random<Scalar>(Scalar(0.01),Scalar(1)) *
75                   Scalar(std::pow(Scalar(9), internal::random<Scalar>(Scalar(-1),Scalar(2))));
76   }
77   CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i0, internal::pbessel_i0);
78   CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i1, internal::pbessel_i1);
79 
80 
81   // y_i, and k_i are valid for x > 0.
82   {
83     const int max_exponent = numext::mini(std::numeric_limits<Scalar>::max_exponent10-1, 5);
84     for (int i=0; i<size; ++i)
85     {
86       data1[i] = internal::random<Scalar>(Scalar(0.01),Scalar(1)) * Scalar(std::pow(Scalar(10), internal::random<Scalar>(Scalar(-2),Scalar(max_exponent))));
87       data2[i] = internal::random<Scalar>(Scalar(0.01),Scalar(1)) * Scalar(std::pow(Scalar(10), internal::random<Scalar>(Scalar(-2),Scalar(max_exponent))));
88     }
89   }
90 
91   // TODO(srvasude): Re-enable this test once properly investigated why the
92   // scalar and vector paths differ.
93   // CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_y0, internal::pbessel_y0);
94   CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_y1, internal::pbessel_y1);
95   CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_k0e, internal::pbessel_k0e);
96   CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_k1e, internal::pbessel_k1e);
97 
98   // Following #1693, we restrict the range for exp to avoid zeroing out too
99   // fast.
100   for (int i=0; i<size; ++i) {
101       data1[i] = internal::random<Scalar>(Scalar(0.01),Scalar(1)) *
102                   Scalar(std::pow(Scalar(9), internal::random<Scalar>(Scalar(-1),Scalar(2))));
103       data2[i] = internal::random<Scalar>(Scalar(0.01),Scalar(1)) *
104                   Scalar(std::pow(Scalar(9), internal::random<Scalar>(Scalar(-1),Scalar(2))));
105   }
106   CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_k0, internal::pbessel_k0);
107   CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_k1, internal::pbessel_k1);
108 
109 
110   for (int i=0; i<size; ++i) {
111       data1[i] = internal::random<Scalar>(Scalar(0.01),Scalar(1)) *
112                   Scalar(std::pow(Scalar(10), internal::random<Scalar>(Scalar(-1),Scalar(2))));
113       data2[i] = internal::random<Scalar>(Scalar(0.01),Scalar(1)) *
114                   Scalar(std::pow(Scalar(10), internal::random<Scalar>(Scalar(-1),Scalar(2))));
115   }
116 
117 #if EIGEN_HAS_C99_MATH && (EIGEN_COMP_CXXVER >= 11)
118   CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasLGamma, std::lgamma, internal::plgamma);
119   CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasErf, std::erf, internal::perf);
120   CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasErfc, std::erfc, internal::perfc);
121 #endif
122 
123 }
124 
125 namespace Eigen {
126 namespace test {
127 
128 template<typename Scalar,typename PacketType, bool IsComplex, bool IsInteger>
129 struct runall {
runEigen::test::runall130   static void run() {
131     packetmath_real<Scalar,PacketType>();
132   }
133 };
134 
135 }
136 }
137 
EIGEN_DECLARE_TEST(special_packetmath)138 EIGEN_DECLARE_TEST(special_packetmath)
139 {
140   g_first_pass = true;
141   for(int i = 0; i < g_repeat; i++) {
142 
143     CALL_SUBTEST_1( test::runner<float>::run() );
144     CALL_SUBTEST_2( test::runner<double>::run() );
145     CALL_SUBTEST_3( test::runner<Eigen::half>::run() );
146     CALL_SUBTEST_4( test::runner<Eigen::bfloat16>::run() );
147     g_first_pass = false;
148   }
149 }
150