1 // Formatting library for C++ - chrono support
2 //
3 // Copyright (c) 2012 - present, Victor Zverovich
4 // All rights reserved.
5 //
6 // For the license information refer to format.h.
7
8 #ifndef FMT_CHRONO_H_
9 #define FMT_CHRONO_H_
10
11 #ifndef FMT_MODULE
12 # include <algorithm>
13 # include <chrono>
14 # include <cmath> // std::isfinite
15 # include <cstring> // std::memcpy
16 # include <ctime>
17 # include <iterator>
18 # include <locale>
19 # include <ostream>
20 # include <type_traits>
21 #endif
22
23 #include "format.h"
24
25 namespace fmt_detail {
26 struct time_zone {
27 template <typename Duration, typename T>
28 auto to_sys(T)
29 -> std::chrono::time_point<std::chrono::system_clock, Duration> {
30 return {};
31 }
32 };
33 template <typename... T> inline auto current_zone(T...) -> time_zone* {
34 return nullptr;
35 }
36
_tzset(T...)37 template <typename... T> inline void _tzset(T...) {}
38 } // namespace fmt_detail
39
40 FMT_BEGIN_NAMESPACE
41
42 // Enable safe chrono durations, unless explicitly disabled.
43 #ifndef FMT_SAFE_DURATION_CAST
44 # define FMT_SAFE_DURATION_CAST 1
45 #endif
46 #if FMT_SAFE_DURATION_CAST
47
48 // For conversion between std::chrono::durations without undefined
49 // behaviour or erroneous results.
50 // This is a stripped down version of duration_cast, for inclusion in fmt.
51 // See https://github.com/pauldreik/safe_duration_cast
52 //
53 // Copyright Paul Dreik 2019
54 namespace safe_duration_cast {
55
56 template <typename To, typename From,
57 FMT_ENABLE_IF(!std::is_same<From, To>::value &&
58 std::numeric_limits<From>::is_signed ==
59 std::numeric_limits<To>::is_signed)>
60 FMT_CONSTEXPR auto lossless_integral_conversion(const From from, int& ec)
61 -> To {
62 ec = 0;
63 using F = std::numeric_limits<From>;
64 using T = std::numeric_limits<To>;
65 static_assert(F::is_integer, "From must be integral");
66 static_assert(T::is_integer, "To must be integral");
67
68 // A and B are both signed, or both unsigned.
69 if (detail::const_check(F::digits <= T::digits)) {
70 // From fits in To without any problem.
71 } else {
72 // From does not always fit in To, resort to a dynamic check.
73 if (from < (T::min)() || from > (T::max)()) {
74 // outside range.
75 ec = 1;
76 return {};
77 }
78 }
79 return static_cast<To>(from);
80 }
81
82 /// Converts From to To, without loss. If the dynamic value of from
83 /// can't be converted to To without loss, ec is set.
84 template <typename To, typename From,
85 FMT_ENABLE_IF(!std::is_same<From, To>::value &&
86 std::numeric_limits<From>::is_signed !=
87 std::numeric_limits<To>::is_signed)>
88 FMT_CONSTEXPR auto lossless_integral_conversion(const From from, int& ec)
89 -> To {
90 ec = 0;
91 using F = std::numeric_limits<From>;
92 using T = std::numeric_limits<To>;
93 static_assert(F::is_integer, "From must be integral");
94 static_assert(T::is_integer, "To must be integral");
95
96 if (detail::const_check(F::is_signed && !T::is_signed)) {
97 // From may be negative, not allowed!
98 if (fmt::detail::is_negative(from)) {
99 ec = 1;
100 return {};
101 }
102 // From is positive. Can it always fit in To?
103 if (detail::const_check(F::digits > T::digits) &&
104 from > static_cast<From>(detail::max_value<To>())) {
105 ec = 1;
106 return {};
107 }
108 }
109
110 if (detail::const_check(!F::is_signed && T::is_signed &&
111 F::digits >= T::digits) &&
112 from > static_cast<From>(detail::max_value<To>())) {
113 ec = 1;
114 return {};
115 }
116 return static_cast<To>(from); // Lossless conversion.
117 }
118
119 template <typename To, typename From,
120 FMT_ENABLE_IF(std::is_same<From, To>::value)>
121 FMT_CONSTEXPR auto lossless_integral_conversion(const From from, int& ec)
122 -> To {
123 ec = 0;
124 return from;
125 } // function
126
127 // clang-format off
128 /**
129 * converts From to To if possible, otherwise ec is set.
130 *
131 * input | output
132 * ---------------------------------|---------------
133 * NaN | NaN
134 * Inf | Inf
135 * normal, fits in output | converted (possibly lossy)
136 * normal, does not fit in output | ec is set
137 * subnormal | best effort
138 * -Inf | -Inf
139 */
140 // clang-format on
141 template <typename To, typename From,
142 FMT_ENABLE_IF(!std::is_same<From, To>::value)>
143 FMT_CONSTEXPR auto safe_float_conversion(const From from, int& ec) -> To {
144 ec = 0;
145 using T = std::numeric_limits<To>;
146 static_assert(std::is_floating_point<From>::value, "From must be floating");
147 static_assert(std::is_floating_point<To>::value, "To must be floating");
148
149 // catch the only happy case
150 if (std::isfinite(from)) {
151 if (from >= T::lowest() && from <= (T::max)()) {
152 return static_cast<To>(from);
153 }
154 // not within range.
155 ec = 1;
156 return {};
157 }
158
159 // nan and inf will be preserved
160 return static_cast<To>(from);
161 } // function
162
163 template <typename To, typename From,
164 FMT_ENABLE_IF(std::is_same<From, To>::value)>
165 FMT_CONSTEXPR auto safe_float_conversion(const From from, int& ec) -> To {
166 ec = 0;
167 static_assert(std::is_floating_point<From>::value, "From must be floating");
168 return from;
169 }
170
171 /// Safe duration_cast between floating point durations
172 template <typename To, typename FromRep, typename FromPeriod,
173 FMT_ENABLE_IF(std::is_floating_point<FromRep>::value),
174 FMT_ENABLE_IF(std::is_floating_point<typename To::rep>::value)>
175 auto safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from,
176 int& ec) -> To {
177 using From = std::chrono::duration<FromRep, FromPeriod>;
178 ec = 0;
179 if (std::isnan(from.count())) {
180 // nan in, gives nan out. easy.
181 return To{std::numeric_limits<typename To::rep>::quiet_NaN()};
182 }
183 // maybe we should also check if from is denormal, and decide what to do about
184 // it.
185
186 // +-inf should be preserved.
187 if (std::isinf(from.count())) {
188 return To{from.count()};
189 }
190
191 // the basic idea is that we need to convert from count() in the from type
192 // to count() in the To type, by multiplying it with this:
193 struct Factor
194 : std::ratio_divide<typename From::period, typename To::period> {};
195
196 static_assert(Factor::num > 0, "num must be positive");
197 static_assert(Factor::den > 0, "den must be positive");
198
199 // the conversion is like this: multiply from.count() with Factor::num
200 // /Factor::den and convert it to To::rep, all this without
201 // overflow/underflow. let's start by finding a suitable type that can hold
202 // both To, From and Factor::num
203 using IntermediateRep =
204 typename std::common_type<typename From::rep, typename To::rep,
205 decltype(Factor::num)>::type;
206
207 // force conversion of From::rep -> IntermediateRep to be safe,
208 // even if it will never happen be narrowing in this context.
209 IntermediateRep count =
210 safe_float_conversion<IntermediateRep>(from.count(), ec);
211 if (ec) {
212 return {};
213 }
214
215 // multiply with Factor::num without overflow or underflow
216 if (detail::const_check(Factor::num != 1)) {
217 constexpr auto max1 = detail::max_value<IntermediateRep>() /
218 static_cast<IntermediateRep>(Factor::num);
219 if (count > max1) {
220 ec = 1;
221 return {};
222 }
223 constexpr auto min1 = std::numeric_limits<IntermediateRep>::lowest() /
224 static_cast<IntermediateRep>(Factor::num);
225 if (count < min1) {
226 ec = 1;
227 return {};
228 }
229 count *= static_cast<IntermediateRep>(Factor::num);
230 }
231
232 // this can't go wrong, right? den>0 is checked earlier.
233 if (detail::const_check(Factor::den != 1)) {
234 using common_t = typename std::common_type<IntermediateRep, intmax_t>::type;
235 count /= static_cast<common_t>(Factor::den);
236 }
237
238 // convert to the to type, safely
239 using ToRep = typename To::rep;
240
241 const ToRep tocount = safe_float_conversion<ToRep>(count, ec);
242 if (ec) {
243 return {};
244 }
245 return To{tocount};
246 }
247 } // namespace safe_duration_cast
248 #endif
249
250 namespace detail {
251
252 // Check if std::chrono::utc_time is available.
253 #ifdef FMT_USE_UTC_TIME
254 // Use the provided definition.
255 #elif defined(__cpp_lib_chrono)
256 # define FMT_USE_UTC_TIME (__cpp_lib_chrono >= 201907L)
257 #else
258 # define FMT_USE_UTC_TIME 0
259 #endif
260 #if FMT_USE_UTC_TIME
261 using utc_clock = std::chrono::utc_clock;
262 #else
263 struct utc_clock {
264 void to_sys();
265 };
266 #endif
267
268 // Check if std::chrono::local_time is available.
269 #ifdef FMT_USE_LOCAL_TIME
270 // Use the provided definition.
271 #elif defined(__cpp_lib_chrono)
272 # define FMT_USE_LOCAL_TIME (__cpp_lib_chrono >= 201907L)
273 #else
274 # define FMT_USE_LOCAL_TIME 0
275 #endif
276 #if FMT_USE_LOCAL_TIME
277 using local_t = std::chrono::local_t;
278 #else
279 struct local_t {};
280 #endif
281
282 } // namespace detail
283
284 template <typename Duration>
285 using sys_time = std::chrono::time_point<std::chrono::system_clock, Duration>;
286
287 template <typename Duration>
288 using utc_time = std::chrono::time_point<detail::utc_clock, Duration>;
289
290 template <class Duration>
291 using local_time = std::chrono::time_point<detail::local_t, Duration>;
292
293 namespace detail {
294
295 // Prevents expansion of a preceding token as a function-style macro.
296 // Usage: f FMT_NOMACRO()
297 #define FMT_NOMACRO
298
299 template <typename T = void> struct null {};
300 inline auto localtime_r FMT_NOMACRO(...) -> null<> { return null<>(); }
301 inline auto localtime_s(...) -> null<> { return null<>(); }
302 inline auto gmtime_r(...) -> null<> { return null<>(); }
303 inline auto gmtime_s(...) -> null<> { return null<>(); }
304
305 // It is defined here and not in ostream.h because the latter has expensive
306 // includes.
307 template <typename StreamBuf> class formatbuf : public StreamBuf {
308 private:
309 using char_type = typename StreamBuf::char_type;
310 using streamsize = decltype(std::declval<StreamBuf>().sputn(nullptr, 0));
311 using int_type = typename StreamBuf::int_type;
312 using traits_type = typename StreamBuf::traits_type;
313
314 buffer<char_type>& buffer_;
315
316 public:
formatbuf(buffer<char_type> & buf)317 explicit formatbuf(buffer<char_type>& buf) : buffer_(buf) {}
318
319 protected:
320 // The put area is always empty. This makes the implementation simpler and has
321 // the advantage that the streambuf and the buffer are always in sync and
322 // sputc never writes into uninitialized memory. A disadvantage is that each
323 // call to sputc always results in a (virtual) call to overflow. There is no
324 // disadvantage here for sputn since this always results in a call to xsputn.
325
326 auto overflow(int_type ch) -> int_type override {
327 if (!traits_type::eq_int_type(ch, traits_type::eof()))
328 buffer_.push_back(static_cast<char_type>(ch));
329 return ch;
330 }
331
332 auto xsputn(const char_type* s, streamsize count) -> streamsize override {
333 buffer_.append(s, s + count);
334 return count;
335 }
336 };
337
338 inline auto get_classic_locale() -> const std::locale& {
339 static const auto& locale = std::locale::classic();
340 return locale;
341 }
342
343 template <typename CodeUnit> struct codecvt_result {
344 static constexpr const size_t max_size = 32;
345 CodeUnit buf[max_size];
346 CodeUnit* end;
347 };
348
349 template <typename CodeUnit>
write_codecvt(codecvt_result<CodeUnit> & out,string_view in,const std::locale & loc)350 void write_codecvt(codecvt_result<CodeUnit>& out, string_view in,
351 const std::locale& loc) {
352 FMT_PRAGMA_CLANG(diagnostic push)
353 FMT_PRAGMA_CLANG(diagnostic ignored "-Wdeprecated")
354 auto& f = std::use_facet<std::codecvt<CodeUnit, char, std::mbstate_t>>(loc);
355 FMT_PRAGMA_CLANG(diagnostic pop)
356 auto mb = std::mbstate_t();
357 const char* from_next = nullptr;
358 auto result = f.in(mb, in.begin(), in.end(), from_next, std::begin(out.buf),
359 std::end(out.buf), out.end);
360 if (result != std::codecvt_base::ok)
361 FMT_THROW(format_error("failed to format time"));
362 }
363
364 template <typename OutputIt>
365 auto write_encoded_tm_str(OutputIt out, string_view in, const std::locale& loc)
366 -> OutputIt {
367 if (detail::use_utf8 && loc != get_classic_locale()) {
368 // char16_t and char32_t codecvts are broken in MSVC (linkage errors) and
369 // gcc-4.
370 #if FMT_MSC_VERSION != 0 || \
371 (defined(__GLIBCXX__) && \
372 (!defined(_GLIBCXX_USE_DUAL_ABI) || _GLIBCXX_USE_DUAL_ABI == 0))
373 // The _GLIBCXX_USE_DUAL_ABI macro is always defined in libstdc++ from gcc-5
374 // and newer.
375 using code_unit = wchar_t;
376 #else
377 using code_unit = char32_t;
378 #endif
379
380 using unit_t = codecvt_result<code_unit>;
381 unit_t unit;
382 write_codecvt(unit, in, loc);
383 // In UTF-8 is used one to four one-byte code units.
384 auto u =
385 to_utf8<code_unit, basic_memory_buffer<char, unit_t::max_size * 4>>();
386 if (!u.convert({unit.buf, to_unsigned(unit.end - unit.buf)}))
387 FMT_THROW(format_error("failed to format time"));
388 return copy<char>(u.c_str(), u.c_str() + u.size(), out);
389 }
390 return copy<char>(in.data(), in.data() + in.size(), out);
391 }
392
393 template <typename Char, typename OutputIt,
394 FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
395 auto write_tm_str(OutputIt out, string_view sv, const std::locale& loc)
396 -> OutputIt {
397 codecvt_result<Char> unit;
398 write_codecvt(unit, sv, loc);
399 return copy<Char>(unit.buf, unit.end, out);
400 }
401
402 template <typename Char, typename OutputIt,
403 FMT_ENABLE_IF(std::is_same<Char, char>::value)>
404 auto write_tm_str(OutputIt out, string_view sv, const std::locale& loc)
405 -> OutputIt {
406 return write_encoded_tm_str(out, sv, loc);
407 }
408
409 template <typename Char>
do_write(buffer<Char> & buf,const std::tm & time,const std::locale & loc,char format,char modifier)410 inline void do_write(buffer<Char>& buf, const std::tm& time,
411 const std::locale& loc, char format, char modifier) {
412 auto&& format_buf = formatbuf<std::basic_streambuf<Char>>(buf);
413 auto&& os = std::basic_ostream<Char>(&format_buf);
414 os.imbue(loc);
415 const auto& facet = std::use_facet<std::time_put<Char>>(loc);
416 auto end = facet.put(os, os, Char(' '), &time, format, modifier);
417 if (end.failed()) FMT_THROW(format_error("failed to format time"));
418 }
419
420 template <typename Char, typename OutputIt,
421 FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
422 auto write(OutputIt out, const std::tm& time, const std::locale& loc,
423 char format, char modifier = 0) -> OutputIt {
424 auto&& buf = get_buffer<Char>(out);
425 do_write<Char>(buf, time, loc, format, modifier);
426 return get_iterator(buf, out);
427 }
428
429 template <typename Char, typename OutputIt,
430 FMT_ENABLE_IF(std::is_same<Char, char>::value)>
431 auto write(OutputIt out, const std::tm& time, const std::locale& loc,
432 char format, char modifier = 0) -> OutputIt {
433 auto&& buf = basic_memory_buffer<Char>();
434 do_write<char>(buf, time, loc, format, modifier);
435 return write_encoded_tm_str(out, string_view(buf.data(), buf.size()), loc);
436 }
437
438 template <typename Rep1, typename Rep2>
439 struct is_same_arithmetic_type
440 : public std::integral_constant<bool,
441 (std::is_integral<Rep1>::value &&
442 std::is_integral<Rep2>::value) ||
443 (std::is_floating_point<Rep1>::value &&
444 std::is_floating_point<Rep2>::value)> {
445 };
446
throw_duration_error()447 FMT_NORETURN inline void throw_duration_error() {
448 FMT_THROW(format_error("cannot format duration"));
449 }
450
451 // Cast one integral duration to another with an overflow check.
452 template <typename To, typename FromRep, typename FromPeriod,
453 FMT_ENABLE_IF(std::is_integral<FromRep>::value&&
454 std::is_integral<typename To::rep>::value)>
455 auto duration_cast(std::chrono::duration<FromRep, FromPeriod> from) -> To {
456 #if !FMT_SAFE_DURATION_CAST
457 return std::chrono::duration_cast<To>(from);
458 #else
459 // The conversion factor: to.count() == factor * from.count().
460 using factor = std::ratio_divide<FromPeriod, typename To::period>;
461
462 using common_rep = typename std::common_type<FromRep, typename To::rep,
463 decltype(factor::num)>::type;
464
465 int ec = 0;
466 auto count = safe_duration_cast::lossless_integral_conversion<common_rep>(
467 from.count(), ec);
468 if (ec) throw_duration_error();
469
470 // Multiply from.count() by factor and check for overflow.
471 if (const_check(factor::num != 1)) {
472 if (count > max_value<common_rep>() / factor::num) throw_duration_error();
473 const auto min = (std::numeric_limits<common_rep>::min)() / factor::num;
474 if (const_check(!std::is_unsigned<common_rep>::value) && count < min)
475 throw_duration_error();
476 count *= factor::num;
477 }
478 if (const_check(factor::den != 1)) count /= factor::den;
479 auto to =
480 To(safe_duration_cast::lossless_integral_conversion<typename To::rep>(
481 count, ec));
482 if (ec) throw_duration_error();
483 return to;
484 #endif
485 }
486
487 template <typename To, typename FromRep, typename FromPeriod,
488 FMT_ENABLE_IF(std::is_floating_point<FromRep>::value&&
489 std::is_floating_point<typename To::rep>::value)>
490 auto duration_cast(std::chrono::duration<FromRep, FromPeriod> from) -> To {
491 #if FMT_SAFE_DURATION_CAST
492 // Throwing version of safe_duration_cast is only available for
493 // integer to integer or float to float casts.
494 int ec;
495 To to = safe_duration_cast::safe_duration_cast<To>(from, ec);
496 if (ec) throw_duration_error();
497 return to;
498 #else
499 // Standard duration cast, may overflow.
500 return std::chrono::duration_cast<To>(from);
501 #endif
502 }
503
504 template <
505 typename To, typename FromRep, typename FromPeriod,
506 FMT_ENABLE_IF(!is_same_arithmetic_type<FromRep, typename To::rep>::value)>
507 auto duration_cast(std::chrono::duration<FromRep, FromPeriod> from) -> To {
508 // Mixed integer <-> float cast is not supported by safe_duration_cast.
509 return std::chrono::duration_cast<To>(from);
510 }
511
512 template <typename Duration>
513 auto to_time_t(sys_time<Duration> time_point) -> std::time_t {
514 // Cannot use std::chrono::system_clock::to_time_t since this would first
515 // require a cast to std::chrono::system_clock::time_point, which could
516 // overflow.
517 return detail::duration_cast<std::chrono::duration<std::time_t>>(
518 time_point.time_since_epoch())
519 .count();
520 }
521
522 // Workaround a bug in libstdc++ which sets __cpp_lib_chrono to 201907 without
523 // providing current_zone(): https://github.com/fmtlib/fmt/issues/4160.
524 template <typename T> FMT_CONSTEXPR auto has_current_zone() -> bool {
525 using namespace std::chrono;
526 using namespace fmt_detail;
527 return !std::is_same<decltype(current_zone()), fmt_detail::time_zone*>::value;
528 }
529 } // namespace detail
530
531 FMT_BEGIN_EXPORT
532
533 /**
534 * Converts given time since epoch as `std::time_t` value into calendar time,
535 * expressed in local time. Unlike `std::localtime`, this function is
536 * thread-safe on most platforms.
537 */
538 inline auto localtime(std::time_t time) -> std::tm {
539 struct dispatcher {
540 std::time_t time_;
541 std::tm tm_;
542
dispatcherdispatcher543 inline dispatcher(std::time_t t) : time_(t) {}
544
545 inline auto run() -> bool {
546 using namespace fmt::detail;
547 return handle(localtime_r(&time_, &tm_));
548 }
549
550 inline auto handle(std::tm* tm) -> bool { return tm != nullptr; }
551
552 inline auto handle(detail::null<>) -> bool {
553 using namespace fmt::detail;
554 return fallback(localtime_s(&tm_, &time_));
555 }
556
557 inline auto fallback(int res) -> bool { return res == 0; }
558
559 #if !FMT_MSC_VERSION
560 inline auto fallback(detail::null<>) -> bool {
561 using namespace fmt::detail;
562 std::tm* tm = std::localtime(&time_);
563 if (tm) tm_ = *tm;
564 return tm != nullptr;
565 }
566 #endif
567 };
568 dispatcher lt(time);
569 // Too big time values may be unsupported.
570 if (!lt.run()) FMT_THROW(format_error("time_t value out of range"));
571 return lt.tm_;
572 }
573
574 #if FMT_USE_LOCAL_TIME
575 template <typename Duration,
576 FMT_ENABLE_IF(detail::has_current_zone<Duration>())>
577 inline auto localtime(std::chrono::local_time<Duration> time) -> std::tm {
578 using namespace std::chrono;
579 using namespace fmt_detail;
580 return localtime(detail::to_time_t(current_zone()->to_sys<Duration>(time)));
581 }
582 #endif
583
584 /**
585 * Converts given time since epoch as `std::time_t` value into calendar time,
586 * expressed in Coordinated Universal Time (UTC). Unlike `std::gmtime`, this
587 * function is thread-safe on most platforms.
588 */
589 inline auto gmtime(std::time_t time) -> std::tm {
590 struct dispatcher {
591 std::time_t time_;
592 std::tm tm_;
593
dispatcherdispatcher594 inline dispatcher(std::time_t t) : time_(t) {}
595
596 inline auto run() -> bool {
597 using namespace fmt::detail;
598 return handle(gmtime_r(&time_, &tm_));
599 }
600
601 inline auto handle(std::tm* tm) -> bool { return tm != nullptr; }
602
603 inline auto handle(detail::null<>) -> bool {
604 using namespace fmt::detail;
605 return fallback(gmtime_s(&tm_, &time_));
606 }
607
608 inline auto fallback(int res) -> bool { return res == 0; }
609
610 #if !FMT_MSC_VERSION
611 inline auto fallback(detail::null<>) -> bool {
612 std::tm* tm = std::gmtime(&time_);
613 if (tm) tm_ = *tm;
614 return tm != nullptr;
615 }
616 #endif
617 };
618 auto gt = dispatcher(time);
619 // Too big time values may be unsupported.
620 if (!gt.run()) FMT_THROW(format_error("time_t value out of range"));
621 return gt.tm_;
622 }
623
624 template <typename Duration>
625 inline auto gmtime(sys_time<Duration> time_point) -> std::tm {
626 return gmtime(detail::to_time_t(time_point));
627 }
628
629 namespace detail {
630
631 // Writes two-digit numbers a, b and c separated by sep to buf.
632 // The method by Pavel Novikov based on
633 // https://johnnylee-sde.github.io/Fast-unsigned-integer-to-time-string/.
write_digit2_separated(char * buf,unsigned a,unsigned b,unsigned c,char sep)634 inline void write_digit2_separated(char* buf, unsigned a, unsigned b,
635 unsigned c, char sep) {
636 unsigned long long digits =
637 a | (b << 24) | (static_cast<unsigned long long>(c) << 48);
638 // Convert each value to BCD.
639 // We have x = a * 10 + b and we want to convert it to BCD y = a * 16 + b.
640 // The difference is
641 // y - x = a * 6
642 // a can be found from x:
643 // a = floor(x / 10)
644 // then
645 // y = x + a * 6 = x + floor(x / 10) * 6
646 // floor(x / 10) is (x * 205) >> 11 (needs 16 bits).
647 digits += (((digits * 205) >> 11) & 0x000f00000f00000f) * 6;
648 // Put low nibbles to high bytes and high nibbles to low bytes.
649 digits = ((digits & 0x00f00000f00000f0) >> 4) |
650 ((digits & 0x000f00000f00000f) << 8);
651 auto usep = static_cast<unsigned long long>(sep);
652 // Add ASCII '0' to each digit byte and insert separators.
653 digits |= 0x3030003030003030 | (usep << 16) | (usep << 40);
654
655 constexpr const size_t len = 8;
656 if (const_check(is_big_endian())) {
657 char tmp[len];
658 std::memcpy(tmp, &digits, len);
659 std::reverse_copy(tmp, tmp + len, buf);
660 } else {
661 std::memcpy(buf, &digits, len);
662 }
663 }
664
665 template <typename Period>
666 FMT_CONSTEXPR inline auto get_units() -> const char* {
667 if (std::is_same<Period, std::atto>::value) return "as";
668 if (std::is_same<Period, std::femto>::value) return "fs";
669 if (std::is_same<Period, std::pico>::value) return "ps";
670 if (std::is_same<Period, std::nano>::value) return "ns";
671 if (std::is_same<Period, std::micro>::value)
672 return detail::use_utf8 ? "µs" : "us";
673 if (std::is_same<Period, std::milli>::value) return "ms";
674 if (std::is_same<Period, std::centi>::value) return "cs";
675 if (std::is_same<Period, std::deci>::value) return "ds";
676 if (std::is_same<Period, std::ratio<1>>::value) return "s";
677 if (std::is_same<Period, std::deca>::value) return "das";
678 if (std::is_same<Period, std::hecto>::value) return "hs";
679 if (std::is_same<Period, std::kilo>::value) return "ks";
680 if (std::is_same<Period, std::mega>::value) return "Ms";
681 if (std::is_same<Period, std::giga>::value) return "Gs";
682 if (std::is_same<Period, std::tera>::value) return "Ts";
683 if (std::is_same<Period, std::peta>::value) return "Ps";
684 if (std::is_same<Period, std::exa>::value) return "Es";
685 if (std::is_same<Period, std::ratio<60>>::value) return "min";
686 if (std::is_same<Period, std::ratio<3600>>::value) return "h";
687 if (std::is_same<Period, std::ratio<86400>>::value) return "d";
688 return nullptr;
689 }
690
691 enum class numeric_system {
692 standard,
693 // Alternative numeric system, e.g. 十二 instead of 12 in ja_JP locale.
694 alternative
695 };
696
697 // Glibc extensions for formatting numeric values.
698 enum class pad_type {
699 // Pad a numeric result string with zeros (the default).
700 zero,
701 // Do not pad a numeric result string.
702 none,
703 // Pad a numeric result string with spaces.
704 space,
705 };
706
707 template <typename OutputIt>
708 auto write_padding(OutputIt out, pad_type pad, int width) -> OutputIt {
709 if (pad == pad_type::none) return out;
710 return detail::fill_n(out, width, pad == pad_type::space ? ' ' : '0');
711 }
712
713 template <typename OutputIt>
714 auto write_padding(OutputIt out, pad_type pad) -> OutputIt {
715 if (pad != pad_type::none) *out++ = pad == pad_type::space ? ' ' : '0';
716 return out;
717 }
718
719 // Parses a put_time-like format string and invokes handler actions.
720 template <typename Char, typename Handler>
721 FMT_CONSTEXPR auto parse_chrono_format(const Char* begin, const Char* end,
722 Handler&& handler) -> const Char* {
723 if (begin == end || *begin == '}') return begin;
724 if (*begin != '%') FMT_THROW(format_error("invalid format"));
725 auto ptr = begin;
726 while (ptr != end) {
727 pad_type pad = pad_type::zero;
728 auto c = *ptr;
729 if (c == '}') break;
730 if (c != '%') {
731 ++ptr;
732 continue;
733 }
734 if (begin != ptr) handler.on_text(begin, ptr);
735 ++ptr; // consume '%'
736 if (ptr == end) FMT_THROW(format_error("invalid format"));
737 c = *ptr;
738 switch (c) {
739 case '_':
740 pad = pad_type::space;
741 ++ptr;
742 break;
743 case '-':
744 pad = pad_type::none;
745 ++ptr;
746 break;
747 }
748 if (ptr == end) FMT_THROW(format_error("invalid format"));
749 c = *ptr++;
750 switch (c) {
751 case '%': handler.on_text(ptr - 1, ptr); break;
752 case 'n': {
753 const Char newline[] = {'\n'};
754 handler.on_text(newline, newline + 1);
755 break;
756 }
757 case 't': {
758 const Char tab[] = {'\t'};
759 handler.on_text(tab, tab + 1);
760 break;
761 }
762 // Year:
763 case 'Y': handler.on_year(numeric_system::standard, pad); break;
764 case 'y': handler.on_short_year(numeric_system::standard); break;
765 case 'C': handler.on_century(numeric_system::standard); break;
766 case 'G': handler.on_iso_week_based_year(); break;
767 case 'g': handler.on_iso_week_based_short_year(); break;
768 // Day of the week:
769 case 'a': handler.on_abbr_weekday(); break;
770 case 'A': handler.on_full_weekday(); break;
771 case 'w': handler.on_dec0_weekday(numeric_system::standard); break;
772 case 'u': handler.on_dec1_weekday(numeric_system::standard); break;
773 // Month:
774 case 'b':
775 case 'h': handler.on_abbr_month(); break;
776 case 'B': handler.on_full_month(); break;
777 case 'm': handler.on_dec_month(numeric_system::standard, pad); break;
778 // Day of the year/month:
779 case 'U':
780 handler.on_dec0_week_of_year(numeric_system::standard, pad);
781 break;
782 case 'W':
783 handler.on_dec1_week_of_year(numeric_system::standard, pad);
784 break;
785 case 'V': handler.on_iso_week_of_year(numeric_system::standard, pad); break;
786 case 'j': handler.on_day_of_year(pad); break;
787 case 'd': handler.on_day_of_month(numeric_system::standard, pad); break;
788 case 'e':
789 handler.on_day_of_month(numeric_system::standard, pad_type::space);
790 break;
791 // Hour, minute, second:
792 case 'H': handler.on_24_hour(numeric_system::standard, pad); break;
793 case 'I': handler.on_12_hour(numeric_system::standard, pad); break;
794 case 'M': handler.on_minute(numeric_system::standard, pad); break;
795 case 'S': handler.on_second(numeric_system::standard, pad); break;
796 // Other:
797 case 'c': handler.on_datetime(numeric_system::standard); break;
798 case 'x': handler.on_loc_date(numeric_system::standard); break;
799 case 'X': handler.on_loc_time(numeric_system::standard); break;
800 case 'D': handler.on_us_date(); break;
801 case 'F': handler.on_iso_date(); break;
802 case 'r': handler.on_12_hour_time(); break;
803 case 'R': handler.on_24_hour_time(); break;
804 case 'T': handler.on_iso_time(); break;
805 case 'p': handler.on_am_pm(); break;
806 case 'Q': handler.on_duration_value(); break;
807 case 'q': handler.on_duration_unit(); break;
808 case 'z': handler.on_utc_offset(numeric_system::standard); break;
809 case 'Z': handler.on_tz_name(); break;
810 // Alternative representation:
811 case 'E': {
812 if (ptr == end) FMT_THROW(format_error("invalid format"));
813 c = *ptr++;
814 switch (c) {
815 case 'Y': handler.on_year(numeric_system::alternative, pad); break;
816 case 'y': handler.on_offset_year(); break;
817 case 'C': handler.on_century(numeric_system::alternative); break;
818 case 'c': handler.on_datetime(numeric_system::alternative); break;
819 case 'x': handler.on_loc_date(numeric_system::alternative); break;
820 case 'X': handler.on_loc_time(numeric_system::alternative); break;
821 case 'z': handler.on_utc_offset(numeric_system::alternative); break;
822 default: FMT_THROW(format_error("invalid format"));
823 }
824 break;
825 }
826 case 'O':
827 if (ptr == end) FMT_THROW(format_error("invalid format"));
828 c = *ptr++;
829 switch (c) {
830 case 'y': handler.on_short_year(numeric_system::alternative); break;
831 case 'm': handler.on_dec_month(numeric_system::alternative, pad); break;
832 case 'U':
833 handler.on_dec0_week_of_year(numeric_system::alternative, pad);
834 break;
835 case 'W':
836 handler.on_dec1_week_of_year(numeric_system::alternative, pad);
837 break;
838 case 'V':
839 handler.on_iso_week_of_year(numeric_system::alternative, pad);
840 break;
841 case 'd':
842 handler.on_day_of_month(numeric_system::alternative, pad);
843 break;
844 case 'e':
845 handler.on_day_of_month(numeric_system::alternative, pad_type::space);
846 break;
847 case 'w': handler.on_dec0_weekday(numeric_system::alternative); break;
848 case 'u': handler.on_dec1_weekday(numeric_system::alternative); break;
849 case 'H': handler.on_24_hour(numeric_system::alternative, pad); break;
850 case 'I': handler.on_12_hour(numeric_system::alternative, pad); break;
851 case 'M': handler.on_minute(numeric_system::alternative, pad); break;
852 case 'S': handler.on_second(numeric_system::alternative, pad); break;
853 case 'z': handler.on_utc_offset(numeric_system::alternative); break;
854 default: FMT_THROW(format_error("invalid format"));
855 }
856 break;
857 default: FMT_THROW(format_error("invalid format"));
858 }
859 begin = ptr;
860 }
861 if (begin != ptr) handler.on_text(begin, ptr);
862 return ptr;
863 }
864
865 template <typename Derived> struct null_chrono_spec_handler {
unsupportednull_chrono_spec_handler866 FMT_CONSTEXPR void unsupported() {
867 static_cast<Derived*>(this)->unsupported();
868 }
on_yearnull_chrono_spec_handler869 FMT_CONSTEXPR void on_year(numeric_system, pad_type) { unsupported(); }
on_short_yearnull_chrono_spec_handler870 FMT_CONSTEXPR void on_short_year(numeric_system) { unsupported(); }
on_offset_yearnull_chrono_spec_handler871 FMT_CONSTEXPR void on_offset_year() { unsupported(); }
on_centurynull_chrono_spec_handler872 FMT_CONSTEXPR void on_century(numeric_system) { unsupported(); }
on_iso_week_based_yearnull_chrono_spec_handler873 FMT_CONSTEXPR void on_iso_week_based_year() { unsupported(); }
on_iso_week_based_short_yearnull_chrono_spec_handler874 FMT_CONSTEXPR void on_iso_week_based_short_year() { unsupported(); }
on_abbr_weekdaynull_chrono_spec_handler875 FMT_CONSTEXPR void on_abbr_weekday() { unsupported(); }
on_full_weekdaynull_chrono_spec_handler876 FMT_CONSTEXPR void on_full_weekday() { unsupported(); }
on_dec0_weekdaynull_chrono_spec_handler877 FMT_CONSTEXPR void on_dec0_weekday(numeric_system) { unsupported(); }
on_dec1_weekdaynull_chrono_spec_handler878 FMT_CONSTEXPR void on_dec1_weekday(numeric_system) { unsupported(); }
on_abbr_monthnull_chrono_spec_handler879 FMT_CONSTEXPR void on_abbr_month() { unsupported(); }
on_full_monthnull_chrono_spec_handler880 FMT_CONSTEXPR void on_full_month() { unsupported(); }
on_dec_monthnull_chrono_spec_handler881 FMT_CONSTEXPR void on_dec_month(numeric_system, pad_type) { unsupported(); }
on_dec0_week_of_yearnull_chrono_spec_handler882 FMT_CONSTEXPR void on_dec0_week_of_year(numeric_system, pad_type) {
883 unsupported();
884 }
on_dec1_week_of_yearnull_chrono_spec_handler885 FMT_CONSTEXPR void on_dec1_week_of_year(numeric_system, pad_type) {
886 unsupported();
887 }
on_iso_week_of_yearnull_chrono_spec_handler888 FMT_CONSTEXPR void on_iso_week_of_year(numeric_system, pad_type) {
889 unsupported();
890 }
on_day_of_yearnull_chrono_spec_handler891 FMT_CONSTEXPR void on_day_of_year(pad_type) { unsupported(); }
on_day_of_monthnull_chrono_spec_handler892 FMT_CONSTEXPR void on_day_of_month(numeric_system, pad_type) {
893 unsupported();
894 }
on_24_hournull_chrono_spec_handler895 FMT_CONSTEXPR void on_24_hour(numeric_system) { unsupported(); }
on_12_hournull_chrono_spec_handler896 FMT_CONSTEXPR void on_12_hour(numeric_system) { unsupported(); }
on_minutenull_chrono_spec_handler897 FMT_CONSTEXPR void on_minute(numeric_system) { unsupported(); }
on_secondnull_chrono_spec_handler898 FMT_CONSTEXPR void on_second(numeric_system) { unsupported(); }
on_datetimenull_chrono_spec_handler899 FMT_CONSTEXPR void on_datetime(numeric_system) { unsupported(); }
on_loc_datenull_chrono_spec_handler900 FMT_CONSTEXPR void on_loc_date(numeric_system) { unsupported(); }
on_loc_timenull_chrono_spec_handler901 FMT_CONSTEXPR void on_loc_time(numeric_system) { unsupported(); }
on_us_datenull_chrono_spec_handler902 FMT_CONSTEXPR void on_us_date() { unsupported(); }
on_iso_datenull_chrono_spec_handler903 FMT_CONSTEXPR void on_iso_date() { unsupported(); }
on_12_hour_timenull_chrono_spec_handler904 FMT_CONSTEXPR void on_12_hour_time() { unsupported(); }
on_24_hour_timenull_chrono_spec_handler905 FMT_CONSTEXPR void on_24_hour_time() { unsupported(); }
on_iso_timenull_chrono_spec_handler906 FMT_CONSTEXPR void on_iso_time() { unsupported(); }
on_am_pmnull_chrono_spec_handler907 FMT_CONSTEXPR void on_am_pm() { unsupported(); }
on_duration_valuenull_chrono_spec_handler908 FMT_CONSTEXPR void on_duration_value() { unsupported(); }
on_duration_unitnull_chrono_spec_handler909 FMT_CONSTEXPR void on_duration_unit() { unsupported(); }
on_utc_offsetnull_chrono_spec_handler910 FMT_CONSTEXPR void on_utc_offset(numeric_system) { unsupported(); }
on_tz_namenull_chrono_spec_handler911 FMT_CONSTEXPR void on_tz_name() { unsupported(); }
912 };
913
914 struct tm_format_checker : null_chrono_spec_handler<tm_format_checker> {
unsupportedtm_format_checker915 FMT_NORETURN inline void unsupported() {
916 FMT_THROW(format_error("no format"));
917 }
918
919 template <typename Char>
on_texttm_format_checker920 FMT_CONSTEXPR void on_text(const Char*, const Char*) {}
on_yeartm_format_checker921 FMT_CONSTEXPR void on_year(numeric_system, pad_type) {}
on_short_yeartm_format_checker922 FMT_CONSTEXPR void on_short_year(numeric_system) {}
on_offset_yeartm_format_checker923 FMT_CONSTEXPR void on_offset_year() {}
on_centurytm_format_checker924 FMT_CONSTEXPR void on_century(numeric_system) {}
on_iso_week_based_yeartm_format_checker925 FMT_CONSTEXPR void on_iso_week_based_year() {}
on_iso_week_based_short_yeartm_format_checker926 FMT_CONSTEXPR void on_iso_week_based_short_year() {}
on_abbr_weekdaytm_format_checker927 FMT_CONSTEXPR void on_abbr_weekday() {}
on_full_weekdaytm_format_checker928 FMT_CONSTEXPR void on_full_weekday() {}
on_dec0_weekdaytm_format_checker929 FMT_CONSTEXPR void on_dec0_weekday(numeric_system) {}
on_dec1_weekdaytm_format_checker930 FMT_CONSTEXPR void on_dec1_weekday(numeric_system) {}
on_abbr_monthtm_format_checker931 FMT_CONSTEXPR void on_abbr_month() {}
on_full_monthtm_format_checker932 FMT_CONSTEXPR void on_full_month() {}
on_dec_monthtm_format_checker933 FMT_CONSTEXPR void on_dec_month(numeric_system, pad_type) {}
on_dec0_week_of_yeartm_format_checker934 FMT_CONSTEXPR void on_dec0_week_of_year(numeric_system, pad_type) {}
on_dec1_week_of_yeartm_format_checker935 FMT_CONSTEXPR void on_dec1_week_of_year(numeric_system, pad_type) {}
on_iso_week_of_yeartm_format_checker936 FMT_CONSTEXPR void on_iso_week_of_year(numeric_system, pad_type) {}
on_day_of_yeartm_format_checker937 FMT_CONSTEXPR void on_day_of_year(pad_type) {}
on_day_of_monthtm_format_checker938 FMT_CONSTEXPR void on_day_of_month(numeric_system, pad_type) {}
on_24_hourtm_format_checker939 FMT_CONSTEXPR void on_24_hour(numeric_system, pad_type) {}
on_12_hourtm_format_checker940 FMT_CONSTEXPR void on_12_hour(numeric_system, pad_type) {}
on_minutetm_format_checker941 FMT_CONSTEXPR void on_minute(numeric_system, pad_type) {}
on_secondtm_format_checker942 FMT_CONSTEXPR void on_second(numeric_system, pad_type) {}
on_datetimetm_format_checker943 FMT_CONSTEXPR void on_datetime(numeric_system) {}
on_loc_datetm_format_checker944 FMT_CONSTEXPR void on_loc_date(numeric_system) {}
on_loc_timetm_format_checker945 FMT_CONSTEXPR void on_loc_time(numeric_system) {}
on_us_datetm_format_checker946 FMT_CONSTEXPR void on_us_date() {}
on_iso_datetm_format_checker947 FMT_CONSTEXPR void on_iso_date() {}
on_12_hour_timetm_format_checker948 FMT_CONSTEXPR void on_12_hour_time() {}
on_24_hour_timetm_format_checker949 FMT_CONSTEXPR void on_24_hour_time() {}
on_iso_timetm_format_checker950 FMT_CONSTEXPR void on_iso_time() {}
on_am_pmtm_format_checker951 FMT_CONSTEXPR void on_am_pm() {}
on_utc_offsettm_format_checker952 FMT_CONSTEXPR void on_utc_offset(numeric_system) {}
on_tz_nametm_format_checker953 FMT_CONSTEXPR void on_tz_name() {}
954 };
955
956 inline auto tm_wday_full_name(int wday) -> const char* {
957 static constexpr const char* full_name_list[] = {
958 "Sunday", "Monday", "Tuesday", "Wednesday",
959 "Thursday", "Friday", "Saturday"};
960 return wday >= 0 && wday <= 6 ? full_name_list[wday] : "?";
961 }
962 inline auto tm_wday_short_name(int wday) -> const char* {
963 static constexpr const char* short_name_list[] = {"Sun", "Mon", "Tue", "Wed",
964 "Thu", "Fri", "Sat"};
965 return wday >= 0 && wday <= 6 ? short_name_list[wday] : "???";
966 }
967
968 inline auto tm_mon_full_name(int mon) -> const char* {
969 static constexpr const char* full_name_list[] = {
970 "January", "February", "March", "April", "May", "June",
971 "July", "August", "September", "October", "November", "December"};
972 return mon >= 0 && mon <= 11 ? full_name_list[mon] : "?";
973 }
974 inline auto tm_mon_short_name(int mon) -> const char* {
975 static constexpr const char* short_name_list[] = {
976 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
977 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec",
978 };
979 return mon >= 0 && mon <= 11 ? short_name_list[mon] : "???";
980 }
981
982 template <typename T, typename = void>
983 struct has_member_data_tm_gmtoff : std::false_type {};
984 template <typename T>
985 struct has_member_data_tm_gmtoff<T, void_t<decltype(T::tm_gmtoff)>>
986 : std::true_type {};
987
988 template <typename T, typename = void>
989 struct has_member_data_tm_zone : std::false_type {};
990 template <typename T>
991 struct has_member_data_tm_zone<T, void_t<decltype(T::tm_zone)>>
992 : std::true_type {};
993
994 inline void tzset_once() {
995 static bool init = []() {
996 using namespace fmt_detail;
997 _tzset();
998 return false;
999 }();
1000 ignore_unused(init);
1001 }
1002
1003 // Converts value to Int and checks that it's in the range [0, upper).
1004 template <typename T, typename Int, FMT_ENABLE_IF(std::is_integral<T>::value)>
1005 inline auto to_nonnegative_int(T value, Int upper) -> Int {
1006 if (!std::is_unsigned<Int>::value &&
1007 (value < 0 || to_unsigned(value) > to_unsigned(upper))) {
1008 FMT_THROW(fmt::format_error("chrono value is out of range"));
1009 }
1010 return static_cast<Int>(value);
1011 }
1012 template <typename T, typename Int, FMT_ENABLE_IF(!std::is_integral<T>::value)>
1013 inline auto to_nonnegative_int(T value, Int upper) -> Int {
1014 auto int_value = static_cast<Int>(value);
1015 if (int_value < 0 || value > static_cast<T>(upper))
1016 FMT_THROW(format_error("invalid value"));
1017 return int_value;
1018 }
1019
1020 constexpr auto pow10(std::uint32_t n) -> long long {
1021 return n == 0 ? 1 : 10 * pow10(n - 1);
1022 }
1023
1024 // Counts the number of fractional digits in the range [0, 18] according to the
1025 // C++20 spec. If more than 18 fractional digits are required then returns 6 for
1026 // microseconds precision.
1027 template <long long Num, long long Den, int N = 0,
1028 bool Enabled = (N < 19) && (Num <= max_value<long long>() / 10)>
1029 struct count_fractional_digits {
1030 static constexpr int value =
1031 Num % Den == 0 ? N : count_fractional_digits<Num * 10, Den, N + 1>::value;
1032 };
1033
1034 // Base case that doesn't instantiate any more templates
1035 // in order to avoid overflow.
1036 template <long long Num, long long Den, int N>
1037 struct count_fractional_digits<Num, Den, N, false> {
1038 static constexpr int value = (Num % Den == 0) ? N : 6;
1039 };
1040
1041 // Format subseconds which are given as an integer type with an appropriate
1042 // number of digits.
1043 template <typename Char, typename OutputIt, typename Duration>
1044 void write_fractional_seconds(OutputIt& out, Duration d, int precision = -1) {
1045 constexpr auto num_fractional_digits =
1046 count_fractional_digits<Duration::period::num,
1047 Duration::period::den>::value;
1048
1049 using subsecond_precision = std::chrono::duration<
1050 typename std::common_type<typename Duration::rep,
1051 std::chrono::seconds::rep>::type,
1052 std::ratio<1, pow10(num_fractional_digits)>>;
1053
1054 const auto fractional = d - detail::duration_cast<std::chrono::seconds>(d);
1055 const auto subseconds =
1056 std::chrono::treat_as_floating_point<
1057 typename subsecond_precision::rep>::value
1058 ? fractional.count()
1059 : detail::duration_cast<subsecond_precision>(fractional).count();
1060 auto n = static_cast<uint32_or_64_or_128_t<long long>>(subseconds);
1061 const int num_digits = count_digits(n);
1062
1063 int leading_zeroes = (std::max)(0, num_fractional_digits - num_digits);
1064 if (precision < 0) {
1065 FMT_ASSERT(!std::is_floating_point<typename Duration::rep>::value, "");
1066 if (std::ratio_less<typename subsecond_precision::period,
1067 std::chrono::seconds::period>::value) {
1068 *out++ = '.';
1069 out = detail::fill_n(out, leading_zeroes, '0');
1070 out = format_decimal<Char>(out, n, num_digits);
1071 }
1072 } else if (precision > 0) {
1073 *out++ = '.';
1074 leading_zeroes = min_of(leading_zeroes, precision);
1075 int remaining = precision - leading_zeroes;
1076 out = detail::fill_n(out, leading_zeroes, '0');
1077 if (remaining < num_digits) {
1078 int num_truncated_digits = num_digits - remaining;
1079 n /= to_unsigned(pow10(to_unsigned(num_truncated_digits)));
1080 if (n != 0) out = format_decimal<Char>(out, n, remaining);
1081 return;
1082 }
1083 if (n != 0) {
1084 out = format_decimal<Char>(out, n, num_digits);
1085 remaining -= num_digits;
1086 }
1087 out = detail::fill_n(out, remaining, '0');
1088 }
1089 }
1090
1091 // Format subseconds which are given as a floating point type with an
1092 // appropriate number of digits. We cannot pass the Duration here, as we
1093 // explicitly need to pass the Rep value in the chrono_formatter.
1094 template <typename Duration>
1095 void write_floating_seconds(memory_buffer& buf, Duration duration,
1096 int num_fractional_digits = -1) {
1097 using rep = typename Duration::rep;
1098 FMT_ASSERT(std::is_floating_point<rep>::value, "");
1099
1100 auto val = duration.count();
1101
1102 if (num_fractional_digits < 0) {
1103 // For `std::round` with fallback to `round`:
1104 // On some toolchains `std::round` is not available (e.g. GCC 6).
1105 using namespace std;
1106 num_fractional_digits =
1107 count_fractional_digits<Duration::period::num,
1108 Duration::period::den>::value;
1109 if (num_fractional_digits < 6 && static_cast<rep>(round(val)) != val)
1110 num_fractional_digits = 6;
1111 }
1112
1113 fmt::format_to(std::back_inserter(buf), FMT_STRING("{:.{}f}"),
1114 std::fmod(val * static_cast<rep>(Duration::period::num) /
1115 static_cast<rep>(Duration::period::den),
1116 static_cast<rep>(60)),
1117 num_fractional_digits);
1118 }
1119
1120 template <typename OutputIt, typename Char,
1121 typename Duration = std::chrono::seconds>
1122 class tm_writer {
1123 private:
1124 static constexpr int days_per_week = 7;
1125
1126 const std::locale& loc_;
1127 const bool is_classic_;
1128 OutputIt out_;
1129 const Duration* subsecs_;
1130 const std::tm& tm_;
1131
1132 auto tm_sec() const noexcept -> int {
1133 FMT_ASSERT(tm_.tm_sec >= 0 && tm_.tm_sec <= 61, "");
1134 return tm_.tm_sec;
1135 }
1136 auto tm_min() const noexcept -> int {
1137 FMT_ASSERT(tm_.tm_min >= 0 && tm_.tm_min <= 59, "");
1138 return tm_.tm_min;
1139 }
1140 auto tm_hour() const noexcept -> int {
1141 FMT_ASSERT(tm_.tm_hour >= 0 && tm_.tm_hour <= 23, "");
1142 return tm_.tm_hour;
1143 }
1144 auto tm_mday() const noexcept -> int {
1145 FMT_ASSERT(tm_.tm_mday >= 1 && tm_.tm_mday <= 31, "");
1146 return tm_.tm_mday;
1147 }
1148 auto tm_mon() const noexcept -> int {
1149 FMT_ASSERT(tm_.tm_mon >= 0 && tm_.tm_mon <= 11, "");
1150 return tm_.tm_mon;
1151 }
1152 auto tm_year() const noexcept -> long long { return 1900ll + tm_.tm_year; }
1153 auto tm_wday() const noexcept -> int {
1154 FMT_ASSERT(tm_.tm_wday >= 0 && tm_.tm_wday <= 6, "");
1155 return tm_.tm_wday;
1156 }
1157 auto tm_yday() const noexcept -> int {
1158 FMT_ASSERT(tm_.tm_yday >= 0 && tm_.tm_yday <= 365, "");
1159 return tm_.tm_yday;
1160 }
1161
1162 auto tm_hour12() const noexcept -> int {
1163 const auto h = tm_hour();
1164 const auto z = h < 12 ? h : h - 12;
1165 return z == 0 ? 12 : z;
1166 }
1167
1168 // POSIX and the C Standard are unclear or inconsistent about what %C and %y
1169 // do if the year is negative or exceeds 9999. Use the convention that %C
1170 // concatenated with %y yields the same output as %Y, and that %Y contains at
1171 // least 4 characters, with more only if necessary.
1172 auto split_year_lower(long long year) const noexcept -> int {
1173 auto l = year % 100;
1174 if (l < 0) l = -l; // l in [0, 99]
1175 return static_cast<int>(l);
1176 }
1177
1178 // Algorithm: https://en.wikipedia.org/wiki/ISO_week_date.
1179 auto iso_year_weeks(long long curr_year) const noexcept -> int {
1180 const auto prev_year = curr_year - 1;
1181 const auto curr_p =
1182 (curr_year + curr_year / 4 - curr_year / 100 + curr_year / 400) %
1183 days_per_week;
1184 const auto prev_p =
1185 (prev_year + prev_year / 4 - prev_year / 100 + prev_year / 400) %
1186 days_per_week;
1187 return 52 + ((curr_p == 4 || prev_p == 3) ? 1 : 0);
1188 }
1189 auto iso_week_num(int tm_yday, int tm_wday) const noexcept -> int {
1190 return (tm_yday + 11 - (tm_wday == 0 ? days_per_week : tm_wday)) /
1191 days_per_week;
1192 }
1193 auto tm_iso_week_year() const noexcept -> long long {
1194 const auto year = tm_year();
1195 const auto w = iso_week_num(tm_yday(), tm_wday());
1196 if (w < 1) return year - 1;
1197 if (w > iso_year_weeks(year)) return year + 1;
1198 return year;
1199 }
1200 auto tm_iso_week_of_year() const noexcept -> int {
1201 const auto year = tm_year();
1202 const auto w = iso_week_num(tm_yday(), tm_wday());
1203 if (w < 1) return iso_year_weeks(year - 1);
1204 if (w > iso_year_weeks(year)) return 1;
1205 return w;
1206 }
1207
1208 void write1(int value) {
1209 *out_++ = static_cast<char>('0' + to_unsigned(value) % 10);
1210 }
1211 void write2(int value) {
1212 const char* d = digits2(to_unsigned(value) % 100);
1213 *out_++ = *d++;
1214 *out_++ = *d;
1215 }
1216 void write2(int value, pad_type pad) {
1217 unsigned int v = to_unsigned(value) % 100;
1218 if (v >= 10) {
1219 const char* d = digits2(v);
1220 *out_++ = *d++;
1221 *out_++ = *d;
1222 } else {
1223 out_ = detail::write_padding(out_, pad);
1224 *out_++ = static_cast<char>('0' + v);
1225 }
1226 }
1227
1228 void write_year_extended(long long year, pad_type pad) {
1229 // At least 4 characters.
1230 int width = 4;
1231 bool negative = year < 0;
1232 if (negative) {
1233 year = 0 - year;
1234 --width;
1235 }
1236 uint32_or_64_or_128_t<long long> n = to_unsigned(year);
1237 const int num_digits = count_digits(n);
1238 if (negative && pad == pad_type::zero) *out_++ = '-';
1239 if (width > num_digits) {
1240 out_ = detail::write_padding(out_, pad, width - num_digits);
1241 }
1242 if (negative && pad != pad_type::zero) *out_++ = '-';
1243 out_ = format_decimal<Char>(out_, n, num_digits);
1244 }
1245 void write_year(long long year, pad_type pad) {
1246 write_year_extended(year, pad);
1247 }
1248
1249 void write_utc_offset(long long offset, numeric_system ns) {
1250 if (offset < 0) {
1251 *out_++ = '-';
1252 offset = -offset;
1253 } else {
1254 *out_++ = '+';
1255 }
1256 offset /= 60;
1257 write2(static_cast<int>(offset / 60));
1258 if (ns != numeric_system::standard) *out_++ = ':';
1259 write2(static_cast<int>(offset % 60));
1260 }
1261
1262 template <typename T, FMT_ENABLE_IF(has_member_data_tm_gmtoff<T>::value)>
1263 void format_utc_offset_impl(const T& tm, numeric_system ns) {
1264 write_utc_offset(tm.tm_gmtoff, ns);
1265 }
1266 template <typename T, FMT_ENABLE_IF(!has_member_data_tm_gmtoff<T>::value)>
1267 void format_utc_offset_impl(const T& tm, numeric_system ns) {
1268 #if defined(_WIN32) && defined(_UCRT)
1269 tzset_once();
1270 long offset = 0;
1271 _get_timezone(&offset);
1272 if (tm.tm_isdst) {
1273 long dstbias = 0;
1274 _get_dstbias(&dstbias);
1275 offset += dstbias;
1276 }
1277 write_utc_offset(-offset, ns);
1278 #else
1279 if (ns == numeric_system::standard) return format_localized('z');
1280
1281 // Extract timezone offset from timezone conversion functions.
1282 std::tm gtm = tm;
1283 std::time_t gt = std::mktime(>m);
1284 std::tm ltm = gmtime(gt);
1285 std::time_t lt = std::mktime(<m);
1286 long long offset = gt - lt;
1287 write_utc_offset(offset, ns);
1288 #endif
1289 }
1290
1291 template <typename T, FMT_ENABLE_IF(has_member_data_tm_zone<T>::value)>
1292 void format_tz_name_impl(const T& tm) {
1293 if (is_classic_)
1294 out_ = write_tm_str<Char>(out_, tm.tm_zone, loc_);
1295 else
1296 format_localized('Z');
1297 }
1298 template <typename T, FMT_ENABLE_IF(!has_member_data_tm_zone<T>::value)>
1299 void format_tz_name_impl(const T&) {
1300 format_localized('Z');
1301 }
1302
1303 void format_localized(char format, char modifier = 0) {
1304 out_ = write<Char>(out_, tm_, loc_, format, modifier);
1305 }
1306
1307 public:
1308 tm_writer(const std::locale& loc, OutputIt out, const std::tm& tm,
1309 const Duration* subsecs = nullptr)
1310 : loc_(loc),
1311 is_classic_(loc_ == get_classic_locale()),
1312 out_(out),
1313 subsecs_(subsecs),
1314 tm_(tm) {}
1315
1316 auto out() const -> OutputIt { return out_; }
1317
1318 FMT_CONSTEXPR void on_text(const Char* begin, const Char* end) {
1319 out_ = copy<Char>(begin, end, out_);
1320 }
1321
1322 void on_abbr_weekday() {
1323 if (is_classic_)
1324 out_ = write(out_, tm_wday_short_name(tm_wday()));
1325 else
1326 format_localized('a');
1327 }
1328 void on_full_weekday() {
1329 if (is_classic_)
1330 out_ = write(out_, tm_wday_full_name(tm_wday()));
1331 else
1332 format_localized('A');
1333 }
1334 void on_dec0_weekday(numeric_system ns) {
1335 if (is_classic_ || ns == numeric_system::standard) return write1(tm_wday());
1336 format_localized('w', 'O');
1337 }
1338 void on_dec1_weekday(numeric_system ns) {
1339 if (is_classic_ || ns == numeric_system::standard) {
1340 auto wday = tm_wday();
1341 write1(wday == 0 ? days_per_week : wday);
1342 } else {
1343 format_localized('u', 'O');
1344 }
1345 }
1346
1347 void on_abbr_month() {
1348 if (is_classic_)
1349 out_ = write(out_, tm_mon_short_name(tm_mon()));
1350 else
1351 format_localized('b');
1352 }
1353 void on_full_month() {
1354 if (is_classic_)
1355 out_ = write(out_, tm_mon_full_name(tm_mon()));
1356 else
1357 format_localized('B');
1358 }
1359
1360 void on_datetime(numeric_system ns) {
1361 if (is_classic_) {
1362 on_abbr_weekday();
1363 *out_++ = ' ';
1364 on_abbr_month();
1365 *out_++ = ' ';
1366 on_day_of_month(numeric_system::standard, pad_type::space);
1367 *out_++ = ' ';
1368 on_iso_time();
1369 *out_++ = ' ';
1370 on_year(numeric_system::standard, pad_type::space);
1371 } else {
1372 format_localized('c', ns == numeric_system::standard ? '\0' : 'E');
1373 }
1374 }
1375 void on_loc_date(numeric_system ns) {
1376 if (is_classic_)
1377 on_us_date();
1378 else
1379 format_localized('x', ns == numeric_system::standard ? '\0' : 'E');
1380 }
1381 void on_loc_time(numeric_system ns) {
1382 if (is_classic_)
1383 on_iso_time();
1384 else
1385 format_localized('X', ns == numeric_system::standard ? '\0' : 'E');
1386 }
1387 void on_us_date() {
1388 char buf[8];
1389 write_digit2_separated(buf, to_unsigned(tm_mon() + 1),
1390 to_unsigned(tm_mday()),
1391 to_unsigned(split_year_lower(tm_year())), '/');
1392 out_ = copy<Char>(std::begin(buf), std::end(buf), out_);
1393 }
1394 void on_iso_date() {
1395 auto year = tm_year();
1396 char buf[10];
1397 size_t offset = 0;
1398 if (year >= 0 && year < 10000) {
1399 write2digits(buf, static_cast<size_t>(year / 100));
1400 } else {
1401 offset = 4;
1402 write_year_extended(year, pad_type::zero);
1403 year = 0;
1404 }
1405 write_digit2_separated(buf + 2, static_cast<unsigned>(year % 100),
1406 to_unsigned(tm_mon() + 1), to_unsigned(tm_mday()),
1407 '-');
1408 out_ = copy<Char>(std::begin(buf) + offset, std::end(buf), out_);
1409 }
1410
1411 void on_utc_offset(numeric_system ns) { format_utc_offset_impl(tm_, ns); }
1412 void on_tz_name() { format_tz_name_impl(tm_); }
1413
1414 void on_year(numeric_system ns, pad_type pad) {
1415 if (is_classic_ || ns == numeric_system::standard)
1416 return write_year(tm_year(), pad);
1417 format_localized('Y', 'E');
1418 }
1419 void on_short_year(numeric_system ns) {
1420 if (is_classic_ || ns == numeric_system::standard)
1421 return write2(split_year_lower(tm_year()));
1422 format_localized('y', 'O');
1423 }
1424 void on_offset_year() {
1425 if (is_classic_) return write2(split_year_lower(tm_year()));
1426 format_localized('y', 'E');
1427 }
1428
1429 void on_century(numeric_system ns) {
1430 if (is_classic_ || ns == numeric_system::standard) {
1431 auto year = tm_year();
1432 auto upper = year / 100;
1433 if (year >= -99 && year < 0) {
1434 // Zero upper on negative year.
1435 *out_++ = '-';
1436 *out_++ = '0';
1437 } else if (upper >= 0 && upper < 100) {
1438 write2(static_cast<int>(upper));
1439 } else {
1440 out_ = write<Char>(out_, upper);
1441 }
1442 } else {
1443 format_localized('C', 'E');
1444 }
1445 }
1446
1447 void on_dec_month(numeric_system ns, pad_type pad) {
1448 if (is_classic_ || ns == numeric_system::standard)
1449 return write2(tm_mon() + 1, pad);
1450 format_localized('m', 'O');
1451 }
1452
1453 void on_dec0_week_of_year(numeric_system ns, pad_type pad) {
1454 if (is_classic_ || ns == numeric_system::standard)
1455 return write2((tm_yday() + days_per_week - tm_wday()) / days_per_week,
1456 pad);
1457 format_localized('U', 'O');
1458 }
1459 void on_dec1_week_of_year(numeric_system ns, pad_type pad) {
1460 if (is_classic_ || ns == numeric_system::standard) {
1461 auto wday = tm_wday();
1462 write2((tm_yday() + days_per_week -
1463 (wday == 0 ? (days_per_week - 1) : (wday - 1))) /
1464 days_per_week,
1465 pad);
1466 } else {
1467 format_localized('W', 'O');
1468 }
1469 }
1470 void on_iso_week_of_year(numeric_system ns, pad_type pad) {
1471 if (is_classic_ || ns == numeric_system::standard)
1472 return write2(tm_iso_week_of_year(), pad);
1473 format_localized('V', 'O');
1474 }
1475
1476 void on_iso_week_based_year() {
1477 write_year(tm_iso_week_year(), pad_type::zero);
1478 }
1479 void on_iso_week_based_short_year() {
1480 write2(split_year_lower(tm_iso_week_year()));
1481 }
1482
1483 void on_day_of_year(pad_type pad) {
1484 auto yday = tm_yday() + 1;
1485 auto digit1 = yday / 100;
1486 if (digit1 != 0) {
1487 write1(digit1);
1488 } else {
1489 out_ = detail::write_padding(out_, pad);
1490 }
1491 write2(yday % 100, pad);
1492 }
1493
1494 void on_day_of_month(numeric_system ns, pad_type pad) {
1495 if (is_classic_ || ns == numeric_system::standard)
1496 return write2(tm_mday(), pad);
1497 format_localized('d', 'O');
1498 }
1499
1500 void on_24_hour(numeric_system ns, pad_type pad) {
1501 if (is_classic_ || ns == numeric_system::standard)
1502 return write2(tm_hour(), pad);
1503 format_localized('H', 'O');
1504 }
1505 void on_12_hour(numeric_system ns, pad_type pad) {
1506 if (is_classic_ || ns == numeric_system::standard)
1507 return write2(tm_hour12(), pad);
1508 format_localized('I', 'O');
1509 }
1510 void on_minute(numeric_system ns, pad_type pad) {
1511 if (is_classic_ || ns == numeric_system::standard)
1512 return write2(tm_min(), pad);
1513 format_localized('M', 'O');
1514 }
1515
1516 void on_second(numeric_system ns, pad_type pad) {
1517 if (is_classic_ || ns == numeric_system::standard) {
1518 write2(tm_sec(), pad);
1519 if (subsecs_) {
1520 if (std::is_floating_point<typename Duration::rep>::value) {
1521 auto buf = memory_buffer();
1522 write_floating_seconds(buf, *subsecs_);
1523 if (buf.size() > 1) {
1524 // Remove the leading "0", write something like ".123".
1525 out_ = copy<Char>(buf.begin() + 1, buf.end(), out_);
1526 }
1527 } else {
1528 write_fractional_seconds<Char>(out_, *subsecs_);
1529 }
1530 }
1531 } else {
1532 // Currently no formatting of subseconds when a locale is set.
1533 format_localized('S', 'O');
1534 }
1535 }
1536
1537 void on_12_hour_time() {
1538 if (is_classic_) {
1539 char buf[8];
1540 write_digit2_separated(buf, to_unsigned(tm_hour12()),
1541 to_unsigned(tm_min()), to_unsigned(tm_sec()), ':');
1542 out_ = copy<Char>(std::begin(buf), std::end(buf), out_);
1543 *out_++ = ' ';
1544 on_am_pm();
1545 } else {
1546 format_localized('r');
1547 }
1548 }
1549 void on_24_hour_time() {
1550 write2(tm_hour());
1551 *out_++ = ':';
1552 write2(tm_min());
1553 }
1554 void on_iso_time() {
1555 on_24_hour_time();
1556 *out_++ = ':';
1557 on_second(numeric_system::standard, pad_type::zero);
1558 }
1559
1560 void on_am_pm() {
1561 if (is_classic_) {
1562 *out_++ = tm_hour() < 12 ? 'A' : 'P';
1563 *out_++ = 'M';
1564 } else {
1565 format_localized('p');
1566 }
1567 }
1568
1569 // These apply to chrono durations but not tm.
1570 void on_duration_value() {}
1571 void on_duration_unit() {}
1572 };
1573
1574 struct chrono_format_checker : null_chrono_spec_handler<chrono_format_checker> {
1575 bool has_precision_integral = false;
1576
1577 FMT_NORETURN inline void unsupported() { FMT_THROW(format_error("no date")); }
1578
1579 template <typename Char>
1580 FMT_CONSTEXPR void on_text(const Char*, const Char*) {}
1581 FMT_CONSTEXPR void on_day_of_year(pad_type) {}
1582 FMT_CONSTEXPR void on_24_hour(numeric_system, pad_type) {}
1583 FMT_CONSTEXPR void on_12_hour(numeric_system, pad_type) {}
1584 FMT_CONSTEXPR void on_minute(numeric_system, pad_type) {}
1585 FMT_CONSTEXPR void on_second(numeric_system, pad_type) {}
1586 FMT_CONSTEXPR void on_12_hour_time() {}
1587 FMT_CONSTEXPR void on_24_hour_time() {}
1588 FMT_CONSTEXPR void on_iso_time() {}
1589 FMT_CONSTEXPR void on_am_pm() {}
1590 FMT_CONSTEXPR void on_duration_value() const {
1591 if (has_precision_integral)
1592 FMT_THROW(format_error("precision not allowed for this argument type"));
1593 }
1594 FMT_CONSTEXPR void on_duration_unit() {}
1595 };
1596
1597 template <typename T,
1598 FMT_ENABLE_IF(std::is_integral<T>::value&& has_isfinite<T>::value)>
1599 inline auto isfinite(T) -> bool {
1600 return true;
1601 }
1602
1603 template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
1604 inline auto mod(T x, int y) -> T {
1605 return x % static_cast<T>(y);
1606 }
1607 template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)>
1608 inline auto mod(T x, int y) -> T {
1609 return std::fmod(x, static_cast<T>(y));
1610 }
1611
1612 // If T is an integral type, maps T to its unsigned counterpart, otherwise
1613 // leaves it unchanged (unlike std::make_unsigned).
1614 template <typename T, bool INTEGRAL = std::is_integral<T>::value>
1615 struct make_unsigned_or_unchanged {
1616 using type = T;
1617 };
1618
1619 template <typename T> struct make_unsigned_or_unchanged<T, true> {
1620 using type = typename std::make_unsigned<T>::type;
1621 };
1622
1623 template <typename Rep, typename Period,
1624 FMT_ENABLE_IF(std::is_integral<Rep>::value)>
1625 inline auto get_milliseconds(std::chrono::duration<Rep, Period> d)
1626 -> std::chrono::duration<Rep, std::milli> {
1627 // this may overflow and/or the result may not fit in the
1628 // target type.
1629 #if FMT_SAFE_DURATION_CAST
1630 using CommonSecondsType =
1631 typename std::common_type<decltype(d), std::chrono::seconds>::type;
1632 const auto d_as_common = detail::duration_cast<CommonSecondsType>(d);
1633 const auto d_as_whole_seconds =
1634 detail::duration_cast<std::chrono::seconds>(d_as_common);
1635 // this conversion should be nonproblematic
1636 const auto diff = d_as_common - d_as_whole_seconds;
1637 const auto ms =
1638 detail::duration_cast<std::chrono::duration<Rep, std::milli>>(diff);
1639 return ms;
1640 #else
1641 auto s = detail::duration_cast<std::chrono::seconds>(d);
1642 return detail::duration_cast<std::chrono::milliseconds>(d - s);
1643 #endif
1644 }
1645
1646 template <typename Char, typename Rep, typename OutputIt,
1647 FMT_ENABLE_IF(std::is_integral<Rep>::value)>
1648 auto format_duration_value(OutputIt out, Rep val, int) -> OutputIt {
1649 return write<Char>(out, val);
1650 }
1651
1652 template <typename Char, typename Rep, typename OutputIt,
1653 FMT_ENABLE_IF(std::is_floating_point<Rep>::value)>
1654 auto format_duration_value(OutputIt out, Rep val, int precision) -> OutputIt {
1655 auto specs = format_specs();
1656 specs.precision = precision;
1657 specs.set_type(precision >= 0 ? presentation_type::fixed
1658 : presentation_type::general);
1659 return write<Char>(out, val, specs);
1660 }
1661
1662 template <typename Char, typename OutputIt>
1663 auto copy_unit(string_view unit, OutputIt out, Char) -> OutputIt {
1664 return copy<Char>(unit.begin(), unit.end(), out);
1665 }
1666
1667 template <typename OutputIt>
1668 auto copy_unit(string_view unit, OutputIt out, wchar_t) -> OutputIt {
1669 // This works when wchar_t is UTF-32 because units only contain characters
1670 // that have the same representation in UTF-16 and UTF-32.
1671 utf8_to_utf16 u(unit);
1672 return copy<wchar_t>(u.c_str(), u.c_str() + u.size(), out);
1673 }
1674
1675 template <typename Char, typename Period, typename OutputIt>
1676 auto format_duration_unit(OutputIt out) -> OutputIt {
1677 if (const char* unit = get_units<Period>())
1678 return copy_unit(string_view(unit), out, Char());
1679 *out++ = '[';
1680 out = write<Char>(out, Period::num);
1681 if (const_check(Period::den != 1)) {
1682 *out++ = '/';
1683 out = write<Char>(out, Period::den);
1684 }
1685 *out++ = ']';
1686 *out++ = 's';
1687 return out;
1688 }
1689
1690 class get_locale {
1691 private:
1692 union {
1693 std::locale locale_;
1694 };
1695 bool has_locale_ = false;
1696
1697 public:
1698 inline get_locale(bool localized, locale_ref loc) : has_locale_(localized) {
1699 if (localized)
1700 ::new (&locale_) std::locale(loc.template get<std::locale>());
1701 }
1702 inline ~get_locale() {
1703 if (has_locale_) locale_.~locale();
1704 }
1705 inline operator const std::locale&() const {
1706 return has_locale_ ? locale_ : get_classic_locale();
1707 }
1708 };
1709
1710 template <typename FormatContext, typename OutputIt, typename Rep,
1711 typename Period>
1712 struct chrono_formatter {
1713 FormatContext& context;
1714 OutputIt out;
1715 int precision;
1716 bool localized = false;
1717 // rep is unsigned to avoid overflow.
1718 using rep =
1719 conditional_t<std::is_integral<Rep>::value && sizeof(Rep) < sizeof(int),
1720 unsigned, typename make_unsigned_or_unchanged<Rep>::type>;
1721 rep val;
1722 using seconds = std::chrono::duration<rep>;
1723 seconds s;
1724 using milliseconds = std::chrono::duration<rep, std::milli>;
1725 bool negative;
1726
1727 using char_type = typename FormatContext::char_type;
1728 using tm_writer_type = tm_writer<OutputIt, char_type>;
1729
1730 chrono_formatter(FormatContext& ctx, OutputIt o,
1731 std::chrono::duration<Rep, Period> d)
1732 : context(ctx),
1733 out(o),
1734 val(static_cast<rep>(d.count())),
1735 negative(false) {
1736 if (d.count() < 0) {
1737 val = 0 - val;
1738 negative = true;
1739 }
1740
1741 // this may overflow and/or the result may not fit in the
1742 // target type.
1743 // might need checked conversion (rep!=Rep)
1744 s = detail::duration_cast<seconds>(std::chrono::duration<rep, Period>(val));
1745 }
1746
1747 // returns true if nan or inf, writes to out.
1748 auto handle_nan_inf() -> bool {
1749 if (isfinite(val)) {
1750 return false;
1751 }
1752 if (isnan(val)) {
1753 write_nan();
1754 return true;
1755 }
1756 // must be +-inf
1757 if (val > 0) {
1758 write_pinf();
1759 } else {
1760 write_ninf();
1761 }
1762 return true;
1763 }
1764
1765 auto days() const -> Rep { return static_cast<Rep>(s.count() / 86400); }
1766 auto hour() const -> Rep {
1767 return static_cast<Rep>(mod((s.count() / 3600), 24));
1768 }
1769
1770 auto hour12() const -> Rep {
1771 Rep hour = static_cast<Rep>(mod((s.count() / 3600), 12));
1772 return hour <= 0 ? 12 : hour;
1773 }
1774
1775 auto minute() const -> Rep {
1776 return static_cast<Rep>(mod((s.count() / 60), 60));
1777 }
1778 auto second() const -> Rep { return static_cast<Rep>(mod(s.count(), 60)); }
1779
1780 auto time() const -> std::tm {
1781 auto time = std::tm();
1782 time.tm_hour = to_nonnegative_int(hour(), 24);
1783 time.tm_min = to_nonnegative_int(minute(), 60);
1784 time.tm_sec = to_nonnegative_int(second(), 60);
1785 return time;
1786 }
1787
1788 void write_sign() {
1789 if (negative) {
1790 *out++ = '-';
1791 negative = false;
1792 }
1793 }
1794
1795 void write(Rep value, int width, pad_type pad = pad_type::zero) {
1796 write_sign();
1797 if (isnan(value)) return write_nan();
1798 uint32_or_64_or_128_t<int> n =
1799 to_unsigned(to_nonnegative_int(value, max_value<int>()));
1800 int num_digits = detail::count_digits(n);
1801 if (width > num_digits) {
1802 out = detail::write_padding(out, pad, width - num_digits);
1803 }
1804 out = format_decimal<char_type>(out, n, num_digits);
1805 }
1806
1807 void write_nan() { std::copy_n("nan", 3, out); }
1808 void write_pinf() { std::copy_n("inf", 3, out); }
1809 void write_ninf() { std::copy_n("-inf", 4, out); }
1810
1811 template <typename Callback, typename... Args>
1812 void format_tm(const tm& time, Callback cb, Args... args) {
1813 if (isnan(val)) return write_nan();
1814 get_locale loc(localized, context.locale());
1815 auto w = tm_writer_type(loc, out, time);
1816 (w.*cb)(args...);
1817 out = w.out();
1818 }
1819
1820 void on_text(const char_type* begin, const char_type* end) {
1821 copy<char_type>(begin, end, out);
1822 }
1823
1824 // These are not implemented because durations don't have date information.
1825 void on_abbr_weekday() {}
1826 void on_full_weekday() {}
1827 void on_dec0_weekday(numeric_system) {}
1828 void on_dec1_weekday(numeric_system) {}
1829 void on_abbr_month() {}
1830 void on_full_month() {}
1831 void on_datetime(numeric_system) {}
1832 void on_loc_date(numeric_system) {}
1833 void on_loc_time(numeric_system) {}
1834 void on_us_date() {}
1835 void on_iso_date() {}
1836 void on_utc_offset(numeric_system) {}
1837 void on_tz_name() {}
1838 void on_year(numeric_system, pad_type) {}
1839 void on_short_year(numeric_system) {}
1840 void on_offset_year() {}
1841 void on_century(numeric_system) {}
1842 void on_iso_week_based_year() {}
1843 void on_iso_week_based_short_year() {}
1844 void on_dec_month(numeric_system, pad_type) {}
1845 void on_dec0_week_of_year(numeric_system, pad_type) {}
1846 void on_dec1_week_of_year(numeric_system, pad_type) {}
1847 void on_iso_week_of_year(numeric_system, pad_type) {}
1848 void on_day_of_month(numeric_system, pad_type) {}
1849
1850 void on_day_of_year(pad_type) {
1851 if (handle_nan_inf()) return;
1852 write(days(), 0);
1853 }
1854
1855 void on_24_hour(numeric_system ns, pad_type pad) {
1856 if (handle_nan_inf()) return;
1857
1858 if (ns == numeric_system::standard) return write(hour(), 2, pad);
1859 auto time = tm();
1860 time.tm_hour = to_nonnegative_int(hour(), 24);
1861 format_tm(time, &tm_writer_type::on_24_hour, ns, pad);
1862 }
1863
1864 void on_12_hour(numeric_system ns, pad_type pad) {
1865 if (handle_nan_inf()) return;
1866
1867 if (ns == numeric_system::standard) return write(hour12(), 2, pad);
1868 auto time = tm();
1869 time.tm_hour = to_nonnegative_int(hour12(), 12);
1870 format_tm(time, &tm_writer_type::on_12_hour, ns, pad);
1871 }
1872
1873 void on_minute(numeric_system ns, pad_type pad) {
1874 if (handle_nan_inf()) return;
1875
1876 if (ns == numeric_system::standard) return write(minute(), 2, pad);
1877 auto time = tm();
1878 time.tm_min = to_nonnegative_int(minute(), 60);
1879 format_tm(time, &tm_writer_type::on_minute, ns, pad);
1880 }
1881
1882 void on_second(numeric_system ns, pad_type pad) {
1883 if (handle_nan_inf()) return;
1884
1885 if (ns == numeric_system::standard) {
1886 if (std::is_floating_point<rep>::value) {
1887 auto buf = memory_buffer();
1888 write_floating_seconds(buf, std::chrono::duration<rep, Period>(val),
1889 precision);
1890 if (negative) *out++ = '-';
1891 if (buf.size() < 2 || buf[1] == '.') {
1892 out = detail::write_padding(out, pad);
1893 }
1894 out = copy<char_type>(buf.begin(), buf.end(), out);
1895 } else {
1896 write(second(), 2, pad);
1897 write_fractional_seconds<char_type>(
1898 out, std::chrono::duration<rep, Period>(val), precision);
1899 }
1900 return;
1901 }
1902 auto time = tm();
1903 time.tm_sec = to_nonnegative_int(second(), 60);
1904 format_tm(time, &tm_writer_type::on_second, ns, pad);
1905 }
1906
1907 void on_12_hour_time() {
1908 if (handle_nan_inf()) return;
1909 format_tm(time(), &tm_writer_type::on_12_hour_time);
1910 }
1911
1912 void on_24_hour_time() {
1913 if (handle_nan_inf()) {
1914 *out++ = ':';
1915 handle_nan_inf();
1916 return;
1917 }
1918
1919 write(hour(), 2);
1920 *out++ = ':';
1921 write(minute(), 2);
1922 }
1923
1924 void on_iso_time() {
1925 on_24_hour_time();
1926 *out++ = ':';
1927 if (handle_nan_inf()) return;
1928 on_second(numeric_system::standard, pad_type::zero);
1929 }
1930
1931 void on_am_pm() {
1932 if (handle_nan_inf()) return;
1933 format_tm(time(), &tm_writer_type::on_am_pm);
1934 }
1935
1936 void on_duration_value() {
1937 if (handle_nan_inf()) return;
1938 write_sign();
1939 out = format_duration_value<char_type>(out, val, precision);
1940 }
1941
1942 void on_duration_unit() {
1943 out = format_duration_unit<char_type, Period>(out);
1944 }
1945 };
1946
1947 } // namespace detail
1948
1949 #if defined(__cpp_lib_chrono) && __cpp_lib_chrono >= 201907
1950 using weekday = std::chrono::weekday;
1951 using day = std::chrono::day;
1952 using month = std::chrono::month;
1953 using year = std::chrono::year;
1954 using year_month_day = std::chrono::year_month_day;
1955 #else
1956 // A fallback version of weekday.
1957 class weekday {
1958 private:
1959 unsigned char value_;
1960
1961 public:
1962 weekday() = default;
1963 constexpr explicit weekday(unsigned wd) noexcept
1964 : value_(static_cast<unsigned char>(wd != 7 ? wd : 0)) {}
1965 constexpr auto c_encoding() const noexcept -> unsigned { return value_; }
1966 };
1967
1968 class day {
1969 private:
1970 unsigned char value_;
1971
1972 public:
1973 day() = default;
1974 constexpr explicit day(unsigned d) noexcept
1975 : value_(static_cast<unsigned char>(d)) {}
1976 constexpr explicit operator unsigned() const noexcept { return value_; }
1977 };
1978
1979 class month {
1980 private:
1981 unsigned char value_;
1982
1983 public:
1984 month() = default;
1985 constexpr explicit month(unsigned m) noexcept
1986 : value_(static_cast<unsigned char>(m)) {}
1987 constexpr explicit operator unsigned() const noexcept { return value_; }
1988 };
1989
1990 class year {
1991 private:
1992 int value_;
1993
1994 public:
1995 year() = default;
1996 constexpr explicit year(int y) noexcept : value_(y) {}
1997 constexpr explicit operator int() const noexcept { return value_; }
1998 };
1999
2000 class year_month_day {
2001 private:
2002 fmt::year year_;
2003 fmt::month month_;
2004 fmt::day day_;
2005
2006 public:
2007 year_month_day() = default;
2008 constexpr year_month_day(const year& y, const month& m, const day& d) noexcept
2009 : year_(y), month_(m), day_(d) {}
2010 constexpr auto year() const noexcept -> fmt::year { return year_; }
2011 constexpr auto month() const noexcept -> fmt::month { return month_; }
2012 constexpr auto day() const noexcept -> fmt::day { return day_; }
2013 };
2014 #endif
2015
2016 template <typename Char>
2017 struct formatter<weekday, Char> : private formatter<std::tm, Char> {
2018 private:
2019 bool localized_ = false;
2020 bool use_tm_formatter_ = false;
2021
2022 public:
2023 FMT_CONSTEXPR auto parse(parse_context<Char>& ctx) -> const Char* {
2024 auto it = ctx.begin(), end = ctx.end();
2025 if (it != end && *it == 'L') {
2026 ++it;
2027 localized_ = true;
2028 return it;
2029 }
2030 use_tm_formatter_ = it != end && *it != '}';
2031 return use_tm_formatter_ ? formatter<std::tm, Char>::parse(ctx) : it;
2032 }
2033
2034 template <typename FormatContext>
2035 auto format(weekday wd, FormatContext& ctx) const -> decltype(ctx.out()) {
2036 auto time = std::tm();
2037 time.tm_wday = static_cast<int>(wd.c_encoding());
2038 if (use_tm_formatter_) return formatter<std::tm, Char>::format(time, ctx);
2039 detail::get_locale loc(localized_, ctx.locale());
2040 auto w = detail::tm_writer<decltype(ctx.out()), Char>(loc, ctx.out(), time);
2041 w.on_abbr_weekday();
2042 return w.out();
2043 }
2044 };
2045
2046 template <typename Char>
2047 struct formatter<day, Char> : private formatter<std::tm, Char> {
2048 private:
2049 bool use_tm_formatter_ = false;
2050
2051 public:
2052 FMT_CONSTEXPR auto parse(parse_context<Char>& ctx) -> const Char* {
2053 auto it = ctx.begin(), end = ctx.end();
2054 use_tm_formatter_ = it != end && *it != '}';
2055 return use_tm_formatter_ ? formatter<std::tm, Char>::parse(ctx) : it;
2056 }
2057
2058 template <typename FormatContext>
2059 auto format(day d, FormatContext& ctx) const -> decltype(ctx.out()) {
2060 auto time = std::tm();
2061 time.tm_mday = static_cast<int>(static_cast<unsigned>(d));
2062 if (use_tm_formatter_) return formatter<std::tm, Char>::format(time, ctx);
2063 detail::get_locale loc(false, ctx.locale());
2064 auto w = detail::tm_writer<decltype(ctx.out()), Char>(loc, ctx.out(), time);
2065 w.on_day_of_month(detail::numeric_system::standard, detail::pad_type::zero);
2066 return w.out();
2067 }
2068 };
2069
2070 template <typename Char>
2071 struct formatter<month, Char> : private formatter<std::tm, Char> {
2072 private:
2073 bool localized_ = false;
2074 bool use_tm_formatter_ = false;
2075
2076 public:
2077 FMT_CONSTEXPR auto parse(parse_context<Char>& ctx) -> const Char* {
2078 auto it = ctx.begin(), end = ctx.end();
2079 if (it != end && *it == 'L') {
2080 ++it;
2081 localized_ = true;
2082 return it;
2083 }
2084 use_tm_formatter_ = it != end && *it != '}';
2085 return use_tm_formatter_ ? formatter<std::tm, Char>::parse(ctx) : it;
2086 }
2087
2088 template <typename FormatContext>
2089 auto format(month m, FormatContext& ctx) const -> decltype(ctx.out()) {
2090 auto time = std::tm();
2091 time.tm_mon = static_cast<int>(static_cast<unsigned>(m)) - 1;
2092 if (use_tm_formatter_) return formatter<std::tm, Char>::format(time, ctx);
2093 detail::get_locale loc(localized_, ctx.locale());
2094 auto w = detail::tm_writer<decltype(ctx.out()), Char>(loc, ctx.out(), time);
2095 w.on_abbr_month();
2096 return w.out();
2097 }
2098 };
2099
2100 template <typename Char>
2101 struct formatter<year, Char> : private formatter<std::tm, Char> {
2102 private:
2103 bool use_tm_formatter_ = false;
2104
2105 public:
2106 FMT_CONSTEXPR auto parse(parse_context<Char>& ctx) -> const Char* {
2107 auto it = ctx.begin(), end = ctx.end();
2108 use_tm_formatter_ = it != end && *it != '}';
2109 return use_tm_formatter_ ? formatter<std::tm, Char>::parse(ctx) : it;
2110 }
2111
2112 template <typename FormatContext>
2113 auto format(year y, FormatContext& ctx) const -> decltype(ctx.out()) {
2114 auto time = std::tm();
2115 time.tm_year = static_cast<int>(y) - 1900;
2116 if (use_tm_formatter_) return formatter<std::tm, Char>::format(time, ctx);
2117 detail::get_locale loc(false, ctx.locale());
2118 auto w = detail::tm_writer<decltype(ctx.out()), Char>(loc, ctx.out(), time);
2119 w.on_year(detail::numeric_system::standard, detail::pad_type::zero);
2120 return w.out();
2121 }
2122 };
2123
2124 template <typename Char>
2125 struct formatter<year_month_day, Char> : private formatter<std::tm, Char> {
2126 private:
2127 bool use_tm_formatter_ = false;
2128
2129 public:
2130 FMT_CONSTEXPR auto parse(parse_context<Char>& ctx) -> const Char* {
2131 auto it = ctx.begin(), end = ctx.end();
2132 use_tm_formatter_ = it != end && *it != '}';
2133 return use_tm_formatter_ ? formatter<std::tm, Char>::parse(ctx) : it;
2134 }
2135
2136 template <typename FormatContext>
2137 auto format(year_month_day val, FormatContext& ctx) const
2138 -> decltype(ctx.out()) {
2139 auto time = std::tm();
2140 time.tm_year = static_cast<int>(val.year()) - 1900;
2141 time.tm_mon = static_cast<int>(static_cast<unsigned>(val.month())) - 1;
2142 time.tm_mday = static_cast<int>(static_cast<unsigned>(val.day()));
2143 if (use_tm_formatter_) return formatter<std::tm, Char>::format(time, ctx);
2144 detail::get_locale loc(true, ctx.locale());
2145 auto w = detail::tm_writer<decltype(ctx.out()), Char>(loc, ctx.out(), time);
2146 w.on_iso_date();
2147 return w.out();
2148 }
2149 };
2150
2151 template <typename Rep, typename Period, typename Char>
2152 struct formatter<std::chrono::duration<Rep, Period>, Char> {
2153 private:
2154 format_specs specs_;
2155 detail::arg_ref<Char> width_ref_;
2156 detail::arg_ref<Char> precision_ref_;
2157 bool localized_ = false;
2158 basic_string_view<Char> fmt_;
2159
2160 public:
2161 FMT_CONSTEXPR auto parse(parse_context<Char>& ctx) -> const Char* {
2162 auto it = ctx.begin(), end = ctx.end();
2163 if (it == end || *it == '}') return it;
2164
2165 it = detail::parse_align(it, end, specs_);
2166 if (it == end) return it;
2167
2168 Char c = *it;
2169 if ((c >= '0' && c <= '9') || c == '{') {
2170 it = detail::parse_width(it, end, specs_, width_ref_, ctx);
2171 if (it == end) return it;
2172 }
2173
2174 auto checker = detail::chrono_format_checker();
2175 if (*it == '.') {
2176 checker.has_precision_integral = !std::is_floating_point<Rep>::value;
2177 it = detail::parse_precision(it, end, specs_, precision_ref_, ctx);
2178 }
2179 if (it != end && *it == 'L') {
2180 localized_ = true;
2181 ++it;
2182 }
2183 end = detail::parse_chrono_format(it, end, checker);
2184 fmt_ = {it, detail::to_unsigned(end - it)};
2185 return end;
2186 }
2187
2188 template <typename FormatContext>
2189 auto format(std::chrono::duration<Rep, Period> d, FormatContext& ctx) const
2190 -> decltype(ctx.out()) {
2191 auto specs = specs_;
2192 auto precision = specs.precision;
2193 specs.precision = -1;
2194 auto begin = fmt_.begin(), end = fmt_.end();
2195 // As a possible future optimization, we could avoid extra copying if width
2196 // is not specified.
2197 auto buf = basic_memory_buffer<Char>();
2198 auto out = basic_appender<Char>(buf);
2199 detail::handle_dynamic_spec(specs.dynamic_width(), specs.width, width_ref_,
2200 ctx);
2201 detail::handle_dynamic_spec(specs.dynamic_precision(), precision,
2202 precision_ref_, ctx);
2203 if (begin == end || *begin == '}') {
2204 out = detail::format_duration_value<Char>(out, d.count(), precision);
2205 detail::format_duration_unit<Char, Period>(out);
2206 } else {
2207 using chrono_formatter =
2208 detail::chrono_formatter<FormatContext, decltype(out), Rep, Period>;
2209 auto f = chrono_formatter(ctx, out, d);
2210 f.precision = precision;
2211 f.localized = localized_;
2212 detail::parse_chrono_format(begin, end, f);
2213 }
2214 return detail::write(
2215 ctx.out(), basic_string_view<Char>(buf.data(), buf.size()), specs);
2216 }
2217 };
2218
2219 template <typename Char> struct formatter<std::tm, Char> {
2220 private:
2221 format_specs specs_;
2222 detail::arg_ref<Char> width_ref_;
2223
2224 protected:
2225 basic_string_view<Char> fmt_;
2226
2227 template <typename Duration, typename FormatContext>
2228 auto do_format(const std::tm& tm, FormatContext& ctx,
2229 const Duration* subsecs) const -> decltype(ctx.out()) {
2230 auto specs = specs_;
2231 auto buf = basic_memory_buffer<Char>();
2232 auto out = basic_appender<Char>(buf);
2233 detail::handle_dynamic_spec(specs.dynamic_width(), specs.width, width_ref_,
2234 ctx);
2235
2236 auto loc_ref = ctx.locale();
2237 detail::get_locale loc(static_cast<bool>(loc_ref), loc_ref);
2238 auto w =
2239 detail::tm_writer<decltype(out), Char, Duration>(loc, out, tm, subsecs);
2240 detail::parse_chrono_format(fmt_.begin(), fmt_.end(), w);
2241 return detail::write(
2242 ctx.out(), basic_string_view<Char>(buf.data(), buf.size()), specs);
2243 }
2244
2245 public:
2246 FMT_CONSTEXPR auto parse(parse_context<Char>& ctx) -> const Char* {
2247 auto it = ctx.begin(), end = ctx.end();
2248 if (it == end || *it == '}') return it;
2249
2250 it = detail::parse_align(it, end, specs_);
2251 if (it == end) return it;
2252
2253 Char c = *it;
2254 if ((c >= '0' && c <= '9') || c == '{') {
2255 it = detail::parse_width(it, end, specs_, width_ref_, ctx);
2256 if (it == end) return it;
2257 }
2258
2259 end = detail::parse_chrono_format(it, end, detail::tm_format_checker());
2260 // Replace the default format string only if the new spec is not empty.
2261 if (end != it) fmt_ = {it, detail::to_unsigned(end - it)};
2262 return end;
2263 }
2264
2265 template <typename FormatContext>
2266 auto format(const std::tm& tm, FormatContext& ctx) const
2267 -> decltype(ctx.out()) {
2268 return do_format<std::chrono::seconds>(tm, ctx, nullptr);
2269 }
2270 };
2271
2272 template <typename Char, typename Duration>
2273 struct formatter<sys_time<Duration>, Char> : formatter<std::tm, Char> {
2274 FMT_CONSTEXPR formatter() {
2275 this->fmt_ = detail::string_literal<Char, '%', 'F', ' ', '%', 'T'>();
2276 }
2277
2278 template <typename FormatContext>
2279 auto format(sys_time<Duration> val, FormatContext& ctx) const
2280 -> decltype(ctx.out()) {
2281 std::tm tm = gmtime(val);
2282 using period = typename Duration::period;
2283 if (detail::const_check(
2284 period::num == 1 && period::den == 1 &&
2285 !std::is_floating_point<typename Duration::rep>::value)) {
2286 return formatter<std::tm, Char>::format(tm, ctx);
2287 }
2288 Duration epoch = val.time_since_epoch();
2289 Duration subsecs = detail::duration_cast<Duration>(
2290 epoch - detail::duration_cast<std::chrono::seconds>(epoch));
2291 if (subsecs.count() < 0) {
2292 auto second = detail::duration_cast<Duration>(std::chrono::seconds(1));
2293 if (tm.tm_sec != 0)
2294 --tm.tm_sec;
2295 else
2296 tm = gmtime(val - second);
2297 subsecs += detail::duration_cast<Duration>(std::chrono::seconds(1));
2298 }
2299 return formatter<std::tm, Char>::do_format(tm, ctx, &subsecs);
2300 }
2301 };
2302
2303 template <typename Duration, typename Char>
2304 struct formatter<utc_time<Duration>, Char>
2305 : formatter<sys_time<Duration>, Char> {
2306 template <typename FormatContext>
2307 auto format(utc_time<Duration> val, FormatContext& ctx) const
2308 -> decltype(ctx.out()) {
2309 return formatter<sys_time<Duration>, Char>::format(
2310 detail::utc_clock::to_sys(val), ctx);
2311 }
2312 };
2313
2314 template <typename Duration, typename Char>
2315 struct formatter<local_time<Duration>, Char> : formatter<std::tm, Char> {
2316 FMT_CONSTEXPR formatter() {
2317 this->fmt_ = detail::string_literal<Char, '%', 'F', ' ', '%', 'T'>();
2318 }
2319
2320 template <typename FormatContext>
2321 auto format(local_time<Duration> val, FormatContext& ctx) const
2322 -> decltype(ctx.out()) {
2323 using period = typename Duration::period;
2324 if (period::num == 1 && period::den == 1 &&
2325 !std::is_floating_point<typename Duration::rep>::value) {
2326 return formatter<std::tm, Char>::format(localtime(val), ctx);
2327 }
2328 auto epoch = val.time_since_epoch();
2329 auto subsecs = detail::duration_cast<Duration>(
2330 epoch - detail::duration_cast<std::chrono::seconds>(epoch));
2331 return formatter<std::tm, Char>::do_format(localtime(val), ctx, &subsecs);
2332 }
2333 };
2334
2335 FMT_END_EXPORT
2336 FMT_END_NAMESPACE
2337
2338 #endif // FMT_CHRONO_H_
2339