1 // Copyright 2010 Google LLC
2 //
3 // Redistribution and use in source and binary forms, with or without
4 // modification, are permitted provided that the following conditions are
5 // met:
6 //
7 // * Redistributions of source code must retain the above copyright
8 // notice, this list of conditions and the following disclaimer.
9 // * Redistributions in binary form must reproduce the above
10 // copyright notice, this list of conditions and the following disclaimer
11 // in the documentation and/or other materials provided with the
12 // distribution.
13 // * Neither the name of Google LLC nor the names of its
14 // contributors may be used to endorse or promote products derived from
15 // this software without specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
29 // The ExceptionHandler object installs signal handlers for a number of
30 // signals. We rely on the signal handler running on the thread which crashed
31 // in order to identify it. This is true of the synchronous signals (SEGV etc),
32 // but not true of ABRT. Thus, if you send ABRT to yourself in a program which
33 // uses ExceptionHandler, you need to use tgkill to direct it to the current
34 // thread.
35 //
36 // The signal flow looks like this:
37 //
38 // SignalHandler (uses a global stack of ExceptionHandler objects to find
39 // | one to handle the signal. If the first rejects it, try
40 // | the second etc...)
41 // V
42 // HandleSignal ----------------------------| (clones a new process which
43 // | | shares an address space with
44 // (wait for cloned | the crashed process. This
45 // process) | allows us to ptrace the crashed
46 // | | process)
47 // V V
48 // (set signal handler to ThreadEntry (static function to bounce
49 // SIG_DFL and rethrow, | back into the object)
50 // killing the crashed |
51 // process) V
52 // DoDump (writes minidump)
53 // |
54 // V
55 // sys_exit
56 //
57
58 // This code is a little fragmented. Different functions of the ExceptionHandler
59 // class run in a number of different contexts. Some of them run in a normal
60 // context and are easy to code, others run in a compromised context and the
61 // restrictions at the top of minidump_writer.cc apply: no libc and use the
62 // alternative malloc. Each function should have comment above it detailing the
63 // context which it runs in.
64
65 #ifdef HAVE_CONFIG_H
66 #include <config.h> // Must come first
67 #endif
68
69 #include "client/linux/handler/exception_handler.h"
70
71 #include <errno.h>
72 #include <fcntl.h>
73 #include <linux/limits.h>
74 #include <pthread.h>
75 #include <sched.h>
76 #include <signal.h>
77 #include <stdio.h>
78 #include <sys/mman.h>
79 #include <sys/prctl.h>
80 #include <sys/syscall.h>
81 #include <sys/wait.h>
82 #include <unistd.h>
83
84 #include <sys/ucontext.h>
85 #include <sys/user.h>
86 #include <ucontext.h>
87
88 #include <algorithm>
89 #include <utility>
90 #include <vector>
91
92 #include "common/basictypes.h"
93 #include "common/linux/breakpad_getcontext.h"
94 #include "common/linux/linux_libc_support.h"
95 #include "common/memory_allocator.h"
96 #include "client/linux/log/log.h"
97 #include "client/linux/microdump_writer/microdump_writer.h"
98 #include "client/linux/minidump_writer/linux_dumper.h"
99 #include "client/linux/minidump_writer/minidump_writer.h"
100 #include "common/linux/eintr_wrapper.h"
101 #include "third_party/lss/linux_syscall_support.h"
102
103 #if defined(__ANDROID__)
104 #include "linux/sched.h"
105 #endif
106
107 #ifndef PR_SET_PTRACER
108 #define PR_SET_PTRACER 0x59616d61
109 #endif
110
111 namespace google_breakpad {
112
113 namespace {
114 // The list of signals which we consider to be crashes. The default action for
115 // all these signals must be Core (see man 7 signal) because we rethrow the
116 // signal after handling it and expect that it'll be fatal.
117 const int kExceptionSignals[] = {
118 SIGSEGV, SIGABRT, SIGFPE, SIGILL, SIGBUS, SIGTRAP
119 };
120 const int kNumHandledSignals =
121 sizeof(kExceptionSignals) / sizeof(kExceptionSignals[0]);
122 struct sigaction old_handlers[kNumHandledSignals];
123 bool handlers_installed = false;
124
125 // InstallAlternateStackLocked will store the newly installed stack in new_stack
126 // and (if it exists) the previously installed stack in old_stack.
127 stack_t old_stack;
128 stack_t new_stack;
129 bool stack_installed = false;
130
131 // Create an alternative stack to run the signal handlers on. This is done since
132 // the signal might have been caused by a stack overflow.
133 // Runs before crashing: normal context.
InstallAlternateStackLocked()134 void InstallAlternateStackLocked() {
135 if (stack_installed)
136 return;
137
138 memset(&old_stack, 0, sizeof(old_stack));
139 memset(&new_stack, 0, sizeof(new_stack));
140
141 // SIGSTKSZ may be too small to prevent the signal handlers from overrunning
142 // the alternative stack. Ensure that the size of the alternative stack is
143 // large enough.
144 const unsigned kSigStackSize = std::max<unsigned>(16384, SIGSTKSZ);
145
146 // Only set an alternative stack if there isn't already one, or if the current
147 // one is too small.
148 if (sys_sigaltstack(NULL, &old_stack) == -1 || !old_stack.ss_sp ||
149 old_stack.ss_size < kSigStackSize) {
150 new_stack.ss_sp = calloc(1, kSigStackSize);
151 new_stack.ss_size = kSigStackSize;
152
153 if (sys_sigaltstack(&new_stack, NULL) == -1) {
154 free(new_stack.ss_sp);
155 return;
156 }
157 stack_installed = true;
158 }
159 }
160
161 // Runs before crashing: normal context.
RestoreAlternateStackLocked()162 void RestoreAlternateStackLocked() {
163 if (!stack_installed)
164 return;
165
166 stack_t current_stack;
167 if (sys_sigaltstack(NULL, ¤t_stack) == -1)
168 return;
169
170 // Only restore the old_stack if the current alternative stack is the one
171 // installed by the call to InstallAlternateStackLocked.
172 if (current_stack.ss_sp == new_stack.ss_sp) {
173 if (old_stack.ss_sp) {
174 if (sys_sigaltstack(&old_stack, NULL) == -1)
175 return;
176 } else {
177 stack_t disable_stack;
178 disable_stack.ss_flags = SS_DISABLE;
179 if (sys_sigaltstack(&disable_stack, NULL) == -1)
180 return;
181 }
182 }
183
184 free(new_stack.ss_sp);
185 stack_installed = false;
186 }
187
InstallDefaultHandler(int sig)188 void InstallDefaultHandler(int sig) {
189 #if defined(__ANDROID__)
190 // Android L+ expose signal and sigaction symbols that override the system
191 // ones. There is a bug in these functions where a request to set the handler
192 // to SIG_DFL is ignored. In that case, an infinite loop is entered as the
193 // signal is repeatedly sent to breakpad's signal handler.
194 // To work around this, directly call the system's sigaction.
195 struct kernel_sigaction sa;
196 memset(&sa, 0, sizeof(sa));
197 sys_sigemptyset(&sa.sa_mask);
198 sa.sa_handler_ = SIG_DFL;
199 sa.sa_flags = SA_RESTART;
200 sys_rt_sigaction(sig, &sa, NULL, sizeof(kernel_sigset_t));
201 #else
202 signal(sig, SIG_DFL);
203 #endif
204 }
205
206 // The global exception handler stack. This is needed because there may exist
207 // multiple ExceptionHandler instances in a process. Each will have itself
208 // registered in this stack.
209 std::vector<ExceptionHandler*>* g_handler_stack_ = NULL;
210 pthread_mutex_t g_handler_stack_mutex_ = PTHREAD_MUTEX_INITIALIZER;
211
212 // sizeof(CrashContext) can be too big w.r.t the size of alternatate stack
213 // for SignalHandler(). Keep the crash context as a .bss field. Exception
214 // handlers are serialized by the |g_handler_stack_mutex_| and at most one at a
215 // time can use |g_crash_context_|.
216 ExceptionHandler::CrashContext g_crash_context_;
217
218 FirstChanceHandler g_first_chance_handler_ = nullptr;
219 } // namespace
220
221 // Runs before crashing: normal context.
ExceptionHandler(const MinidumpDescriptor & descriptor,FilterCallback filter,MinidumpCallback callback,void * callback_context,bool install_handler,const int server_fd)222 ExceptionHandler::ExceptionHandler(const MinidumpDescriptor& descriptor,
223 FilterCallback filter,
224 MinidumpCallback callback,
225 void* callback_context,
226 bool install_handler,
227 const int server_fd)
228 : filter_(filter),
229 callback_(callback),
230 callback_context_(callback_context),
231 minidump_descriptor_(descriptor),
232 crash_handler_(NULL) {
233 if (server_fd >= 0)
234 crash_generation_client_.reset(CrashGenerationClient::TryCreate(server_fd));
235
236 if (!IsOutOfProcess() && !minidump_descriptor_.IsFD() &&
237 !minidump_descriptor_.IsMicrodumpOnConsole())
238 minidump_descriptor_.UpdatePath();
239
240 #if defined(__ANDROID__)
241 if (minidump_descriptor_.IsMicrodumpOnConsole())
242 logger::initializeCrashLogWriter();
243 #endif
244
245 pthread_mutex_lock(&g_handler_stack_mutex_);
246
247 // Pre-fault the crash context struct. This is to avoid failing due to OOM
248 // if handling an exception when the process ran out of virtual memory.
249 memset(&g_crash_context_, 0, sizeof(g_crash_context_));
250
251 if (!g_handler_stack_)
252 g_handler_stack_ = new std::vector<ExceptionHandler*>;
253 if (install_handler) {
254 InstallAlternateStackLocked();
255 InstallHandlersLocked();
256 }
257 g_handler_stack_->push_back(this);
258 pthread_mutex_unlock(&g_handler_stack_mutex_);
259 }
260
261 // Runs before crashing: normal context.
~ExceptionHandler()262 ExceptionHandler::~ExceptionHandler() {
263 pthread_mutex_lock(&g_handler_stack_mutex_);
264 std::vector<ExceptionHandler*>::iterator handler =
265 std::find(g_handler_stack_->begin(), g_handler_stack_->end(), this);
266 g_handler_stack_->erase(handler);
267 if (g_handler_stack_->empty()) {
268 delete g_handler_stack_;
269 g_handler_stack_ = NULL;
270 RestoreAlternateStackLocked();
271 RestoreHandlersLocked();
272 }
273 pthread_mutex_unlock(&g_handler_stack_mutex_);
274 }
275
276 // Runs before crashing: normal context.
277 // static
InstallHandlersLocked()278 bool ExceptionHandler::InstallHandlersLocked() {
279 if (handlers_installed)
280 return false;
281
282 // Fail if unable to store all the old handlers.
283 for (int i = 0; i < kNumHandledSignals; ++i) {
284 if (sigaction(kExceptionSignals[i], NULL, &old_handlers[i]) == -1)
285 return false;
286 }
287
288 struct sigaction sa;
289 memset(&sa, 0, sizeof(sa));
290 sigemptyset(&sa.sa_mask);
291
292 // Mask all exception signals when we're handling one of them.
293 for (int i = 0; i < kNumHandledSignals; ++i)
294 sigaddset(&sa.sa_mask, kExceptionSignals[i]);
295
296 sa.sa_sigaction = SignalHandler;
297 sa.sa_flags = SA_ONSTACK | SA_SIGINFO;
298
299 for (int i = 0; i < kNumHandledSignals; ++i) {
300 if (sigaction(kExceptionSignals[i], &sa, NULL) == -1) {
301 // At this point it is impractical to back out changes, and so failure to
302 // install a signal is intentionally ignored.
303 }
304 }
305 handlers_installed = true;
306 return true;
307 }
308
309 // This function runs in a compromised context: see the top of the file.
310 // Runs on the crashing thread.
311 // static
RestoreHandlersLocked()312 void ExceptionHandler::RestoreHandlersLocked() {
313 if (!handlers_installed)
314 return;
315
316 for (int i = 0; i < kNumHandledSignals; ++i) {
317 if (sigaction(kExceptionSignals[i], &old_handlers[i], NULL) == -1) {
318 InstallDefaultHandler(kExceptionSignals[i]);
319 }
320 }
321 handlers_installed = false;
322 }
323
324 // void ExceptionHandler::set_crash_handler(HandlerCallback callback) {
325 // crash_handler_ = callback;
326 // }
327
328 // This function runs in a compromised context: see the top of the file.
329 // Runs on the crashing thread.
330 // static
SignalHandler(int sig,siginfo_t * info,void * uc)331 void ExceptionHandler::SignalHandler(int sig, siginfo_t* info, void* uc) {
332
333 // Give the first chance handler a chance to recover from this signal
334 //
335 // This is primarily used by V8. V8 uses guard regions to guarantee memory
336 // safety in WebAssembly. This means some signals might be expected if they
337 // originate from Wasm code while accessing the guard region. We give V8 the
338 // chance to handle and recover from these signals first.
339 if (g_first_chance_handler_ != nullptr &&
340 g_first_chance_handler_(sig, info, uc)) {
341 return;
342 }
343
344 // All the exception signals are blocked at this point.
345 pthread_mutex_lock(&g_handler_stack_mutex_);
346
347 // Sometimes, Breakpad runs inside a process where some other buggy code
348 // saves and restores signal handlers temporarily with 'signal'
349 // instead of 'sigaction'. This loses the SA_SIGINFO flag associated
350 // with this function. As a consequence, the values of 'info' and 'uc'
351 // become totally bogus, generally inducing a crash.
352 //
353 // The following code tries to detect this case. When it does, it
354 // resets the signal handlers with sigaction + SA_SIGINFO and returns.
355 // This forces the signal to be thrown again, but this time the kernel
356 // will call the function with the right arguments.
357 struct sigaction cur_handler;
358 if (sigaction(sig, NULL, &cur_handler) == 0 &&
359 cur_handler.sa_sigaction == SignalHandler &&
360 (cur_handler.sa_flags & SA_SIGINFO) == 0) {
361 // Reset signal handler with the right flags.
362 sigemptyset(&cur_handler.sa_mask);
363 sigaddset(&cur_handler.sa_mask, sig);
364
365 cur_handler.sa_sigaction = SignalHandler;
366 cur_handler.sa_flags = SA_ONSTACK | SA_SIGINFO;
367
368 if (sigaction(sig, &cur_handler, NULL) == -1) {
369 // When resetting the handler fails, try to reset the
370 // default one to avoid an infinite loop here.
371 InstallDefaultHandler(sig);
372 }
373 pthread_mutex_unlock(&g_handler_stack_mutex_);
374 return;
375 }
376
377 bool handled = false;
378 for (int i = g_handler_stack_->size() - 1; !handled && i >= 0; --i) {
379 handled = (*g_handler_stack_)[i]->HandleSignal(sig, info, uc);
380 }
381
382 // Upon returning from this signal handler, sig will become unmasked and then
383 // it will be retriggered. If one of the ExceptionHandlers handled it
384 // successfully, restore the default handler. Otherwise, restore the
385 // previously installed handler. Then, when the signal is retriggered, it will
386 // be delivered to the appropriate handler.
387 if (handled) {
388 InstallDefaultHandler(sig);
389 } else {
390 RestoreHandlersLocked();
391 }
392
393 pthread_mutex_unlock(&g_handler_stack_mutex_);
394
395 // info->si_code <= 0 iff SI_FROMUSER (SI_FROMKERNEL otherwise).
396 if (info->si_code <= 0 || sig == SIGABRT) {
397 // This signal was triggered by somebody sending us the signal with kill().
398 // In order to retrigger it, we have to queue a new signal by calling
399 // kill() ourselves. The special case (si_pid == 0 && sig == SIGABRT) is
400 // due to the kernel sending a SIGABRT from a user request via SysRQ.
401 if (sys_tgkill(getpid(), syscall(__NR_gettid), sig) < 0) {
402 // If we failed to kill ourselves (e.g. because a sandbox disallows us
403 // to do so), we instead resort to terminating our process. This will
404 // result in an incorrect exit code.
405 _exit(1);
406 }
407 } else {
408 // This was a synchronous signal triggered by a hard fault (e.g. SIGSEGV).
409 // No need to reissue the signal. It will automatically trigger again,
410 // when we return from the signal handler.
411 }
412 }
413
414 struct ThreadArgument {
415 pid_t pid; // the crashing process
416 const MinidumpDescriptor* minidump_descriptor;
417 ExceptionHandler* handler;
418 const void* context; // a CrashContext structure
419 size_t context_size;
420 };
421
422 // This is the entry function for the cloned process. We are in a compromised
423 // context here: see the top of the file.
424 // static
ThreadEntry(void * arg)425 int ExceptionHandler::ThreadEntry(void* arg) {
426 const ThreadArgument* thread_arg = reinterpret_cast<ThreadArgument*>(arg);
427
428 // Close the write end of the pipe. This allows us to fail if the parent dies
429 // while waiting for the continue signal.
430 sys_close(thread_arg->handler->fdes[1]);
431
432 // Block here until the crashing process unblocks us when
433 // we're allowed to use ptrace
434 thread_arg->handler->WaitForContinueSignal();
435 sys_close(thread_arg->handler->fdes[0]);
436
437 return thread_arg->handler->DoDump(thread_arg->pid, thread_arg->context,
438 thread_arg->context_size) == false;
439 }
440
441 // This function runs in a compromised context: see the top of the file.
442 // Runs on the crashing thread.
HandleSignal(int,siginfo_t * info,void * uc)443 bool ExceptionHandler::HandleSignal(int /*sig*/, siginfo_t* info, void* uc) {
444 if (filter_ && !filter_(callback_context_))
445 return false;
446
447 // Allow ourselves to be dumped if the signal is trusted.
448 bool signal_trusted = info->si_code > 0;
449 bool signal_pid_trusted = info->si_code == SI_USER ||
450 info->si_code == SI_TKILL;
451 if (signal_trusted || (signal_pid_trusted && info->si_pid == getpid())) {
452 sys_prctl(PR_SET_DUMPABLE, 1, 0, 0, 0);
453 }
454
455 // Fill in all the holes in the struct to make Valgrind happy.
456 memset(&g_crash_context_, 0, sizeof(g_crash_context_));
457 memcpy(&g_crash_context_.siginfo, info, sizeof(siginfo_t));
458 memcpy(&g_crash_context_.context, uc, sizeof(ucontext_t));
459 #if defined(__aarch64__)
460 ucontext_t* uc_ptr = (ucontext_t*)uc;
461 struct fpsimd_context* fp_ptr =
462 (struct fpsimd_context*)&uc_ptr->uc_mcontext.__reserved;
463 if (fp_ptr->head.magic == FPSIMD_MAGIC) {
464 memcpy(&g_crash_context_.float_state, fp_ptr,
465 sizeof(g_crash_context_.float_state));
466 }
467 #elif GOOGLE_BREAKPAD_CRASH_CONTEXT_HAS_FLOAT_STATE
468 ucontext_t* uc_ptr = (ucontext_t*)uc;
469 if (uc_ptr->uc_mcontext.fpregs) {
470 memcpy(&g_crash_context_.float_state, uc_ptr->uc_mcontext.fpregs,
471 sizeof(g_crash_context_.float_state));
472 }
473 #endif
474 g_crash_context_.tid = syscall(__NR_gettid);
475 if (crash_handler_ != NULL) {
476 if (crash_handler_(&g_crash_context_, sizeof(g_crash_context_),
477 callback_context_)) {
478 return true;
479 }
480 }
481 return GenerateDump(&g_crash_context_);
482 }
483
484 // This is a public interface to HandleSignal that allows the client to
485 // generate a crash dump. This function may run in a compromised context.
SimulateSignalDelivery(int sig)486 bool ExceptionHandler::SimulateSignalDelivery(int sig) {
487 siginfo_t siginfo = {};
488 // Mimic a trusted signal to allow tracing the process (see
489 // ExceptionHandler::HandleSignal().
490 siginfo.si_code = SI_USER;
491 siginfo.si_pid = getpid();
492 ucontext_t context;
493 getcontext(&context);
494 return HandleSignal(sig, &siginfo, &context);
495 }
496
497 // This function may run in a compromised context: see the top of the file.
GenerateDump(CrashContext * context)498 bool ExceptionHandler::GenerateDump(CrashContext* context) {
499 if (IsOutOfProcess())
500 return crash_generation_client_->RequestDump(context, sizeof(*context));
501
502 // Allocating too much stack isn't a problem, and better to err on the side
503 // of caution than smash it into random locations.
504 static const unsigned kChildStackSize = 16000;
505 PageAllocator allocator;
506 uint8_t* stack = reinterpret_cast<uint8_t*>(allocator.Alloc(kChildStackSize));
507 if (!stack)
508 return false;
509 // clone() needs the top-most address. (scrub just to be safe)
510 stack += kChildStackSize;
511 my_memset(stack - 16, 0, 16);
512
513 ThreadArgument thread_arg;
514 thread_arg.handler = this;
515 thread_arg.minidump_descriptor = &minidump_descriptor_;
516 thread_arg.pid = getpid();
517 thread_arg.context = context;
518 thread_arg.context_size = sizeof(*context);
519
520 // We need to explicitly enable ptrace of parent processes on some
521 // kernels, but we need to know the PID of the cloned process before we
522 // can do this. Create a pipe here which we can use to block the
523 // cloned process after creating it, until we have explicitly enabled ptrace
524 if (sys_pipe(fdes) == -1) {
525 // Creating the pipe failed. We'll log an error but carry on anyway,
526 // as we'll probably still get a useful crash report. All that will happen
527 // is the write() and read() calls will fail with EBADF
528 static const char no_pipe_msg[] = "ExceptionHandler::GenerateDump "
529 "sys_pipe failed:";
530 logger::write(no_pipe_msg, sizeof(no_pipe_msg) - 1);
531 logger::write(strerror(errno), strlen(strerror(errno)));
532 logger::write("\n", 1);
533
534 // Ensure fdes[0] and fdes[1] are invalid file descriptors.
535 fdes[0] = fdes[1] = -1;
536 }
537
538 const pid_t child = sys_clone(
539 ThreadEntry, stack, CLONE_FS | CLONE_UNTRACED, &thread_arg, NULL, NULL,
540 NULL);
541 if (child == -1) {
542 sys_close(fdes[0]);
543 sys_close(fdes[1]);
544 return false;
545 }
546
547 // Close the read end of the pipe.
548 sys_close(fdes[0]);
549 // Allow the child to ptrace us
550 sys_prctl(PR_SET_PTRACER, child, 0, 0, 0);
551 SendContinueSignalToChild();
552 int status = 0;
553 const int r = HANDLE_EINTR(sys_waitpid(child, &status, __WALL));
554
555 sys_close(fdes[1]);
556
557 if (r == -1) {
558 static const char msg[] = "ExceptionHandler::GenerateDump waitpid failed:";
559 logger::write(msg, sizeof(msg) - 1);
560 logger::write(strerror(errno), strlen(strerror(errno)));
561 logger::write("\n", 1);
562 }
563
564 bool success = r != -1 && WIFEXITED(status) && WEXITSTATUS(status) == 0;
565 if (callback_)
566 success = callback_(minidump_descriptor_, callback_context_, success);
567 return success;
568 }
569
570 // This function runs in a compromised context: see the top of the file.
SendContinueSignalToChild()571 void ExceptionHandler::SendContinueSignalToChild() {
572 static const char okToContinueMessage = 'a';
573 int r;
574 r = HANDLE_EINTR(sys_write(fdes[1], &okToContinueMessage, sizeof(char)));
575 if (r == -1) {
576 static const char msg[] = "ExceptionHandler::SendContinueSignalToChild "
577 "sys_write failed:";
578 logger::write(msg, sizeof(msg) - 1);
579 logger::write(strerror(errno), strlen(strerror(errno)));
580 logger::write("\n", 1);
581 }
582 }
583
584 // This function runs in a compromised context: see the top of the file.
585 // Runs on the cloned process.
WaitForContinueSignal()586 void ExceptionHandler::WaitForContinueSignal() {
587 int r;
588 char receivedMessage;
589 r = HANDLE_EINTR(sys_read(fdes[0], &receivedMessage, sizeof(char)));
590 if (r == -1) {
591 static const char msg[] = "ExceptionHandler::WaitForContinueSignal "
592 "sys_read failed:";
593 logger::write(msg, sizeof(msg) - 1);
594 logger::write(strerror(errno), strlen(strerror(errno)));
595 logger::write("\n", 1);
596 }
597 }
598
599 // This function runs in a compromised context: see the top of the file.
600 // Runs on the cloned process.
DoDump(pid_t crashing_process,const void * context,size_t context_size)601 bool ExceptionHandler::DoDump(pid_t crashing_process, const void* context,
602 size_t context_size) {
603 const bool may_skip_dump =
604 minidump_descriptor_.skip_dump_if_principal_mapping_not_referenced();
605 const uintptr_t principal_mapping_address =
606 minidump_descriptor_.address_within_principal_mapping();
607 const bool sanitize_stacks = minidump_descriptor_.sanitize_stacks();
608 if (minidump_descriptor_.IsMicrodumpOnConsole()) {
609 return google_breakpad::WriteMicrodump(
610 crashing_process,
611 context,
612 context_size,
613 mapping_list_,
614 may_skip_dump,
615 principal_mapping_address,
616 sanitize_stacks,
617 *minidump_descriptor_.microdump_extra_info());
618 }
619 if (minidump_descriptor_.IsFD()) {
620 return google_breakpad::WriteMinidump(minidump_descriptor_.fd(),
621 minidump_descriptor_.size_limit(),
622 crashing_process,
623 context,
624 context_size,
625 mapping_list_,
626 app_memory_list_,
627 may_skip_dump,
628 principal_mapping_address,
629 sanitize_stacks);
630 }
631 return google_breakpad::WriteMinidump(minidump_descriptor_.path(),
632 minidump_descriptor_.size_limit(),
633 crashing_process,
634 context,
635 context_size,
636 mapping_list_,
637 app_memory_list_,
638 may_skip_dump,
639 principal_mapping_address,
640 sanitize_stacks);
641 }
642
643 // static
WriteMinidump(const string & dump_path,MinidumpCallback callback,void * callback_context)644 bool ExceptionHandler::WriteMinidump(const string& dump_path,
645 MinidumpCallback callback,
646 void* callback_context) {
647 MinidumpDescriptor descriptor(dump_path);
648 ExceptionHandler eh(descriptor, NULL, callback, callback_context, false, -1);
649 return eh.WriteMinidump();
650 }
651
652 // In order to making using EBP to calculate the desired value for ESP
653 // a valid operation, ensure that this function is compiled with a
654 // frame pointer using the following attribute. This attribute
655 // is supported on GCC but not on clang.
656 #if defined(__i386__) && defined(__GNUC__) && !defined(__clang__)
657 __attribute__((optimize("no-omit-frame-pointer")))
658 #endif
WriteMinidump()659 bool ExceptionHandler::WriteMinidump() {
660 if (!IsOutOfProcess() && !minidump_descriptor_.IsFD() &&
661 !minidump_descriptor_.IsMicrodumpOnConsole()) {
662 // Update the path of the minidump so that this can be called multiple times
663 // and new files are created for each minidump. This is done before the
664 // generation happens, as clients may want to access the MinidumpDescriptor
665 // after this call to find the exact path to the minidump file.
666 minidump_descriptor_.UpdatePath();
667 } else if (minidump_descriptor_.IsFD()) {
668 // Reposition the FD to its beginning and resize it to get rid of the
669 // previous minidump info.
670 lseek(minidump_descriptor_.fd(), 0, SEEK_SET);
671 ignore_result(ftruncate(minidump_descriptor_.fd(), 0));
672 }
673
674 // Allow this process to be dumped.
675 sys_prctl(PR_SET_DUMPABLE, 1, 0, 0, 0);
676
677 CrashContext context;
678 int getcontext_result = getcontext(&context.context);
679 if (getcontext_result)
680 return false;
681
682 #if defined(__i386__)
683 // In CPUFillFromUContext in minidumpwriter.cc the stack pointer is retrieved
684 // from REG_UESP instead of from REG_ESP. REG_UESP is the user stack pointer
685 // and it only makes sense when running in kernel mode with a different stack
686 // pointer. When WriteMiniDump is called during normal processing REG_UESP is
687 // zero which leads to bad minidump files.
688 if (!context.context.uc_mcontext.gregs[REG_UESP]) {
689 // If REG_UESP is set to REG_ESP then that includes the stack space for the
690 // CrashContext object in this function, which is about 128 KB. Since the
691 // Linux dumper only records 32 KB of stack this would mean that nothing
692 // useful would be recorded. A better option is to set REG_UESP to REG_EBP,
693 // perhaps with a small negative offset in case there is any code that
694 // objects to them being equal.
695 context.context.uc_mcontext.gregs[REG_UESP] =
696 context.context.uc_mcontext.gregs[REG_EBP] - 16;
697 // The stack saving is based off of REG_ESP so it must be set to match the
698 // new REG_UESP.
699 context.context.uc_mcontext.gregs[REG_ESP] =
700 context.context.uc_mcontext.gregs[REG_UESP];
701 }
702 #endif
703
704 #if GOOGLE_BREAKPAD_CRASH_CONTEXT_HAS_FLOAT_STATE && !defined(__aarch64__)
705 memcpy(&context.float_state, context.context.uc_mcontext.fpregs,
706 sizeof(context.float_state));
707 #endif
708 context.tid = sys_gettid();
709
710 // Add an exception stream to the minidump for better reporting.
711 memset(&context.siginfo, 0, sizeof(context.siginfo));
712 context.siginfo.si_signo = MD_EXCEPTION_CODE_LIN_DUMP_REQUESTED;
713 #if defined(__i386__)
714 context.siginfo.si_addr =
715 reinterpret_cast<void*>(context.context.uc_mcontext.gregs[REG_EIP]);
716 #elif defined(__x86_64__)
717 context.siginfo.si_addr =
718 reinterpret_cast<void*>(context.context.uc_mcontext.gregs[REG_RIP]);
719 #elif defined(__arm__)
720 context.siginfo.si_addr =
721 reinterpret_cast<void*>(context.context.uc_mcontext.arm_pc);
722 #elif defined(__aarch64__)
723 context.siginfo.si_addr =
724 reinterpret_cast<void*>(context.context.uc_mcontext.pc);
725 #elif defined(__mips__)
726 context.siginfo.si_addr =
727 reinterpret_cast<void*>(context.context.uc_mcontext.pc);
728 #elif defined(__riscv)
729 context.siginfo.si_addr =
730 reinterpret_cast<void*>(context.context.uc_mcontext.__gregs[REG_PC]);
731 #else
732 # error "This code has not been ported to your platform yet."
733 #endif
734
735 return GenerateDump(&context);
736 }
737
AddMappingInfo(const string & name,const uint8_t identifier[sizeof (MDGUID)],uintptr_t start_address,size_t mapping_size,size_t file_offset)738 void ExceptionHandler::AddMappingInfo(const string& name,
739 const uint8_t identifier[sizeof(MDGUID)],
740 uintptr_t start_address,
741 size_t mapping_size,
742 size_t file_offset) {
743 MappingInfo info;
744 info.start_addr = start_address;
745 info.size = mapping_size;
746 info.offset = file_offset;
747 strncpy(info.name, name.c_str(), sizeof(info.name) - 1);
748 info.name[sizeof(info.name) - 1] = '\0';
749
750 MappingEntry mapping;
751 mapping.first = info;
752 memcpy(mapping.second, identifier, sizeof(MDGUID));
753 mapping_list_.push_back(mapping);
754 }
755
RegisterAppMemory(void * ptr,size_t length)756 void ExceptionHandler::RegisterAppMemory(void* ptr, size_t length) {
757 AppMemoryList::iterator iter =
758 std::find(app_memory_list_.begin(), app_memory_list_.end(), ptr);
759 if (iter != app_memory_list_.end()) {
760 // Don't allow registering the same pointer twice.
761 return;
762 }
763
764 AppMemory app_memory;
765 app_memory.ptr = ptr;
766 app_memory.length = length;
767 app_memory_list_.push_back(app_memory);
768 }
769
UnregisterAppMemory(void * ptr)770 void ExceptionHandler::UnregisterAppMemory(void* ptr) {
771 AppMemoryList::iterator iter =
772 std::find(app_memory_list_.begin(), app_memory_list_.end(), ptr);
773 if (iter != app_memory_list_.end()) {
774 app_memory_list_.erase(iter);
775 }
776 }
777
778 // static
WriteMinidumpForChild(pid_t child,pid_t child_blamed_thread,const string & dump_path,MinidumpCallback callback,void * callback_context)779 bool ExceptionHandler::WriteMinidumpForChild(pid_t child,
780 pid_t child_blamed_thread,
781 const string& dump_path,
782 MinidumpCallback callback,
783 void* callback_context) {
784 // This function is not run in a compromised context.
785 MinidumpDescriptor descriptor(dump_path);
786 descriptor.UpdatePath();
787 if (!google_breakpad::WriteMinidump(descriptor.path(),
788 child,
789 child_blamed_thread))
790 return false;
791
792 return callback ? callback(descriptor, callback_context, true) : true;
793 }
794
SetFirstChanceExceptionHandler(FirstChanceHandler callback)795 void SetFirstChanceExceptionHandler(FirstChanceHandler callback) {
796 g_first_chance_handler_ = callback;
797 }
798
799 } // namespace google_breakpad
800