xref: /aosp_15_r20/external/executorch/backends/qualcomm/builders/op_mul.py (revision 523fa7a60841cd1ecfb9cc4201f1ca8b03ed023a)
1# Copyright (c) Qualcomm Innovation Center, Inc.
2# All rights reserved
3#
4# This source code is licensed under the BSD-style license found in the
5# LICENSE file in the root directory of this source tree.
6from typing import Dict
7
8import executorch.backends.qualcomm.python.PyQnnWrapperAdaptor as PyQnnWrapper
9
10import torch
11
12from .node_visitor import NodeVisitor, register_node_visitor
13from .qnn_constants import OpElementWiseMultiply, QNN_OP_PACKAGE_NAME_QTI_AISW
14
15
16@register_node_visitor
17class Mul(NodeVisitor):
18    target = ["aten.mul.Tensor"]
19
20    def __init__(self, *args) -> None:
21        super().__init__(*args)
22
23    def define_node(
24        self,
25        node: torch.fx.Node,
26        nodes_to_wrappers: Dict[torch.fx.Node, PyQnnWrapper.TensorWrapper],
27    ) -> PyQnnWrapper.PyQnnOpWrapper:
28        out_tensor = self.get_tensor(node, node)
29        output_tensor_wrapper = self.define_tensor(
30            node,
31            out_tensor,
32            PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE,
33            nodes_to_wrappers,
34            is_input_tensor=False,
35        )
36        mul_output_tensors = [output_tensor_wrapper]
37
38        mul_input_tensors = []
39        for index in range(2):
40            input_node = node.args[index]
41            input_tensor = self.get_tensor(input_node, node)
42            tensor_type = PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE
43
44            input_tensor_wrapper = self.define_tensor(
45                input_node,
46                input_tensor,
47                tensor_type,
48                nodes_to_wrappers,
49                is_input_tensor=True,
50            )
51            mul_input_tensors.append(input_tensor_wrapper)
52
53        mul_op = PyQnnWrapper.PyQnnOpWrapper(
54            node.name,
55            QNN_OP_PACKAGE_NAME_QTI_AISW,
56            OpElementWiseMultiply.op_name,
57        )
58        mul_op.AddInputTensors(mul_input_tensors)
59        mul_op.AddOutputTensors(mul_output_tensors)
60
61        return mul_op
62