1 // Copyright 2015 Google Inc. All rights reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 // Support for registering benchmarks for functions.
16
17 /* Example usage:
18 // Define a function that executes the code to be measured a
19 // specified number of times:
20 static void BM_StringCreation(benchmark::State& state) {
21 for (auto _ : state)
22 std::string empty_string;
23 }
24
25 // Register the function as a benchmark
26 BENCHMARK(BM_StringCreation);
27
28 // Define another benchmark
29 static void BM_StringCopy(benchmark::State& state) {
30 std::string x = "hello";
31 for (auto _ : state)
32 std::string copy(x);
33 }
34 BENCHMARK(BM_StringCopy);
35
36 // Augment the main() program to invoke benchmarks if specified
37 // via the --benchmark_filter command line flag. E.g.,
38 // my_unittest --benchmark_filter=all
39 // my_unittest --benchmark_filter=BM_StringCreation
40 // my_unittest --benchmark_filter=String
41 // my_unittest --benchmark_filter='Copy|Creation'
42 int main(int argc, char** argv) {
43 benchmark::Initialize(&argc, argv);
44 benchmark::RunSpecifiedBenchmarks();
45 benchmark::Shutdown();
46 return 0;
47 }
48
49 // Sometimes a family of microbenchmarks can be implemented with
50 // just one routine that takes an extra argument to specify which
51 // one of the family of benchmarks to run. For example, the following
52 // code defines a family of microbenchmarks for measuring the speed
53 // of memcpy() calls of different lengths:
54
55 static void BM_memcpy(benchmark::State& state) {
56 char* src = new char[state.range(0)]; char* dst = new char[state.range(0)];
57 memset(src, 'x', state.range(0));
58 for (auto _ : state)
59 memcpy(dst, src, state.range(0));
60 state.SetBytesProcessed(state.iterations() * state.range(0));
61 delete[] src; delete[] dst;
62 }
63 BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10);
64
65 // The preceding code is quite repetitive, and can be replaced with the
66 // following short-hand. The following invocation will pick a few
67 // appropriate arguments in the specified range and will generate a
68 // microbenchmark for each such argument.
69 BENCHMARK(BM_memcpy)->Range(8, 8<<10);
70
71 // You might have a microbenchmark that depends on two inputs. For
72 // example, the following code defines a family of microbenchmarks for
73 // measuring the speed of set insertion.
74 static void BM_SetInsert(benchmark::State& state) {
75 set<int> data;
76 for (auto _ : state) {
77 state.PauseTiming();
78 data = ConstructRandomSet(state.range(0));
79 state.ResumeTiming();
80 for (int j = 0; j < state.range(1); ++j)
81 data.insert(RandomNumber());
82 }
83 }
84 BENCHMARK(BM_SetInsert)
85 ->Args({1<<10, 128})
86 ->Args({2<<10, 128})
87 ->Args({4<<10, 128})
88 ->Args({8<<10, 128})
89 ->Args({1<<10, 512})
90 ->Args({2<<10, 512})
91 ->Args({4<<10, 512})
92 ->Args({8<<10, 512});
93
94 // The preceding code is quite repetitive, and can be replaced with
95 // the following short-hand. The following macro will pick a few
96 // appropriate arguments in the product of the two specified ranges
97 // and will generate a microbenchmark for each such pair.
98 BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {128, 512}});
99
100 // For more complex patterns of inputs, passing a custom function
101 // to Apply allows programmatic specification of an
102 // arbitrary set of arguments to run the microbenchmark on.
103 // The following example enumerates a dense range on
104 // one parameter, and a sparse range on the second.
105 static void CustomArguments(benchmark::internal::Benchmark* b) {
106 for (int i = 0; i <= 10; ++i)
107 for (int j = 32; j <= 1024*1024; j *= 8)
108 b->Args({i, j});
109 }
110 BENCHMARK(BM_SetInsert)->Apply(CustomArguments);
111
112 // Templated microbenchmarks work the same way:
113 // Produce then consume 'size' messages 'iters' times
114 // Measures throughput in the absence of multiprogramming.
115 template <class Q> int BM_Sequential(benchmark::State& state) {
116 Q q;
117 typename Q::value_type v;
118 for (auto _ : state) {
119 for (int i = state.range(0); i--; )
120 q.push(v);
121 for (int e = state.range(0); e--; )
122 q.Wait(&v);
123 }
124 // actually messages, not bytes:
125 state.SetBytesProcessed(state.iterations() * state.range(0));
126 }
127 BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10);
128
129 Use `Benchmark::MinTime(double t)` to set the minimum time used to run the
130 benchmark. This option overrides the `benchmark_min_time` flag.
131
132 void BM_test(benchmark::State& state) {
133 ... body ...
134 }
135 BENCHMARK(BM_test)->MinTime(2.0); // Run for at least 2 seconds.
136
137 In a multithreaded test, it is guaranteed that none of the threads will start
138 until all have reached the loop start, and all will have finished before any
139 thread exits the loop body. As such, any global setup or teardown you want to
140 do can be wrapped in a check against the thread index:
141
142 static void BM_MultiThreaded(benchmark::State& state) {
143 if (state.thread_index() == 0) {
144 // Setup code here.
145 }
146 for (auto _ : state) {
147 // Run the test as normal.
148 }
149 if (state.thread_index() == 0) {
150 // Teardown code here.
151 }
152 }
153 BENCHMARK(BM_MultiThreaded)->Threads(4);
154
155
156 If a benchmark runs a few milliseconds it may be hard to visually compare the
157 measured times, since the output data is given in nanoseconds per default. In
158 order to manually set the time unit, you can specify it manually:
159
160 BENCHMARK(BM_test)->Unit(benchmark::kMillisecond);
161 */
162
163 #ifndef BENCHMARK_BENCHMARK_H_
164 #define BENCHMARK_BENCHMARK_H_
165
166 // The _MSVC_LANG check should detect Visual Studio 2015 Update 3 and newer.
167 #if __cplusplus >= 201103L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201103L)
168 #define BENCHMARK_HAS_CXX11
169 #endif
170
171 // This _MSC_VER check should detect VS 2017 v15.3 and newer.
172 #if __cplusplus >= 201703L || \
173 (defined(_MSC_VER) && _MSC_VER >= 1911 && _MSVC_LANG >= 201703L)
174 #define BENCHMARK_HAS_CXX17
175 #endif
176
177 #include <stdint.h>
178
179 #include <algorithm>
180 #include <cassert>
181 #include <cstddef>
182 #include <iosfwd>
183 #include <limits>
184 #include <map>
185 #include <set>
186 #include <string>
187 #include <utility>
188 #include <vector>
189
190 #include "benchmark/export.h"
191
192 #if defined(BENCHMARK_HAS_CXX11)
193 #include <atomic>
194 #include <initializer_list>
195 #include <type_traits>
196 #include <utility>
197 #endif
198
199 #if defined(_MSC_VER)
200 #include <intrin.h> // for _ReadWriteBarrier
201 #endif
202
203 #ifndef BENCHMARK_HAS_CXX11
204 #define BENCHMARK_DISALLOW_COPY_AND_ASSIGN(TypeName) \
205 TypeName(const TypeName&); \
206 TypeName& operator=(const TypeName&)
207 #else
208 #define BENCHMARK_DISALLOW_COPY_AND_ASSIGN(TypeName) \
209 TypeName(const TypeName&) = delete; \
210 TypeName& operator=(const TypeName&) = delete
211 #endif
212
213 #ifdef BENCHMARK_HAS_CXX17
214 #define BENCHMARK_UNUSED [[maybe_unused]]
215 #elif defined(__GNUC__) || defined(__clang__)
216 #define BENCHMARK_UNUSED __attribute__((unused))
217 #else
218 #define BENCHMARK_UNUSED
219 #endif
220
221 // Used to annotate functions, methods and classes so they
222 // are not optimized by the compiler. Useful for tests
223 // where you expect loops to stay in place churning cycles
224 #if defined(__clang__)
225 #define BENCHMARK_DONT_OPTIMIZE __attribute__((optnone))
226 #elif defined(__GNUC__) || defined(__GNUG__)
227 #define BENCHMARK_DONT_OPTIMIZE __attribute__((optimize(0)))
228 #else
229 // MSVC & Intel do not have a no-optimize attribute, only line pragmas
230 #define BENCHMARK_DONT_OPTIMIZE
231 #endif
232
233 #if defined(__GNUC__) || defined(__clang__)
234 #define BENCHMARK_ALWAYS_INLINE __attribute__((always_inline))
235 #elif defined(_MSC_VER) && !defined(__clang__)
236 #define BENCHMARK_ALWAYS_INLINE __forceinline
237 #define __func__ __FUNCTION__
238 #else
239 #define BENCHMARK_ALWAYS_INLINE
240 #endif
241
242 #define BENCHMARK_INTERNAL_TOSTRING2(x) #x
243 #define BENCHMARK_INTERNAL_TOSTRING(x) BENCHMARK_INTERNAL_TOSTRING2(x)
244
245 // clang-format off
246 #if (defined(__GNUC__) && !defined(__NVCC__) && !defined(__NVCOMPILER)) || defined(__clang__)
247 #define BENCHMARK_BUILTIN_EXPECT(x, y) __builtin_expect(x, y)
248 #define BENCHMARK_DEPRECATED_MSG(msg) __attribute__((deprecated(msg)))
249 #define BENCHMARK_DISABLE_DEPRECATED_WARNING \
250 _Pragma("GCC diagnostic push") \
251 _Pragma("GCC diagnostic ignored \"-Wdeprecated-declarations\"")
252 #define BENCHMARK_RESTORE_DEPRECATED_WARNING _Pragma("GCC diagnostic pop")
253 #elif defined(__NVCOMPILER)
254 #define BENCHMARK_BUILTIN_EXPECT(x, y) __builtin_expect(x, y)
255 #define BENCHMARK_DEPRECATED_MSG(msg) __attribute__((deprecated(msg)))
256 #define BENCHMARK_DISABLE_DEPRECATED_WARNING \
257 _Pragma("diagnostic push") \
258 _Pragma("diag_suppress deprecated_entity_with_custom_message")
259 #define BENCHMARK_RESTORE_DEPRECATED_WARNING _Pragma("diagnostic pop")
260 #else
261 #define BENCHMARK_BUILTIN_EXPECT(x, y) x
262 #define BENCHMARK_DEPRECATED_MSG(msg)
263 #define BENCHMARK_WARNING_MSG(msg) \
264 __pragma(message(__FILE__ "(" BENCHMARK_INTERNAL_TOSTRING( \
265 __LINE__) ") : warning note: " msg))
266 #define BENCHMARK_DISABLE_DEPRECATED_WARNING
267 #define BENCHMARK_RESTORE_DEPRECATED_WARNING
268 #endif
269 // clang-format on
270
271 #if defined(__GNUC__) && !defined(__clang__)
272 #define BENCHMARK_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
273 #endif
274
275 #ifndef __has_builtin
276 #define __has_builtin(x) 0
277 #endif
278
279 #if defined(__GNUC__) || __has_builtin(__builtin_unreachable)
280 #define BENCHMARK_UNREACHABLE() __builtin_unreachable()
281 #elif defined(_MSC_VER)
282 #define BENCHMARK_UNREACHABLE() __assume(false)
283 #else
284 #define BENCHMARK_UNREACHABLE() ((void)0)
285 #endif
286
287 #ifdef BENCHMARK_HAS_CXX11
288 #define BENCHMARK_OVERRIDE override
289 #else
290 #define BENCHMARK_OVERRIDE
291 #endif
292
293 #if defined(_MSC_VER)
294 #pragma warning(push)
295 // C4251: <symbol> needs to have dll-interface to be used by clients of class
296 #pragma warning(disable : 4251)
297 #endif
298
299 namespace benchmark {
300 class BenchmarkReporter;
301
302 // Default number of minimum benchmark running time in seconds.
303 const char kDefaultMinTimeStr[] = "0.5s";
304
305 // Returns the version of the library.
306 BENCHMARK_EXPORT std::string GetBenchmarkVersion();
307
308 BENCHMARK_EXPORT void PrintDefaultHelp();
309
310 BENCHMARK_EXPORT void Initialize(int* argc, char** argv,
311 void (*HelperPrinterf)() = PrintDefaultHelp);
312 BENCHMARK_EXPORT void Shutdown();
313
314 // Report to stdout all arguments in 'argv' as unrecognized except the first.
315 // Returns true there is at least on unrecognized argument (i.e. 'argc' > 1).
316 BENCHMARK_EXPORT bool ReportUnrecognizedArguments(int argc, char** argv);
317
318 // Returns the current value of --benchmark_filter.
319 BENCHMARK_EXPORT std::string GetBenchmarkFilter();
320
321 // Sets a new value to --benchmark_filter. (This will override this flag's
322 // current value).
323 // Should be called after `benchmark::Initialize()`, as
324 // `benchmark::Initialize()` will override the flag's value.
325 BENCHMARK_EXPORT void SetBenchmarkFilter(std::string value);
326
327 // Returns the current value of --v (command line value for verbosity).
328 BENCHMARK_EXPORT int32_t GetBenchmarkVerbosity();
329
330 // Creates a default display reporter. Used by the library when no display
331 // reporter is provided, but also made available for external use in case a
332 // custom reporter should respect the `--benchmark_format` flag as a fallback
333 BENCHMARK_EXPORT BenchmarkReporter* CreateDefaultDisplayReporter();
334
335 // Generate a list of benchmarks matching the specified --benchmark_filter flag
336 // and if --benchmark_list_tests is specified return after printing the name
337 // of each matching benchmark. Otherwise run each matching benchmark and
338 // report the results.
339 //
340 // spec : Specify the benchmarks to run. If users do not specify this arg,
341 // then the value of FLAGS_benchmark_filter
342 // will be used.
343 //
344 // The second and third overload use the specified 'display_reporter' and
345 // 'file_reporter' respectively. 'file_reporter' will write to the file
346 // specified
347 // by '--benchmark_out'. If '--benchmark_out' is not given the
348 // 'file_reporter' is ignored.
349 //
350 // RETURNS: The number of matching benchmarks.
351 BENCHMARK_EXPORT size_t RunSpecifiedBenchmarks();
352 BENCHMARK_EXPORT size_t RunSpecifiedBenchmarks(std::string spec);
353
354 BENCHMARK_EXPORT size_t
355 RunSpecifiedBenchmarks(BenchmarkReporter* display_reporter);
356 BENCHMARK_EXPORT size_t
357 RunSpecifiedBenchmarks(BenchmarkReporter* display_reporter, std::string spec);
358
359 BENCHMARK_EXPORT size_t RunSpecifiedBenchmarks(
360 BenchmarkReporter* display_reporter, BenchmarkReporter* file_reporter);
361 BENCHMARK_EXPORT size_t
362 RunSpecifiedBenchmarks(BenchmarkReporter* display_reporter,
363 BenchmarkReporter* file_reporter, std::string spec);
364
365 // TimeUnit is passed to a benchmark in order to specify the order of magnitude
366 // for the measured time.
367 enum TimeUnit { kNanosecond, kMicrosecond, kMillisecond, kSecond };
368
369 BENCHMARK_EXPORT TimeUnit GetDefaultTimeUnit();
370
371 // Sets the default time unit the benchmarks use
372 // Has to be called before the benchmark loop to take effect
373 BENCHMARK_EXPORT void SetDefaultTimeUnit(TimeUnit unit);
374
375 // If a MemoryManager is registered (via RegisterMemoryManager()),
376 // it can be used to collect and report allocation metrics for a run of the
377 // benchmark.
378 class MemoryManager {
379 public:
380 static const int64_t TombstoneValue;
381
382 struct Result {
ResultResult383 Result()
384 : num_allocs(0),
385 max_bytes_used(0),
386 total_allocated_bytes(TombstoneValue),
387 net_heap_growth(TombstoneValue) {}
388
389 // The number of allocations made in total between Start and Stop.
390 int64_t num_allocs;
391
392 // The peak memory use between Start and Stop.
393 int64_t max_bytes_used;
394
395 // The total memory allocated, in bytes, between Start and Stop.
396 // Init'ed to TombstoneValue if metric not available.
397 int64_t total_allocated_bytes;
398
399 // The net changes in memory, in bytes, between Start and Stop.
400 // ie., total_allocated_bytes - total_deallocated_bytes.
401 // Init'ed to TombstoneValue if metric not available.
402 int64_t net_heap_growth;
403 };
404
~MemoryManager()405 virtual ~MemoryManager() {}
406
407 // Implement this to start recording allocation information.
408 virtual void Start() = 0;
409
410 // Implement this to stop recording and fill out the given Result structure.
411 virtual void Stop(Result& result) = 0;
412 };
413
414 // Register a MemoryManager instance that will be used to collect and report
415 // allocation measurements for benchmark runs.
416 BENCHMARK_EXPORT
417 void RegisterMemoryManager(MemoryManager* memory_manager);
418
419 // If a ProfilerManager is registered (via RegisterProfilerManager()), the
420 // benchmark will be run an additional time under the profiler to collect and
421 // report profile metrics for the run of the benchmark.
422 class ProfilerManager {
423 public:
~ProfilerManager()424 virtual ~ProfilerManager() {}
425
426 // This is called after `Setup()` code and right before the benchmark is run.
427 virtual void AfterSetupStart() = 0;
428
429 // This is called before `Teardown()` code and right after the benchmark
430 // completes.
431 virtual void BeforeTeardownStop() = 0;
432 };
433
434 // Register a ProfilerManager instance that will be used to collect and report
435 // profile measurements for benchmark runs.
436 BENCHMARK_EXPORT
437 void RegisterProfilerManager(ProfilerManager* profiler_manager);
438
439 // Add a key-value pair to output as part of the context stanza in the report.
440 BENCHMARK_EXPORT
441 void AddCustomContext(const std::string& key, const std::string& value);
442
443 namespace internal {
444 class Benchmark;
445 class BenchmarkImp;
446 class BenchmarkFamilies;
447
448 BENCHMARK_EXPORT std::map<std::string, std::string>*& GetGlobalContext();
449
450 BENCHMARK_EXPORT
451 void UseCharPointer(char const volatile*);
452
453 // Take ownership of the pointer and register the benchmark. Return the
454 // registered benchmark.
455 BENCHMARK_EXPORT Benchmark* RegisterBenchmarkInternal(Benchmark*);
456
457 // Ensure that the standard streams are properly initialized in every TU.
458 BENCHMARK_EXPORT int InitializeStreams();
459 BENCHMARK_UNUSED static int stream_init_anchor = InitializeStreams();
460
461 } // namespace internal
462
463 #if (!defined(__GNUC__) && !defined(__clang__)) || defined(__pnacl__) || \
464 defined(__EMSCRIPTEN__)
465 #define BENCHMARK_HAS_NO_INLINE_ASSEMBLY
466 #endif
467
468 // Force the compiler to flush pending writes to global memory. Acts as an
469 // effective read/write barrier
470 #ifdef BENCHMARK_HAS_CXX11
ClobberMemory()471 inline BENCHMARK_ALWAYS_INLINE void ClobberMemory() {
472 std::atomic_signal_fence(std::memory_order_acq_rel);
473 }
474 #endif
475
476 // The DoNotOptimize(...) function can be used to prevent a value or
477 // expression from being optimized away by the compiler. This function is
478 // intended to add little to no overhead.
479 // See: https://youtu.be/nXaxk27zwlk?t=2441
480 #ifndef BENCHMARK_HAS_NO_INLINE_ASSEMBLY
481 #if !defined(__GNUC__) || defined(__llvm__) || defined(__INTEL_COMPILER)
482 template <class Tp>
483 BENCHMARK_DEPRECATED_MSG(
484 "The const-ref version of this method can permit "
485 "undesired compiler optimizations in benchmarks")
DoNotOptimize(Tp const & value)486 inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) {
487 asm volatile("" : : "r,m"(value) : "memory");
488 }
489
490 template <class Tp>
DoNotOptimize(Tp & value)491 inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp& value) {
492 #if defined(__clang__)
493 asm volatile("" : "+r,m"(value) : : "memory");
494 #else
495 asm volatile("" : "+m,r"(value) : : "memory");
496 #endif
497 }
498
499 #ifdef BENCHMARK_HAS_CXX11
500 template <class Tp>
DoNotOptimize(Tp && value)501 inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp&& value) {
502 #if defined(__clang__)
503 asm volatile("" : "+r,m"(value) : : "memory");
504 #else
505 asm volatile("" : "+m,r"(value) : : "memory");
506 #endif
507 }
508 #endif
509 #elif defined(BENCHMARK_HAS_CXX11) && (__GNUC__ >= 5)
510 // Workaround for a bug with full argument copy overhead with GCC.
511 // See: #1340 and https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105519
512 template <class Tp>
513 BENCHMARK_DEPRECATED_MSG(
514 "The const-ref version of this method can permit "
515 "undesired compiler optimizations in benchmarks")
516 inline BENCHMARK_ALWAYS_INLINE
517 typename std::enable_if<std::is_trivially_copyable<Tp>::value &&
518 (sizeof(Tp) <= sizeof(Tp*))>::type
DoNotOptimize(Tp const & value)519 DoNotOptimize(Tp const& value) {
520 asm volatile("" : : "r,m"(value) : "memory");
521 }
522
523 template <class Tp>
524 BENCHMARK_DEPRECATED_MSG(
525 "The const-ref version of this method can permit "
526 "undesired compiler optimizations in benchmarks")
527 inline BENCHMARK_ALWAYS_INLINE
528 typename std::enable_if<!std::is_trivially_copyable<Tp>::value ||
529 (sizeof(Tp) > sizeof(Tp*))>::type
DoNotOptimize(Tp const & value)530 DoNotOptimize(Tp const& value) {
531 asm volatile("" : : "m"(value) : "memory");
532 }
533
534 template <class Tp>
535 inline BENCHMARK_ALWAYS_INLINE
536 typename std::enable_if<std::is_trivially_copyable<Tp>::value &&
537 (sizeof(Tp) <= sizeof(Tp*))>::type
DoNotOptimize(Tp & value)538 DoNotOptimize(Tp& value) {
539 asm volatile("" : "+m,r"(value) : : "memory");
540 }
541
542 template <class Tp>
543 inline BENCHMARK_ALWAYS_INLINE
544 typename std::enable_if<!std::is_trivially_copyable<Tp>::value ||
545 (sizeof(Tp) > sizeof(Tp*))>::type
DoNotOptimize(Tp & value)546 DoNotOptimize(Tp& value) {
547 asm volatile("" : "+m"(value) : : "memory");
548 }
549
550 template <class Tp>
551 inline BENCHMARK_ALWAYS_INLINE
552 typename std::enable_if<std::is_trivially_copyable<Tp>::value &&
553 (sizeof(Tp) <= sizeof(Tp*))>::type
DoNotOptimize(Tp && value)554 DoNotOptimize(Tp&& value) {
555 asm volatile("" : "+m,r"(value) : : "memory");
556 }
557
558 template <class Tp>
559 inline BENCHMARK_ALWAYS_INLINE
560 typename std::enable_if<!std::is_trivially_copyable<Tp>::value ||
561 (sizeof(Tp) > sizeof(Tp*))>::type
DoNotOptimize(Tp && value)562 DoNotOptimize(Tp&& value) {
563 asm volatile("" : "+m"(value) : : "memory");
564 }
565
566 #else
567 // Fallback for GCC < 5. Can add some overhead because the compiler is forced
568 // to use memory operations instead of operations with registers.
569 // TODO: Remove if GCC < 5 will be unsupported.
570 template <class Tp>
571 BENCHMARK_DEPRECATED_MSG(
572 "The const-ref version of this method can permit "
573 "undesired compiler optimizations in benchmarks")
DoNotOptimize(Tp const & value)574 inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) {
575 asm volatile("" : : "m"(value) : "memory");
576 }
577
578 template <class Tp>
DoNotOptimize(Tp & value)579 inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp& value) {
580 asm volatile("" : "+m"(value) : : "memory");
581 }
582
583 #ifdef BENCHMARK_HAS_CXX11
584 template <class Tp>
DoNotOptimize(Tp && value)585 inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp&& value) {
586 asm volatile("" : "+m"(value) : : "memory");
587 }
588 #endif
589 #endif
590
591 #ifndef BENCHMARK_HAS_CXX11
ClobberMemory()592 inline BENCHMARK_ALWAYS_INLINE void ClobberMemory() {
593 asm volatile("" : : : "memory");
594 }
595 #endif
596 #elif defined(_MSC_VER)
597 template <class Tp>
598 BENCHMARK_DEPRECATED_MSG(
599 "The const-ref version of this method can permit "
600 "undesired compiler optimizations in benchmarks")
DoNotOptimize(Tp const & value)601 inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) {
602 internal::UseCharPointer(&reinterpret_cast<char const volatile&>(value));
603 _ReadWriteBarrier();
604 }
605
606 #ifndef BENCHMARK_HAS_CXX11
ClobberMemory()607 inline BENCHMARK_ALWAYS_INLINE void ClobberMemory() { _ReadWriteBarrier(); }
608 #endif
609 #else
610 #ifdef BENCHMARK_HAS_CXX11
611 template <class Tp>
DoNotOptimize(Tp && value)612 inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp&& value) {
613 internal::UseCharPointer(&reinterpret_cast<char const volatile&>(value));
614 }
615 #else
616 template <class Tp>
617 BENCHMARK_DEPRECATED_MSG(
618 "The const-ref version of this method can permit "
619 "undesired compiler optimizations in benchmarks")
DoNotOptimize(Tp const & value)620 inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) {
621 internal::UseCharPointer(&reinterpret_cast<char const volatile&>(value));
622 }
623
624 template <class Tp>
DoNotOptimize(Tp & value)625 inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp& value) {
626 internal::UseCharPointer(&reinterpret_cast<char const volatile&>(value));
627 }
628 #endif
629 // FIXME Add ClobberMemory() for non-gnu and non-msvc compilers, before C++11.
630 #endif
631
632 // This class is used for user-defined counters.
633 class Counter {
634 public:
635 enum Flags {
636 kDefaults = 0,
637 // Mark the counter as a rate. It will be presented divided
638 // by the duration of the benchmark.
639 kIsRate = 1 << 0,
640 // Mark the counter as a thread-average quantity. It will be
641 // presented divided by the number of threads.
642 kAvgThreads = 1 << 1,
643 // Mark the counter as a thread-average rate. See above.
644 kAvgThreadsRate = kIsRate | kAvgThreads,
645 // Mark the counter as a constant value, valid/same for *every* iteration.
646 // When reporting, it will be *multiplied* by the iteration count.
647 kIsIterationInvariant = 1 << 2,
648 // Mark the counter as a constant rate.
649 // When reporting, it will be *multiplied* by the iteration count
650 // and then divided by the duration of the benchmark.
651 kIsIterationInvariantRate = kIsRate | kIsIterationInvariant,
652 // Mark the counter as a iteration-average quantity.
653 // It will be presented divided by the number of iterations.
654 kAvgIterations = 1 << 3,
655 // Mark the counter as a iteration-average rate. See above.
656 kAvgIterationsRate = kIsRate | kAvgIterations,
657
658 // In the end, invert the result. This is always done last!
659 kInvert = 1 << 31
660 };
661
662 enum OneK {
663 // 1'000 items per 1k
664 kIs1000 = 1000,
665 // 1'024 items per 1k
666 kIs1024 = 1024
667 };
668
669 double value;
670 Flags flags;
671 OneK oneK;
672
673 BENCHMARK_ALWAYS_INLINE
674 Counter(double v = 0., Flags f = kDefaults, OneK k = kIs1000)
value(v)675 : value(v), flags(f), oneK(k) {}
676
677 BENCHMARK_ALWAYS_INLINE operator double const &() const { return value; }
678 BENCHMARK_ALWAYS_INLINE operator double&() { return value; }
679 };
680
681 // A helper for user code to create unforeseen combinations of Flags, without
682 // having to do this cast manually each time, or providing this operator.
683 Counter::Flags inline operator|(const Counter::Flags& LHS,
684 const Counter::Flags& RHS) {
685 return static_cast<Counter::Flags>(static_cast<int>(LHS) |
686 static_cast<int>(RHS));
687 }
688
689 // This is the container for the user-defined counters.
690 typedef std::map<std::string, Counter> UserCounters;
691
692 // BigO is passed to a benchmark in order to specify the asymptotic
693 // computational
694 // complexity for the benchmark. In case oAuto is selected, complexity will be
695 // calculated automatically to the best fit.
696 enum BigO { oNone, o1, oN, oNSquared, oNCubed, oLogN, oNLogN, oAuto, oLambda };
697
698 typedef int64_t ComplexityN;
699
700 typedef int64_t IterationCount;
701
702 enum StatisticUnit { kTime, kPercentage };
703
704 // BigOFunc is passed to a benchmark in order to specify the asymptotic
705 // computational complexity for the benchmark.
706 typedef double(BigOFunc)(ComplexityN);
707
708 // StatisticsFunc is passed to a benchmark in order to compute some descriptive
709 // statistics over all the measurements of some type
710 typedef double(StatisticsFunc)(const std::vector<double>&);
711
712 namespace internal {
713 struct Statistics {
714 std::string name_;
715 StatisticsFunc* compute_;
716 StatisticUnit unit_;
717
718 Statistics(const std::string& name, StatisticsFunc* compute,
719 StatisticUnit unit = kTime)
name_Statistics720 : name_(name), compute_(compute), unit_(unit) {}
721 };
722
723 class BenchmarkInstance;
724 class ThreadTimer;
725 class ThreadManager;
726 class PerfCountersMeasurement;
727
728 enum AggregationReportMode
729 #if defined(BENCHMARK_HAS_CXX11)
730 : unsigned
731 #else
732 #endif
733 {
734 // The mode has not been manually specified
735 ARM_Unspecified = 0,
736 // The mode is user-specified.
737 // This may or may not be set when the following bit-flags are set.
738 ARM_Default = 1U << 0U,
739 // File reporter should only output aggregates.
740 ARM_FileReportAggregatesOnly = 1U << 1U,
741 // Display reporter should only output aggregates
742 ARM_DisplayReportAggregatesOnly = 1U << 2U,
743 // Both reporters should only display aggregates.
744 ARM_ReportAggregatesOnly =
745 ARM_FileReportAggregatesOnly | ARM_DisplayReportAggregatesOnly
746 };
747
748 enum Skipped
749 #if defined(BENCHMARK_HAS_CXX11)
750 : unsigned
751 #endif
752 {
753 NotSkipped = 0,
754 SkippedWithMessage,
755 SkippedWithError
756 };
757
758 } // namespace internal
759
760 // State is passed to a running Benchmark and contains state for the
761 // benchmark to use.
762 class BENCHMARK_EXPORT State {
763 public:
764 struct StateIterator;
765 friend struct StateIterator;
766
767 // Returns iterators used to run each iteration of a benchmark using a
768 // C++11 ranged-based for loop. These functions should not be called directly.
769 //
770 // REQUIRES: The benchmark has not started running yet. Neither begin nor end
771 // have been called previously.
772 //
773 // NOTE: KeepRunning may not be used after calling either of these functions.
774 inline BENCHMARK_ALWAYS_INLINE StateIterator begin();
775 inline BENCHMARK_ALWAYS_INLINE StateIterator end();
776
777 // Returns true if the benchmark should continue through another iteration.
778 // NOTE: A benchmark may not return from the test until KeepRunning() has
779 // returned false.
780 inline bool KeepRunning();
781
782 // Returns true iff the benchmark should run n more iterations.
783 // REQUIRES: 'n' > 0.
784 // NOTE: A benchmark must not return from the test until KeepRunningBatch()
785 // has returned false.
786 // NOTE: KeepRunningBatch() may overshoot by up to 'n' iterations.
787 //
788 // Intended usage:
789 // while (state.KeepRunningBatch(1000)) {
790 // // process 1000 elements
791 // }
792 inline bool KeepRunningBatch(IterationCount n);
793
794 // REQUIRES: timer is running and 'SkipWithMessage(...)' or
795 // 'SkipWithError(...)' has not been called by the current thread.
796 // Stop the benchmark timer. If not called, the timer will be
797 // automatically stopped after the last iteration of the benchmark loop.
798 //
799 // For threaded benchmarks the PauseTiming() function only pauses the timing
800 // for the current thread.
801 //
802 // NOTE: The "real time" measurement is per-thread. If different threads
803 // report different measurements the largest one is reported.
804 //
805 // NOTE: PauseTiming()/ResumeTiming() are relatively
806 // heavyweight, and so their use should generally be avoided
807 // within each benchmark iteration, if possible.
808 void PauseTiming();
809
810 // REQUIRES: timer is not running and 'SkipWithMessage(...)' or
811 // 'SkipWithError(...)' has not been called by the current thread.
812 // Start the benchmark timer. The timer is NOT running on entrance to the
813 // benchmark function. It begins running after control flow enters the
814 // benchmark loop.
815 //
816 // NOTE: PauseTiming()/ResumeTiming() are relatively
817 // heavyweight, and so their use should generally be avoided
818 // within each benchmark iteration, if possible.
819 void ResumeTiming();
820
821 // REQUIRES: 'SkipWithMessage(...)' or 'SkipWithError(...)' has not been
822 // called previously by the current thread.
823 // Report the benchmark as resulting in being skipped with the specified
824 // 'msg'.
825 // After this call the user may explicitly 'return' from the benchmark.
826 //
827 // If the ranged-for style of benchmark loop is used, the user must explicitly
828 // break from the loop, otherwise all future iterations will be run.
829 // If the 'KeepRunning()' loop is used the current thread will automatically
830 // exit the loop at the end of the current iteration.
831 //
832 // For threaded benchmarks only the current thread stops executing and future
833 // calls to `KeepRunning()` will block until all threads have completed
834 // the `KeepRunning()` loop. If multiple threads report being skipped only the
835 // first skip message is used.
836 //
837 // NOTE: Calling 'SkipWithMessage(...)' does not cause the benchmark to exit
838 // the current scope immediately. If the function is called from within
839 // the 'KeepRunning()' loop the current iteration will finish. It is the users
840 // responsibility to exit the scope as needed.
841 void SkipWithMessage(const std::string& msg);
842
843 // REQUIRES: 'SkipWithMessage(...)' or 'SkipWithError(...)' has not been
844 // called previously by the current thread.
845 // Report the benchmark as resulting in an error with the specified 'msg'.
846 // After this call the user may explicitly 'return' from the benchmark.
847 //
848 // If the ranged-for style of benchmark loop is used, the user must explicitly
849 // break from the loop, otherwise all future iterations will be run.
850 // If the 'KeepRunning()' loop is used the current thread will automatically
851 // exit the loop at the end of the current iteration.
852 //
853 // For threaded benchmarks only the current thread stops executing and future
854 // calls to `KeepRunning()` will block until all threads have completed
855 // the `KeepRunning()` loop. If multiple threads report an error only the
856 // first error message is used.
857 //
858 // NOTE: Calling 'SkipWithError(...)' does not cause the benchmark to exit
859 // the current scope immediately. If the function is called from within
860 // the 'KeepRunning()' loop the current iteration will finish. It is the users
861 // responsibility to exit the scope as needed.
862 void SkipWithError(const std::string& msg);
863
864 // Returns true if 'SkipWithMessage(...)' or 'SkipWithError(...)' was called.
skipped()865 bool skipped() const { return internal::NotSkipped != skipped_; }
866
867 // Returns true if an error has been reported with 'SkipWithError(...)'.
error_occurred()868 bool error_occurred() const { return internal::SkippedWithError == skipped_; }
869
870 // REQUIRES: called exactly once per iteration of the benchmarking loop.
871 // Set the manually measured time for this benchmark iteration, which
872 // is used instead of automatically measured time if UseManualTime() was
873 // specified.
874 //
875 // For threaded benchmarks the final value will be set to the largest
876 // reported values.
877 void SetIterationTime(double seconds);
878
879 // Set the number of bytes processed by the current benchmark
880 // execution. This routine is typically called once at the end of a
881 // throughput oriented benchmark.
882 //
883 // REQUIRES: a benchmark has exited its benchmarking loop.
884 BENCHMARK_ALWAYS_INLINE
SetBytesProcessed(int64_t bytes)885 void SetBytesProcessed(int64_t bytes) {
886 counters["bytes_per_second"] =
887 Counter(static_cast<double>(bytes), Counter::kIsRate, Counter::kIs1024);
888 }
889
890 BENCHMARK_ALWAYS_INLINE
bytes_processed()891 int64_t bytes_processed() const {
892 if (counters.find("bytes_per_second") != counters.end())
893 return static_cast<int64_t>(counters.at("bytes_per_second"));
894 return 0;
895 }
896
897 // If this routine is called with complexity_n > 0 and complexity report is
898 // requested for the
899 // family benchmark, then current benchmark will be part of the computation
900 // and complexity_n will
901 // represent the length of N.
902 BENCHMARK_ALWAYS_INLINE
SetComplexityN(ComplexityN complexity_n)903 void SetComplexityN(ComplexityN complexity_n) {
904 complexity_n_ = complexity_n;
905 }
906
907 BENCHMARK_ALWAYS_INLINE
complexity_length_n()908 ComplexityN complexity_length_n() const { return complexity_n_; }
909
910 // If this routine is called with items > 0, then an items/s
911 // label is printed on the benchmark report line for the currently
912 // executing benchmark. It is typically called at the end of a processing
913 // benchmark where a processing items/second output is desired.
914 //
915 // REQUIRES: a benchmark has exited its benchmarking loop.
916 BENCHMARK_ALWAYS_INLINE
SetItemsProcessed(int64_t items)917 void SetItemsProcessed(int64_t items) {
918 counters["items_per_second"] =
919 Counter(static_cast<double>(items), benchmark::Counter::kIsRate);
920 }
921
922 BENCHMARK_ALWAYS_INLINE
items_processed()923 int64_t items_processed() const {
924 if (counters.find("items_per_second") != counters.end())
925 return static_cast<int64_t>(counters.at("items_per_second"));
926 return 0;
927 }
928
929 // If this routine is called, the specified label is printed at the
930 // end of the benchmark report line for the currently executing
931 // benchmark. Example:
932 // static void BM_Compress(benchmark::State& state) {
933 // ...
934 // double compress = input_size / output_size;
935 // state.SetLabel(StrFormat("compress:%.1f%%", 100.0*compression));
936 // }
937 // Produces output that looks like:
938 // BM_Compress 50 50 14115038 compress:27.3%
939 //
940 // REQUIRES: a benchmark has exited its benchmarking loop.
941 void SetLabel(const std::string& label);
942
943 // Range arguments for this run. CHECKs if the argument has been set.
944 BENCHMARK_ALWAYS_INLINE
945 int64_t range(std::size_t pos = 0) const {
946 assert(range_.size() > pos);
947 return range_[pos];
948 }
949
950 BENCHMARK_DEPRECATED_MSG("use 'range(0)' instead")
range_x()951 int64_t range_x() const { return range(0); }
952
953 BENCHMARK_DEPRECATED_MSG("use 'range(1)' instead")
range_y()954 int64_t range_y() const { return range(1); }
955
956 // Number of threads concurrently executing the benchmark.
957 BENCHMARK_ALWAYS_INLINE
threads()958 int threads() const { return threads_; }
959
960 // Index of the executing thread. Values from [0, threads).
961 BENCHMARK_ALWAYS_INLINE
thread_index()962 int thread_index() const { return thread_index_; }
963
964 BENCHMARK_ALWAYS_INLINE
iterations()965 IterationCount iterations() const {
966 if (BENCHMARK_BUILTIN_EXPECT(!started_, false)) {
967 return 0;
968 }
969 return max_iterations - total_iterations_ + batch_leftover_;
970 }
971
972 BENCHMARK_ALWAYS_INLINE
name()973 std::string name() const { return name_; }
974
975 private:
976 // items we expect on the first cache line (ie 64 bytes of the struct)
977 // When total_iterations_ is 0, KeepRunning() and friends will return false.
978 // May be larger than max_iterations.
979 IterationCount total_iterations_;
980
981 // When using KeepRunningBatch(), batch_leftover_ holds the number of
982 // iterations beyond max_iters that were run. Used to track
983 // completed_iterations_ accurately.
984 IterationCount batch_leftover_;
985
986 public:
987 const IterationCount max_iterations;
988
989 private:
990 bool started_;
991 bool finished_;
992 internal::Skipped skipped_;
993
994 // items we don't need on the first cache line
995 std::vector<int64_t> range_;
996
997 ComplexityN complexity_n_;
998
999 public:
1000 // Container for user-defined counters.
1001 UserCounters counters;
1002
1003 private:
1004 State(std::string name, IterationCount max_iters,
1005 const std::vector<int64_t>& ranges, int thread_i, int n_threads,
1006 internal::ThreadTimer* timer, internal::ThreadManager* manager,
1007 internal::PerfCountersMeasurement* perf_counters_measurement,
1008 ProfilerManager* profiler_manager);
1009
1010 void StartKeepRunning();
1011 // Implementation of KeepRunning() and KeepRunningBatch().
1012 // is_batch must be true unless n is 1.
1013 inline bool KeepRunningInternal(IterationCount n, bool is_batch);
1014 void FinishKeepRunning();
1015
1016 const std::string name_;
1017 const int thread_index_;
1018 const int threads_;
1019
1020 internal::ThreadTimer* const timer_;
1021 internal::ThreadManager* const manager_;
1022 internal::PerfCountersMeasurement* const perf_counters_measurement_;
1023 ProfilerManager* const profiler_manager_;
1024
1025 friend class internal::BenchmarkInstance;
1026 };
1027
KeepRunning()1028 inline BENCHMARK_ALWAYS_INLINE bool State::KeepRunning() {
1029 return KeepRunningInternal(1, /*is_batch=*/false);
1030 }
1031
KeepRunningBatch(IterationCount n)1032 inline BENCHMARK_ALWAYS_INLINE bool State::KeepRunningBatch(IterationCount n) {
1033 return KeepRunningInternal(n, /*is_batch=*/true);
1034 }
1035
KeepRunningInternal(IterationCount n,bool is_batch)1036 inline BENCHMARK_ALWAYS_INLINE bool State::KeepRunningInternal(IterationCount n,
1037 bool is_batch) {
1038 // total_iterations_ is set to 0 by the constructor, and always set to a
1039 // nonzero value by StartKepRunning().
1040 assert(n > 0);
1041 // n must be 1 unless is_batch is true.
1042 assert(is_batch || n == 1);
1043 if (BENCHMARK_BUILTIN_EXPECT(total_iterations_ >= n, true)) {
1044 total_iterations_ -= n;
1045 return true;
1046 }
1047 if (!started_) {
1048 StartKeepRunning();
1049 if (!skipped() && total_iterations_ >= n) {
1050 total_iterations_ -= n;
1051 return true;
1052 }
1053 }
1054 // For non-batch runs, total_iterations_ must be 0 by now.
1055 if (is_batch && total_iterations_ != 0) {
1056 batch_leftover_ = n - total_iterations_;
1057 total_iterations_ = 0;
1058 return true;
1059 }
1060 FinishKeepRunning();
1061 return false;
1062 }
1063
1064 struct State::StateIterator {
1065 struct BENCHMARK_UNUSED Value {};
1066 typedef std::forward_iterator_tag iterator_category;
1067 typedef Value value_type;
1068 typedef Value reference;
1069 typedef Value pointer;
1070 typedef std::ptrdiff_t difference_type;
1071
1072 private:
1073 friend class State;
1074 BENCHMARK_ALWAYS_INLINE
StateIteratorStateIterator1075 StateIterator() : cached_(0), parent_() {}
1076
1077 BENCHMARK_ALWAYS_INLINE
StateIteratorStateIterator1078 explicit StateIterator(State* st)
1079 : cached_(st->skipped() ? 0 : st->max_iterations), parent_(st) {}
1080
1081 public:
1082 BENCHMARK_ALWAYS_INLINE
1083 Value operator*() const { return Value(); }
1084
1085 BENCHMARK_ALWAYS_INLINE
1086 StateIterator& operator++() {
1087 assert(cached_ > 0);
1088 --cached_;
1089 return *this;
1090 }
1091
1092 BENCHMARK_ALWAYS_INLINE
1093 bool operator!=(StateIterator const&) const {
1094 if (BENCHMARK_BUILTIN_EXPECT(cached_ != 0, true)) return true;
1095 parent_->FinishKeepRunning();
1096 return false;
1097 }
1098
1099 private:
1100 IterationCount cached_;
1101 State* const parent_;
1102 };
1103
begin()1104 inline BENCHMARK_ALWAYS_INLINE State::StateIterator State::begin() {
1105 return StateIterator(this);
1106 }
end()1107 inline BENCHMARK_ALWAYS_INLINE State::StateIterator State::end() {
1108 StartKeepRunning();
1109 return StateIterator();
1110 }
1111
1112 namespace internal {
1113
1114 typedef void(Function)(State&);
1115
1116 // ------------------------------------------------------
1117 // Benchmark registration object. The BENCHMARK() macro expands
1118 // into an internal::Benchmark* object. Various methods can
1119 // be called on this object to change the properties of the benchmark.
1120 // Each method returns "this" so that multiple method calls can
1121 // chained into one expression.
1122 class BENCHMARK_EXPORT Benchmark {
1123 public:
1124 virtual ~Benchmark();
1125
1126 // Note: the following methods all return "this" so that multiple
1127 // method calls can be chained together in one expression.
1128
1129 // Specify the name of the benchmark
1130 Benchmark* Name(const std::string& name);
1131
1132 // Run this benchmark once with "x" as the extra argument passed
1133 // to the function.
1134 // REQUIRES: The function passed to the constructor must accept an arg1.
1135 Benchmark* Arg(int64_t x);
1136
1137 // Run this benchmark with the given time unit for the generated output report
1138 Benchmark* Unit(TimeUnit unit);
1139
1140 // Run this benchmark once for a number of values picked from the
1141 // range [start..limit]. (start and limit are always picked.)
1142 // REQUIRES: The function passed to the constructor must accept an arg1.
1143 Benchmark* Range(int64_t start, int64_t limit);
1144
1145 // Run this benchmark once for all values in the range [start..limit] with
1146 // specific step
1147 // REQUIRES: The function passed to the constructor must accept an arg1.
1148 Benchmark* DenseRange(int64_t start, int64_t limit, int step = 1);
1149
1150 // Run this benchmark once with "args" as the extra arguments passed
1151 // to the function.
1152 // REQUIRES: The function passed to the constructor must accept arg1, arg2 ...
1153 Benchmark* Args(const std::vector<int64_t>& args);
1154
1155 // Equivalent to Args({x, y})
1156 // NOTE: This is a legacy C++03 interface provided for compatibility only.
1157 // New code should use 'Args'.
ArgPair(int64_t x,int64_t y)1158 Benchmark* ArgPair(int64_t x, int64_t y) {
1159 std::vector<int64_t> args;
1160 args.push_back(x);
1161 args.push_back(y);
1162 return Args(args);
1163 }
1164
1165 // Run this benchmark once for a number of values picked from the
1166 // ranges [start..limit]. (starts and limits are always picked.)
1167 // REQUIRES: The function passed to the constructor must accept arg1, arg2 ...
1168 Benchmark* Ranges(const std::vector<std::pair<int64_t, int64_t> >& ranges);
1169
1170 // Run this benchmark once for each combination of values in the (cartesian)
1171 // product of the supplied argument lists.
1172 // REQUIRES: The function passed to the constructor must accept arg1, arg2 ...
1173 Benchmark* ArgsProduct(const std::vector<std::vector<int64_t> >& arglists);
1174
1175 // Equivalent to ArgNames({name})
1176 Benchmark* ArgName(const std::string& name);
1177
1178 // Set the argument names to display in the benchmark name. If not called,
1179 // only argument values will be shown.
1180 Benchmark* ArgNames(const std::vector<std::string>& names);
1181
1182 // Equivalent to Ranges({{lo1, hi1}, {lo2, hi2}}).
1183 // NOTE: This is a legacy C++03 interface provided for compatibility only.
1184 // New code should use 'Ranges'.
RangePair(int64_t lo1,int64_t hi1,int64_t lo2,int64_t hi2)1185 Benchmark* RangePair(int64_t lo1, int64_t hi1, int64_t lo2, int64_t hi2) {
1186 std::vector<std::pair<int64_t, int64_t> > ranges;
1187 ranges.push_back(std::make_pair(lo1, hi1));
1188 ranges.push_back(std::make_pair(lo2, hi2));
1189 return Ranges(ranges);
1190 }
1191
1192 // Have "setup" and/or "teardown" invoked once for every benchmark run.
1193 // If the benchmark is multi-threaded (will run in k threads concurrently),
1194 // the setup callback will be be invoked exactly once (not k times) before
1195 // each run with k threads. Time allowing (e.g. for a short benchmark), there
1196 // may be multiple such runs per benchmark, each run with its own
1197 // "setup"/"teardown".
1198 //
1199 // If the benchmark uses different size groups of threads (e.g. via
1200 // ThreadRange), the above will be true for each size group.
1201 //
1202 // The callback will be passed a State object, which includes the number
1203 // of threads, thread-index, benchmark arguments, etc.
1204 //
1205 // The callback must not be NULL or self-deleting.
1206 Benchmark* Setup(void (*setup)(const benchmark::State&));
1207 Benchmark* Teardown(void (*teardown)(const benchmark::State&));
1208
1209 // Pass this benchmark object to *func, which can customize
1210 // the benchmark by calling various methods like Arg, Args,
1211 // Threads, etc.
1212 Benchmark* Apply(void (*func)(Benchmark* benchmark));
1213
1214 // Set the range multiplier for non-dense range. If not called, the range
1215 // multiplier kRangeMultiplier will be used.
1216 Benchmark* RangeMultiplier(int multiplier);
1217
1218 // Set the minimum amount of time to use when running this benchmark. This
1219 // option overrides the `benchmark_min_time` flag.
1220 // REQUIRES: `t > 0` and `Iterations` has not been called on this benchmark.
1221 Benchmark* MinTime(double t);
1222
1223 // Set the minimum amount of time to run the benchmark before taking runtimes
1224 // of this benchmark into account. This
1225 // option overrides the `benchmark_min_warmup_time` flag.
1226 // REQUIRES: `t >= 0` and `Iterations` has not been called on this benchmark.
1227 Benchmark* MinWarmUpTime(double t);
1228
1229 // Specify the amount of iterations that should be run by this benchmark.
1230 // This option overrides the `benchmark_min_time` flag.
1231 // REQUIRES: 'n > 0' and `MinTime` has not been called on this benchmark.
1232 //
1233 // NOTE: This function should only be used when *exact* iteration control is
1234 // needed and never to control or limit how long a benchmark runs, where
1235 // `--benchmark_min_time=<N>s` or `MinTime(...)` should be used instead.
1236 Benchmark* Iterations(IterationCount n);
1237
1238 // Specify the amount of times to repeat this benchmark. This option overrides
1239 // the `benchmark_repetitions` flag.
1240 // REQUIRES: `n > 0`
1241 Benchmark* Repetitions(int n);
1242
1243 // Specify if each repetition of the benchmark should be reported separately
1244 // or if only the final statistics should be reported. If the benchmark
1245 // is not repeated then the single result is always reported.
1246 // Applies to *ALL* reporters (display and file).
1247 Benchmark* ReportAggregatesOnly(bool value = true);
1248
1249 // Same as ReportAggregatesOnly(), but applies to display reporter only.
1250 Benchmark* DisplayAggregatesOnly(bool value = true);
1251
1252 // By default, the CPU time is measured only for the main thread, which may
1253 // be unrepresentative if the benchmark uses threads internally. If called,
1254 // the total CPU time spent by all the threads will be measured instead.
1255 // By default, only the main thread CPU time will be measured.
1256 Benchmark* MeasureProcessCPUTime();
1257
1258 // If a particular benchmark should use the Wall clock instead of the CPU time
1259 // (be it either the CPU time of the main thread only (default), or the
1260 // total CPU usage of the benchmark), call this method. If called, the elapsed
1261 // (wall) time will be used to control how many iterations are run, and in the
1262 // printing of items/second or MB/seconds values.
1263 // If not called, the CPU time used by the benchmark will be used.
1264 Benchmark* UseRealTime();
1265
1266 // If a benchmark must measure time manually (e.g. if GPU execution time is
1267 // being
1268 // measured), call this method. If called, each benchmark iteration should
1269 // call
1270 // SetIterationTime(seconds) to report the measured time, which will be used
1271 // to control how many iterations are run, and in the printing of items/second
1272 // or MB/second values.
1273 Benchmark* UseManualTime();
1274
1275 // Set the asymptotic computational complexity for the benchmark. If called
1276 // the asymptotic computational complexity will be shown on the output.
1277 Benchmark* Complexity(BigO complexity = benchmark::oAuto);
1278
1279 // Set the asymptotic computational complexity for the benchmark. If called
1280 // the asymptotic computational complexity will be shown on the output.
1281 Benchmark* Complexity(BigOFunc* complexity);
1282
1283 // Add this statistics to be computed over all the values of benchmark run
1284 Benchmark* ComputeStatistics(const std::string& name,
1285 StatisticsFunc* statistics,
1286 StatisticUnit unit = kTime);
1287
1288 // Support for running multiple copies of the same benchmark concurrently
1289 // in multiple threads. This may be useful when measuring the scaling
1290 // of some piece of code.
1291
1292 // Run one instance of this benchmark concurrently in t threads.
1293 Benchmark* Threads(int t);
1294
1295 // Pick a set of values T from [min_threads,max_threads].
1296 // min_threads and max_threads are always included in T. Run this
1297 // benchmark once for each value in T. The benchmark run for a
1298 // particular value t consists of t threads running the benchmark
1299 // function concurrently. For example, consider:
1300 // BENCHMARK(Foo)->ThreadRange(1,16);
1301 // This will run the following benchmarks:
1302 // Foo in 1 thread
1303 // Foo in 2 threads
1304 // Foo in 4 threads
1305 // Foo in 8 threads
1306 // Foo in 16 threads
1307 Benchmark* ThreadRange(int min_threads, int max_threads);
1308
1309 // For each value n in the range, run this benchmark once using n threads.
1310 // min_threads and max_threads are always included in the range.
1311 // stride specifies the increment. E.g. DenseThreadRange(1, 8, 3) starts
1312 // a benchmark with 1, 4, 7 and 8 threads.
1313 Benchmark* DenseThreadRange(int min_threads, int max_threads, int stride = 1);
1314
1315 // Equivalent to ThreadRange(NumCPUs(), NumCPUs())
1316 Benchmark* ThreadPerCpu();
1317
1318 virtual void Run(State& state) = 0;
1319
1320 TimeUnit GetTimeUnit() const;
1321
1322 protected:
1323 explicit Benchmark(const std::string& name);
1324 void SetName(const std::string& name);
1325
1326 public:
1327 const char* GetName() const;
1328 int ArgsCnt() const;
1329 const char* GetArgName(int arg) const;
1330
1331 private:
1332 friend class BenchmarkFamilies;
1333 friend class BenchmarkInstance;
1334
1335 std::string name_;
1336 AggregationReportMode aggregation_report_mode_;
1337 std::vector<std::string> arg_names_; // Args for all benchmark runs
1338 std::vector<std::vector<int64_t> > args_; // Args for all benchmark runs
1339
1340 TimeUnit time_unit_;
1341 bool use_default_time_unit_;
1342
1343 int range_multiplier_;
1344 double min_time_;
1345 double min_warmup_time_;
1346 IterationCount iterations_;
1347 int repetitions_;
1348 bool measure_process_cpu_time_;
1349 bool use_real_time_;
1350 bool use_manual_time_;
1351 BigO complexity_;
1352 BigOFunc* complexity_lambda_;
1353 std::vector<Statistics> statistics_;
1354 std::vector<int> thread_counts_;
1355
1356 typedef void (*callback_function)(const benchmark::State&);
1357 callback_function setup_;
1358 callback_function teardown_;
1359
1360 Benchmark(Benchmark const&)
1361 #if defined(BENCHMARK_HAS_CXX11)
1362 = delete
1363 #endif
1364 ;
1365
1366 Benchmark& operator=(Benchmark const&)
1367 #if defined(BENCHMARK_HAS_CXX11)
1368 = delete
1369 #endif
1370 ;
1371 };
1372
1373 } // namespace internal
1374
1375 // Create and register a benchmark with the specified 'name' that invokes
1376 // the specified functor 'fn'.
1377 //
1378 // RETURNS: A pointer to the registered benchmark.
1379 internal::Benchmark* RegisterBenchmark(const std::string& name,
1380 internal::Function* fn);
1381
1382 #if defined(BENCHMARK_HAS_CXX11)
1383 template <class Lambda>
1384 internal::Benchmark* RegisterBenchmark(const std::string& name, Lambda&& fn);
1385 #endif
1386
1387 // Remove all registered benchmarks. All pointers to previously registered
1388 // benchmarks are invalidated.
1389 BENCHMARK_EXPORT void ClearRegisteredBenchmarks();
1390
1391 namespace internal {
1392 // The class used to hold all Benchmarks created from static function.
1393 // (ie those created using the BENCHMARK(...) macros.
1394 class BENCHMARK_EXPORT FunctionBenchmark : public Benchmark {
1395 public:
FunctionBenchmark(const std::string & name,Function * func)1396 FunctionBenchmark(const std::string& name, Function* func)
1397 : Benchmark(name), func_(func) {}
1398
1399 void Run(State& st) BENCHMARK_OVERRIDE;
1400
1401 private:
1402 Function* func_;
1403 };
1404
1405 #ifdef BENCHMARK_HAS_CXX11
1406 template <class Lambda>
1407 class LambdaBenchmark : public Benchmark {
1408 public:
Run(State & st)1409 void Run(State& st) BENCHMARK_OVERRIDE { lambda_(st); }
1410
1411 private:
1412 template <class OLambda>
LambdaBenchmark(const std::string & name,OLambda && lam)1413 LambdaBenchmark(const std::string& name, OLambda&& lam)
1414 : Benchmark(name), lambda_(std::forward<OLambda>(lam)) {}
1415
1416 LambdaBenchmark(LambdaBenchmark const&) = delete;
1417
1418 template <class Lam> // NOLINTNEXTLINE(readability-redundant-declaration)
1419 friend Benchmark* ::benchmark::RegisterBenchmark(const std::string&, Lam&&);
1420
1421 Lambda lambda_;
1422 };
1423 #endif
1424 } // namespace internal
1425
RegisterBenchmark(const std::string & name,internal::Function * fn)1426 inline internal::Benchmark* RegisterBenchmark(const std::string& name,
1427 internal::Function* fn) {
1428 // FIXME: this should be a `std::make_unique<>()` but we don't have C++14.
1429 // codechecker_intentional [cplusplus.NewDeleteLeaks]
1430 return internal::RegisterBenchmarkInternal(
1431 ::new internal::FunctionBenchmark(name, fn));
1432 }
1433
1434 #ifdef BENCHMARK_HAS_CXX11
1435 template <class Lambda>
RegisterBenchmark(const std::string & name,Lambda && fn)1436 internal::Benchmark* RegisterBenchmark(const std::string& name, Lambda&& fn) {
1437 using BenchType =
1438 internal::LambdaBenchmark<typename std::decay<Lambda>::type>;
1439 // FIXME: this should be a `std::make_unique<>()` but we don't have C++14.
1440 // codechecker_intentional [cplusplus.NewDeleteLeaks]
1441 return internal::RegisterBenchmarkInternal(
1442 ::new BenchType(name, std::forward<Lambda>(fn)));
1443 }
1444 #endif
1445
1446 #if defined(BENCHMARK_HAS_CXX11) && \
1447 (!defined(BENCHMARK_GCC_VERSION) || BENCHMARK_GCC_VERSION >= 409)
1448 template <class Lambda, class... Args>
RegisterBenchmark(const std::string & name,Lambda && fn,Args &&...args)1449 internal::Benchmark* RegisterBenchmark(const std::string& name, Lambda&& fn,
1450 Args&&... args) {
1451 return benchmark::RegisterBenchmark(
1452 name, [=](benchmark::State& st) { fn(st, args...); });
1453 }
1454 #else
1455 #define BENCHMARK_HAS_NO_VARIADIC_REGISTER_BENCHMARK
1456 #endif
1457
1458 // The base class for all fixture tests.
1459 class Fixture : public internal::Benchmark {
1460 public:
Fixture()1461 Fixture() : internal::Benchmark("") {}
1462
Run(State & st)1463 void Run(State& st) BENCHMARK_OVERRIDE {
1464 this->SetUp(st);
1465 this->BenchmarkCase(st);
1466 this->TearDown(st);
1467 }
1468
1469 // These will be deprecated ...
SetUp(const State &)1470 virtual void SetUp(const State&) {}
TearDown(const State &)1471 virtual void TearDown(const State&) {}
1472 // ... In favor of these.
SetUp(State & st)1473 virtual void SetUp(State& st) { SetUp(const_cast<const State&>(st)); }
TearDown(State & st)1474 virtual void TearDown(State& st) { TearDown(const_cast<const State&>(st)); }
1475
1476 protected:
1477 virtual void BenchmarkCase(State&) = 0;
1478 };
1479 } // namespace benchmark
1480
1481 // ------------------------------------------------------
1482 // Macro to register benchmarks
1483
1484 // Check that __COUNTER__ is defined and that __COUNTER__ increases by 1
1485 // every time it is expanded. X + 1 == X + 0 is used in case X is defined to be
1486 // empty. If X is empty the expression becomes (+1 == +0).
1487 #if defined(__COUNTER__) && (__COUNTER__ + 1 == __COUNTER__ + 0)
1488 #define BENCHMARK_PRIVATE_UNIQUE_ID __COUNTER__
1489 #else
1490 #define BENCHMARK_PRIVATE_UNIQUE_ID __LINE__
1491 #endif
1492
1493 // Helpers for generating unique variable names
1494 #ifdef BENCHMARK_HAS_CXX11
1495 #define BENCHMARK_PRIVATE_NAME(...) \
1496 BENCHMARK_PRIVATE_CONCAT(benchmark_uniq_, BENCHMARK_PRIVATE_UNIQUE_ID, \
1497 __VA_ARGS__)
1498 #else
1499 #define BENCHMARK_PRIVATE_NAME(n) \
1500 BENCHMARK_PRIVATE_CONCAT(benchmark_uniq_, BENCHMARK_PRIVATE_UNIQUE_ID, n)
1501 #endif // BENCHMARK_HAS_CXX11
1502
1503 #define BENCHMARK_PRIVATE_CONCAT(a, b, c) BENCHMARK_PRIVATE_CONCAT2(a, b, c)
1504 #define BENCHMARK_PRIVATE_CONCAT2(a, b, c) a##b##c
1505 // Helper for concatenation with macro name expansion
1506 #define BENCHMARK_PRIVATE_CONCAT_NAME(BaseClass, Method) \
1507 BaseClass##_##Method##_Benchmark
1508
1509 #define BENCHMARK_PRIVATE_DECLARE(n) \
1510 static ::benchmark::internal::Benchmark* BENCHMARK_PRIVATE_NAME(n) \
1511 BENCHMARK_UNUSED
1512
1513 #ifdef BENCHMARK_HAS_CXX11
1514 #define BENCHMARK(...) \
1515 BENCHMARK_PRIVATE_DECLARE(_benchmark_) = \
1516 (::benchmark::internal::RegisterBenchmarkInternal( \
1517 new ::benchmark::internal::FunctionBenchmark(#__VA_ARGS__, \
1518 __VA_ARGS__)))
1519 #else
1520 #define BENCHMARK(n) \
1521 BENCHMARK_PRIVATE_DECLARE(n) = \
1522 (::benchmark::internal::RegisterBenchmarkInternal( \
1523 new ::benchmark::internal::FunctionBenchmark(#n, n)))
1524 #endif // BENCHMARK_HAS_CXX11
1525
1526 // Old-style macros
1527 #define BENCHMARK_WITH_ARG(n, a) BENCHMARK(n)->Arg((a))
1528 #define BENCHMARK_WITH_ARG2(n, a1, a2) BENCHMARK(n)->Args({(a1), (a2)})
1529 #define BENCHMARK_WITH_UNIT(n, t) BENCHMARK(n)->Unit((t))
1530 #define BENCHMARK_RANGE(n, lo, hi) BENCHMARK(n)->Range((lo), (hi))
1531 #define BENCHMARK_RANGE2(n, l1, h1, l2, h2) \
1532 BENCHMARK(n)->RangePair({{(l1), (h1)}, {(l2), (h2)}})
1533
1534 #ifdef BENCHMARK_HAS_CXX11
1535
1536 // Register a benchmark which invokes the function specified by `func`
1537 // with the additional arguments specified by `...`.
1538 //
1539 // For example:
1540 //
1541 // template <class ...ExtraArgs>`
1542 // void BM_takes_args(benchmark::State& state, ExtraArgs&&... extra_args) {
1543 // [...]
1544 //}
1545 // /* Registers a benchmark named "BM_takes_args/int_string_test` */
1546 // BENCHMARK_CAPTURE(BM_takes_args, int_string_test, 42, std::string("abc"));
1547 #define BENCHMARK_CAPTURE(func, test_case_name, ...) \
1548 BENCHMARK_PRIVATE_DECLARE(_benchmark_) = \
1549 (::benchmark::internal::RegisterBenchmarkInternal( \
1550 new ::benchmark::internal::FunctionBenchmark( \
1551 #func "/" #test_case_name, \
1552 [](::benchmark::State& st) { func(st, __VA_ARGS__); })))
1553
1554 #endif // BENCHMARK_HAS_CXX11
1555
1556 // This will register a benchmark for a templatized function. For example:
1557 //
1558 // template<int arg>
1559 // void BM_Foo(int iters);
1560 //
1561 // BENCHMARK_TEMPLATE(BM_Foo, 1);
1562 //
1563 // will register BM_Foo<1> as a benchmark.
1564 #define BENCHMARK_TEMPLATE1(n, a) \
1565 BENCHMARK_PRIVATE_DECLARE(n) = \
1566 (::benchmark::internal::RegisterBenchmarkInternal( \
1567 new ::benchmark::internal::FunctionBenchmark(#n "<" #a ">", n<a>)))
1568
1569 #define BENCHMARK_TEMPLATE2(n, a, b) \
1570 BENCHMARK_PRIVATE_DECLARE(n) = \
1571 (::benchmark::internal::RegisterBenchmarkInternal( \
1572 new ::benchmark::internal::FunctionBenchmark(#n "<" #a "," #b ">", \
1573 n<a, b>)))
1574
1575 #ifdef BENCHMARK_HAS_CXX11
1576 #define BENCHMARK_TEMPLATE(n, ...) \
1577 BENCHMARK_PRIVATE_DECLARE(n) = \
1578 (::benchmark::internal::RegisterBenchmarkInternal( \
1579 new ::benchmark::internal::FunctionBenchmark( \
1580 #n "<" #__VA_ARGS__ ">", n<__VA_ARGS__>)))
1581 #else
1582 #define BENCHMARK_TEMPLATE(n, a) BENCHMARK_TEMPLATE1(n, a)
1583 #endif
1584
1585 #ifdef BENCHMARK_HAS_CXX11
1586 // This will register a benchmark for a templatized function,
1587 // with the additional arguments specified by `...`.
1588 //
1589 // For example:
1590 //
1591 // template <typename T, class ...ExtraArgs>`
1592 // void BM_takes_args(benchmark::State& state, ExtraArgs&&... extra_args) {
1593 // [...]
1594 //}
1595 // /* Registers a benchmark named "BM_takes_args<void>/int_string_test` */
1596 // BENCHMARK_TEMPLATE1_CAPTURE(BM_takes_args, void, int_string_test, 42,
1597 // std::string("abc"));
1598 #define BENCHMARK_TEMPLATE1_CAPTURE(func, a, test_case_name, ...) \
1599 BENCHMARK_CAPTURE(func<a>, test_case_name, __VA_ARGS__)
1600
1601 #define BENCHMARK_TEMPLATE2_CAPTURE(func, a, b, test_case_name, ...) \
1602 BENCHMARK_PRIVATE_DECLARE(func) = \
1603 (::benchmark::internal::RegisterBenchmarkInternal( \
1604 new ::benchmark::internal::FunctionBenchmark( \
1605 #func "<" #a "," #b ">" \
1606 "/" #test_case_name, \
1607 [](::benchmark::State& st) { func<a, b>(st, __VA_ARGS__); })))
1608 #endif // BENCHMARK_HAS_CXX11
1609
1610 #define BENCHMARK_PRIVATE_DECLARE_F(BaseClass, Method) \
1611 class BaseClass##_##Method##_Benchmark : public BaseClass { \
1612 public: \
1613 BaseClass##_##Method##_Benchmark() { \
1614 this->SetName(#BaseClass "/" #Method); \
1615 } \
1616 \
1617 protected: \
1618 void BenchmarkCase(::benchmark::State&) BENCHMARK_OVERRIDE; \
1619 };
1620
1621 #define BENCHMARK_TEMPLATE1_PRIVATE_DECLARE_F(BaseClass, Method, a) \
1622 class BaseClass##_##Method##_Benchmark : public BaseClass<a> { \
1623 public: \
1624 BaseClass##_##Method##_Benchmark() { \
1625 this->SetName(#BaseClass "<" #a ">/" #Method); \
1626 } \
1627 \
1628 protected: \
1629 void BenchmarkCase(::benchmark::State&) BENCHMARK_OVERRIDE; \
1630 };
1631
1632 #define BENCHMARK_TEMPLATE2_PRIVATE_DECLARE_F(BaseClass, Method, a, b) \
1633 class BaseClass##_##Method##_Benchmark : public BaseClass<a, b> { \
1634 public: \
1635 BaseClass##_##Method##_Benchmark() { \
1636 this->SetName(#BaseClass "<" #a "," #b ">/" #Method); \
1637 } \
1638 \
1639 protected: \
1640 void BenchmarkCase(::benchmark::State&) BENCHMARK_OVERRIDE; \
1641 };
1642
1643 #ifdef BENCHMARK_HAS_CXX11
1644 #define BENCHMARK_TEMPLATE_PRIVATE_DECLARE_F(BaseClass, Method, ...) \
1645 class BaseClass##_##Method##_Benchmark : public BaseClass<__VA_ARGS__> { \
1646 public: \
1647 BaseClass##_##Method##_Benchmark() { \
1648 this->SetName(#BaseClass "<" #__VA_ARGS__ ">/" #Method); \
1649 } \
1650 \
1651 protected: \
1652 void BenchmarkCase(::benchmark::State&) BENCHMARK_OVERRIDE; \
1653 };
1654 #else
1655 #define BENCHMARK_TEMPLATE_PRIVATE_DECLARE_F(n, a) \
1656 BENCHMARK_TEMPLATE1_PRIVATE_DECLARE_F(n, a)
1657 #endif
1658
1659 #define BENCHMARK_DEFINE_F(BaseClass, Method) \
1660 BENCHMARK_PRIVATE_DECLARE_F(BaseClass, Method) \
1661 void BENCHMARK_PRIVATE_CONCAT_NAME(BaseClass, Method)::BenchmarkCase
1662
1663 #define BENCHMARK_TEMPLATE1_DEFINE_F(BaseClass, Method, a) \
1664 BENCHMARK_TEMPLATE1_PRIVATE_DECLARE_F(BaseClass, Method, a) \
1665 void BENCHMARK_PRIVATE_CONCAT_NAME(BaseClass, Method)::BenchmarkCase
1666
1667 #define BENCHMARK_TEMPLATE2_DEFINE_F(BaseClass, Method, a, b) \
1668 BENCHMARK_TEMPLATE2_PRIVATE_DECLARE_F(BaseClass, Method, a, b) \
1669 void BENCHMARK_PRIVATE_CONCAT_NAME(BaseClass, Method)::BenchmarkCase
1670
1671 #ifdef BENCHMARK_HAS_CXX11
1672 #define BENCHMARK_TEMPLATE_DEFINE_F(BaseClass, Method, ...) \
1673 BENCHMARK_TEMPLATE_PRIVATE_DECLARE_F(BaseClass, Method, __VA_ARGS__) \
1674 void BENCHMARK_PRIVATE_CONCAT_NAME(BaseClass, Method)::BenchmarkCase
1675 #else
1676 #define BENCHMARK_TEMPLATE_DEFINE_F(BaseClass, Method, a) \
1677 BENCHMARK_TEMPLATE1_DEFINE_F(BaseClass, Method, a)
1678 #endif
1679
1680 #define BENCHMARK_REGISTER_F(BaseClass, Method) \
1681 BENCHMARK_PRIVATE_REGISTER_F(BENCHMARK_PRIVATE_CONCAT_NAME(BaseClass, Method))
1682
1683 #define BENCHMARK_PRIVATE_REGISTER_F(TestName) \
1684 BENCHMARK_PRIVATE_DECLARE(TestName) = \
1685 (::benchmark::internal::RegisterBenchmarkInternal(new TestName()))
1686
1687 // This macro will define and register a benchmark within a fixture class.
1688 #define BENCHMARK_F(BaseClass, Method) \
1689 BENCHMARK_PRIVATE_DECLARE_F(BaseClass, Method) \
1690 BENCHMARK_REGISTER_F(BaseClass, Method); \
1691 void BENCHMARK_PRIVATE_CONCAT_NAME(BaseClass, Method)::BenchmarkCase
1692
1693 #define BENCHMARK_TEMPLATE1_F(BaseClass, Method, a) \
1694 BENCHMARK_TEMPLATE1_PRIVATE_DECLARE_F(BaseClass, Method, a) \
1695 BENCHMARK_REGISTER_F(BaseClass, Method); \
1696 void BENCHMARK_PRIVATE_CONCAT_NAME(BaseClass, Method)::BenchmarkCase
1697
1698 #define BENCHMARK_TEMPLATE2_F(BaseClass, Method, a, b) \
1699 BENCHMARK_TEMPLATE2_PRIVATE_DECLARE_F(BaseClass, Method, a, b) \
1700 BENCHMARK_REGISTER_F(BaseClass, Method); \
1701 void BENCHMARK_PRIVATE_CONCAT_NAME(BaseClass, Method)::BenchmarkCase
1702
1703 #ifdef BENCHMARK_HAS_CXX11
1704 #define BENCHMARK_TEMPLATE_F(BaseClass, Method, ...) \
1705 BENCHMARK_TEMPLATE_PRIVATE_DECLARE_F(BaseClass, Method, __VA_ARGS__) \
1706 BENCHMARK_REGISTER_F(BaseClass, Method); \
1707 void BENCHMARK_PRIVATE_CONCAT_NAME(BaseClass, Method)::BenchmarkCase
1708 #else
1709 #define BENCHMARK_TEMPLATE_F(BaseClass, Method, a) \
1710 BENCHMARK_TEMPLATE1_F(BaseClass, Method, a)
1711 #endif
1712
1713 // Helper macro to create a main routine in a test that runs the benchmarks
1714 // Note the workaround for Hexagon simulator passing argc != 0, argv = NULL.
1715 #define BENCHMARK_MAIN() \
1716 int main(int argc, char** argv) { \
1717 char arg0_default[] = "benchmark"; \
1718 char* args_default = arg0_default; \
1719 if (!argv) { \
1720 argc = 1; \
1721 argv = &args_default; \
1722 } \
1723 ::benchmark::Initialize(&argc, argv); \
1724 if (::benchmark::ReportUnrecognizedArguments(argc, argv)) return 1; \
1725 ::benchmark::RunSpecifiedBenchmarks(); \
1726 ::benchmark::Shutdown(); \
1727 return 0; \
1728 } \
1729 int main(int, char**)
1730
1731 // ------------------------------------------------------
1732 // Benchmark Reporters
1733
1734 namespace benchmark {
1735
1736 struct BENCHMARK_EXPORT CPUInfo {
1737 struct CacheInfo {
1738 std::string type;
1739 int level;
1740 int size;
1741 int num_sharing;
1742 };
1743
1744 enum Scaling { UNKNOWN, ENABLED, DISABLED };
1745
1746 int num_cpus;
1747 Scaling scaling;
1748 double cycles_per_second;
1749 std::vector<CacheInfo> caches;
1750 std::vector<double> load_avg;
1751
1752 static const CPUInfo& Get();
1753
1754 private:
1755 CPUInfo();
1756 BENCHMARK_DISALLOW_COPY_AND_ASSIGN(CPUInfo);
1757 };
1758
1759 // Adding Struct for System Information
1760 struct BENCHMARK_EXPORT SystemInfo {
1761 std::string name;
1762 static const SystemInfo& Get();
1763
1764 private:
1765 SystemInfo();
1766 BENCHMARK_DISALLOW_COPY_AND_ASSIGN(SystemInfo);
1767 };
1768
1769 // BenchmarkName contains the components of the Benchmark's name
1770 // which allows individual fields to be modified or cleared before
1771 // building the final name using 'str()'.
1772 struct BENCHMARK_EXPORT BenchmarkName {
1773 std::string function_name;
1774 std::string args;
1775 std::string min_time;
1776 std::string min_warmup_time;
1777 std::string iterations;
1778 std::string repetitions;
1779 std::string time_type;
1780 std::string threads;
1781
1782 // Return the full name of the benchmark with each non-empty
1783 // field separated by a '/'
1784 std::string str() const;
1785 };
1786
1787 // Interface for custom benchmark result printers.
1788 // By default, benchmark reports are printed to stdout. However an application
1789 // can control the destination of the reports by calling
1790 // RunSpecifiedBenchmarks and passing it a custom reporter object.
1791 // The reporter object must implement the following interface.
1792 class BENCHMARK_EXPORT BenchmarkReporter {
1793 public:
1794 struct Context {
1795 CPUInfo const& cpu_info;
1796 SystemInfo const& sys_info;
1797 // The number of chars in the longest benchmark name.
1798 size_t name_field_width;
1799 static const char* executable_name;
1800 Context();
1801 };
1802
1803 struct BENCHMARK_EXPORT Run {
1804 static const int64_t no_repetition_index = -1;
1805 enum RunType { RT_Iteration, RT_Aggregate };
1806
RunRun1807 Run()
1808 : run_type(RT_Iteration),
1809 aggregate_unit(kTime),
1810 skipped(internal::NotSkipped),
1811 iterations(1),
1812 threads(1),
1813 time_unit(GetDefaultTimeUnit()),
1814 real_accumulated_time(0),
1815 cpu_accumulated_time(0),
1816 max_heapbytes_used(0),
1817 use_real_time_for_initial_big_o(false),
1818 complexity(oNone),
1819 complexity_lambda(),
1820 complexity_n(0),
1821 report_big_o(false),
1822 report_rms(false),
1823 memory_result(NULL),
1824 allocs_per_iter(0.0) {}
1825
1826 std::string benchmark_name() const;
1827 BenchmarkName run_name;
1828 int64_t family_index;
1829 int64_t per_family_instance_index;
1830 RunType run_type;
1831 std::string aggregate_name;
1832 StatisticUnit aggregate_unit;
1833 std::string report_label; // Empty if not set by benchmark.
1834 internal::Skipped skipped;
1835 std::string skip_message;
1836
1837 IterationCount iterations;
1838 int64_t threads;
1839 int64_t repetition_index;
1840 int64_t repetitions;
1841 TimeUnit time_unit;
1842 double real_accumulated_time;
1843 double cpu_accumulated_time;
1844
1845 // Return a value representing the real time per iteration in the unit
1846 // specified by 'time_unit'.
1847 // NOTE: If 'iterations' is zero the returned value represents the
1848 // accumulated time.
1849 double GetAdjustedRealTime() const;
1850
1851 // Return a value representing the cpu time per iteration in the unit
1852 // specified by 'time_unit'.
1853 // NOTE: If 'iterations' is zero the returned value represents the
1854 // accumulated time.
1855 double GetAdjustedCPUTime() const;
1856
1857 // This is set to 0.0 if memory tracing is not enabled.
1858 double max_heapbytes_used;
1859
1860 // By default Big-O is computed for CPU time, but that is not what you want
1861 // to happen when manual time was requested, which is stored as real time.
1862 bool use_real_time_for_initial_big_o;
1863
1864 // Keep track of arguments to compute asymptotic complexity
1865 BigO complexity;
1866 BigOFunc* complexity_lambda;
1867 ComplexityN complexity_n;
1868
1869 // what statistics to compute from the measurements
1870 const std::vector<internal::Statistics>* statistics;
1871
1872 // Inform print function whether the current run is a complexity report
1873 bool report_big_o;
1874 bool report_rms;
1875
1876 UserCounters counters;
1877
1878 // Memory metrics.
1879 const MemoryManager::Result* memory_result;
1880 double allocs_per_iter;
1881 };
1882
1883 struct PerFamilyRunReports {
PerFamilyRunReportsPerFamilyRunReports1884 PerFamilyRunReports() : num_runs_total(0), num_runs_done(0) {}
1885
1886 // How many runs will all instances of this benchmark perform?
1887 int num_runs_total;
1888
1889 // How many runs have happened already?
1890 int num_runs_done;
1891
1892 // The reports about (non-errneous!) runs of this family.
1893 std::vector<BenchmarkReporter::Run> Runs;
1894 };
1895
1896 // Construct a BenchmarkReporter with the output stream set to 'std::cout'
1897 // and the error stream set to 'std::cerr'
1898 BenchmarkReporter();
1899
1900 // Called once for every suite of benchmarks run.
1901 // The parameter "context" contains information that the
1902 // reporter may wish to use when generating its report, for example the
1903 // platform under which the benchmarks are running. The benchmark run is
1904 // never started if this function returns false, allowing the reporter
1905 // to skip runs based on the context information.
1906 virtual bool ReportContext(const Context& context) = 0;
1907
1908 // Called once for each group of benchmark runs, gives information about
1909 // the configurations of the runs.
ReportRunsConfig(double,bool,IterationCount)1910 virtual void ReportRunsConfig(double /*min_time*/,
1911 bool /*has_explicit_iters*/,
1912 IterationCount /*iters*/) {}
1913
1914 // Called once for each group of benchmark runs, gives information about
1915 // cpu-time and heap memory usage during the benchmark run. If the group
1916 // of runs contained more than two entries then 'report' contains additional
1917 // elements representing the mean and standard deviation of those runs.
1918 // Additionally if this group of runs was the last in a family of benchmarks
1919 // 'reports' contains additional entries representing the asymptotic
1920 // complexity and RMS of that benchmark family.
1921 virtual void ReportRuns(const std::vector<Run>& report) = 0;
1922
1923 // Called once and only once after ever group of benchmarks is run and
1924 // reported.
Finalize()1925 virtual void Finalize() {}
1926
1927 // REQUIRES: The object referenced by 'out' is valid for the lifetime
1928 // of the reporter.
SetOutputStream(std::ostream * out)1929 void SetOutputStream(std::ostream* out) {
1930 assert(out);
1931 output_stream_ = out;
1932 }
1933
1934 // REQUIRES: The object referenced by 'err' is valid for the lifetime
1935 // of the reporter.
SetErrorStream(std::ostream * err)1936 void SetErrorStream(std::ostream* err) {
1937 assert(err);
1938 error_stream_ = err;
1939 }
1940
GetOutputStream()1941 std::ostream& GetOutputStream() const { return *output_stream_; }
1942
GetErrorStream()1943 std::ostream& GetErrorStream() const { return *error_stream_; }
1944
1945 virtual ~BenchmarkReporter();
1946
1947 // Write a human readable string to 'out' representing the specified
1948 // 'context'.
1949 // REQUIRES: 'out' is non-null.
1950 static void PrintBasicContext(std::ostream* out, Context const& context);
1951
1952 private:
1953 std::ostream* output_stream_;
1954 std::ostream* error_stream_;
1955 };
1956
1957 // Simple reporter that outputs benchmark data to the console. This is the
1958 // default reporter used by RunSpecifiedBenchmarks().
1959 class BENCHMARK_EXPORT ConsoleReporter : public BenchmarkReporter {
1960 public:
1961 enum OutputOptions {
1962 OO_None = 0,
1963 OO_Color = 1,
1964 OO_Tabular = 2,
1965 OO_ColorTabular = OO_Color | OO_Tabular,
1966 OO_Defaults = OO_ColorTabular
1967 };
1968 explicit ConsoleReporter(OutputOptions opts_ = OO_Defaults)
output_options_(opts_)1969 : output_options_(opts_), name_field_width_(0), printed_header_(false) {}
1970
1971 bool ReportContext(const Context& context) BENCHMARK_OVERRIDE;
1972 void ReportRuns(const std::vector<Run>& reports) BENCHMARK_OVERRIDE;
1973
1974 protected:
1975 virtual void PrintRunData(const Run& report);
1976 virtual void PrintHeader(const Run& report);
1977
1978 OutputOptions output_options_;
1979 size_t name_field_width_;
1980 UserCounters prev_counters_;
1981 bool printed_header_;
1982 };
1983
1984 class BENCHMARK_EXPORT JSONReporter : public BenchmarkReporter {
1985 public:
JSONReporter()1986 JSONReporter() : first_report_(true) {}
1987 bool ReportContext(const Context& context) BENCHMARK_OVERRIDE;
1988 void ReportRuns(const std::vector<Run>& reports) BENCHMARK_OVERRIDE;
1989 void Finalize() BENCHMARK_OVERRIDE;
1990
1991 private:
1992 void PrintRunData(const Run& report);
1993
1994 bool first_report_;
1995 };
1996
1997 class BENCHMARK_EXPORT BENCHMARK_DEPRECATED_MSG(
1998 "The CSV Reporter will be removed in a future release") CSVReporter
1999 : public BenchmarkReporter {
2000 public:
CSVReporter()2001 CSVReporter() : printed_header_(false) {}
2002 bool ReportContext(const Context& context) BENCHMARK_OVERRIDE;
2003 void ReportRuns(const std::vector<Run>& reports) BENCHMARK_OVERRIDE;
2004
2005 private:
2006 void PrintRunData(const Run& report);
2007
2008 bool printed_header_;
2009 std::set<std::string> user_counter_names_;
2010 };
2011
GetTimeUnitString(TimeUnit unit)2012 inline const char* GetTimeUnitString(TimeUnit unit) {
2013 switch (unit) {
2014 case kSecond:
2015 return "s";
2016 case kMillisecond:
2017 return "ms";
2018 case kMicrosecond:
2019 return "us";
2020 case kNanosecond:
2021 return "ns";
2022 }
2023 BENCHMARK_UNREACHABLE();
2024 }
2025
GetTimeUnitMultiplier(TimeUnit unit)2026 inline double GetTimeUnitMultiplier(TimeUnit unit) {
2027 switch (unit) {
2028 case kSecond:
2029 return 1;
2030 case kMillisecond:
2031 return 1e3;
2032 case kMicrosecond:
2033 return 1e6;
2034 case kNanosecond:
2035 return 1e9;
2036 }
2037 BENCHMARK_UNREACHABLE();
2038 }
2039
2040 // Creates a list of integer values for the given range and multiplier.
2041 // This can be used together with ArgsProduct() to allow multiple ranges
2042 // with different multipliers.
2043 // Example:
2044 // ArgsProduct({
2045 // CreateRange(0, 1024, /*multi=*/32),
2046 // CreateRange(0, 100, /*multi=*/4),
2047 // CreateDenseRange(0, 4, /*step=*/1),
2048 // });
2049 BENCHMARK_EXPORT
2050 std::vector<int64_t> CreateRange(int64_t lo, int64_t hi, int multi);
2051
2052 // Creates a list of integer values for the given range and step.
2053 BENCHMARK_EXPORT
2054 std::vector<int64_t> CreateDenseRange(int64_t start, int64_t limit, int step);
2055
2056 } // namespace benchmark
2057
2058 #if defined(_MSC_VER)
2059 #pragma warning(pop)
2060 #endif
2061
2062 #endif // BENCHMARK_BENCHMARK_H_
2063