1 // Copyright 2005 Google LLC
2 // Author: [email protected] (Andrew Chatham)
3 // Author: [email protected] (Satoru Takabayashi)
4 //
5 // Code for reading in ELF files.
6 //
7 // For information on the ELF format, see
8 // http://www.x86.org/ftp/manuals/tools/elf.pdf
9 //
10 // I also liked:
11 // http://www.caldera.com/developers/gabi/1998-04-29/contents.html
12 //
13 // A note about types: When dealing with the file format, we use types
14 // like Elf32_Word, but in the public interfaces we treat all
15 // addresses as uint64. As a result, we should be able to symbolize
16 // 64-bit binaries from a 32-bit process (which we don't do,
17 // anyway). size_t should therefore be avoided, except where required
18 // by things like mmap().
19 //
20 // Although most of this code can deal with arbitrary ELF files of
21 // either word size, the public ElfReader interface only examines
22 // files loaded into the current address space, which must all match
23 // the machine's native word size. This code cannot handle ELF files
24 // with a non-native byte ordering.
25 //
26 // TODO(chatham): It would be nice if we could accomplish this task
27 // without using malloc(), so we could use it as the process is dying.
28
29 #ifndef _GNU_SOURCE
30 #define _GNU_SOURCE // needed for pread()
31 #endif
32
33 #ifdef HAVE_CONFIG_H
34 #include <config.h> // Must come first
35 #endif
36
37 #include <fcntl.h>
38 #include <limits.h>
39 #include <string.h>
40 #include <sys/mman.h>
41 #include <sys/stat.h>
42 #include <sys/types.h>
43 #include <unistd.h>
44
45 #include <algorithm>
46 #include <map>
47 #include <string>
48 #include <string_view>
49 #include <vector>
50 // TODO(saugustine): Add support for compressed debug.
51 // Also need to add configure tests for zlib.
52 //#include "zlib.h"
53
54 #include "third_party/musl/include/elf.h"
55 #include "elf_reader.h"
56 #include "common/using_std_string.h"
57
58 // EM_AARCH64 is not defined by elf.h of GRTE v3 on x86.
59 // TODO(dougkwan): Remove this when v17 is retired.
60 #if !defined(EM_AARCH64)
61 #define EM_AARCH64 183 /* ARM AARCH64 */
62 #endif
63
64 // Map Linux macros to their Apple equivalents.
65 #if __APPLE__
66 #ifndef __LITTLE_ENDIAN
67 #define __LITTLE_ENDIAN __ORDER_LITTLE_ENDIAN__
68 #endif // __LITTLE_ENDIAN
69 #ifndef __BIG_ENDIAN
70 #define __BIG_ENDIAN __ORDER_BIG_ENDIAN__
71 #endif // __BIG_ENDIAN
72 #ifndef __BYTE_ORDER
73 #define __BYTE_ORDER __BYTE_ORDER__
74 #endif // __BYTE_ORDER
75 #endif // __APPLE__
76
77 // TODO(dthomson): Can be removed once all Java code is using the Google3
78 // launcher. We need to avoid processing PLT functions as it causes memory
79 // fragmentation in malloc, which is fixed in tcmalloc - and if the Google3
80 // launcher is used the JVM will then use tcmalloc. b/13735638
81 //DEFINE_bool(elfreader_process_dynsyms, true,
82 // "Activate PLT function processing");
83
84 using std::vector;
85
86 namespace {
87
88 // The lowest bit of an ARM symbol value is used to indicate a Thumb address.
89 const int kARMThumbBitOffset = 0;
90
91 // Converts an ARM Thumb symbol value to a true aligned address value.
92 template <typename T>
AdjustARMThumbSymbolValue(const T & symbol_table_value)93 T AdjustARMThumbSymbolValue(const T& symbol_table_value) {
94 return symbol_table_value & ~(1 << kARMThumbBitOffset);
95 }
96
97 // Names of PLT-related sections.
98 const char kElfPLTRelSectionName[] = ".rel.plt"; // Use Rel struct.
99 const char kElfPLTRelaSectionName[] = ".rela.plt"; // Use Rela struct.
100 const char kElfPLTSectionName[] = ".plt";
101 const char kElfDynSymSectionName[] = ".dynsym";
102
103 const int kX86PLTCodeSize = 0x10; // Size of one x86 PLT function in bytes.
104 const int kARMPLTCodeSize = 0xc;
105 const int kAARCH64PLTCodeSize = 0x10;
106
107 const int kX86PLT0Size = 0x10; // Size of the special PLT0 entry.
108 const int kARMPLT0Size = 0x14;
109 const int kAARCH64PLT0Size = 0x20;
110
111 // Suffix for PLT functions when it needs to be explicitly identified as such.
112 const char kPLTFunctionSuffix[] = "@plt";
113
114 // Replace callsites of this function to std::string_view::starts_with after
115 // adopting C++20.
StringViewStartsWith(std::string_view sv,std::string_view prefix)116 bool StringViewStartsWith(std::string_view sv, std::string_view prefix) {
117 return sv.compare(0, prefix.size(), prefix) == 0;
118 }
119
120 } // namespace
121
122 namespace google_breakpad {
123
124 template <class ElfArch> class ElfReaderImpl;
125
126 // 32-bit and 64-bit ELF files are processed exactly the same, except
127 // for various field sizes. Elf32 and Elf64 encompass all of the
128 // differences between the two formats, and all format-specific code
129 // in this file is templated on one of them.
130 class Elf32 {
131 public:
132 typedef Elf32_Ehdr Ehdr;
133 typedef Elf32_Shdr Shdr;
134 typedef Elf32_Phdr Phdr;
135 typedef Elf32_Word Word;
136 typedef Elf32_Sym Sym;
137 typedef Elf32_Rel Rel;
138 typedef Elf32_Rela Rela;
139
140 // What should be in the EI_CLASS header.
141 static const int kElfClass = ELFCLASS32;
142
143 // Given a symbol pointer, return the binding type (eg STB_WEAK).
Bind(const Elf32_Sym * sym)144 static char Bind(const Elf32_Sym* sym) {
145 return ELF32_ST_BIND(sym->st_info);
146 }
147 // Given a symbol pointer, return the symbol type (eg STT_FUNC).
Type(const Elf32_Sym * sym)148 static char Type(const Elf32_Sym* sym) {
149 return ELF32_ST_TYPE(sym->st_info);
150 }
151
152 // Extract the symbol index from the r_info field of a relocation.
r_sym(const Elf32_Word r_info)153 static int r_sym(const Elf32_Word r_info) {
154 return ELF32_R_SYM(r_info);
155 }
156 };
157
158
159 class Elf64 {
160 public:
161 typedef Elf64_Ehdr Ehdr;
162 typedef Elf64_Shdr Shdr;
163 typedef Elf64_Phdr Phdr;
164 typedef Elf64_Word Word;
165 typedef Elf64_Sym Sym;
166 typedef Elf64_Rel Rel;
167 typedef Elf64_Rela Rela;
168
169 // What should be in the EI_CLASS header.
170 static const int kElfClass = ELFCLASS64;
171
Bind(const Elf64_Sym * sym)172 static char Bind(const Elf64_Sym* sym) {
173 return ELF64_ST_BIND(sym->st_info);
174 }
Type(const Elf64_Sym * sym)175 static char Type(const Elf64_Sym* sym) {
176 return ELF64_ST_TYPE(sym->st_info);
177 }
r_sym(const Elf64_Xword r_info)178 static int r_sym(const Elf64_Xword r_info) {
179 return ELF64_R_SYM(r_info);
180 }
181 };
182
183
184 // ElfSectionReader mmaps a section of an ELF file ("section" is ELF
185 // terminology). The ElfReaderImpl object providing the section header
186 // must exist for the lifetime of this object.
187 //
188 // The motivation for mmaping individual sections of the file is that
189 // many Google executables are large enough when unstripped that we
190 // have to worry about running out of virtual address space.
191 //
192 // For compressed sections we have no choice but to allocate memory.
193 template<class ElfArch>
194 class ElfSectionReader {
195 public:
ElfSectionReader(const char * cname,const string & path,int fd,const typename ElfArch::Shdr & section_header)196 ElfSectionReader(const char* cname, const string& path, int fd,
197 const typename ElfArch::Shdr& section_header)
198 : contents_aligned_(NULL),
199 contents_(NULL),
200 header_(section_header) {
201 // Back up to the beginning of the page we're interested in.
202 const size_t additional = header_.sh_offset % getpagesize();
203 const size_t offset_aligned = header_.sh_offset - additional;
204 section_size_ = header_.sh_size;
205 size_aligned_ = section_size_ + additional;
206 // If the section has been stripped or is empty, do not attempt
207 // to process its contents.
208 if (header_.sh_type == SHT_NOBITS || header_.sh_size == 0)
209 return;
210 // extra sh_type check for string table.
211 std::string_view name{cname};
212 if ((name == ".strtab" || name == ".shstrtab") &&
213 header_.sh_type != SHT_STRTAB) {
214 fprintf(stderr,
215 "Invalid sh_type for string table section: expected "
216 "SHT_STRTAB or SHT_DYNSYM, but got %d\n",
217 header_.sh_type);
218 return;
219 }
220
221 contents_aligned_ = mmap(NULL, size_aligned_, PROT_READ, MAP_SHARED,
222 fd, offset_aligned);
223 // Set where the offset really should begin.
224 contents_ = reinterpret_cast<char*>(contents_aligned_) +
225 (header_.sh_offset - offset_aligned);
226
227 // Check for and handle any compressed contents.
228 //if (StringViewStartsWith(name, ".zdebug_"))
229 // DecompressZlibContents();
230 // TODO(saugustine): Add support for proposed elf-section flag
231 // "SHF_COMPRESS".
232 }
233
~ElfSectionReader()234 ~ElfSectionReader() {
235 if (contents_aligned_ != NULL)
236 munmap(contents_aligned_, size_aligned_);
237 else
238 delete[] contents_;
239 }
240
241 // Return the section header for this section.
header() const242 typename ElfArch::Shdr const& header() const { return header_; }
243
244 // Return memory at the given offset within this section.
GetOffset(typename ElfArch::Word bytes) const245 const char* GetOffset(typename ElfArch::Word bytes) const {
246 return contents_ + bytes;
247 }
248
contents() const249 const char* contents() const { return contents_; }
section_size() const250 size_t section_size() const { return section_size_; }
251
252 private:
253 // page-aligned file contents
254 void* contents_aligned_;
255 // contents as usable by the client. For non-compressed sections,
256 // pointer within contents_aligned_ to where the section data
257 // begins; for compressed sections, pointer to the decompressed
258 // data.
259 char* contents_;
260 // size of contents_aligned_
261 size_t size_aligned_;
262 // size of contents.
263 size_t section_size_;
264 const typename ElfArch::Shdr header_;
265 };
266
267 // An iterator over symbols in a given section. It handles walking
268 // through the entries in the specified section and mapping symbol
269 // entries to their names in the appropriate string table (in
270 // another section).
271 template<class ElfArch>
272 class SymbolIterator {
273 public:
SymbolIterator(ElfReaderImpl<ElfArch> * reader,typename ElfArch::Word section_type)274 SymbolIterator(ElfReaderImpl<ElfArch>* reader,
275 typename ElfArch::Word section_type)
276 : symbol_section_(reader->GetSectionByType(section_type)),
277 string_section_(NULL),
278 num_symbols_in_section_(0),
279 symbol_within_section_(0) {
280
281 // If this section type doesn't exist, leave
282 // num_symbols_in_section_ as zero, so this iterator is already
283 // done().
284 if (symbol_section_ != NULL) {
285 num_symbols_in_section_ = symbol_section_->header().sh_size /
286 symbol_section_->header().sh_entsize;
287
288 // Symbol sections have sh_link set to the section number of
289 // the string section containing the symbol names.
290 string_section_ = reader->GetSection(symbol_section_->header().sh_link);
291 }
292 }
293
294 // Return true iff we have passed all symbols in this section.
done() const295 bool done() const {
296 return symbol_within_section_ >= num_symbols_in_section_;
297 }
298
299 // Advance to the next symbol in this section.
300 // REQUIRES: !done()
Next()301 void Next() { ++symbol_within_section_; }
302
303 // Return a pointer to the current symbol.
304 // REQUIRES: !done()
GetSymbol() const305 const typename ElfArch::Sym* GetSymbol() const {
306 return reinterpret_cast<const typename ElfArch::Sym*>(
307 symbol_section_->GetOffset(symbol_within_section_ *
308 symbol_section_->header().sh_entsize));
309 }
310
311 // Return the name of the current symbol, NULL if it has none.
312 // REQUIRES: !done()
GetSymbolName() const313 const char* GetSymbolName() const {
314 int name_offset = GetSymbol()->st_name;
315 if (name_offset == 0)
316 return NULL;
317 return string_section_->GetOffset(name_offset);
318 }
319
GetCurrentSymbolIndex() const320 int GetCurrentSymbolIndex() const {
321 return symbol_within_section_;
322 }
323
324 private:
325 const ElfSectionReader<ElfArch>* const symbol_section_;
326 const ElfSectionReader<ElfArch>* string_section_;
327 int num_symbols_in_section_;
328 int symbol_within_section_;
329 };
330
331
332 // Copied from strings/strutil.h. Per chatham,
333 // this library should not depend on strings.
334
MyHasSuffixString(const string & str,const string & suffix)335 static inline bool MyHasSuffixString(const string& str, const string& suffix) {
336 int len = str.length();
337 int suflen = suffix.length();
338 return (suflen <= len) && (str.compare(len-suflen, suflen, suffix) == 0);
339 }
340
341
342 // ElfReader loads an ELF binary and can provide information about its
343 // contents. It is most useful for matching addresses to function
344 // names. It does not understand debugging formats (eg dwarf2), so it
345 // can't print line numbers. It takes a path to an elf file and a
346 // readable file descriptor for that file, which it does not assume
347 // ownership of.
348 template<class ElfArch>
349 class ElfReaderImpl {
350 public:
ElfReaderImpl(const string & path,int fd)351 explicit ElfReaderImpl(const string& path, int fd)
352 : path_(path),
353 fd_(fd),
354 section_headers_(NULL),
355 program_headers_(NULL),
356 opd_section_(NULL),
357 base_for_text_(0),
358 plts_supported_(false),
359 plt_code_size_(0),
360 plt0_size_(0),
361 visited_relocation_entries_(false) {
362 string error;
363 is_dwp_ = MyHasSuffixString(path, ".dwp");
364 ParseHeaders(fd, path);
365 // Currently we need some extra information for PowerPC64 binaries
366 // including a way to read the .opd section for function descriptors and a
367 // way to find the linked base for function symbols.
368 if (header_.e_machine == EM_PPC64) {
369 // "opd_section_" must always be checked for NULL before use.
370 opd_section_ = GetSectionInfoByName(".opd", &opd_info_);
371 for (unsigned int k = 0u; k < GetNumSections(); ++k) {
372 std::string_view name{GetSectionName(section_headers_[k].sh_name)};
373 if (StringViewStartsWith(name, ".text")) {
374 base_for_text_ =
375 section_headers_[k].sh_addr - section_headers_[k].sh_offset;
376 break;
377 }
378 }
379 }
380 // Turn on PLTs.
381 if (header_.e_machine == EM_386 || header_.e_machine == EM_X86_64) {
382 plt_code_size_ = kX86PLTCodeSize;
383 plt0_size_ = kX86PLT0Size;
384 plts_supported_ = true;
385 } else if (header_.e_machine == EM_ARM) {
386 plt_code_size_ = kARMPLTCodeSize;
387 plt0_size_ = kARMPLT0Size;
388 plts_supported_ = true;
389 } else if (header_.e_machine == EM_AARCH64) {
390 plt_code_size_ = kAARCH64PLTCodeSize;
391 plt0_size_ = kAARCH64PLT0Size;
392 plts_supported_ = true;
393 }
394 }
395
~ElfReaderImpl()396 ~ElfReaderImpl() {
397 for (unsigned int i = 0u; i < sections_.size(); ++i)
398 delete sections_[i];
399 delete [] section_headers_;
400 delete [] program_headers_;
401 }
402
403 // Examine the headers of the file and return whether the file looks
404 // like an ELF file for this architecture. Takes an already-open
405 // file descriptor for the candidate file, reading in the prologue
406 // to see if the ELF file appears to match the current
407 // architecture. If error is non-NULL, it will be set with a reason
408 // in case of failure.
IsArchElfFile(int fd,string * error)409 static bool IsArchElfFile(int fd, string* error) {
410 unsigned char header[EI_NIDENT];
411 if (pread(fd, header, sizeof(header), 0) != sizeof(header)) {
412 if (error != NULL) *error = "Could not read header";
413 return false;
414 }
415
416 if (memcmp(header, ELFMAG, SELFMAG) != 0) {
417 if (error != NULL) *error = "Missing ELF magic";
418 return false;
419 }
420
421 if (header[EI_CLASS] != ElfArch::kElfClass) {
422 if (error != NULL) *error = "Different word size";
423 return false;
424 }
425
426 int endian = 0;
427 if (header[EI_DATA] == ELFDATA2LSB)
428 endian = __LITTLE_ENDIAN;
429 else if (header[EI_DATA] == ELFDATA2MSB)
430 endian = __BIG_ENDIAN;
431 if (endian != __BYTE_ORDER) {
432 if (error != NULL) *error = "Different byte order";
433 return false;
434 }
435
436 return true;
437 }
438
439 // Return true if we can use this symbol in Address-to-Symbol map.
CanUseSymbol(const char * name,const typename ElfArch::Sym * sym)440 bool CanUseSymbol(const char* name, const typename ElfArch::Sym* sym) {
441 // For now we only save FUNC and NOTYPE symbols. For now we just
442 // care about functions, but some functions written in assembler
443 // don't have a proper ELF type attached to them, so we store
444 // NOTYPE symbols as well. The remaining significant type is
445 // OBJECT (eg global variables), which represent about 25% of
446 // the symbols in a typical google3 binary.
447 if (ElfArch::Type(sym) != STT_FUNC &&
448 ElfArch::Type(sym) != STT_NOTYPE) {
449 return false;
450 }
451
452 // Target specific filtering.
453 switch (header_.e_machine) {
454 case EM_AARCH64:
455 case EM_ARM:
456 // Filter out '$x' special local symbols used by tools
457 return name[0] != '$' || ElfArch::Bind(sym) != STB_LOCAL;
458 case EM_X86_64:
459 // Filter out read-only constants like .LC123.
460 return name[0] != '.' || ElfArch::Bind(sym) != STB_LOCAL;
461 default:
462 return true;
463 }
464 }
465
466 // Iterate over the symbols in a section, either SHT_DYNSYM or
467 // SHT_SYMTAB. Add all symbols to the given SymbolMap.
468 /*
469 void GetSymbolPositions(SymbolMap* symbols,
470 typename ElfArch::Word section_type,
471 uint64_t mem_offset,
472 uint64_t file_offset) {
473 // This map is used to filter out "nested" functions.
474 // See comment below.
475 AddrToSymMap addr_to_sym_map;
476 for (SymbolIterator<ElfArch> it(this, section_type);
477 !it.done(); it.Next()) {
478 const char* name = it.GetSymbolName();
479 if (name == NULL)
480 continue;
481 const typename ElfArch::Sym* sym = it.GetSymbol();
482 if (CanUseSymbol(name, sym)) {
483 const int sec = sym->st_shndx;
484
485 // We don't support special section indices. The most common
486 // is SHN_ABS, for absolute symbols used deep in the bowels of
487 // glibc. Also ignore any undefined symbols.
488 if (sec == SHN_UNDEF ||
489 (sec >= SHN_LORESERVE && sec <= SHN_HIRESERVE)) {
490 continue;
491 }
492
493 const typename ElfArch::Shdr& hdr = section_headers_[sec];
494
495 // Adjust for difference between where we expected to mmap
496 // this section, and where it was actually mmapped.
497 const int64_t expected_base = hdr.sh_addr - hdr.sh_offset;
498 const int64_t real_base = mem_offset - file_offset;
499 const int64_t adjust = real_base - expected_base;
500
501 uint64_t start = sym->st_value + adjust;
502
503 // Adjust function symbols for PowerPC64 by dereferencing and adjusting
504 // the function descriptor to get the function address.
505 if (header_.e_machine == EM_PPC64 && ElfArch::Type(sym) == STT_FUNC) {
506 const uint64_t opd_addr =
507 AdjustPPC64FunctionDescriptorSymbolValue(sym->st_value);
508 // Only adjust the returned value if the function address was found.
509 if (opd_addr != sym->st_value) {
510 const int64_t adjust_function_symbols =
511 real_base - base_for_text_;
512 start = opd_addr + adjust_function_symbols;
513 }
514 }
515
516 addr_to_sym_map.push_back(std::make_pair(start, sym));
517 }
518 }
519 std::sort(addr_to_sym_map.begin(), addr_to_sym_map.end(), &AddrToSymSorter);
520 addr_to_sym_map.erase(std::unique(addr_to_sym_map.begin(),
521 addr_to_sym_map.end(), &AddrToSymEquals),
522 addr_to_sym_map.end());
523
524 // Squeeze out any "nested functions".
525 // Nested functions are not allowed in C, but libc plays tricks.
526 //
527 // For example, here is disassembly of /lib64/tls/libc-2.3.5.so:
528 // 0x00000000000aa380 <read+0>: cmpl $0x0,0x2781b9(%rip)
529 // 0x00000000000aa387 <read+7>: jne 0xaa39b <read+27>
530 // 0x00000000000aa389 <__read_nocancel+0>: mov $0x0,%rax
531 // 0x00000000000aa390 <__read_nocancel+7>: syscall
532 // 0x00000000000aa392 <__read_nocancel+9>: cmp $0xfffffffffffff001,%rax
533 // 0x00000000000aa398 <__read_nocancel+15>: jae 0xaa3ef <read+111>
534 // 0x00000000000aa39a <__read_nocancel+17>: retq
535 // 0x00000000000aa39b <read+27>: sub $0x28,%rsp
536 // 0x00000000000aa39f <read+31>: mov %rdi,0x8(%rsp)
537 // ...
538 // Without removing __read_nocancel, symbolizer will return NULL
539 // given e.g. 0xaa39f (because the lower bound is __read_nocancel,
540 // but 0xaa39f is beyond its end.
541 if (addr_to_sym_map.empty()) {
542 return;
543 }
544 const ElfSectionReader<ElfArch>* const symbol_section =
545 this->GetSectionByType(section_type);
546 const ElfSectionReader<ElfArch>* const string_section =
547 this->GetSection(symbol_section->header().sh_link);
548
549 typename AddrToSymMap::iterator curr = addr_to_sym_map.begin();
550 // Always insert the first symbol.
551 symbols->AddSymbol(string_section->GetOffset(curr->second->st_name),
552 curr->first, curr->second->st_size);
553 typename AddrToSymMap::iterator prev = curr++;
554 for (; curr != addr_to_sym_map.end(); ++curr) {
555 const uint64_t prev_addr = prev->first;
556 const uint64_t curr_addr = curr->first;
557 const typename ElfArch::Sym* const prev_sym = prev->second;
558 const typename ElfArch::Sym* const curr_sym = curr->second;
559 if (prev_addr + prev_sym->st_size <= curr_addr ||
560 // The next condition is true if two symbols overlap like this:
561 //
562 // Previous symbol |----------------------------|
563 // Current symbol |-------------------------------|
564 //
565 // These symbols are not found in google3 codebase, but in
566 // jdk1.6.0_01_gg1/jre/lib/i386/server/libjvm.so.
567 //
568 // 0619e040 00000046 t CardTableModRefBS::write_region_work()
569 // 0619e070 00000046 t CardTableModRefBS::write_ref_array_work()
570 //
571 // We allow overlapped symbols rather than ignore these.
572 // Due to the way SymbolMap::GetSymbolAtPosition() works,
573 // lookup for any address in [curr_addr, curr_addr + its size)
574 // (e.g. 0619e071) will produce the current symbol,
575 // which is the desired outcome.
576 prev_addr + prev_sym->st_size < curr_addr + curr_sym->st_size) {
577 const char* name = string_section->GetOffset(curr_sym->st_name);
578 symbols->AddSymbol(name, curr_addr, curr_sym->st_size);
579 prev = curr;
580 } else {
581 // Current symbol is "nested" inside previous one like this:
582 //
583 // Previous symbol |----------------------------|
584 // Current symbol |---------------------|
585 //
586 // This happens within glibc, e.g. __read_nocancel is nested
587 // "inside" __read. Ignore "inner" symbol.
588 //DCHECK_LE(curr_addr + curr_sym->st_size,
589 // prev_addr + prev_sym->st_size);
590 ;
591 }
592 }
593 }
594 */
595
VisitSymbols(typename ElfArch::Word section_type,ElfReader::SymbolSink * sink)596 void VisitSymbols(typename ElfArch::Word section_type,
597 ElfReader::SymbolSink* sink) {
598 VisitSymbols(section_type, sink, -1, -1, false);
599 }
600
VisitSymbols(typename ElfArch::Word section_type,ElfReader::SymbolSink * sink,int symbol_binding,int symbol_type,bool get_raw_symbol_values)601 void VisitSymbols(typename ElfArch::Word section_type,
602 ElfReader::SymbolSink* sink,
603 int symbol_binding,
604 int symbol_type,
605 bool get_raw_symbol_values) {
606 for (SymbolIterator<ElfArch> it(this, section_type);
607 !it.done(); it.Next()) {
608 const char* name = it.GetSymbolName();
609 if (!name) continue;
610 const typename ElfArch::Sym* sym = it.GetSymbol();
611 if ((symbol_binding < 0 || ElfArch::Bind(sym) == symbol_binding) &&
612 (symbol_type < 0 || ElfArch::Type(sym) == symbol_type)) {
613 typename ElfArch::Sym symbol = *sym;
614 // Add a PLT symbol in addition to the main undefined symbol.
615 // Only do this for SHT_DYNSYM, because PLT symbols are dynamic.
616 int symbol_index = it.GetCurrentSymbolIndex();
617 // TODO(dthomson): Can be removed once all Java code is using the
618 // Google3 launcher.
619 if (section_type == SHT_DYNSYM &&
620 static_cast<unsigned int>(symbol_index) < symbols_plt_offsets_.size() &&
621 symbols_plt_offsets_[symbol_index] != 0) {
622 string plt_name = string(name) + kPLTFunctionSuffix;
623 if (plt_function_names_[symbol_index].empty()) {
624 plt_function_names_[symbol_index] = plt_name;
625 } else if (plt_function_names_[symbol_index] != plt_name) {
626 ;
627 }
628 sink->AddSymbol(plt_function_names_[symbol_index].c_str(),
629 symbols_plt_offsets_[it.GetCurrentSymbolIndex()],
630 plt_code_size_);
631 }
632 if (!get_raw_symbol_values)
633 AdjustSymbolValue(&symbol);
634 sink->AddSymbol(name, symbol.st_value, symbol.st_size);
635 }
636 }
637 }
638
VisitRelocationEntries()639 void VisitRelocationEntries() {
640 if (visited_relocation_entries_) {
641 return;
642 }
643 visited_relocation_entries_ = true;
644
645 if (!plts_supported_) {
646 return;
647 }
648 // First determine if PLTs exist. If not, then there is nothing to do.
649 ElfReader::SectionInfo plt_section_info;
650 const char* plt_section =
651 GetSectionInfoByName(kElfPLTSectionName, &plt_section_info);
652 if (!plt_section) {
653 return;
654 }
655 if (plt_section_info.size == 0) {
656 return;
657 }
658
659 // The PLTs could be referenced by either a Rel or Rela (Rel with Addend)
660 // section.
661 ElfReader::SectionInfo rel_section_info;
662 ElfReader::SectionInfo rela_section_info;
663 const char* rel_section =
664 GetSectionInfoByName(kElfPLTRelSectionName, &rel_section_info);
665 const char* rela_section =
666 GetSectionInfoByName(kElfPLTRelaSectionName, &rela_section_info);
667
668 const typename ElfArch::Rel* rel =
669 reinterpret_cast<const typename ElfArch::Rel*>(rel_section);
670 const typename ElfArch::Rela* rela =
671 reinterpret_cast<const typename ElfArch::Rela*>(rela_section);
672
673 if (!rel_section && !rela_section) {
674 return;
675 }
676
677 // Use either Rel or Rela section, depending on which one exists.
678 size_t section_size = rel_section ? rel_section_info.size
679 : rela_section_info.size;
680 size_t entry_size = rel_section ? sizeof(typename ElfArch::Rel)
681 : sizeof(typename ElfArch::Rela);
682
683 // Determine the number of entries in the dynamic symbol table.
684 ElfReader::SectionInfo dynsym_section_info;
685 const char* dynsym_section =
686 GetSectionInfoByName(kElfDynSymSectionName, &dynsym_section_info);
687 // The dynsym section might not exist, or it might be empty. In either case
688 // there is nothing to be done so return.
689 if (!dynsym_section || dynsym_section_info.size == 0) {
690 return;
691 }
692 size_t num_dynamic_symbols =
693 dynsym_section_info.size / dynsym_section_info.entsize;
694 symbols_plt_offsets_.resize(num_dynamic_symbols, 0);
695
696 // TODO(dthomson): Can be removed once all Java code is using the
697 // Google3 launcher.
698 // Make storage room for PLT function name strings.
699 plt_function_names_.resize(num_dynamic_symbols);
700
701 for (size_t i = 0; i < section_size / entry_size; ++i) {
702 // Determine symbol index from the |r_info| field.
703 int sym_index = ElfArch::r_sym(rel_section ? rel[i].r_info
704 : rela[i].r_info);
705 if (static_cast<unsigned int>(sym_index) >= symbols_plt_offsets_.size()) {
706 continue;
707 }
708 symbols_plt_offsets_[sym_index] =
709 plt_section_info.addr + plt0_size_ + i * plt_code_size_;
710 }
711 }
712
713 // Return an ElfSectionReader for the first section of the given
714 // type by iterating through all section headers. Returns NULL if
715 // the section type is not found.
GetSectionByType(typename ElfArch::Word section_type)716 const ElfSectionReader<ElfArch>* GetSectionByType(
717 typename ElfArch::Word section_type) {
718 for (unsigned int k = 0u; k < GetNumSections(); ++k) {
719 if (section_headers_[k].sh_type == section_type) {
720 return GetSection(k);
721 }
722 }
723 return NULL;
724 }
725
726 // Return the name of section "shndx". Returns NULL if the section
727 // is not found.
GetSectionNameByIndex(int shndx)728 const char* GetSectionNameByIndex(int shndx) {
729 return GetSectionName(section_headers_[shndx].sh_name);
730 }
731
732 // Return a pointer to section "shndx", and store the size in
733 // "size". Returns NULL if the section is not found.
GetSectionContentsByIndex(int shndx,size_t * size)734 const char* GetSectionContentsByIndex(int shndx, size_t* size) {
735 const ElfSectionReader<ElfArch>* section = GetSection(shndx);
736 if (section != NULL) {
737 *size = section->section_size();
738 return section->contents();
739 }
740 return NULL;
741 }
742
743 // Return a pointer to the first section of the given name by
744 // iterating through all section headers, and store the size in
745 // "size". Returns NULL if the section name is not found.
GetSectionContentsByName(const string & section_name,size_t * size)746 const char* GetSectionContentsByName(const string& section_name,
747 size_t* size) {
748 for (unsigned int k = 0u; k < GetNumSections(); ++k) {
749 // When searching for sections in a .dwp file, the sections
750 // we're looking for will always be at the end of the section
751 // table, so reverse the direction of iteration.
752 int shndx = is_dwp_ ? GetNumSections() - k - 1 : k;
753 const char* name = GetSectionName(section_headers_[shndx].sh_name);
754 if (name != NULL && ElfReader::SectionNamesMatch(section_name, name)) {
755 const ElfSectionReader<ElfArch>* section = GetSection(shndx);
756 if (section == NULL) {
757 return NULL;
758 } else {
759 *size = section->section_size();
760 return section->contents();
761 }
762 }
763 }
764 return NULL;
765 }
766
767 // This is like GetSectionContentsByName() but it returns a lot of extra
768 // information about the section.
GetSectionInfoByName(const string & section_name,ElfReader::SectionInfo * info)769 const char* GetSectionInfoByName(const string& section_name,
770 ElfReader::SectionInfo* info) {
771 for (unsigned int k = 0u; k < GetNumSections(); ++k) {
772 // When searching for sections in a .dwp file, the sections
773 // we're looking for will always be at the end of the section
774 // table, so reverse the direction of iteration.
775 int shndx = is_dwp_ ? GetNumSections() - k - 1 : k;
776 const char* name = GetSectionName(section_headers_[shndx].sh_name);
777 if (name != NULL && ElfReader::SectionNamesMatch(section_name, name)) {
778 const ElfSectionReader<ElfArch>* section = GetSection(shndx);
779 if (section == NULL) {
780 return NULL;
781 } else {
782 info->type = section->header().sh_type;
783 info->flags = section->header().sh_flags;
784 info->addr = section->header().sh_addr;
785 info->offset = section->header().sh_offset;
786 info->size = section->header().sh_size;
787 info->link = section->header().sh_link;
788 info->info = section->header().sh_info;
789 info->addralign = section->header().sh_addralign;
790 info->entsize = section->header().sh_entsize;
791 return section->contents();
792 }
793 }
794 }
795 return NULL;
796 }
797
798 // p_vaddr of the first PT_LOAD segment (if any), or 0 if no PT_LOAD
799 // segments are present. This is the address an ELF image was linked
800 // (by static linker) to be loaded at. Usually (but not always) 0 for
801 // shared libraries and position-independent executables.
VaddrOfFirstLoadSegment() const802 uint64_t VaddrOfFirstLoadSegment() const {
803 // Relocatable objects (of type ET_REL) do not have LOAD segments.
804 if (header_.e_type == ET_REL) {
805 return 0;
806 }
807 for (int i = 0; i < GetNumProgramHeaders(); ++i) {
808 if (program_headers_[i].p_type == PT_LOAD) {
809 return program_headers_[i].p_vaddr;
810 }
811 }
812 return 0;
813 }
814
815 // According to the LSB ("ELF special sections"), sections with debug
816 // info are prefixed by ".debug". The names are not specified, but they
817 // look like ".debug_line", ".debug_info", etc.
HasDebugSections()818 bool HasDebugSections() {
819 // Debug sections are likely to be near the end, so reverse the
820 // direction of iteration.
821 for (int k = GetNumSections() - 1; k >= 0; --k) {
822 std::string_view name{GetSectionName(section_headers_[k].sh_name)};
823 if (StringViewStartsWith(name, ".debug") ||
824 StringViewStartsWith(name, ".zdebug")) {
825 return true;
826 }
827 }
828 return false;
829 }
830
IsDynamicSharedObject() const831 bool IsDynamicSharedObject() const {
832 return header_.e_type == ET_DYN;
833 }
834
835 // Return the number of sections.
GetNumSections() const836 uint64_t GetNumSections() const {
837 if (HasManySections())
838 return first_section_header_.sh_size;
839 return header_.e_shnum;
840 }
841
842 private:
843 typedef vector<pair<uint64_t, const typename ElfArch::Sym*> > AddrToSymMap;
844
AddrToSymSorter(const typename AddrToSymMap::value_type & lhs,const typename AddrToSymMap::value_type & rhs)845 static bool AddrToSymSorter(const typename AddrToSymMap::value_type& lhs,
846 const typename AddrToSymMap::value_type& rhs) {
847 return lhs.first < rhs.first;
848 }
849
AddrToSymEquals(const typename AddrToSymMap::value_type & lhs,const typename AddrToSymMap::value_type & rhs)850 static bool AddrToSymEquals(const typename AddrToSymMap::value_type& lhs,
851 const typename AddrToSymMap::value_type& rhs) {
852 return lhs.first == rhs.first;
853 }
854
855 // Does this ELF file have too many sections to fit in the program header?
HasManySections() const856 bool HasManySections() const {
857 return header_.e_shnum == SHN_UNDEF;
858 }
859
860 // Return the number of program headers.
GetNumProgramHeaders() const861 int GetNumProgramHeaders() const {
862 if (HasManySections() && header_.e_phnum == 0xffff &&
863 first_section_header_.sh_info != 0)
864 return first_section_header_.sh_info;
865 return header_.e_phnum;
866 }
867
868 // Return the index of the string table.
GetStringTableIndex() const869 int GetStringTableIndex() const {
870 if (HasManySections()) {
871 if (header_.e_shstrndx == 0xffff)
872 return first_section_header_.sh_link;
873 else if (header_.e_shstrndx >= GetNumSections())
874 return 0;
875 }
876 return header_.e_shstrndx;
877 }
878
879 // Given an offset into the section header string table, return the
880 // section name.
GetSectionName(typename ElfArch::Word sh_name)881 const char* GetSectionName(typename ElfArch::Word sh_name) {
882 const ElfSectionReader<ElfArch>* shstrtab =
883 GetSection(GetStringTableIndex());
884 if (shstrtab != NULL) {
885 return shstrtab->GetOffset(sh_name);
886 }
887 return NULL;
888 }
889
890 // Return an ElfSectionReader for the given section. The reader will
891 // be freed when this object is destroyed.
GetSection(int num)892 const ElfSectionReader<ElfArch>* GetSection(int num) {
893 const char* name;
894 // Hard-coding the name for the section-name string table prevents
895 // infinite recursion.
896 if (num == GetStringTableIndex())
897 name = ".shstrtab";
898 else
899 name = GetSectionNameByIndex(num);
900 ElfSectionReader<ElfArch>*& reader = sections_[num];
901 if (reader == NULL)
902 reader = new ElfSectionReader<ElfArch>(name, path_, fd_,
903 section_headers_[num]);
904 return reader->contents() ? reader : nullptr;
905 }
906
907 // Parse out the overall header information from the file and assert
908 // that it looks sane. This contains information like the magic
909 // number and target architecture.
ParseHeaders(int fd,const string & path)910 bool ParseHeaders(int fd, const string& path) {
911 // Read in the global ELF header.
912 if (pread(fd, &header_, sizeof(header_), 0) != sizeof(header_)) {
913 return false;
914 }
915
916 // Must be an executable, dynamic shared object or relocatable object
917 if (header_.e_type != ET_EXEC &&
918 header_.e_type != ET_DYN &&
919 header_.e_type != ET_REL) {
920 return false;
921 }
922 // Need a section header.
923 if (header_.e_shoff == 0) {
924 return false;
925 }
926
927 if (header_.e_shnum == SHN_UNDEF) {
928 // The number of sections in the program header is only a 16-bit value. In
929 // the event of overflow (greater than SHN_LORESERVE sections), e_shnum
930 // will read SHN_UNDEF and the true number of section header table entries
931 // is found in the sh_size field of the first section header.
932 // See: http://www.sco.com/developers/gabi/2003-12-17/ch4.sheader.html
933 if (pread(fd, &first_section_header_, sizeof(first_section_header_),
934 header_.e_shoff) != sizeof(first_section_header_)) {
935 return false;
936 }
937 }
938
939 // Dynamically allocate enough space to store the section headers
940 // and read them out of the file.
941 const int section_headers_size =
942 GetNumSections() * sizeof(*section_headers_);
943 section_headers_ = new typename ElfArch::Shdr[section_headers_size];
944 if (pread(fd, section_headers_, section_headers_size, header_.e_shoff) !=
945 section_headers_size) {
946 return false;
947 }
948
949 // Dynamically allocate enough space to store the program headers
950 // and read them out of the file.
951 //const int program_headers_size =
952 // GetNumProgramHeaders() * sizeof(*program_headers_);
953 program_headers_ = new typename ElfArch::Phdr[GetNumProgramHeaders()];
954
955 // Presize the sections array for efficiency.
956 sections_.resize(GetNumSections(), NULL);
957 return true;
958 }
959
960 // Given the "value" of a function descriptor return the address of the
961 // function (i.e. the dereferenced value). Otherwise return "value".
AdjustPPC64FunctionDescriptorSymbolValue(uint64_t value)962 uint64_t AdjustPPC64FunctionDescriptorSymbolValue(uint64_t value) {
963 if (opd_section_ != NULL &&
964 opd_info_.addr <= value &&
965 value < opd_info_.addr + opd_info_.size) {
966 uint64_t offset = value - opd_info_.addr;
967 return (*reinterpret_cast<const uint64_t*>(opd_section_ + offset));
968 }
969 return value;
970 }
971
AdjustSymbolValue(typename ElfArch::Sym * sym)972 void AdjustSymbolValue(typename ElfArch::Sym* sym) {
973 switch (header_.e_machine) {
974 case EM_ARM:
975 // For ARM architecture, if the LSB of the function symbol offset is set,
976 // it indicates a Thumb function. This bit should not be taken literally.
977 // Clear it.
978 if (ElfArch::Type(sym) == STT_FUNC)
979 sym->st_value = AdjustARMThumbSymbolValue(sym->st_value);
980 break;
981 case EM_386:
982 // No adjustment needed for Intel x86 architecture. However, explicitly
983 // define this case as we use it quite often.
984 break;
985 case EM_PPC64:
986 // PowerPC64 currently has function descriptors as part of the ABI.
987 // Function symbols need to be adjusted accordingly.
988 if (ElfArch::Type(sym) == STT_FUNC)
989 sym->st_value = AdjustPPC64FunctionDescriptorSymbolValue(sym->st_value);
990 break;
991 default:
992 break;
993 }
994 }
995
996 friend class SymbolIterator<ElfArch>;
997
998 // The file we're reading.
999 const string path_;
1000 // Open file descriptor for path_. Not owned by this object.
1001 const int fd_;
1002
1003 // The global header of the ELF file.
1004 typename ElfArch::Ehdr header_;
1005
1006 // The header of the first section. This may be used to supplement the ELF
1007 // file header.
1008 typename ElfArch::Shdr first_section_header_;
1009
1010 // Array of GetNumSections() section headers, allocated when we read
1011 // in the global header.
1012 typename ElfArch::Shdr* section_headers_;
1013
1014 // Array of GetNumProgramHeaders() program headers, allocated when we read
1015 // in the global header.
1016 typename ElfArch::Phdr* program_headers_;
1017
1018 // An array of pointers to ElfSectionReaders. Sections are
1019 // mmaped as they're needed and not released until this object is
1020 // destroyed.
1021 vector<ElfSectionReader<ElfArch>*> sections_;
1022
1023 // For PowerPC64 we need to keep track of function descriptors when looking up
1024 // values for funtion symbols values. Function descriptors are kept in the
1025 // .opd section and are dereferenced to find the function address.
1026 ElfReader::SectionInfo opd_info_;
1027 const char* opd_section_; // Must be checked for NULL before use.
1028 int64_t base_for_text_;
1029
1030 // Read PLT-related sections for the current architecture.
1031 bool plts_supported_;
1032 // Code size of each PLT function for the current architecture.
1033 size_t plt_code_size_;
1034 // Size of the special first entry in the .plt section that calls the runtime
1035 // loader resolution routine, and that all other entries jump to when doing
1036 // lazy symbol binding.
1037 size_t plt0_size_;
1038
1039 // Maps a dynamic symbol index to a PLT offset.
1040 // The vector entry index is the dynamic symbol index.
1041 std::vector<uint64_t> symbols_plt_offsets_;
1042
1043 // Container for PLT function name strings. These strings are passed by
1044 // reference to SymbolSink::AddSymbol() so they need to be stored somewhere.
1045 std::vector<string> plt_function_names_;
1046
1047 bool visited_relocation_entries_;
1048
1049 // True if this is a .dwp file.
1050 bool is_dwp_;
1051 };
1052
ElfReader(const string & path)1053 ElfReader::ElfReader(const string& path)
1054 : path_(path), fd_(-1), impl32_(NULL), impl64_(NULL) {
1055 // linux 2.6.XX kernel can show deleted files like this:
1056 // /var/run/nscd/dbYLJYaE (deleted)
1057 // and the kernel-supplied vdso and vsyscall mappings like this:
1058 // [vdso]
1059 // [vsyscall]
1060 if (MyHasSuffixString(path, " (deleted)"))
1061 return;
1062 if (path == "[vdso]")
1063 return;
1064 if (path == "[vsyscall]")
1065 return;
1066
1067 fd_ = open(path.c_str(), O_RDONLY);
1068 }
1069
~ElfReader()1070 ElfReader::~ElfReader() {
1071 if (fd_ != -1)
1072 close(fd_);
1073 if (impl32_ != NULL)
1074 delete impl32_;
1075 if (impl64_ != NULL)
1076 delete impl64_;
1077 }
1078
1079
1080 // The only word-size specific part of this file is IsNativeElfFile().
1081 #if ULONG_MAX == 0xffffffff
1082 #define NATIVE_ELF_ARCH Elf32
1083 #elif ULONG_MAX == 0xffffffffffffffff
1084 #define NATIVE_ELF_ARCH Elf64
1085 #else
1086 #error "Invalid word size"
1087 #endif
1088
1089 template <typename ElfArch>
IsElfFile(const int fd,const string & path)1090 static bool IsElfFile(const int fd, const string& path) {
1091 if (fd < 0)
1092 return false;
1093 if (!ElfReaderImpl<ElfArch>::IsArchElfFile(fd, NULL)) {
1094 // No error message here. IsElfFile gets called many times.
1095 return false;
1096 }
1097 return true;
1098 }
1099
IsNativeElfFile() const1100 bool ElfReader::IsNativeElfFile() const {
1101 return IsElfFile<NATIVE_ELF_ARCH>(fd_, path_);
1102 }
1103
IsElf32File() const1104 bool ElfReader::IsElf32File() const {
1105 return IsElfFile<Elf32>(fd_, path_);
1106 }
1107
IsElf64File() const1108 bool ElfReader::IsElf64File() const {
1109 return IsElfFile<Elf64>(fd_, path_);
1110 }
1111
1112 /*
1113 void ElfReader::AddSymbols(SymbolMap* symbols,
1114 uint64_t mem_offset, uint64_t file_offset,
1115 uint64_t length) {
1116 if (fd_ < 0)
1117 return;
1118 // TODO(chatham): Actually use the information about file offset and
1119 // the length of the mapped section. On some machines the data
1120 // section gets mapped as executable, and we'll end up reading the
1121 // file twice and getting some of the offsets wrong.
1122 if (IsElf32File()) {
1123 GetImpl32()->GetSymbolPositions(symbols, SHT_SYMTAB,
1124 mem_offset, file_offset);
1125 GetImpl32()->GetSymbolPositions(symbols, SHT_DYNSYM,
1126 mem_offset, file_offset);
1127 } else if (IsElf64File()) {
1128 GetImpl64()->GetSymbolPositions(symbols, SHT_SYMTAB,
1129 mem_offset, file_offset);
1130 GetImpl64()->GetSymbolPositions(symbols, SHT_DYNSYM,
1131 mem_offset, file_offset);
1132 }
1133 }
1134 */
1135
VisitSymbols(ElfReader::SymbolSink * sink)1136 void ElfReader::VisitSymbols(ElfReader::SymbolSink* sink) {
1137 VisitSymbols(sink, -1, -1);
1138 }
1139
VisitSymbols(ElfReader::SymbolSink * sink,int symbol_binding,int symbol_type)1140 void ElfReader::VisitSymbols(ElfReader::SymbolSink* sink,
1141 int symbol_binding,
1142 int symbol_type) {
1143 VisitSymbols(sink, symbol_binding, symbol_type, false);
1144 }
1145
VisitSymbols(ElfReader::SymbolSink * sink,int symbol_binding,int symbol_type,bool get_raw_symbol_values)1146 void ElfReader::VisitSymbols(ElfReader::SymbolSink* sink,
1147 int symbol_binding,
1148 int symbol_type,
1149 bool get_raw_symbol_values) {
1150 if (IsElf32File()) {
1151 GetImpl32()->VisitRelocationEntries();
1152 GetImpl32()->VisitSymbols(SHT_SYMTAB, sink, symbol_binding, symbol_type,
1153 get_raw_symbol_values);
1154 GetImpl32()->VisitSymbols(SHT_DYNSYM, sink, symbol_binding, symbol_type,
1155 get_raw_symbol_values);
1156 } else if (IsElf64File()) {
1157 GetImpl64()->VisitRelocationEntries();
1158 GetImpl64()->VisitSymbols(SHT_SYMTAB, sink, symbol_binding, symbol_type,
1159 get_raw_symbol_values);
1160 GetImpl64()->VisitSymbols(SHT_DYNSYM, sink, symbol_binding, symbol_type,
1161 get_raw_symbol_values);
1162 }
1163 }
1164
VaddrOfFirstLoadSegment()1165 uint64_t ElfReader::VaddrOfFirstLoadSegment() {
1166 if (IsElf32File()) {
1167 return GetImpl32()->VaddrOfFirstLoadSegment();
1168 } else if (IsElf64File()) {
1169 return GetImpl64()->VaddrOfFirstLoadSegment();
1170 } else {
1171 return 0;
1172 }
1173 }
1174
GetSectionName(int shndx)1175 const char* ElfReader::GetSectionName(int shndx) {
1176 if (shndx < 0 || static_cast<unsigned int>(shndx) >= GetNumSections()) return NULL;
1177 if (IsElf32File()) {
1178 return GetImpl32()->GetSectionNameByIndex(shndx);
1179 } else if (IsElf64File()) {
1180 return GetImpl64()->GetSectionNameByIndex(shndx);
1181 } else {
1182 return NULL;
1183 }
1184 }
1185
GetNumSections()1186 uint64_t ElfReader::GetNumSections() {
1187 if (IsElf32File()) {
1188 return GetImpl32()->GetNumSections();
1189 } else if (IsElf64File()) {
1190 return GetImpl64()->GetNumSections();
1191 } else {
1192 return 0;
1193 }
1194 }
1195
GetSectionByIndex(int shndx,size_t * size)1196 const char* ElfReader::GetSectionByIndex(int shndx, size_t* size) {
1197 if (IsElf32File()) {
1198 return GetImpl32()->GetSectionContentsByIndex(shndx, size);
1199 } else if (IsElf64File()) {
1200 return GetImpl64()->GetSectionContentsByIndex(shndx, size);
1201 } else {
1202 return NULL;
1203 }
1204 }
1205
GetSectionByName(const string & section_name,size_t * size)1206 const char* ElfReader::GetSectionByName(const string& section_name,
1207 size_t* size) {
1208 if (IsElf32File()) {
1209 return GetImpl32()->GetSectionContentsByName(section_name, size);
1210 } else if (IsElf64File()) {
1211 return GetImpl64()->GetSectionContentsByName(section_name, size);
1212 } else {
1213 return NULL;
1214 }
1215 }
1216
GetSectionInfoByName(const string & section_name,SectionInfo * info)1217 const char* ElfReader::GetSectionInfoByName(const string& section_name,
1218 SectionInfo* info) {
1219 if (IsElf32File()) {
1220 return GetImpl32()->GetSectionInfoByName(section_name, info);
1221 } else if (IsElf64File()) {
1222 return GetImpl64()->GetSectionInfoByName(section_name, info);
1223 } else {
1224 return NULL;
1225 }
1226 }
1227
SectionNamesMatch(std::string_view name,std::string_view sh_name)1228 bool ElfReader::SectionNamesMatch(std::string_view name,
1229 std::string_view sh_name) {
1230 std::string_view debug_prefix{".debug_"};
1231 std::string_view zdebug_prefix{".zdebug_"};
1232 if (StringViewStartsWith(name, debug_prefix) &&
1233 StringViewStartsWith(sh_name, zdebug_prefix)) {
1234 name.remove_prefix(debug_prefix.length());
1235 sh_name.remove_prefix(zdebug_prefix.length());
1236 return name == sh_name;
1237 }
1238 return name == sh_name;
1239 }
1240
IsDynamicSharedObject()1241 bool ElfReader::IsDynamicSharedObject() {
1242 if (IsElf32File()) {
1243 return GetImpl32()->IsDynamicSharedObject();
1244 } else if (IsElf64File()) {
1245 return GetImpl64()->IsDynamicSharedObject();
1246 } else {
1247 return false;
1248 }
1249 }
1250
GetImpl32()1251 ElfReaderImpl<Elf32>* ElfReader::GetImpl32() {
1252 if (impl32_ == NULL) {
1253 impl32_ = new ElfReaderImpl<Elf32>(path_, fd_);
1254 }
1255 return impl32_;
1256 }
1257
GetImpl64()1258 ElfReaderImpl<Elf64>* ElfReader::GetImpl64() {
1259 if (impl64_ == NULL) {
1260 impl64_ = new ElfReaderImpl<Elf64>(path_, fd_);
1261 }
1262 return impl64_;
1263 }
1264
1265 // Return true if file is an ELF binary of ElfArch, with unstripped
1266 // debug info (debug_only=true) or symbol table (debug_only=false).
1267 // Otherwise, return false.
1268 template <typename ElfArch>
IsNonStrippedELFBinaryImpl(const string & path,const int fd,bool debug_only)1269 static bool IsNonStrippedELFBinaryImpl(const string& path, const int fd,
1270 bool debug_only) {
1271 if (!ElfReaderImpl<ElfArch>::IsArchElfFile(fd, NULL)) return false;
1272 ElfReaderImpl<ElfArch> elf_reader(path, fd);
1273 return debug_only ?
1274 elf_reader.HasDebugSections()
1275 : (elf_reader.GetSectionByType(SHT_SYMTAB) != NULL);
1276 }
1277
1278 // Helper for the IsNon[Debug]StrippedELFBinary functions.
IsNonStrippedELFBinaryHelper(const string & path,bool debug_only)1279 static bool IsNonStrippedELFBinaryHelper(const string& path,
1280 bool debug_only) {
1281 const int fd = open(path.c_str(), O_RDONLY);
1282 if (fd == -1) {
1283 return false;
1284 }
1285
1286 if (IsNonStrippedELFBinaryImpl<Elf32>(path, fd, debug_only) ||
1287 IsNonStrippedELFBinaryImpl<Elf64>(path, fd, debug_only)) {
1288 close(fd);
1289 return true;
1290 }
1291 close(fd);
1292 return false;
1293 }
1294
IsNonStrippedELFBinary(const string & path)1295 bool ElfReader::IsNonStrippedELFBinary(const string& path) {
1296 return IsNonStrippedELFBinaryHelper(path, false);
1297 }
1298
IsNonDebugStrippedELFBinary(const string & path)1299 bool ElfReader::IsNonDebugStrippedELFBinary(const string& path) {
1300 return IsNonStrippedELFBinaryHelper(path, true);
1301 }
1302 } // namespace google_breakpad
1303