xref: /aosp_15_r20/external/executorch/backends/arm/test/ops/test_linear.py (revision 523fa7a60841cd1ecfb9cc4201f1ca8b03ed023a)
1# Copyright (c) Meta Platforms, Inc. and affiliates.
2# Copyright 2024 Arm Limited and/or its affiliates.
3# All rights reserved.
4#
5# This source code is licensed under the BSD-style license found in the
6# LICENSE file in the root directory of this source tree.
7
8import logging
9import unittest
10
11from typing import Tuple
12
13import torch
14from executorch.backends.arm.test import common
15
16from executorch.backends.arm.test.tester.arm_tester import ArmTester
17from executorch.exir import EdgeCompileConfig
18from executorch.exir.backend.compile_spec_schema import CompileSpec
19from parameterized import parameterized
20
21logger = logging.getLogger(__name__)
22logger.setLevel(logging.INFO)
23
24
25test_data_suite_rank1 = [
26    # (test_name, test_data, out_features, has_bias)
27    (
28        "model_linear_rank1_zeros",
29        torch.zeros(10),
30        15,
31        True,
32    ),
33    (
34        "model_linear_rank1_ones",
35        torch.ones(10),
36        15,
37        False,
38    ),
39    (
40        "model_linear_rank1_negative_ones",
41        torch.ones(10) * (-1),
42        20,
43        True,
44    ),
45    (
46        "model_linear_rank1_rand",
47        torch.rand(10),
48        10,
49        True,
50    ),
51    (
52        "model_linear_rank1_negative_large_rand",
53        torch.rand(10) * (-100),
54        30,
55        False,
56    ),
57    (
58        "model_linear_rank1_large_randn",
59        torch.randn(15) * 100,
60        20,
61        True,
62    ),
63]
64
65test_data_suite_rank4 = [
66    # (test_name, test_data, out_features, has_bias)
67    (
68        "model_linear_rank4_zeros",
69        torch.zeros(5, 10, 25, 20),
70        30,
71        True,
72    ),
73    (
74        "model_linear_rank4_ones",
75        torch.ones(5, 10, 25, 20),
76        30,
77        False,
78    ),
79    (
80        "model_linear_rank4_negative_ones",
81        torch.ones(5, 10, 25, 20) * (-1),
82        30,
83        True,
84    ),
85    (
86        "model_linear_rank4_rand",
87        torch.rand(5, 10, 25, 20),
88        30,
89        False,
90    ),
91    (
92        "model_linear_rank4_negative_large_rand",
93        torch.rand(5, 10, 25, 20) * (-100),
94        30,
95        True,
96    ),
97    (
98        "model_linear_rank4_large_randn",
99        torch.randn(5, 10, 25, 20) * 100,
100        30,
101        False,
102    ),
103]
104
105
106class TestLinear(unittest.TestCase):
107    """tests the linear operation y = Ax + b"""
108
109    _edge_compile_config: EdgeCompileConfig = EdgeCompileConfig(
110        _skip_dim_order=True,  # TODO(T182928844): Delegate dim order op to backend.
111    )
112
113    class Linear(torch.nn.Module):
114        def __init__(
115            self,
116            in_features: int,
117            out_features: int = 3,
118            bias: bool = True,
119        ):
120            super().__init__()
121            self.fc = torch.nn.Linear(
122                in_features=in_features,
123                out_features=out_features,
124                bias=bias,
125            )
126
127        def forward(self, x):
128            return self.fc(x)
129
130    def _test_linear_tosa_MI_pipeline(
131        self, module: torch.nn.Module, test_data: Tuple[torch.Tensor]
132    ):
133        (
134            ArmTester(
135                module,
136                example_inputs=test_data,
137                compile_spec=common.get_tosa_compile_spec(
138                    "TOSA-0.80.0+MI", permute_memory_to_nhwc=True
139                ),
140            )
141            .export()
142            .check_count({"torch.ops.aten.linear.default": 1})
143            .check_not(["torch.ops.quantized_decomposed"])
144            .to_edge_transform_and_lower(edge_compile_config=self._edge_compile_config)
145            .check_count({"torch.ops.higher_order.executorch_call_delegate": 1})
146            .to_executorch()
147            .run_method_and_compare_outputs(inputs=test_data)
148        )
149
150    def _test_linear_tosa_BI_pipeline(
151        self, module: torch.nn.Module, test_data: Tuple[torch.Tensor]
152    ):
153        (
154            ArmTester(
155                module,
156                example_inputs=test_data,
157                compile_spec=common.get_tosa_compile_spec(
158                    "TOSA-0.80.0+BI", permute_memory_to_nhwc=True
159                ),
160            )
161            .quantize()
162            .export()
163            .check_count({"torch.ops.aten.linear.default": 1})
164            .check(["torch.ops.quantized_decomposed"])
165            .to_edge_transform_and_lower(edge_compile_config=self._edge_compile_config)
166            .check_count({"torch.ops.higher_order.executorch_call_delegate": 1})
167            .to_executorch()
168            .run_method_and_compare_outputs(inputs=test_data, qtol=1)
169        )
170
171    def _test_linear_tosa_ethosu_BI_pipeline(
172        self,
173        module: torch.nn.Module,
174        compile_spec: CompileSpec,
175        test_data: Tuple[torch.Tensor],
176    ) -> ArmTester:
177        tester = (
178            ArmTester(
179                module,
180                example_inputs=test_data,
181                compile_spec=compile_spec,
182            )
183            .quantize()
184            .export()
185            .check_count({"torch.ops.aten.linear.default": 1})
186            .check(["torch.ops.quantized_decomposed"])
187            .to_edge_transform_and_lower(edge_compile_config=self._edge_compile_config)
188            .check_count({"torch.ops.higher_order.executorch_call_delegate": 1})
189            .to_executorch()
190            .serialize()
191        )
192        return tester
193
194    @parameterized.expand(test_data_suite_rank1 + test_data_suite_rank4)
195    def test_linear_tosa_MI(
196        self,
197        test_name: str,
198        test_data: torch.Tensor,
199        out_features: int,
200        has_bias: bool,
201    ):
202        in_features = test_data.shape[-1]
203        test_data = (test_data,)
204        self._test_linear_tosa_MI_pipeline(
205            self.Linear(
206                in_features=in_features,
207                out_features=out_features,
208                bias=has_bias,
209            ),
210            test_data,
211        )
212
213    @parameterized.expand(test_data_suite_rank1 + test_data_suite_rank4)
214    def test_linear_tosa_BI(
215        self,
216        test_name: str,
217        test_data: torch.Tensor,
218        out_features: int,
219        has_bias: bool,
220    ):
221        in_features = test_data.shape[-1]
222        test_data = (test_data,)
223        self._test_linear_tosa_BI_pipeline(
224            self.Linear(
225                in_features=in_features, out_features=out_features, bias=has_bias
226            ),
227            test_data,
228        )
229
230    @parameterized.expand(test_data_suite_rank1)
231    def test_linear_tosa_u55_BI(
232        self,
233        test_name: str,
234        test_data: torch.Tensor,
235        out_features: int,
236        has_bias: bool,
237    ):
238        in_features = test_data.shape[-1]
239        test_data = (test_data,)
240        tester = self._test_linear_tosa_ethosu_BI_pipeline(
241            self.Linear(
242                in_features=in_features,
243                out_features=out_features,
244                bias=has_bias,
245            ),
246            common.get_u55_compile_spec(),
247            test_data,
248        )
249
250        if common.is_option_enabled("corstone300"):
251            tester.run_method_and_compare_outputs(qtol=1, inputs=test_data)
252
253    @parameterized.expand(test_data_suite_rank1 + test_data_suite_rank4)
254    def test_linear_tosa_u85_BI(
255        self,
256        test_name: str,
257        test_data: torch.Tensor,
258        out_features: int,
259        has_bias: bool,
260    ):
261        in_features = test_data.shape[-1]
262        test_data = (test_data,)
263        self._test_linear_tosa_ethosu_BI_pipeline(
264            self.Linear(
265                in_features=in_features,
266                out_features=out_features,
267                bias=has_bias,
268            ),
269            common.get_u85_compile_spec(),
270            test_data,
271        )
272