xref: /aosp_15_r20/external/go-cmp/cmp/path.go (revision 88d15eac089d7f20c739ff1001d56b91872b21a1)
1// Copyright 2017, The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package cmp
6
7import (
8	"fmt"
9	"reflect"
10	"strings"
11	"unicode"
12	"unicode/utf8"
13
14	"github.com/google/go-cmp/cmp/internal/value"
15)
16
17// Path is a list of PathSteps describing the sequence of operations to get
18// from some root type to the current position in the value tree.
19// The first Path element is always an operation-less PathStep that exists
20// simply to identify the initial type.
21//
22// When traversing structs with embedded structs, the embedded struct will
23// always be accessed as a field before traversing the fields of the
24// embedded struct themselves. That is, an exported field from the
25// embedded struct will never be accessed directly from the parent struct.
26type Path []PathStep
27
28// PathStep is a union-type for specific operations to traverse
29// a value's tree structure. Users of this package never need to implement
30// these types as values of this type will be returned by this package.
31//
32// Implementations of this interface are
33// StructField, SliceIndex, MapIndex, Indirect, TypeAssertion, and Transform.
34type PathStep interface {
35	String() string
36
37	// Type is the resulting type after performing the path step.
38	Type() reflect.Type
39
40	// Values is the resulting values after performing the path step.
41	// The type of each valid value is guaranteed to be identical to Type.
42	//
43	// In some cases, one or both may be invalid or have restrictions:
44	//   - For StructField, both are not interface-able if the current field
45	//     is unexported and the struct type is not explicitly permitted by
46	//     an Exporter to traverse unexported fields.
47	//   - For SliceIndex, one may be invalid if an element is missing from
48	//     either the x or y slice.
49	//   - For MapIndex, one may be invalid if an entry is missing from
50	//     either the x or y map.
51	//
52	// The provided values must not be mutated.
53	Values() (vx, vy reflect.Value)
54}
55
56var (
57	_ PathStep = StructField{}
58	_ PathStep = SliceIndex{}
59	_ PathStep = MapIndex{}
60	_ PathStep = Indirect{}
61	_ PathStep = TypeAssertion{}
62	_ PathStep = Transform{}
63)
64
65func (pa *Path) push(s PathStep) {
66	*pa = append(*pa, s)
67}
68
69func (pa *Path) pop() {
70	*pa = (*pa)[:len(*pa)-1]
71}
72
73// Last returns the last PathStep in the Path.
74// If the path is empty, this returns a non-nil PathStep that reports a nil Type.
75func (pa Path) Last() PathStep {
76	return pa.Index(-1)
77}
78
79// Index returns the ith step in the Path and supports negative indexing.
80// A negative index starts counting from the tail of the Path such that -1
81// refers to the last step, -2 refers to the second-to-last step, and so on.
82// If index is invalid, this returns a non-nil PathStep that reports a nil Type.
83func (pa Path) Index(i int) PathStep {
84	if i < 0 {
85		i = len(pa) + i
86	}
87	if i < 0 || i >= len(pa) {
88		return pathStep{}
89	}
90	return pa[i]
91}
92
93// String returns the simplified path to a node.
94// The simplified path only contains struct field accesses.
95//
96// For example:
97//
98//	MyMap.MySlices.MyField
99func (pa Path) String() string {
100	var ss []string
101	for _, s := range pa {
102		if _, ok := s.(StructField); ok {
103			ss = append(ss, s.String())
104		}
105	}
106	return strings.TrimPrefix(strings.Join(ss, ""), ".")
107}
108
109// GoString returns the path to a specific node using Go syntax.
110//
111// For example:
112//
113//	(*root.MyMap["key"].(*mypkg.MyStruct).MySlices)[2][3].MyField
114func (pa Path) GoString() string {
115	var ssPre, ssPost []string
116	var numIndirect int
117	for i, s := range pa {
118		var nextStep PathStep
119		if i+1 < len(pa) {
120			nextStep = pa[i+1]
121		}
122		switch s := s.(type) {
123		case Indirect:
124			numIndirect++
125			pPre, pPost := "(", ")"
126			switch nextStep.(type) {
127			case Indirect:
128				continue // Next step is indirection, so let them batch up
129			case StructField:
130				numIndirect-- // Automatic indirection on struct fields
131			case nil:
132				pPre, pPost = "", "" // Last step; no need for parenthesis
133			}
134			if numIndirect > 0 {
135				ssPre = append(ssPre, pPre+strings.Repeat("*", numIndirect))
136				ssPost = append(ssPost, pPost)
137			}
138			numIndirect = 0
139			continue
140		case Transform:
141			ssPre = append(ssPre, s.trans.name+"(")
142			ssPost = append(ssPost, ")")
143			continue
144		}
145		ssPost = append(ssPost, s.String())
146	}
147	for i, j := 0, len(ssPre)-1; i < j; i, j = i+1, j-1 {
148		ssPre[i], ssPre[j] = ssPre[j], ssPre[i]
149	}
150	return strings.Join(ssPre, "") + strings.Join(ssPost, "")
151}
152
153type pathStep struct {
154	typ    reflect.Type
155	vx, vy reflect.Value
156}
157
158func (ps pathStep) Type() reflect.Type             { return ps.typ }
159func (ps pathStep) Values() (vx, vy reflect.Value) { return ps.vx, ps.vy }
160func (ps pathStep) String() string {
161	if ps.typ == nil {
162		return "<nil>"
163	}
164	s := value.TypeString(ps.typ, false)
165	if s == "" || strings.ContainsAny(s, "{}\n") {
166		return "root" // Type too simple or complex to print
167	}
168	return fmt.Sprintf("{%s}", s)
169}
170
171// StructField represents a struct field access on a field called Name.
172type StructField struct{ *structField }
173type structField struct {
174	pathStep
175	name string
176	idx  int
177
178	// These fields are used for forcibly accessing an unexported field.
179	// pvx, pvy, and field are only valid if unexported is true.
180	unexported bool
181	mayForce   bool                // Forcibly allow visibility
182	paddr      bool                // Was parent addressable?
183	pvx, pvy   reflect.Value       // Parent values (always addressable)
184	field      reflect.StructField // Field information
185}
186
187func (sf StructField) Type() reflect.Type { return sf.typ }
188func (sf StructField) Values() (vx, vy reflect.Value) {
189	if !sf.unexported {
190		return sf.vx, sf.vy // CanInterface reports true
191	}
192
193	// Forcibly obtain read-write access to an unexported struct field.
194	if sf.mayForce {
195		vx = retrieveUnexportedField(sf.pvx, sf.field, sf.paddr)
196		vy = retrieveUnexportedField(sf.pvy, sf.field, sf.paddr)
197		return vx, vy // CanInterface reports true
198	}
199	return sf.vx, sf.vy // CanInterface reports false
200}
201func (sf StructField) String() string { return fmt.Sprintf(".%s", sf.name) }
202
203// Name is the field name.
204func (sf StructField) Name() string { return sf.name }
205
206// Index is the index of the field in the parent struct type.
207// See reflect.Type.Field.
208func (sf StructField) Index() int { return sf.idx }
209
210// SliceIndex is an index operation on a slice or array at some index Key.
211type SliceIndex struct{ *sliceIndex }
212type sliceIndex struct {
213	pathStep
214	xkey, ykey int
215	isSlice    bool // False for reflect.Array
216}
217
218func (si SliceIndex) Type() reflect.Type             { return si.typ }
219func (si SliceIndex) Values() (vx, vy reflect.Value) { return si.vx, si.vy }
220func (si SliceIndex) String() string {
221	switch {
222	case si.xkey == si.ykey:
223		return fmt.Sprintf("[%d]", si.xkey)
224	case si.ykey == -1:
225		// [5->?] means "I don't know where X[5] went"
226		return fmt.Sprintf("[%d->?]", si.xkey)
227	case si.xkey == -1:
228		// [?->3] means "I don't know where Y[3] came from"
229		return fmt.Sprintf("[?->%d]", si.ykey)
230	default:
231		// [5->3] means "X[5] moved to Y[3]"
232		return fmt.Sprintf("[%d->%d]", si.xkey, si.ykey)
233	}
234}
235
236// Key is the index key; it may return -1 if in a split state
237func (si SliceIndex) Key() int {
238	if si.xkey != si.ykey {
239		return -1
240	}
241	return si.xkey
242}
243
244// SplitKeys are the indexes for indexing into slices in the
245// x and y values, respectively. These indexes may differ due to the
246// insertion or removal of an element in one of the slices, causing
247// all of the indexes to be shifted. If an index is -1, then that
248// indicates that the element does not exist in the associated slice.
249//
250// Key is guaranteed to return -1 if and only if the indexes returned
251// by SplitKeys are not the same. SplitKeys will never return -1 for
252// both indexes.
253func (si SliceIndex) SplitKeys() (ix, iy int) { return si.xkey, si.ykey }
254
255// MapIndex is an index operation on a map at some index Key.
256type MapIndex struct{ *mapIndex }
257type mapIndex struct {
258	pathStep
259	key reflect.Value
260}
261
262func (mi MapIndex) Type() reflect.Type             { return mi.typ }
263func (mi MapIndex) Values() (vx, vy reflect.Value) { return mi.vx, mi.vy }
264func (mi MapIndex) String() string                 { return fmt.Sprintf("[%#v]", mi.key) }
265
266// Key is the value of the map key.
267func (mi MapIndex) Key() reflect.Value { return mi.key }
268
269// Indirect represents pointer indirection on the parent type.
270type Indirect struct{ *indirect }
271type indirect struct {
272	pathStep
273}
274
275func (in Indirect) Type() reflect.Type             { return in.typ }
276func (in Indirect) Values() (vx, vy reflect.Value) { return in.vx, in.vy }
277func (in Indirect) String() string                 { return "*" }
278
279// TypeAssertion represents a type assertion on an interface.
280type TypeAssertion struct{ *typeAssertion }
281type typeAssertion struct {
282	pathStep
283}
284
285func (ta TypeAssertion) Type() reflect.Type             { return ta.typ }
286func (ta TypeAssertion) Values() (vx, vy reflect.Value) { return ta.vx, ta.vy }
287func (ta TypeAssertion) String() string                 { return fmt.Sprintf(".(%v)", value.TypeString(ta.typ, false)) }
288
289// Transform is a transformation from the parent type to the current type.
290type Transform struct{ *transform }
291type transform struct {
292	pathStep
293	trans *transformer
294}
295
296func (tf Transform) Type() reflect.Type             { return tf.typ }
297func (tf Transform) Values() (vx, vy reflect.Value) { return tf.vx, tf.vy }
298func (tf Transform) String() string                 { return fmt.Sprintf("%s()", tf.trans.name) }
299
300// Name is the name of the Transformer.
301func (tf Transform) Name() string { return tf.trans.name }
302
303// Func is the function pointer to the transformer function.
304func (tf Transform) Func() reflect.Value { return tf.trans.fnc }
305
306// Option returns the originally constructed Transformer option.
307// The == operator can be used to detect the exact option used.
308func (tf Transform) Option() Option { return tf.trans }
309
310// pointerPath represents a dual-stack of pointers encountered when
311// recursively traversing the x and y values. This data structure supports
312// detection of cycles and determining whether the cycles are equal.
313// In Go, cycles can occur via pointers, slices, and maps.
314//
315// The pointerPath uses a map to represent a stack; where descension into a
316// pointer pushes the address onto the stack, and ascension from a pointer
317// pops the address from the stack. Thus, when traversing into a pointer from
318// reflect.Ptr, reflect.Slice element, or reflect.Map, we can detect cycles
319// by checking whether the pointer has already been visited. The cycle detection
320// uses a separate stack for the x and y values.
321//
322// If a cycle is detected we need to determine whether the two pointers
323// should be considered equal. The definition of equality chosen by Equal
324// requires two graphs to have the same structure. To determine this, both the
325// x and y values must have a cycle where the previous pointers were also
326// encountered together as a pair.
327//
328// Semantically, this is equivalent to augmenting Indirect, SliceIndex, and
329// MapIndex with pointer information for the x and y values.
330// Suppose px and py are two pointers to compare, we then search the
331// Path for whether px was ever encountered in the Path history of x, and
332// similarly so with py. If either side has a cycle, the comparison is only
333// equal if both px and py have a cycle resulting from the same PathStep.
334//
335// Using a map as a stack is more performant as we can perform cycle detection
336// in O(1) instead of O(N) where N is len(Path).
337type pointerPath struct {
338	// mx is keyed by x pointers, where the value is the associated y pointer.
339	mx map[value.Pointer]value.Pointer
340	// my is keyed by y pointers, where the value is the associated x pointer.
341	my map[value.Pointer]value.Pointer
342}
343
344func (p *pointerPath) Init() {
345	p.mx = make(map[value.Pointer]value.Pointer)
346	p.my = make(map[value.Pointer]value.Pointer)
347}
348
349// Push indicates intent to descend into pointers vx and vy where
350// visited reports whether either has been seen before. If visited before,
351// equal reports whether both pointers were encountered together.
352// Pop must be called if and only if the pointers were never visited.
353//
354// The pointers vx and vy must be a reflect.Ptr, reflect.Slice, or reflect.Map
355// and be non-nil.
356func (p pointerPath) Push(vx, vy reflect.Value) (equal, visited bool) {
357	px := value.PointerOf(vx)
358	py := value.PointerOf(vy)
359	_, ok1 := p.mx[px]
360	_, ok2 := p.my[py]
361	if ok1 || ok2 {
362		equal = p.mx[px] == py && p.my[py] == px // Pointers paired together
363		return equal, true
364	}
365	p.mx[px] = py
366	p.my[py] = px
367	return false, false
368}
369
370// Pop ascends from pointers vx and vy.
371func (p pointerPath) Pop(vx, vy reflect.Value) {
372	delete(p.mx, value.PointerOf(vx))
373	delete(p.my, value.PointerOf(vy))
374}
375
376// isExported reports whether the identifier is exported.
377func isExported(id string) bool {
378	r, _ := utf8.DecodeRuneInString(id)
379	return unicode.IsUpper(r)
380}
381