xref: /aosp_15_r20/external/executorch/backends/qualcomm/builders/op_expand.py (revision 523fa7a60841cd1ecfb9cc4201f1ca8b03ed023a)
1# Copyright (c) Qualcomm Innovation Center, Inc.
2# All rights reserved
3#
4# This source code is licensed under the BSD-style license found in the
5# LICENSE file in the root directory of this source tree.
6import warnings
7from typing import cast, Dict, List
8
9import executorch.backends.qualcomm.python.PyQnnWrapperAdaptor as PyQnnWrapper
10
11import numpy as np
12import torch
13
14from .node_visitor import NodeVisitor, register_node_visitor
15from .qnn_constants import OpTile, QNN_OP_PACKAGE_NAME_QTI_AISW
16
17
18@register_node_visitor
19class Expand(NodeVisitor):
20    target = ["aten.expand_copy.default"]
21
22    def __init__(self, *args) -> None:
23        super().__init__(*args)
24
25    def define_node(
26        self,
27        node: torch.fx.Node,
28        nodes_to_wrappers: Dict[torch.fx.Node, PyQnnWrapper.TensorWrapper],
29    ) -> PyQnnWrapper.PyQnnOpWrapper:
30        input_node = node.args[0]
31        input_tensor = self.get_tensor(input_node, node)
32        input_tensor_wrapper = self.define_tensor(
33            input_node,
34            input_tensor,
35            PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE,
36            nodes_to_wrappers,
37            is_input_tensor=True,
38        )
39
40        output_tensor = self.get_tensor(node, node)
41        output_tensor_wrapper = self.define_tensor(
42            node,
43            output_tensor,
44            PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE,
45            nodes_to_wrappers,
46            is_input_tensor=False,
47        )
48
49        sizes = cast(List[int], node.args[1])
50
51        shape = input_tensor.shape
52        input_dims = len(input_tensor.size())
53        output_dims = len(output_tensor.size())
54
55        if input_dims < output_dims:
56            warnings.warn(
57                f"[QNN Delegate Op Builder]: The rank of input tensor: {input_dims} is less than the rank of output tensor: {output_dims}.",
58                stacklevel=1,
59            )
60            return
61
62        multiples = [1] * input_dims
63        multiples_shape = [input_dims]
64        for i in range(input_dims):
65            if sizes[i] != -1 and shape[i] == 1:
66                multiples[i] = sizes[i]
67
68        tile_op = PyQnnWrapper.PyQnnOpWrapper(
69            node.name,
70            QNN_OP_PACKAGE_NAME_QTI_AISW,
71            OpTile.op_name,
72        )
73        tile_op.AddInputTensors([input_tensor_wrapper])
74        tile_op.AddOutputTensors([output_tensor_wrapper])
75        tile_op.AddTensorParam(
76            OpTile.param_multiples,
77            PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_UINT_32,
78            len(multiples_shape),
79            multiples_shape,
80            np.array(multiples, dtype=np.uint32),
81            True,
82        )
83        return tile_op
84