xref: /aosp_15_r20/external/google-breakpad/src/processor/exploitability_linux.cc (revision 9712c20fc9bbfbac4935993a2ca0b3958c5adad2)
1 // Copyright 2013 Google LLC
2 //
3 // Redistribution and use in source and binary forms, with or without
4 // modification, are permitted provided that the following conditions are
5 // met:
6 //
7 //     * Redistributions of source code must retain the above copyright
8 // notice, this list of conditions and the following disclaimer.
9 //     * Redistributions in binary form must reproduce the above
10 // copyright notice, this list of conditions and the following disclaimer
11 // in the documentation and/or other materials provided with the
12 // distribution.
13 //     * Neither the name of Google LLC nor the names of its
14 // contributors may be used to endorse or promote products derived from
15 // this software without specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 
29 // exploitability_linux.cc: Linux specific exploitability engine.
30 //
31 // Provides a guess at the exploitability of the crash for the Linux
32 // platform given a minidump and process_state.
33 //
34 // Author: Matthew Riley
35 
36 #ifdef HAVE_CONFIG_H
37 #include <config.h>  // Must come first
38 #endif
39 
40 #include "processor/exploitability_linux.h"
41 
42 #include <string.h>
43 
44 #include "google_breakpad/common/minidump_exception_linux.h"
45 #include "google_breakpad/processor/call_stack.h"
46 #include "google_breakpad/processor/process_state.h"
47 #include "google_breakpad/processor/stack_frame.h"
48 #ifdef __linux__
49 #include "processor/disassembler_objdump.h"
50 #endif
51 #include "processor/logging.h"
52 
53 namespace {
54 
55 // Prefixes for memory mapping names.
56 constexpr char kHeapPrefix[] = "[heap";
57 constexpr char kStackPrefix[] =  "[stack";
58 
59 // This function in libc is called if the program was compiled with
60 // -fstack-protector and a function's stack canary changes.
61 constexpr char kStackCheckFailureFunction[] = "__stack_chk_fail";
62 
63 // This function in libc is called if the program was compiled with
64 // -D_FORTIFY_SOURCE=2, a function like strcpy() is called, and the runtime
65 // can determine that the call would overflow the target buffer.
66 constexpr char kBoundsCheckFailureFunction[] = "__chk_fail";
67 
68 }  // namespace
69 
70 namespace google_breakpad {
71 
ExploitabilityLinux(Minidump * dump,ProcessState * process_state)72 ExploitabilityLinux::ExploitabilityLinux(Minidump* dump,
73                                          ProcessState* process_state)
74     : Exploitability(dump, process_state),
75       enable_objdump_(false) { }
76 
ExploitabilityLinux(Minidump * dump,ProcessState * process_state,bool enable_objdump)77 ExploitabilityLinux::ExploitabilityLinux(Minidump* dump,
78                                          ProcessState* process_state,
79                                          bool enable_objdump)
80     : Exploitability(dump, process_state),
81       enable_objdump_(enable_objdump) { }
82 
83 
CheckPlatformExploitability()84 ExploitabilityRating ExploitabilityLinux::CheckPlatformExploitability() {
85   // Check the crashing thread for functions suggesting a buffer overflow or
86   // stack smash.
87   if (process_state_->requesting_thread() != -1) {
88     CallStack* crashing_thread =
89         process_state_->threads()->at(process_state_->requesting_thread());
90     const vector<StackFrame*>& crashing_thread_frames =
91         *crashing_thread->frames();
92     for (size_t i = 0; i < crashing_thread_frames.size(); ++i) {
93       if (crashing_thread_frames[i]->function_name ==
94           kStackCheckFailureFunction) {
95         return EXPLOITABILITY_HIGH;
96       }
97 
98       if (crashing_thread_frames[i]->function_name ==
99           kBoundsCheckFailureFunction) {
100         return EXPLOITABILITY_HIGH;
101       }
102     }
103   }
104 
105   // Getting exception data. (It should exist for all minidumps.)
106   MinidumpException* exception = dump_->GetException();
107   if (exception == NULL) {
108     BPLOG(INFO) << "No exception record.";
109     return EXPLOITABILITY_ERR_PROCESSING;
110   }
111   const MDRawExceptionStream* raw_exception_stream = exception->exception();
112   if (raw_exception_stream == NULL) {
113     BPLOG(INFO) << "No raw exception stream.";
114     return EXPLOITABILITY_ERR_PROCESSING;
115   }
116 
117   // Checking for benign exceptions that caused the crash.
118   if (this->BenignCrashTrigger(raw_exception_stream)) {
119     return EXPLOITABILITY_NONE;
120   }
121 
122   // Check if the instruction pointer is in a valid instruction region
123   // by finding if it maps to an executable part of memory.
124   uint64_t instruction_ptr = 0;
125   uint64_t stack_ptr = 0;
126 
127   const MinidumpContext* context = exception->GetContext();
128   if (context == NULL) {
129     BPLOG(INFO) << "No exception context.";
130     return EXPLOITABILITY_ERR_PROCESSING;
131   }
132 
133   // Getting the instruction pointer.
134   if (!context->GetInstructionPointer(&instruction_ptr)) {
135     BPLOG(INFO) << "Failed to retrieve instruction pointer.";
136     return EXPLOITABILITY_ERR_PROCESSING;
137   }
138 
139   // Getting the stack pointer.
140   if (!context->GetStackPointer(&stack_ptr)) {
141     BPLOG(INFO) << "Failed to retrieve stack pointer.";
142     return EXPLOITABILITY_ERR_PROCESSING;
143   }
144 
145   // Checking for the instruction pointer in a valid instruction region,
146   // a misplaced stack pointer, and an executable stack or heap.
147   if (!this->InstructionPointerInCode(instruction_ptr) ||
148        this->StackPointerOffStack(stack_ptr) ||
149        this->ExecutableStackOrHeap()) {
150     return EXPLOITABILITY_HIGH;
151   }
152 
153   // Check for write to read only memory or invalid memory, shelling out
154   // to objdump is enabled.
155   if (enable_objdump_ && this->EndedOnIllegalWrite(instruction_ptr)) {
156     return EXPLOITABILITY_HIGH;
157   }
158 
159   // There was no strong evidence suggesting exploitability, but the minidump
160   // does not appear totally benign either.
161   return EXPLOITABILITY_INTERESTING;
162 }
163 
EndedOnIllegalWrite(uint64_t instruction_ptr)164 bool ExploitabilityLinux::EndedOnIllegalWrite(uint64_t instruction_ptr) {
165 #ifndef __linux__
166   BPLOG(INFO) << "MinGW does not support fork and exec. Terminating method.";
167   return false;
168 #else
169   // Get memory region containing instruction pointer.
170   MinidumpMemoryList* memory_list = dump_->GetMemoryList();
171   MinidumpMemoryRegion* memory_region =
172       memory_list ?
173       memory_list->GetMemoryRegionForAddress(instruction_ptr) : NULL;
174   if (!memory_region) {
175     BPLOG(INFO) << "No memory region around instruction pointer.";
176     return false;
177   }
178 
179   // Get exception data to find architecture.
180   string architecture = "";
181   MinidumpException* exception = dump_->GetException();
182   // This should never evaluate to true, since this should not be reachable
183   // without checking for exception data earlier.
184   if (!exception) {
185     BPLOG(INFO) << "No exception data.";
186     return false;
187   }
188   const MDRawExceptionStream* raw_exception_stream = exception->exception();
189   const MinidumpContext* context = exception->GetContext();
190   // This should not evaluate to true, for the same reason mentioned above.
191   if (!raw_exception_stream || !context) {
192     BPLOG(INFO) << "No exception or architecture data.";
193     return false;
194   }
195 
196   DisassemblerObjdump disassembler(context->GetContextCPU(), memory_region,
197                                    instruction_ptr);
198   if (!disassembler.IsValid()) {
199     BPLOG(INFO) << "Disassembling fault instruction failed.";
200     return false;
201   }
202 
203   // Check if the operation is a write to memory.
204   // First, the instruction must one that can write to memory.
205   auto instruction = disassembler.operation();
206   if (!instruction.compare("mov") || !instruction.compare("inc") ||
207       !instruction.compare("dec") || !instruction.compare("and") ||
208       !instruction.compare("or") || !instruction.compare("xor") ||
209       !instruction.compare("not") || !instruction.compare("neg") ||
210       !instruction.compare("add") || !instruction.compare("sub") ||
211       !instruction.compare("shl") || !instruction.compare("shr")) {
212     uint64_t write_address = 0;
213 
214     // Check that the destination is a memory address. CalculateDestAddress will
215     // return false if the destination is not a memory address.
216     if (!disassembler.CalculateDestAddress(*context, write_address)) {
217       return false;
218     }
219 
220     // If the program crashed as a result of a write, the destination of
221     // the write must have been an address that did not permit writing.
222     // However, if the address is under 4k, due to program protections,
223     // the crash does not suggest exploitability for writes with such a
224     // low target address.
225     return write_address > 4096;
226   } else {
227     return false;
228   }
229 #endif  // __linux__
230 }
231 
StackPointerOffStack(uint64_t stack_ptr)232 bool ExploitabilityLinux::StackPointerOffStack(uint64_t stack_ptr) {
233   MinidumpLinuxMapsList* linux_maps_list = dump_->GetLinuxMapsList();
234   // Inconclusive if there are no mappings available.
235   if (!linux_maps_list) {
236     return false;
237   }
238   const MinidumpLinuxMaps* linux_maps =
239       linux_maps_list->GetLinuxMapsForAddress(stack_ptr);
240   // Checks if the stack pointer maps to a valid mapping and if the mapping
241   // is not the stack. If the mapping has no name, it is inconclusive whether
242   // it is off the stack.
243   return !linux_maps || (linux_maps->GetPathname().compare("") &&
244                          linux_maps->GetPathname().compare(
245                              0, strlen(kStackPrefix), kStackPrefix));
246 }
247 
ExecutableStackOrHeap()248 bool ExploitabilityLinux::ExecutableStackOrHeap() {
249   MinidumpLinuxMapsList* linux_maps_list = dump_->GetLinuxMapsList();
250   if (linux_maps_list) {
251     for (size_t i = 0; i < linux_maps_list->get_maps_count(); i++) {
252       const MinidumpLinuxMaps* linux_maps =
253           linux_maps_list->GetLinuxMapsAtIndex(i);
254       // Check for executable stack or heap for each mapping.
255       if (linux_maps && (!linux_maps->GetPathname().compare(
256                              0, strlen(kStackPrefix), kStackPrefix) ||
257                          !linux_maps->GetPathname().compare(
258                              0, strlen(kHeapPrefix), kHeapPrefix)) &&
259           linux_maps->IsExecutable()) {
260         return true;
261       }
262     }
263   }
264   return false;
265 }
266 
InstructionPointerInCode(uint64_t instruction_ptr)267 bool ExploitabilityLinux::InstructionPointerInCode(uint64_t instruction_ptr) {
268   // Get Linux memory mapping from /proc/self/maps. Checking whether the
269   // region the instruction pointer is in has executable permission can tell
270   // whether it is in a valid code region. If there is no mapping for the
271   // instruction pointer, it is indicative that the instruction pointer is
272   // not within a module, which implies that it is outside a valid area.
273   MinidumpLinuxMapsList* linux_maps_list = dump_->GetLinuxMapsList();
274   const MinidumpLinuxMaps* linux_maps =
275       linux_maps_list ?
276       linux_maps_list->GetLinuxMapsForAddress(instruction_ptr) : NULL;
277   return linux_maps ? linux_maps->IsExecutable() : false;
278 }
279 
BenignCrashTrigger(const MDRawExceptionStream * raw_exception_stream)280 bool ExploitabilityLinux::BenignCrashTrigger(
281     const MDRawExceptionStream* raw_exception_stream) {
282   // Check the cause of crash.
283   // If the exception of the crash is a benign exception,
284   // it is probably not exploitable.
285   switch (raw_exception_stream->exception_record.exception_code) {
286     case MD_EXCEPTION_CODE_LIN_SIGHUP:
287     case MD_EXCEPTION_CODE_LIN_SIGINT:
288     case MD_EXCEPTION_CODE_LIN_SIGQUIT:
289     case MD_EXCEPTION_CODE_LIN_SIGTRAP:
290     case MD_EXCEPTION_CODE_LIN_SIGABRT:
291     case MD_EXCEPTION_CODE_LIN_SIGFPE:
292     case MD_EXCEPTION_CODE_LIN_SIGKILL:
293     case MD_EXCEPTION_CODE_LIN_SIGUSR1:
294     case MD_EXCEPTION_CODE_LIN_SIGUSR2:
295     case MD_EXCEPTION_CODE_LIN_SIGPIPE:
296     case MD_EXCEPTION_CODE_LIN_SIGALRM:
297     case MD_EXCEPTION_CODE_LIN_SIGTERM:
298     case MD_EXCEPTION_CODE_LIN_SIGCHLD:
299     case MD_EXCEPTION_CODE_LIN_SIGCONT:
300     case MD_EXCEPTION_CODE_LIN_SIGSTOP:
301     case MD_EXCEPTION_CODE_LIN_SIGTSTP:
302     case MD_EXCEPTION_CODE_LIN_SIGTTIN:
303     case MD_EXCEPTION_CODE_LIN_SIGTTOU:
304     case MD_EXCEPTION_CODE_LIN_SIGURG:
305     case MD_EXCEPTION_CODE_LIN_SIGXCPU:
306     case MD_EXCEPTION_CODE_LIN_SIGXFSZ:
307     case MD_EXCEPTION_CODE_LIN_SIGVTALRM:
308     case MD_EXCEPTION_CODE_LIN_SIGPROF:
309     case MD_EXCEPTION_CODE_LIN_SIGWINCH:
310     case MD_EXCEPTION_CODE_LIN_SIGIO:
311     case MD_EXCEPTION_CODE_LIN_SIGPWR:
312     case MD_EXCEPTION_CODE_LIN_SIGSYS:
313     case MD_EXCEPTION_CODE_LIN_DUMP_REQUESTED:
314       return true;
315     default:
316       return false;
317   }
318 }
319 
320 }  // namespace google_breakpad
321