xref: /aosp_15_r20/external/googletest/googlemock/include/gmock/gmock-matchers.h (revision 481dde660366d6f317d242b6974ef1b20adb843c)
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 // Google Mock - a framework for writing C++ mock classes.
31 //
32 // The MATCHER* family of macros can be used in a namespace scope to
33 // define custom matchers easily.
34 //
35 // Basic Usage
36 // ===========
37 //
38 // The syntax
39 //
40 //   MATCHER(name, description_string) { statements; }
41 //
42 // defines a matcher with the given name that executes the statements,
43 // which must return a bool to indicate if the match succeeds.  Inside
44 // the statements, you can refer to the value being matched by 'arg',
45 // and refer to its type by 'arg_type'.
46 //
47 // The description string documents what the matcher does, and is used
48 // to generate the failure message when the match fails.  Since a
49 // MATCHER() is usually defined in a header file shared by multiple
50 // C++ source files, we require the description to be a C-string
51 // literal to avoid possible side effects.  It can be empty, in which
52 // case we'll use the sequence of words in the matcher name as the
53 // description.
54 //
55 // For example:
56 //
57 //   MATCHER(IsEven, "") { return (arg % 2) == 0; }
58 //
59 // allows you to write
60 //
61 //   // Expects mock_foo.Bar(n) to be called where n is even.
62 //   EXPECT_CALL(mock_foo, Bar(IsEven()));
63 //
64 // or,
65 //
66 //   // Verifies that the value of some_expression is even.
67 //   EXPECT_THAT(some_expression, IsEven());
68 //
69 // If the above assertion fails, it will print something like:
70 //
71 //   Value of: some_expression
72 //   Expected: is even
73 //     Actual: 7
74 //
75 // where the description "is even" is automatically calculated from the
76 // matcher name IsEven.
77 //
78 // Argument Type
79 // =============
80 //
81 // Note that the type of the value being matched (arg_type) is
82 // determined by the context in which you use the matcher and is
83 // supplied to you by the compiler, so you don't need to worry about
84 // declaring it (nor can you).  This allows the matcher to be
85 // polymorphic.  For example, IsEven() can be used to match any type
86 // where the value of "(arg % 2) == 0" can be implicitly converted to
87 // a bool.  In the "Bar(IsEven())" example above, if method Bar()
88 // takes an int, 'arg_type' will be int; if it takes an unsigned long,
89 // 'arg_type' will be unsigned long; and so on.
90 //
91 // Parameterizing Matchers
92 // =======================
93 //
94 // Sometimes you'll want to parameterize the matcher.  For that you
95 // can use another macro:
96 //
97 //   MATCHER_P(name, param_name, description_string) { statements; }
98 //
99 // For example:
100 //
101 //   MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
102 //
103 // will allow you to write:
104 //
105 //   EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
106 //
107 // which may lead to this message (assuming n is 10):
108 //
109 //   Value of: Blah("a")
110 //   Expected: has absolute value 10
111 //     Actual: -9
112 //
113 // Note that both the matcher description and its parameter are
114 // printed, making the message human-friendly.
115 //
116 // In the matcher definition body, you can write 'foo_type' to
117 // reference the type of a parameter named 'foo'.  For example, in the
118 // body of MATCHER_P(HasAbsoluteValue, value) above, you can write
119 // 'value_type' to refer to the type of 'value'.
120 //
121 // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
122 // support multi-parameter matchers.
123 //
124 // Describing Parameterized Matchers
125 // =================================
126 //
127 // The last argument to MATCHER*() is a string-typed expression.  The
128 // expression can reference all of the matcher's parameters and a
129 // special bool-typed variable named 'negation'.  When 'negation' is
130 // false, the expression should evaluate to the matcher's description;
131 // otherwise it should evaluate to the description of the negation of
132 // the matcher.  For example,
133 //
134 //   using testing::PrintToString;
135 //
136 //   MATCHER_P2(InClosedRange, low, hi,
137 //       std::string(negation ? "is not" : "is") + " in range [" +
138 //       PrintToString(low) + ", " + PrintToString(hi) + "]") {
139 //     return low <= arg && arg <= hi;
140 //   }
141 //   ...
142 //   EXPECT_THAT(3, InClosedRange(4, 6));
143 //   EXPECT_THAT(3, Not(InClosedRange(2, 4)));
144 //
145 // would generate two failures that contain the text:
146 //
147 //   Expected: is in range [4, 6]
148 //   ...
149 //   Expected: is not in range [2, 4]
150 //
151 // If you specify "" as the description, the failure message will
152 // contain the sequence of words in the matcher name followed by the
153 // parameter values printed as a tuple.  For example,
154 //
155 //   MATCHER_P2(InClosedRange, low, hi, "") { ... }
156 //   ...
157 //   EXPECT_THAT(3, InClosedRange(4, 6));
158 //   EXPECT_THAT(3, Not(InClosedRange(2, 4)));
159 //
160 // would generate two failures that contain the text:
161 //
162 //   Expected: in closed range (4, 6)
163 //   ...
164 //   Expected: not (in closed range (2, 4))
165 //
166 // Types of Matcher Parameters
167 // ===========================
168 //
169 // For the purpose of typing, you can view
170 //
171 //   MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
172 //
173 // as shorthand for
174 //
175 //   template <typename p1_type, ..., typename pk_type>
176 //   FooMatcherPk<p1_type, ..., pk_type>
177 //   Foo(p1_type p1, ..., pk_type pk) { ... }
178 //
179 // When you write Foo(v1, ..., vk), the compiler infers the types of
180 // the parameters v1, ..., and vk for you.  If you are not happy with
181 // the result of the type inference, you can specify the types by
182 // explicitly instantiating the template, as in Foo<long, bool>(5,
183 // false).  As said earlier, you don't get to (or need to) specify
184 // 'arg_type' as that's determined by the context in which the matcher
185 // is used.  You can assign the result of expression Foo(p1, ..., pk)
186 // to a variable of type FooMatcherPk<p1_type, ..., pk_type>.  This
187 // can be useful when composing matchers.
188 //
189 // While you can instantiate a matcher template with reference types,
190 // passing the parameters by pointer usually makes your code more
191 // readable.  If, however, you still want to pass a parameter by
192 // reference, be aware that in the failure message generated by the
193 // matcher you will see the value of the referenced object but not its
194 // address.
195 //
196 // Explaining Match Results
197 // ========================
198 //
199 // Sometimes the matcher description alone isn't enough to explain why
200 // the match has failed or succeeded.  For example, when expecting a
201 // long string, it can be very helpful to also print the diff between
202 // the expected string and the actual one.  To achieve that, you can
203 // optionally stream additional information to a special variable
204 // named result_listener, whose type is a pointer to class
205 // MatchResultListener:
206 //
207 //   MATCHER_P(EqualsLongString, str, "") {
208 //     if (arg == str) return true;
209 //
210 //     *result_listener << "the difference: "
211 ///                     << DiffStrings(str, arg);
212 //     return false;
213 //   }
214 //
215 // Overloading Matchers
216 // ====================
217 //
218 // You can overload matchers with different numbers of parameters:
219 //
220 //   MATCHER_P(Blah, a, description_string1) { ... }
221 //   MATCHER_P2(Blah, a, b, description_string2) { ... }
222 //
223 // Caveats
224 // =======
225 //
226 // When defining a new matcher, you should also consider implementing
227 // MatcherInterface or using MakePolymorphicMatcher().  These
228 // approaches require more work than the MATCHER* macros, but also
229 // give you more control on the types of the value being matched and
230 // the matcher parameters, which may leads to better compiler error
231 // messages when the matcher is used wrong.  They also allow
232 // overloading matchers based on parameter types (as opposed to just
233 // based on the number of parameters).
234 //
235 // MATCHER*() can only be used in a namespace scope as templates cannot be
236 // declared inside of a local class.
237 //
238 // More Information
239 // ================
240 //
241 // To learn more about using these macros, please search for 'MATCHER'
242 // on
243 // https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md
244 //
245 // This file also implements some commonly used argument matchers.  More
246 // matchers can be defined by the user implementing the
247 // MatcherInterface<T> interface if necessary.
248 //
249 // See googletest/include/gtest/gtest-matchers.h for the definition of class
250 // Matcher, class MatcherInterface, and others.
251 
252 // IWYU pragma: private, include "gmock/gmock.h"
253 // IWYU pragma: friend gmock/.*
254 
255 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
256 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
257 
258 #include <algorithm>
259 #include <cmath>
260 #include <exception>
261 #include <functional>
262 #include <initializer_list>
263 #include <ios>
264 #include <iterator>
265 #include <limits>
266 #include <memory>
267 #include <ostream>  // NOLINT
268 #include <sstream>
269 #include <string>
270 #include <type_traits>
271 #include <utility>
272 #include <vector>
273 
274 #include "gmock/internal/gmock-internal-utils.h"
275 #include "gmock/internal/gmock-port.h"
276 #include "gmock/internal/gmock-pp.h"
277 #include "gtest/gtest.h"
278 
279 // MSVC warning C5046 is new as of VS2017 version 15.8.
280 #if defined(_MSC_VER) && _MSC_VER >= 1915
281 #define GMOCK_MAYBE_5046_ 5046
282 #else
283 #define GMOCK_MAYBE_5046_
284 #endif
285 
286 GTEST_DISABLE_MSC_WARNINGS_PUSH_(
287     4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by
288                               clients of class B */
289     /* Symbol involving type with internal linkage not defined */)
290 
291 #pragma GCC system_header
292 
293 namespace testing {
294 
295 // To implement a matcher Foo for type T, define:
296 //   1. a class FooMatcherImpl that implements the
297 //      MatcherInterface<T> interface, and
298 //   2. a factory function that creates a Matcher<T> object from a
299 //      FooMatcherImpl*.
300 //
301 // The two-level delegation design makes it possible to allow a user
302 // to write "v" instead of "Eq(v)" where a Matcher is expected, which
303 // is impossible if we pass matchers by pointers.  It also eases
304 // ownership management as Matcher objects can now be copied like
305 // plain values.
306 
307 // A match result listener that stores the explanation in a string.
308 class StringMatchResultListener : public MatchResultListener {
309  public:
StringMatchResultListener()310   StringMatchResultListener() : MatchResultListener(&ss_) {}
311 
312   // Returns the explanation accumulated so far.
str()313   std::string str() const { return ss_.str(); }
314 
315   // Clears the explanation accumulated so far.
Clear()316   void Clear() { ss_.str(""); }
317 
318  private:
319   ::std::stringstream ss_;
320 
321   StringMatchResultListener(const StringMatchResultListener&) = delete;
322   StringMatchResultListener& operator=(const StringMatchResultListener&) =
323       delete;
324 };
325 
326 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
327 // and MUST NOT BE USED IN USER CODE!!!
328 namespace internal {
329 
330 // The MatcherCastImpl class template is a helper for implementing
331 // MatcherCast().  We need this helper in order to partially
332 // specialize the implementation of MatcherCast() (C++ allows
333 // class/struct templates to be partially specialized, but not
334 // function templates.).
335 
336 // This general version is used when MatcherCast()'s argument is a
337 // polymorphic matcher (i.e. something that can be converted to a
338 // Matcher but is not one yet; for example, Eq(value)) or a value (for
339 // example, "hello").
340 template <typename T, typename M>
341 class MatcherCastImpl {
342  public:
Cast(const M & polymorphic_matcher_or_value)343   static Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
344     // M can be a polymorphic matcher, in which case we want to use
345     // its conversion operator to create Matcher<T>.  Or it can be a value
346     // that should be passed to the Matcher<T>'s constructor.
347     //
348     // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
349     // polymorphic matcher because it'll be ambiguous if T has an implicit
350     // constructor from M (this usually happens when T has an implicit
351     // constructor from any type).
352     //
353     // It won't work to unconditionally implicit_cast
354     // polymorphic_matcher_or_value to Matcher<T> because it won't trigger
355     // a user-defined conversion from M to T if one exists (assuming M is
356     // a value).
357     return CastImpl(polymorphic_matcher_or_value,
358                     std::is_convertible<M, Matcher<T>>{},
359                     std::is_convertible<M, T>{});
360   }
361 
362  private:
363   template <bool Ignore>
CastImpl(const M & polymorphic_matcher_or_value,std::true_type,std::integral_constant<bool,Ignore>)364   static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value,
365                              std::true_type /* convertible_to_matcher */,
366                              std::integral_constant<bool, Ignore>) {
367     // M is implicitly convertible to Matcher<T>, which means that either
368     // M is a polymorphic matcher or Matcher<T> has an implicit constructor
369     // from M.  In both cases using the implicit conversion will produce a
370     // matcher.
371     //
372     // Even if T has an implicit constructor from M, it won't be called because
373     // creating Matcher<T> would require a chain of two user-defined conversions
374     // (first to create T from M and then to create Matcher<T> from T).
375     return polymorphic_matcher_or_value;
376   }
377 
378   // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
379   // matcher. It's a value of a type implicitly convertible to T. Use direct
380   // initialization to create a matcher.
CastImpl(const M & value,std::false_type,std::true_type)381   static Matcher<T> CastImpl(const M& value,
382                              std::false_type /* convertible_to_matcher */,
383                              std::true_type /* convertible_to_T */) {
384     return Matcher<T>(ImplicitCast_<T>(value));
385   }
386 
387   // M can't be implicitly converted to either Matcher<T> or T. Attempt to use
388   // polymorphic matcher Eq(value) in this case.
389   //
390   // Note that we first attempt to perform an implicit cast on the value and
391   // only fall back to the polymorphic Eq() matcher afterwards because the
392   // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end
393   // which might be undefined even when Rhs is implicitly convertible to Lhs
394   // (e.g. std::pair<const int, int> vs. std::pair<int, int>).
395   //
396   // We don't define this method inline as we need the declaration of Eq().
397   static Matcher<T> CastImpl(const M& value,
398                              std::false_type /* convertible_to_matcher */,
399                              std::false_type /* convertible_to_T */);
400 };
401 
402 // This more specialized version is used when MatcherCast()'s argument
403 // is already a Matcher.  This only compiles when type T can be
404 // statically converted to type U.
405 template <typename T, typename U>
406 class MatcherCastImpl<T, Matcher<U>> {
407  public:
Cast(const Matcher<U> & source_matcher)408   static Matcher<T> Cast(const Matcher<U>& source_matcher) {
409     return Matcher<T>(new Impl(source_matcher));
410   }
411 
412  private:
413   class Impl : public MatcherInterface<T> {
414    public:
Impl(const Matcher<U> & source_matcher)415     explicit Impl(const Matcher<U>& source_matcher)
416         : source_matcher_(source_matcher) {}
417 
418     // We delegate the matching logic to the source matcher.
MatchAndExplain(T x,MatchResultListener * listener)419     bool MatchAndExplain(T x, MatchResultListener* listener) const override {
420       using FromType = typename std::remove_cv<typename std::remove_pointer<
421           typename std::remove_reference<T>::type>::type>::type;
422       using ToType = typename std::remove_cv<typename std::remove_pointer<
423           typename std::remove_reference<U>::type>::type>::type;
424       // Do not allow implicitly converting base*/& to derived*/&.
425       static_assert(
426           // Do not trigger if only one of them is a pointer. That implies a
427           // regular conversion and not a down_cast.
428           (std::is_pointer<typename std::remove_reference<T>::type>::value !=
429            std::is_pointer<typename std::remove_reference<U>::type>::value) ||
430               std::is_same<FromType, ToType>::value ||
431               !std::is_base_of<FromType, ToType>::value,
432           "Can't implicitly convert from <base> to <derived>");
433 
434       // Do the cast to `U` explicitly if necessary.
435       // Otherwise, let implicit conversions do the trick.
436       using CastType =
437           typename std::conditional<std::is_convertible<T&, const U&>::value,
438                                     T&, U>::type;
439 
440       return source_matcher_.MatchAndExplain(static_cast<CastType>(x),
441                                              listener);
442     }
443 
DescribeTo(::std::ostream * os)444     void DescribeTo(::std::ostream* os) const override {
445       source_matcher_.DescribeTo(os);
446     }
447 
DescribeNegationTo(::std::ostream * os)448     void DescribeNegationTo(::std::ostream* os) const override {
449       source_matcher_.DescribeNegationTo(os);
450     }
451 
452    private:
453     const Matcher<U> source_matcher_;
454   };
455 };
456 
457 // This even more specialized version is used for efficiently casting
458 // a matcher to its own type.
459 template <typename T>
460 class MatcherCastImpl<T, Matcher<T>> {
461  public:
Cast(const Matcher<T> & matcher)462   static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
463 };
464 
465 // Template specialization for parameterless Matcher.
466 template <typename Derived>
467 class MatcherBaseImpl {
468  public:
469   MatcherBaseImpl() = default;
470 
471   template <typename T>
472   operator ::testing::Matcher<T>() const {  // NOLINT(runtime/explicit)
473     return ::testing::Matcher<T>(new
474                                  typename Derived::template gmock_Impl<T>());
475   }
476 };
477 
478 // Template specialization for Matcher with parameters.
479 template <template <typename...> class Derived, typename... Ts>
480 class MatcherBaseImpl<Derived<Ts...>> {
481  public:
482   // Mark the constructor explicit for single argument T to avoid implicit
483   // conversions.
484   template <typename E = std::enable_if<sizeof...(Ts) == 1>,
485             typename E::type* = nullptr>
MatcherBaseImpl(Ts...params)486   explicit MatcherBaseImpl(Ts... params)
487       : params_(std::forward<Ts>(params)...) {}
488   template <typename E = std::enable_if<sizeof...(Ts) != 1>,
489             typename = typename E::type>
MatcherBaseImpl(Ts...params)490   MatcherBaseImpl(Ts... params)  // NOLINT
491       : params_(std::forward<Ts>(params)...) {}
492 
493   template <typename F>
494   operator ::testing::Matcher<F>() const {  // NOLINT(runtime/explicit)
495     return Apply<F>(std::make_index_sequence<sizeof...(Ts)>{});
496   }
497 
498  private:
499   template <typename F, std::size_t... tuple_ids>
Apply(std::index_sequence<tuple_ids...>)500   ::testing::Matcher<F> Apply(std::index_sequence<tuple_ids...>) const {
501     return ::testing::Matcher<F>(
502         new typename Derived<Ts...>::template gmock_Impl<F>(
503             std::get<tuple_ids>(params_)...));
504   }
505 
506   const std::tuple<Ts...> params_;
507 };
508 
509 }  // namespace internal
510 
511 // In order to be safe and clear, casting between different matcher
512 // types is done explicitly via MatcherCast<T>(m), which takes a
513 // matcher m and returns a Matcher<T>.  It compiles only when T can be
514 // statically converted to the argument type of m.
515 template <typename T, typename M>
MatcherCast(const M & matcher)516 inline Matcher<T> MatcherCast(const M& matcher) {
517   return internal::MatcherCastImpl<T, M>::Cast(matcher);
518 }
519 
520 // This overload handles polymorphic matchers and values only since
521 // monomorphic matchers are handled by the next one.
522 template <typename T, typename M>
SafeMatcherCast(const M & polymorphic_matcher_or_value)523 inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) {
524   return MatcherCast<T>(polymorphic_matcher_or_value);
525 }
526 
527 // This overload handles monomorphic matchers.
528 //
529 // In general, if type T can be implicitly converted to type U, we can
530 // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
531 // contravariant): just keep a copy of the original Matcher<U>, convert the
532 // argument from type T to U, and then pass it to the underlying Matcher<U>.
533 // The only exception is when U is a reference and T is not, as the
534 // underlying Matcher<U> may be interested in the argument's address, which
535 // is not preserved in the conversion from T to U.
536 template <typename T, typename U>
SafeMatcherCast(const Matcher<U> & matcher)537 inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
538   // Enforce that T can be implicitly converted to U.
539   static_assert(std::is_convertible<const T&, const U&>::value,
540                 "T must be implicitly convertible to U");
541   // Enforce that we are not converting a non-reference type T to a reference
542   // type U.
543   static_assert(std::is_reference<T>::value || !std::is_reference<U>::value,
544                 "cannot convert non reference arg to reference");
545   // In case both T and U are arithmetic types, enforce that the
546   // conversion is not lossy.
547   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
548   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
549   constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
550   constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
551   static_assert(
552       kTIsOther || kUIsOther ||
553           (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
554       "conversion of arithmetic types must be lossless");
555   return MatcherCast<T>(matcher);
556 }
557 
558 // A<T>() returns a matcher that matches any value of type T.
559 template <typename T>
560 Matcher<T> A();
561 
562 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
563 // and MUST NOT BE USED IN USER CODE!!!
564 namespace internal {
565 
566 // If the explanation is not empty, prints it to the ostream.
PrintIfNotEmpty(const std::string & explanation,::std::ostream * os)567 inline void PrintIfNotEmpty(const std::string& explanation,
568                             ::std::ostream* os) {
569   if (!explanation.empty() && os != nullptr) {
570     *os << ", " << explanation;
571   }
572 }
573 
574 // Returns true if the given type name is easy to read by a human.
575 // This is used to decide whether printing the type of a value might
576 // be helpful.
IsReadableTypeName(const std::string & type_name)577 inline bool IsReadableTypeName(const std::string& type_name) {
578   // We consider a type name readable if it's short or doesn't contain
579   // a template or function type.
580   return (type_name.length() <= 20 ||
581           type_name.find_first_of("<(") == std::string::npos);
582 }
583 
584 // Matches the value against the given matcher, prints the value and explains
585 // the match result to the listener. Returns the match result.
586 // 'listener' must not be NULL.
587 // Value cannot be passed by const reference, because some matchers take a
588 // non-const argument.
589 template <typename Value, typename T>
MatchPrintAndExplain(Value & value,const Matcher<T> & matcher,MatchResultListener * listener)590 bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
591                           MatchResultListener* listener) {
592   if (!listener->IsInterested()) {
593     // If the listener is not interested, we do not need to construct the
594     // inner explanation.
595     return matcher.Matches(value);
596   }
597 
598   StringMatchResultListener inner_listener;
599   const bool match = matcher.MatchAndExplain(value, &inner_listener);
600 
601   UniversalPrint(value, listener->stream());
602 #if GTEST_HAS_RTTI
603   const std::string& type_name = GetTypeName<Value>();
604   if (IsReadableTypeName(type_name))
605     *listener->stream() << " (of type " << type_name << ")";
606 #endif
607   PrintIfNotEmpty(inner_listener.str(), listener->stream());
608 
609   return match;
610 }
611 
612 // An internal helper class for doing compile-time loop on a tuple's
613 // fields.
614 template <size_t N>
615 class TuplePrefix {
616  public:
617   // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
618   // if and only if the first N fields of matcher_tuple matches
619   // the first N fields of value_tuple, respectively.
620   template <typename MatcherTuple, typename ValueTuple>
Matches(const MatcherTuple & matcher_tuple,const ValueTuple & value_tuple)621   static bool Matches(const MatcherTuple& matcher_tuple,
622                       const ValueTuple& value_tuple) {
623     return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) &&
624            std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple));
625   }
626 
627   // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
628   // describes failures in matching the first N fields of matchers
629   // against the first N fields of values.  If there is no failure,
630   // nothing will be streamed to os.
631   template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailuresTo(const MatcherTuple & matchers,const ValueTuple & values,::std::ostream * os)632   static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
633                                      const ValueTuple& values,
634                                      ::std::ostream* os) {
635     // First, describes failures in the first N - 1 fields.
636     TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
637 
638     // Then describes the failure (if any) in the (N - 1)-th (0-based)
639     // field.
640     typename std::tuple_element<N - 1, MatcherTuple>::type matcher =
641         std::get<N - 1>(matchers);
642     typedef typename std::tuple_element<N - 1, ValueTuple>::type Value;
643     const Value& value = std::get<N - 1>(values);
644     StringMatchResultListener listener;
645     if (!matcher.MatchAndExplain(value, &listener)) {
646       *os << "  Expected arg #" << N - 1 << ": ";
647       std::get<N - 1>(matchers).DescribeTo(os);
648       *os << "\n           Actual: ";
649       // We remove the reference in type Value to prevent the
650       // universal printer from printing the address of value, which
651       // isn't interesting to the user most of the time.  The
652       // matcher's MatchAndExplain() method handles the case when
653       // the address is interesting.
654       internal::UniversalPrint(value, os);
655       PrintIfNotEmpty(listener.str(), os);
656       *os << "\n";
657     }
658   }
659 };
660 
661 // The base case.
662 template <>
663 class TuplePrefix<0> {
664  public:
665   template <typename MatcherTuple, typename ValueTuple>
Matches(const MatcherTuple &,const ValueTuple &)666   static bool Matches(const MatcherTuple& /* matcher_tuple */,
667                       const ValueTuple& /* value_tuple */) {
668     return true;
669   }
670 
671   template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailuresTo(const MatcherTuple &,const ValueTuple &,::std::ostream *)672   static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
673                                      const ValueTuple& /* values */,
674                                      ::std::ostream* /* os */) {}
675 };
676 
677 // TupleMatches(matcher_tuple, value_tuple) returns true if and only if
678 // all matchers in matcher_tuple match the corresponding fields in
679 // value_tuple.  It is a compiler error if matcher_tuple and
680 // value_tuple have different number of fields or incompatible field
681 // types.
682 template <typename MatcherTuple, typename ValueTuple>
TupleMatches(const MatcherTuple & matcher_tuple,const ValueTuple & value_tuple)683 bool TupleMatches(const MatcherTuple& matcher_tuple,
684                   const ValueTuple& value_tuple) {
685   // Makes sure that matcher_tuple and value_tuple have the same
686   // number of fields.
687   static_assert(std::tuple_size<MatcherTuple>::value ==
688                     std::tuple_size<ValueTuple>::value,
689                 "matcher and value have different numbers of fields");
690   return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple,
691                                                                   value_tuple);
692 }
693 
694 // Describes failures in matching matchers against values.  If there
695 // is no failure, nothing will be streamed to os.
696 template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailureTupleTo(const MatcherTuple & matchers,const ValueTuple & values,::std::ostream * os)697 void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
698                                 const ValueTuple& values, ::std::ostream* os) {
699   TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
700       matchers, values, os);
701 }
702 
703 // TransformTupleValues and its helper.
704 //
705 // TransformTupleValuesHelper hides the internal machinery that
706 // TransformTupleValues uses to implement a tuple traversal.
707 template <typename Tuple, typename Func, typename OutIter>
708 class TransformTupleValuesHelper {
709  private:
710   typedef ::std::tuple_size<Tuple> TupleSize;
711 
712  public:
713   // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
714   // Returns the final value of 'out' in case the caller needs it.
Run(Func f,const Tuple & t,OutIter out)715   static OutIter Run(Func f, const Tuple& t, OutIter out) {
716     return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
717   }
718 
719  private:
720   template <typename Tup, size_t kRemainingSize>
721   struct IterateOverTuple {
operatorIterateOverTuple722     OutIter operator()(Func f, const Tup& t, OutIter out) const {
723       *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t));
724       return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
725     }
726   };
727   template <typename Tup>
728   struct IterateOverTuple<Tup, 0> {
729     OutIter operator()(Func /* f */, const Tup& /* t */, OutIter out) const {
730       return out;
731     }
732   };
733 };
734 
735 // Successively invokes 'f(element)' on each element of the tuple 't',
736 // appending each result to the 'out' iterator. Returns the final value
737 // of 'out'.
738 template <typename Tuple, typename Func, typename OutIter>
739 OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
740   return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
741 }
742 
743 // Implements _, a matcher that matches any value of any
744 // type.  This is a polymorphic matcher, so we need a template type
745 // conversion operator to make it appearing as a Matcher<T> for any
746 // type T.
747 class AnythingMatcher {
748  public:
749   using is_gtest_matcher = void;
750 
751   template <typename T>
752   bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const {
753     return true;
754   }
755   void DescribeTo(std::ostream* os) const { *os << "is anything"; }
756   void DescribeNegationTo(::std::ostream* os) const {
757     // This is mostly for completeness' sake, as it's not very useful
758     // to write Not(A<bool>()).  However we cannot completely rule out
759     // such a possibility, and it doesn't hurt to be prepared.
760     *os << "never matches";
761   }
762 };
763 
764 // Implements the polymorphic IsNull() matcher, which matches any raw or smart
765 // pointer that is NULL.
766 class IsNullMatcher {
767  public:
768   template <typename Pointer>
769   bool MatchAndExplain(const Pointer& p,
770                        MatchResultListener* /* listener */) const {
771     return p == nullptr;
772   }
773 
774   void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
775   void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NULL"; }
776 };
777 
778 // Implements the polymorphic NotNull() matcher, which matches any raw or smart
779 // pointer that is not NULL.
780 class NotNullMatcher {
781  public:
782   template <typename Pointer>
783   bool MatchAndExplain(const Pointer& p,
784                        MatchResultListener* /* listener */) const {
785     return p != nullptr;
786   }
787 
788   void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
789   void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL"; }
790 };
791 
792 // Ref(variable) matches any argument that is a reference to
793 // 'variable'.  This matcher is polymorphic as it can match any
794 // super type of the type of 'variable'.
795 //
796 // The RefMatcher template class implements Ref(variable).  It can
797 // only be instantiated with a reference type.  This prevents a user
798 // from mistakenly using Ref(x) to match a non-reference function
799 // argument.  For example, the following will righteously cause a
800 // compiler error:
801 //
802 //   int n;
803 //   Matcher<int> m1 = Ref(n);   // This won't compile.
804 //   Matcher<int&> m2 = Ref(n);  // This will compile.
805 template <typename T>
806 class RefMatcher;
807 
808 template <typename T>
809 class RefMatcher<T&> {
810   // Google Mock is a generic framework and thus needs to support
811   // mocking any function types, including those that take non-const
812   // reference arguments.  Therefore the template parameter T (and
813   // Super below) can be instantiated to either a const type or a
814   // non-const type.
815  public:
816   // RefMatcher() takes a T& instead of const T&, as we want the
817   // compiler to catch using Ref(const_value) as a matcher for a
818   // non-const reference.
819   explicit RefMatcher(T& x) : object_(x) {}  // NOLINT
820 
821   template <typename Super>
822   operator Matcher<Super&>() const {
823     // By passing object_ (type T&) to Impl(), which expects a Super&,
824     // we make sure that Super is a super type of T.  In particular,
825     // this catches using Ref(const_value) as a matcher for a
826     // non-const reference, as you cannot implicitly convert a const
827     // reference to a non-const reference.
828     return MakeMatcher(new Impl<Super>(object_));
829   }
830 
831  private:
832   template <typename Super>
833   class Impl : public MatcherInterface<Super&> {
834    public:
835     explicit Impl(Super& x) : object_(x) {}  // NOLINT
836 
837     // MatchAndExplain() takes a Super& (as opposed to const Super&)
838     // in order to match the interface MatcherInterface<Super&>.
839     bool MatchAndExplain(Super& x,
840                          MatchResultListener* listener) const override {
841       *listener << "which is located @" << static_cast<const void*>(&x);
842       return &x == &object_;
843     }
844 
845     void DescribeTo(::std::ostream* os) const override {
846       *os << "references the variable ";
847       UniversalPrinter<Super&>::Print(object_, os);
848     }
849 
850     void DescribeNegationTo(::std::ostream* os) const override {
851       *os << "does not reference the variable ";
852       UniversalPrinter<Super&>::Print(object_, os);
853     }
854 
855    private:
856     const Super& object_;
857   };
858 
859   T& object_;
860 };
861 
862 // Polymorphic helper functions for narrow and wide string matchers.
863 inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
864   return String::CaseInsensitiveCStringEquals(lhs, rhs);
865 }
866 
867 inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
868                                          const wchar_t* rhs) {
869   return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
870 }
871 
872 // String comparison for narrow or wide strings that can have embedded NUL
873 // characters.
874 template <typename StringType>
875 bool CaseInsensitiveStringEquals(const StringType& s1, const StringType& s2) {
876   // Are the heads equal?
877   if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
878     return false;
879   }
880 
881   // Skip the equal heads.
882   const typename StringType::value_type nul = 0;
883   const size_t i1 = s1.find(nul), i2 = s2.find(nul);
884 
885   // Are we at the end of either s1 or s2?
886   if (i1 == StringType::npos || i2 == StringType::npos) {
887     return i1 == i2;
888   }
889 
890   // Are the tails equal?
891   return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
892 }
893 
894 // String matchers.
895 
896 // Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
897 template <typename StringType>
898 class StrEqualityMatcher {
899  public:
900   StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive)
901       : string_(std::move(str)),
902         expect_eq_(expect_eq),
903         case_sensitive_(case_sensitive) {}
904 
905 #if GTEST_INTERNAL_HAS_STRING_VIEW
906   bool MatchAndExplain(const internal::StringView& s,
907                        MatchResultListener* listener) const {
908     // This should fail to compile if StringView is used with wide
909     // strings.
910     const StringType& str = std::string(s);
911     return MatchAndExplain(str, listener);
912   }
913 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
914 
915   // Accepts pointer types, particularly:
916   //   const char*
917   //   char*
918   //   const wchar_t*
919   //   wchar_t*
920   template <typename CharType>
921   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
922     if (s == nullptr) {
923       return !expect_eq_;
924     }
925     return MatchAndExplain(StringType(s), listener);
926   }
927 
928   // Matches anything that can convert to StringType.
929   //
930   // This is a template, not just a plain function with const StringType&,
931   // because StringView has some interfering non-explicit constructors.
932   template <typename MatcheeStringType>
933   bool MatchAndExplain(const MatcheeStringType& s,
934                        MatchResultListener* /* listener */) const {
935     const StringType s2(s);
936     const bool eq = case_sensitive_ ? s2 == string_
937                                     : CaseInsensitiveStringEquals(s2, string_);
938     return expect_eq_ == eq;
939   }
940 
941   void DescribeTo(::std::ostream* os) const {
942     DescribeToHelper(expect_eq_, os);
943   }
944 
945   void DescribeNegationTo(::std::ostream* os) const {
946     DescribeToHelper(!expect_eq_, os);
947   }
948 
949  private:
950   void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
951     *os << (expect_eq ? "is " : "isn't ");
952     *os << "equal to ";
953     if (!case_sensitive_) {
954       *os << "(ignoring case) ";
955     }
956     UniversalPrint(string_, os);
957   }
958 
959   const StringType string_;
960   const bool expect_eq_;
961   const bool case_sensitive_;
962 };
963 
964 // Implements the polymorphic HasSubstr(substring) matcher, which
965 // can be used as a Matcher<T> as long as T can be converted to a
966 // string.
967 template <typename StringType>
968 class HasSubstrMatcher {
969  public:
970   explicit HasSubstrMatcher(const StringType& substring)
971       : substring_(substring) {}
972 
973 #if GTEST_INTERNAL_HAS_STRING_VIEW
974   bool MatchAndExplain(const internal::StringView& s,
975                        MatchResultListener* listener) const {
976     // This should fail to compile if StringView is used with wide
977     // strings.
978     const StringType& str = std::string(s);
979     return MatchAndExplain(str, listener);
980   }
981 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
982 
983   // Accepts pointer types, particularly:
984   //   const char*
985   //   char*
986   //   const wchar_t*
987   //   wchar_t*
988   template <typename CharType>
989   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
990     return s != nullptr && MatchAndExplain(StringType(s), listener);
991   }
992 
993   // Matches anything that can convert to StringType.
994   //
995   // This is a template, not just a plain function with const StringType&,
996   // because StringView has some interfering non-explicit constructors.
997   template <typename MatcheeStringType>
998   bool MatchAndExplain(const MatcheeStringType& s,
999                        MatchResultListener* /* listener */) const {
1000     return StringType(s).find(substring_) != StringType::npos;
1001   }
1002 
1003   // Describes what this matcher matches.
1004   void DescribeTo(::std::ostream* os) const {
1005     *os << "has substring ";
1006     UniversalPrint(substring_, os);
1007   }
1008 
1009   void DescribeNegationTo(::std::ostream* os) const {
1010     *os << "has no substring ";
1011     UniversalPrint(substring_, os);
1012   }
1013 
1014  private:
1015   const StringType substring_;
1016 };
1017 
1018 // Implements the polymorphic StartsWith(substring) matcher, which
1019 // can be used as a Matcher<T> as long as T can be converted to a
1020 // string.
1021 template <typename StringType>
1022 class StartsWithMatcher {
1023  public:
1024   explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {}
1025 
1026 #if GTEST_INTERNAL_HAS_STRING_VIEW
1027   bool MatchAndExplain(const internal::StringView& s,
1028                        MatchResultListener* listener) const {
1029     // This should fail to compile if StringView is used with wide
1030     // strings.
1031     const StringType& str = std::string(s);
1032     return MatchAndExplain(str, listener);
1033   }
1034 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
1035 
1036   // Accepts pointer types, particularly:
1037   //   const char*
1038   //   char*
1039   //   const wchar_t*
1040   //   wchar_t*
1041   template <typename CharType>
1042   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1043     return s != nullptr && MatchAndExplain(StringType(s), listener);
1044   }
1045 
1046   // Matches anything that can convert to StringType.
1047   //
1048   // This is a template, not just a plain function with const StringType&,
1049   // because StringView has some interfering non-explicit constructors.
1050   template <typename MatcheeStringType>
1051   bool MatchAndExplain(const MatcheeStringType& s,
1052                        MatchResultListener* /* listener */) const {
1053     const StringType s2(s);
1054     return s2.length() >= prefix_.length() &&
1055            s2.substr(0, prefix_.length()) == prefix_;
1056   }
1057 
1058   void DescribeTo(::std::ostream* os) const {
1059     *os << "starts with ";
1060     UniversalPrint(prefix_, os);
1061   }
1062 
1063   void DescribeNegationTo(::std::ostream* os) const {
1064     *os << "doesn't start with ";
1065     UniversalPrint(prefix_, os);
1066   }
1067 
1068  private:
1069   const StringType prefix_;
1070 };
1071 
1072 // Implements the polymorphic EndsWith(substring) matcher, which
1073 // can be used as a Matcher<T> as long as T can be converted to a
1074 // string.
1075 template <typename StringType>
1076 class EndsWithMatcher {
1077  public:
1078   explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
1079 
1080 #if GTEST_INTERNAL_HAS_STRING_VIEW
1081   bool MatchAndExplain(const internal::StringView& s,
1082                        MatchResultListener* listener) const {
1083     // This should fail to compile if StringView is used with wide
1084     // strings.
1085     const StringType& str = std::string(s);
1086     return MatchAndExplain(str, listener);
1087   }
1088 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
1089 
1090   // Accepts pointer types, particularly:
1091   //   const char*
1092   //   char*
1093   //   const wchar_t*
1094   //   wchar_t*
1095   template <typename CharType>
1096   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1097     return s != nullptr && MatchAndExplain(StringType(s), listener);
1098   }
1099 
1100   // Matches anything that can convert to StringType.
1101   //
1102   // This is a template, not just a plain function with const StringType&,
1103   // because StringView has some interfering non-explicit constructors.
1104   template <typename MatcheeStringType>
1105   bool MatchAndExplain(const MatcheeStringType& s,
1106                        MatchResultListener* /* listener */) const {
1107     const StringType s2(s);
1108     return s2.length() >= suffix_.length() &&
1109            s2.substr(s2.length() - suffix_.length()) == suffix_;
1110   }
1111 
1112   void DescribeTo(::std::ostream* os) const {
1113     *os << "ends with ";
1114     UniversalPrint(suffix_, os);
1115   }
1116 
1117   void DescribeNegationTo(::std::ostream* os) const {
1118     *os << "doesn't end with ";
1119     UniversalPrint(suffix_, os);
1120   }
1121 
1122  private:
1123   const StringType suffix_;
1124 };
1125 
1126 // Implements the polymorphic WhenBase64Unescaped(matcher) matcher, which can be
1127 // used as a Matcher<T> as long as T can be converted to a string.
1128 class WhenBase64UnescapedMatcher {
1129  public:
1130   using is_gtest_matcher = void;
1131 
1132   explicit WhenBase64UnescapedMatcher(
1133       const Matcher<const std::string&>& internal_matcher)
1134       : internal_matcher_(internal_matcher) {}
1135 
1136   // Matches anything that can convert to std::string.
1137   template <typename MatcheeStringType>
1138   bool MatchAndExplain(const MatcheeStringType& s,
1139                        MatchResultListener* listener) const {
1140     const std::string s2(s);  // NOLINT (needed for working with string_view).
1141     std::string unescaped;
1142     if (!internal::Base64Unescape(s2, &unescaped)) {
1143       if (listener != nullptr) {
1144         *listener << "is not a valid base64 escaped string";
1145       }
1146       return false;
1147     }
1148     return MatchPrintAndExplain(unescaped, internal_matcher_, listener);
1149   }
1150 
1151   void DescribeTo(::std::ostream* os) const {
1152     *os << "matches after Base64Unescape ";
1153     internal_matcher_.DescribeTo(os);
1154   }
1155 
1156   void DescribeNegationTo(::std::ostream* os) const {
1157     *os << "does not match after Base64Unescape ";
1158     internal_matcher_.DescribeTo(os);
1159   }
1160 
1161  private:
1162   const Matcher<const std::string&> internal_matcher_;
1163 };
1164 
1165 // Implements a matcher that compares the two fields of a 2-tuple
1166 // using one of the ==, <=, <, etc, operators.  The two fields being
1167 // compared don't have to have the same type.
1168 //
1169 // The matcher defined here is polymorphic (for example, Eq() can be
1170 // used to match a std::tuple<int, short>, a std::tuple<const long&, double>,
1171 // etc).  Therefore we use a template type conversion operator in the
1172 // implementation.
1173 template <typename D, typename Op>
1174 class PairMatchBase {
1175  public:
1176   template <typename T1, typename T2>
1177   operator Matcher<::std::tuple<T1, T2>>() const {
1178     return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>);
1179   }
1180   template <typename T1, typename T2>
1181   operator Matcher<const ::std::tuple<T1, T2>&>() const {
1182     return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>);
1183   }
1184 
1185  private:
1186   static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT
1187     return os << D::Desc();
1188   }
1189 
1190   template <typename Tuple>
1191   class Impl : public MatcherInterface<Tuple> {
1192    public:
1193     bool MatchAndExplain(Tuple args,
1194                          MatchResultListener* /* listener */) const override {
1195       return Op()(::std::get<0>(args), ::std::get<1>(args));
1196     }
1197     void DescribeTo(::std::ostream* os) const override {
1198       *os << "are " << GetDesc;
1199     }
1200     void DescribeNegationTo(::std::ostream* os) const override {
1201       *os << "aren't " << GetDesc;
1202     }
1203   };
1204 };
1205 
1206 class Eq2Matcher : public PairMatchBase<Eq2Matcher, std::equal_to<>> {
1207  public:
1208   static const char* Desc() { return "an equal pair"; }
1209 };
1210 class Ne2Matcher : public PairMatchBase<Ne2Matcher, std::not_equal_to<>> {
1211  public:
1212   static const char* Desc() { return "an unequal pair"; }
1213 };
1214 class Lt2Matcher : public PairMatchBase<Lt2Matcher, std::less<>> {
1215  public:
1216   static const char* Desc() { return "a pair where the first < the second"; }
1217 };
1218 class Gt2Matcher : public PairMatchBase<Gt2Matcher, std::greater<>> {
1219  public:
1220   static const char* Desc() { return "a pair where the first > the second"; }
1221 };
1222 class Le2Matcher : public PairMatchBase<Le2Matcher, std::less_equal<>> {
1223  public:
1224   static const char* Desc() { return "a pair where the first <= the second"; }
1225 };
1226 class Ge2Matcher : public PairMatchBase<Ge2Matcher, std::greater_equal<>> {
1227  public:
1228   static const char* Desc() { return "a pair where the first >= the second"; }
1229 };
1230 
1231 // Implements the Not(...) matcher for a particular argument type T.
1232 // We do not nest it inside the NotMatcher class template, as that
1233 // will prevent different instantiations of NotMatcher from sharing
1234 // the same NotMatcherImpl<T> class.
1235 template <typename T>
1236 class NotMatcherImpl : public MatcherInterface<const T&> {
1237  public:
1238   explicit NotMatcherImpl(const Matcher<T>& matcher) : matcher_(matcher) {}
1239 
1240   bool MatchAndExplain(const T& x,
1241                        MatchResultListener* listener) const override {
1242     return !matcher_.MatchAndExplain(x, listener);
1243   }
1244 
1245   void DescribeTo(::std::ostream* os) const override {
1246     matcher_.DescribeNegationTo(os);
1247   }
1248 
1249   void DescribeNegationTo(::std::ostream* os) const override {
1250     matcher_.DescribeTo(os);
1251   }
1252 
1253  private:
1254   const Matcher<T> matcher_;
1255 };
1256 
1257 // Implements the Not(m) matcher, which matches a value that doesn't
1258 // match matcher m.
1259 template <typename InnerMatcher>
1260 class NotMatcher {
1261  public:
1262   explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
1263 
1264   // This template type conversion operator allows Not(m) to be used
1265   // to match any type m can match.
1266   template <typename T>
1267   operator Matcher<T>() const {
1268     return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
1269   }
1270 
1271  private:
1272   InnerMatcher matcher_;
1273 };
1274 
1275 // Implements the AllOf(m1, m2) matcher for a particular argument type
1276 // T. We do not nest it inside the BothOfMatcher class template, as
1277 // that will prevent different instantiations of BothOfMatcher from
1278 // sharing the same BothOfMatcherImpl<T> class.
1279 template <typename T>
1280 class AllOfMatcherImpl : public MatcherInterface<const T&> {
1281  public:
1282   explicit AllOfMatcherImpl(std::vector<Matcher<T>> matchers)
1283       : matchers_(std::move(matchers)) {}
1284 
1285   void DescribeTo(::std::ostream* os) const override {
1286     *os << "(";
1287     for (size_t i = 0; i < matchers_.size(); ++i) {
1288       if (i != 0) *os << ") and (";
1289       matchers_[i].DescribeTo(os);
1290     }
1291     *os << ")";
1292   }
1293 
1294   void DescribeNegationTo(::std::ostream* os) const override {
1295     *os << "(";
1296     for (size_t i = 0; i < matchers_.size(); ++i) {
1297       if (i != 0) *os << ") or (";
1298       matchers_[i].DescribeNegationTo(os);
1299     }
1300     *os << ")";
1301   }
1302 
1303   bool MatchAndExplain(const T& x,
1304                        MatchResultListener* listener) const override {
1305     // This method uses matcher's explanation when explaining the result.
1306     // However, if matcher doesn't provide one, this method uses matcher's
1307     // description.
1308     std::string all_match_result;
1309     for (const Matcher<T>& matcher : matchers_) {
1310       StringMatchResultListener slistener;
1311       // Return explanation for first failed matcher.
1312       if (!matcher.MatchAndExplain(x, &slistener)) {
1313         const std::string explanation = slistener.str();
1314         if (!explanation.empty()) {
1315           *listener << explanation;
1316         } else {
1317           *listener << "which doesn't match (" << Describe(matcher) << ")";
1318         }
1319         return false;
1320       }
1321       // Keep track of explanations in case all matchers succeed.
1322       std::string explanation = slistener.str();
1323       if (explanation.empty()) {
1324         explanation = Describe(matcher);
1325       }
1326       if (all_match_result.empty()) {
1327         all_match_result = explanation;
1328       } else {
1329         if (!explanation.empty()) {
1330           all_match_result += ", and ";
1331           all_match_result += explanation;
1332         }
1333       }
1334     }
1335 
1336     *listener << all_match_result;
1337     return true;
1338   }
1339 
1340  private:
1341   // Returns matcher description as a string.
1342   std::string Describe(const Matcher<T>& matcher) const {
1343     StringMatchResultListener listener;
1344     matcher.DescribeTo(listener.stream());
1345     return listener.str();
1346   }
1347   const std::vector<Matcher<T>> matchers_;
1348 };
1349 
1350 // VariadicMatcher is used for the variadic implementation of
1351 // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
1352 // CombiningMatcher<T> is used to recursively combine the provided matchers
1353 // (of type Args...).
1354 template <template <typename T> class CombiningMatcher, typename... Args>
1355 class VariadicMatcher {
1356  public:
1357   VariadicMatcher(const Args&... matchers)  // NOLINT
1358       : matchers_(matchers...) {
1359     static_assert(sizeof...(Args) > 0, "Must have at least one matcher.");
1360   }
1361 
1362   VariadicMatcher(const VariadicMatcher&) = default;
1363   VariadicMatcher& operator=(const VariadicMatcher&) = delete;
1364 
1365   // This template type conversion operator allows an
1366   // VariadicMatcher<Matcher1, Matcher2...> object to match any type that
1367   // all of the provided matchers (Matcher1, Matcher2, ...) can match.
1368   template <typename T>
1369   operator Matcher<T>() const {
1370     std::vector<Matcher<T>> values;
1371     CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>());
1372     return Matcher<T>(new CombiningMatcher<T>(std::move(values)));
1373   }
1374 
1375  private:
1376   template <typename T, size_t I>
1377   void CreateVariadicMatcher(std::vector<Matcher<T>>* values,
1378                              std::integral_constant<size_t, I>) const {
1379     values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_)));
1380     CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>());
1381   }
1382 
1383   template <typename T>
1384   void CreateVariadicMatcher(
1385       std::vector<Matcher<T>>*,
1386       std::integral_constant<size_t, sizeof...(Args)>) const {}
1387 
1388   std::tuple<Args...> matchers_;
1389 };
1390 
1391 template <typename... Args>
1392 using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>;
1393 
1394 // Implements the AnyOf(m1, m2) matcher for a particular argument type
1395 // T.  We do not nest it inside the AnyOfMatcher class template, as
1396 // that will prevent different instantiations of AnyOfMatcher from
1397 // sharing the same EitherOfMatcherImpl<T> class.
1398 template <typename T>
1399 class AnyOfMatcherImpl : public MatcherInterface<const T&> {
1400  public:
1401   explicit AnyOfMatcherImpl(std::vector<Matcher<T>> matchers)
1402       : matchers_(std::move(matchers)) {}
1403 
1404   void DescribeTo(::std::ostream* os) const override {
1405     *os << "(";
1406     for (size_t i = 0; i < matchers_.size(); ++i) {
1407       if (i != 0) *os << ") or (";
1408       matchers_[i].DescribeTo(os);
1409     }
1410     *os << ")";
1411   }
1412 
1413   void DescribeNegationTo(::std::ostream* os) const override {
1414     *os << "(";
1415     for (size_t i = 0; i < matchers_.size(); ++i) {
1416       if (i != 0) *os << ") and (";
1417       matchers_[i].DescribeNegationTo(os);
1418     }
1419     *os << ")";
1420   }
1421 
1422   bool MatchAndExplain(const T& x,
1423                        MatchResultListener* listener) const override {
1424     std::string no_match_result;
1425 
1426     // If either matcher1_ or matcher2_ matches x, we just need to
1427     // explain why *one* of them matches.
1428     for (size_t i = 0; i < matchers_.size(); ++i) {
1429       StringMatchResultListener slistener;
1430       if (matchers_[i].MatchAndExplain(x, &slistener)) {
1431         *listener << slistener.str();
1432         return true;
1433       } else {
1434         if (no_match_result.empty()) {
1435           no_match_result = slistener.str();
1436         } else {
1437           std::string result = slistener.str();
1438           if (!result.empty()) {
1439             no_match_result += ", and ";
1440             no_match_result += result;
1441           }
1442         }
1443       }
1444     }
1445 
1446     // Otherwise we need to explain why *both* of them fail.
1447     *listener << no_match_result;
1448     return false;
1449   }
1450 
1451  private:
1452   const std::vector<Matcher<T>> matchers_;
1453 };
1454 
1455 // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
1456 template <typename... Args>
1457 using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>;
1458 
1459 // ConditionalMatcher is the implementation of Conditional(cond, m1, m2)
1460 template <typename MatcherTrue, typename MatcherFalse>
1461 class ConditionalMatcher {
1462  public:
1463   ConditionalMatcher(bool condition, MatcherTrue matcher_true,
1464                      MatcherFalse matcher_false)
1465       : condition_(condition),
1466         matcher_true_(std::move(matcher_true)),
1467         matcher_false_(std::move(matcher_false)) {}
1468 
1469   template <typename T>
1470   operator Matcher<T>() const {  // NOLINT(runtime/explicit)
1471     return condition_ ? SafeMatcherCast<T>(matcher_true_)
1472                       : SafeMatcherCast<T>(matcher_false_);
1473   }
1474 
1475  private:
1476   bool condition_;
1477   MatcherTrue matcher_true_;
1478   MatcherFalse matcher_false_;
1479 };
1480 
1481 // Wrapper for implementation of Any/AllOfArray().
1482 template <template <class> class MatcherImpl, typename T>
1483 class SomeOfArrayMatcher {
1484  public:
1485   // Constructs the matcher from a sequence of element values or
1486   // element matchers.
1487   template <typename Iter>
1488   SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
1489 
1490   template <typename U>
1491   operator Matcher<U>() const {  // NOLINT
1492     using RawU = typename std::decay<U>::type;
1493     std::vector<Matcher<RawU>> matchers;
1494     matchers.reserve(matchers_.size());
1495     for (const auto& matcher : matchers_) {
1496       matchers.push_back(MatcherCast<RawU>(matcher));
1497     }
1498     return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers)));
1499   }
1500 
1501  private:
1502   const ::std::vector<T> matchers_;
1503 };
1504 
1505 template <typename T>
1506 using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>;
1507 
1508 template <typename T>
1509 using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>;
1510 
1511 // Used for implementing Truly(pred), which turns a predicate into a
1512 // matcher.
1513 template <typename Predicate>
1514 class TrulyMatcher {
1515  public:
1516   explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
1517 
1518   // This method template allows Truly(pred) to be used as a matcher
1519   // for type T where T is the argument type of predicate 'pred'.  The
1520   // argument is passed by reference as the predicate may be
1521   // interested in the address of the argument.
1522   template <typename T>
1523   bool MatchAndExplain(T& x,  // NOLINT
1524                        MatchResultListener* listener) const {
1525     // Without the if-statement, MSVC sometimes warns about converting
1526     // a value to bool (warning 4800).
1527     //
1528     // We cannot write 'return !!predicate_(x);' as that doesn't work
1529     // when predicate_(x) returns a class convertible to bool but
1530     // having no operator!().
1531     if (predicate_(x)) return true;
1532     *listener << "didn't satisfy the given predicate";
1533     return false;
1534   }
1535 
1536   void DescribeTo(::std::ostream* os) const {
1537     *os << "satisfies the given predicate";
1538   }
1539 
1540   void DescribeNegationTo(::std::ostream* os) const {
1541     *os << "doesn't satisfy the given predicate";
1542   }
1543 
1544  private:
1545   Predicate predicate_;
1546 };
1547 
1548 // Used for implementing Matches(matcher), which turns a matcher into
1549 // a predicate.
1550 template <typename M>
1551 class MatcherAsPredicate {
1552  public:
1553   explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
1554 
1555   // This template operator() allows Matches(m) to be used as a
1556   // predicate on type T where m is a matcher on type T.
1557   //
1558   // The argument x is passed by reference instead of by value, as
1559   // some matcher may be interested in its address (e.g. as in
1560   // Matches(Ref(n))(x)).
1561   template <typename T>
1562   bool operator()(const T& x) const {
1563     // We let matcher_ commit to a particular type here instead of
1564     // when the MatcherAsPredicate object was constructed.  This
1565     // allows us to write Matches(m) where m is a polymorphic matcher
1566     // (e.g. Eq(5)).
1567     //
1568     // If we write Matcher<T>(matcher_).Matches(x) here, it won't
1569     // compile when matcher_ has type Matcher<const T&>; if we write
1570     // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
1571     // when matcher_ has type Matcher<T>; if we just write
1572     // matcher_.Matches(x), it won't compile when matcher_ is
1573     // polymorphic, e.g. Eq(5).
1574     //
1575     // MatcherCast<const T&>() is necessary for making the code work
1576     // in all of the above situations.
1577     return MatcherCast<const T&>(matcher_).Matches(x);
1578   }
1579 
1580  private:
1581   M matcher_;
1582 };
1583 
1584 // For implementing ASSERT_THAT() and EXPECT_THAT().  The template
1585 // argument M must be a type that can be converted to a matcher.
1586 template <typename M>
1587 class PredicateFormatterFromMatcher {
1588  public:
1589   explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {}
1590 
1591   // This template () operator allows a PredicateFormatterFromMatcher
1592   // object to act as a predicate-formatter suitable for using with
1593   // Google Test's EXPECT_PRED_FORMAT1() macro.
1594   template <typename T>
1595   AssertionResult operator()(const char* value_text, const T& x) const {
1596     // We convert matcher_ to a Matcher<const T&> *now* instead of
1597     // when the PredicateFormatterFromMatcher object was constructed,
1598     // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
1599     // know which type to instantiate it to until we actually see the
1600     // type of x here.
1601     //
1602     // We write SafeMatcherCast<const T&>(matcher_) instead of
1603     // Matcher<const T&>(matcher_), as the latter won't compile when
1604     // matcher_ has type Matcher<T> (e.g. An<int>()).
1605     // We don't write MatcherCast<const T&> either, as that allows
1606     // potentially unsafe downcasting of the matcher argument.
1607     const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
1608 
1609     // The expected path here is that the matcher should match (i.e. that most
1610     // tests pass) so optimize for this case.
1611     if (matcher.Matches(x)) {
1612       return AssertionSuccess();
1613     }
1614 
1615     ::std::stringstream ss;
1616     ss << "Value of: " << value_text << "\n"
1617        << "Expected: ";
1618     matcher.DescribeTo(&ss);
1619 
1620     // Rerun the matcher to "PrintAndExplain" the failure.
1621     StringMatchResultListener listener;
1622     if (MatchPrintAndExplain(x, matcher, &listener)) {
1623       ss << "\n  The matcher failed on the initial attempt; but passed when "
1624             "rerun to generate the explanation.";
1625     }
1626     ss << "\n  Actual: " << listener.str();
1627     return AssertionFailure() << ss.str();
1628   }
1629 
1630  private:
1631   const M matcher_;
1632 };
1633 
1634 // A helper function for converting a matcher to a predicate-formatter
1635 // without the user needing to explicitly write the type.  This is
1636 // used for implementing ASSERT_THAT() and EXPECT_THAT().
1637 // Implementation detail: 'matcher' is received by-value to force decaying.
1638 template <typename M>
1639 inline PredicateFormatterFromMatcher<M> MakePredicateFormatterFromMatcher(
1640     M matcher) {
1641   return PredicateFormatterFromMatcher<M>(std::move(matcher));
1642 }
1643 
1644 // Implements the polymorphic IsNan() matcher, which matches any floating type
1645 // value that is Nan.
1646 class IsNanMatcher {
1647  public:
1648   template <typename FloatType>
1649   bool MatchAndExplain(const FloatType& f,
1650                        MatchResultListener* /* listener */) const {
1651     return (::std::isnan)(f);
1652   }
1653 
1654   void DescribeTo(::std::ostream* os) const { *os << "is NaN"; }
1655   void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NaN"; }
1656 };
1657 
1658 // Implements the polymorphic floating point equality matcher, which matches
1659 // two float values using ULP-based approximation or, optionally, a
1660 // user-specified epsilon.  The template is meant to be instantiated with
1661 // FloatType being either float or double.
1662 template <typename FloatType>
1663 class FloatingEqMatcher {
1664  public:
1665   // Constructor for FloatingEqMatcher.
1666   // The matcher's input will be compared with expected.  The matcher treats two
1667   // NANs as equal if nan_eq_nan is true.  Otherwise, under IEEE standards,
1668   // equality comparisons between NANs will always return false.  We specify a
1669   // negative max_abs_error_ term to indicate that ULP-based approximation will
1670   // be used for comparison.
1671   FloatingEqMatcher(FloatType expected, bool nan_eq_nan)
1672       : expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {}
1673 
1674   // Constructor that supports a user-specified max_abs_error that will be used
1675   // for comparison instead of ULP-based approximation.  The max absolute
1676   // should be non-negative.
1677   FloatingEqMatcher(FloatType expected, bool nan_eq_nan,
1678                     FloatType max_abs_error)
1679       : expected_(expected),
1680         nan_eq_nan_(nan_eq_nan),
1681         max_abs_error_(max_abs_error) {
1682     GTEST_CHECK_(max_abs_error >= 0)
1683         << ", where max_abs_error is" << max_abs_error;
1684   }
1685 
1686   // Implements floating point equality matcher as a Matcher<T>.
1687   template <typename T>
1688   class Impl : public MatcherInterface<T> {
1689    public:
1690     Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error)
1691         : expected_(expected),
1692           nan_eq_nan_(nan_eq_nan),
1693           max_abs_error_(max_abs_error) {}
1694 
1695     bool MatchAndExplain(T value,
1696                          MatchResultListener* listener) const override {
1697       const FloatingPoint<FloatType> actual(value), expected(expected_);
1698 
1699       // Compares NaNs first, if nan_eq_nan_ is true.
1700       if (actual.is_nan() || expected.is_nan()) {
1701         if (actual.is_nan() && expected.is_nan()) {
1702           return nan_eq_nan_;
1703         }
1704         // One is nan; the other is not nan.
1705         return false;
1706       }
1707       if (HasMaxAbsError()) {
1708         // We perform an equality check so that inf will match inf, regardless
1709         // of error bounds.  If the result of value - expected_ would result in
1710         // overflow or if either value is inf, the default result is infinity,
1711         // which should only match if max_abs_error_ is also infinity.
1712         if (value == expected_) {
1713           return true;
1714         }
1715 
1716         const FloatType diff = value - expected_;
1717         if (::std::fabs(diff) <= max_abs_error_) {
1718           return true;
1719         }
1720 
1721         if (listener->IsInterested()) {
1722           *listener << "which is " << diff << " from " << expected_;
1723         }
1724         return false;
1725       } else {
1726         return actual.AlmostEquals(expected);
1727       }
1728     }
1729 
1730     void DescribeTo(::std::ostream* os) const override {
1731       // os->precision() returns the previously set precision, which we
1732       // store to restore the ostream to its original configuration
1733       // after outputting.
1734       const ::std::streamsize old_precision =
1735           os->precision(::std::numeric_limits<FloatType>::digits10 + 2);
1736       if (FloatingPoint<FloatType>(expected_).is_nan()) {
1737         if (nan_eq_nan_) {
1738           *os << "is NaN";
1739         } else {
1740           *os << "never matches";
1741         }
1742       } else {
1743         *os << "is approximately " << expected_;
1744         if (HasMaxAbsError()) {
1745           *os << " (absolute error <= " << max_abs_error_ << ")";
1746         }
1747       }
1748       os->precision(old_precision);
1749     }
1750 
1751     void DescribeNegationTo(::std::ostream* os) const override {
1752       // As before, get original precision.
1753       const ::std::streamsize old_precision =
1754           os->precision(::std::numeric_limits<FloatType>::digits10 + 2);
1755       if (FloatingPoint<FloatType>(expected_).is_nan()) {
1756         if (nan_eq_nan_) {
1757           *os << "isn't NaN";
1758         } else {
1759           *os << "is anything";
1760         }
1761       } else {
1762         *os << "isn't approximately " << expected_;
1763         if (HasMaxAbsError()) {
1764           *os << " (absolute error > " << max_abs_error_ << ")";
1765         }
1766       }
1767       // Restore original precision.
1768       os->precision(old_precision);
1769     }
1770 
1771    private:
1772     bool HasMaxAbsError() const { return max_abs_error_ >= 0; }
1773 
1774     const FloatType expected_;
1775     const bool nan_eq_nan_;
1776     // max_abs_error will be used for value comparison when >= 0.
1777     const FloatType max_abs_error_;
1778   };
1779 
1780   // The following 3 type conversion operators allow FloatEq(expected) and
1781   // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
1782   // Matcher<const float&>, or a Matcher<float&>, but nothing else.
1783   operator Matcher<FloatType>() const {
1784     return MakeMatcher(
1785         new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_));
1786   }
1787 
1788   operator Matcher<const FloatType&>() const {
1789     return MakeMatcher(
1790         new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
1791   }
1792 
1793   operator Matcher<FloatType&>() const {
1794     return MakeMatcher(
1795         new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
1796   }
1797 
1798  private:
1799   const FloatType expected_;
1800   const bool nan_eq_nan_;
1801   // max_abs_error will be used for value comparison when >= 0.
1802   const FloatType max_abs_error_;
1803 };
1804 
1805 // A 2-tuple ("binary") wrapper around FloatingEqMatcher:
1806 // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false)
1807 // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e)
1808 // against y. The former implements "Eq", the latter "Near". At present, there
1809 // is no version that compares NaNs as equal.
1810 template <typename FloatType>
1811 class FloatingEq2Matcher {
1812  public:
1813   FloatingEq2Matcher() { Init(-1, false); }
1814 
1815   explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); }
1816 
1817   explicit FloatingEq2Matcher(FloatType max_abs_error) {
1818     Init(max_abs_error, false);
1819   }
1820 
1821   FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) {
1822     Init(max_abs_error, nan_eq_nan);
1823   }
1824 
1825   template <typename T1, typename T2>
1826   operator Matcher<::std::tuple<T1, T2>>() const {
1827     return MakeMatcher(
1828         new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_));
1829   }
1830   template <typename T1, typename T2>
1831   operator Matcher<const ::std::tuple<T1, T2>&>() const {
1832     return MakeMatcher(
1833         new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_));
1834   }
1835 
1836  private:
1837   static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT
1838     return os << "an almost-equal pair";
1839   }
1840 
1841   template <typename Tuple>
1842   class Impl : public MatcherInterface<Tuple> {
1843    public:
1844     Impl(FloatType max_abs_error, bool nan_eq_nan)
1845         : max_abs_error_(max_abs_error), nan_eq_nan_(nan_eq_nan) {}
1846 
1847     bool MatchAndExplain(Tuple args,
1848                          MatchResultListener* listener) const override {
1849       if (max_abs_error_ == -1) {
1850         FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_);
1851         return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
1852             ::std::get<1>(args), listener);
1853       } else {
1854         FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_,
1855                                         max_abs_error_);
1856         return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
1857             ::std::get<1>(args), listener);
1858       }
1859     }
1860     void DescribeTo(::std::ostream* os) const override {
1861       *os << "are " << GetDesc;
1862     }
1863     void DescribeNegationTo(::std::ostream* os) const override {
1864       *os << "aren't " << GetDesc;
1865     }
1866 
1867    private:
1868     FloatType max_abs_error_;
1869     const bool nan_eq_nan_;
1870   };
1871 
1872   void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) {
1873     max_abs_error_ = max_abs_error_val;
1874     nan_eq_nan_ = nan_eq_nan_val;
1875   }
1876   FloatType max_abs_error_;
1877   bool nan_eq_nan_;
1878 };
1879 
1880 // Implements the Pointee(m) matcher for matching a pointer whose
1881 // pointee matches matcher m.  The pointer can be either raw or smart.
1882 template <typename InnerMatcher>
1883 class PointeeMatcher {
1884  public:
1885   explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1886 
1887   // This type conversion operator template allows Pointee(m) to be
1888   // used as a matcher for any pointer type whose pointee type is
1889   // compatible with the inner matcher, where type Pointer can be
1890   // either a raw pointer or a smart pointer.
1891   //
1892   // The reason we do this instead of relying on
1893   // MakePolymorphicMatcher() is that the latter is not flexible
1894   // enough for implementing the DescribeTo() method of Pointee().
1895   template <typename Pointer>
1896   operator Matcher<Pointer>() const {
1897     return Matcher<Pointer>(new Impl<const Pointer&>(matcher_));
1898   }
1899 
1900  private:
1901   // The monomorphic implementation that works for a particular pointer type.
1902   template <typename Pointer>
1903   class Impl : public MatcherInterface<Pointer> {
1904    public:
1905     using Pointee =
1906         typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
1907             Pointer)>::element_type;
1908 
1909     explicit Impl(const InnerMatcher& matcher)
1910         : matcher_(MatcherCast<const Pointee&>(matcher)) {}
1911 
1912     void DescribeTo(::std::ostream* os) const override {
1913       *os << "points to a value that ";
1914       matcher_.DescribeTo(os);
1915     }
1916 
1917     void DescribeNegationTo(::std::ostream* os) const override {
1918       *os << "does not point to a value that ";
1919       matcher_.DescribeTo(os);
1920     }
1921 
1922     bool MatchAndExplain(Pointer pointer,
1923                          MatchResultListener* listener) const override {
1924       if (GetRawPointer(pointer) == nullptr) return false;
1925 
1926       *listener << "which points to ";
1927       return MatchPrintAndExplain(*pointer, matcher_, listener);
1928     }
1929 
1930    private:
1931     const Matcher<const Pointee&> matcher_;
1932   };
1933 
1934   const InnerMatcher matcher_;
1935 };
1936 
1937 // Implements the Pointer(m) matcher
1938 // Implements the Pointer(m) matcher for matching a pointer that matches matcher
1939 // m.  The pointer can be either raw or smart, and will match `m` against the
1940 // raw pointer.
1941 template <typename InnerMatcher>
1942 class PointerMatcher {
1943  public:
1944   explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1945 
1946   // This type conversion operator template allows Pointer(m) to be
1947   // used as a matcher for any pointer type whose pointer type is
1948   // compatible with the inner matcher, where type PointerType can be
1949   // either a raw pointer or a smart pointer.
1950   //
1951   // The reason we do this instead of relying on
1952   // MakePolymorphicMatcher() is that the latter is not flexible
1953   // enough for implementing the DescribeTo() method of Pointer().
1954   template <typename PointerType>
1955   operator Matcher<PointerType>() const {  // NOLINT
1956     return Matcher<PointerType>(new Impl<const PointerType&>(matcher_));
1957   }
1958 
1959  private:
1960   // The monomorphic implementation that works for a particular pointer type.
1961   template <typename PointerType>
1962   class Impl : public MatcherInterface<PointerType> {
1963    public:
1964     using Pointer =
1965         const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
1966             PointerType)>::element_type*;
1967 
1968     explicit Impl(const InnerMatcher& matcher)
1969         : matcher_(MatcherCast<Pointer>(matcher)) {}
1970 
1971     void DescribeTo(::std::ostream* os) const override {
1972       *os << "is a pointer that ";
1973       matcher_.DescribeTo(os);
1974     }
1975 
1976     void DescribeNegationTo(::std::ostream* os) const override {
1977       *os << "is not a pointer that ";
1978       matcher_.DescribeTo(os);
1979     }
1980 
1981     bool MatchAndExplain(PointerType pointer,
1982                          MatchResultListener* listener) const override {
1983       *listener << "which is a pointer that ";
1984       Pointer p = GetRawPointer(pointer);
1985       return MatchPrintAndExplain(p, matcher_, listener);
1986     }
1987 
1988    private:
1989     Matcher<Pointer> matcher_;
1990   };
1991 
1992   const InnerMatcher matcher_;
1993 };
1994 
1995 #if GTEST_HAS_RTTI
1996 // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
1997 // reference that matches inner_matcher when dynamic_cast<T> is applied.
1998 // The result of dynamic_cast<To> is forwarded to the inner matcher.
1999 // If To is a pointer and the cast fails, the inner matcher will receive NULL.
2000 // If To is a reference and the cast fails, this matcher returns false
2001 // immediately.
2002 template <typename To>
2003 class WhenDynamicCastToMatcherBase {
2004  public:
2005   explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher)
2006       : matcher_(matcher) {}
2007 
2008   void DescribeTo(::std::ostream* os) const {
2009     GetCastTypeDescription(os);
2010     matcher_.DescribeTo(os);
2011   }
2012 
2013   void DescribeNegationTo(::std::ostream* os) const {
2014     GetCastTypeDescription(os);
2015     matcher_.DescribeNegationTo(os);
2016   }
2017 
2018  protected:
2019   const Matcher<To> matcher_;
2020 
2021   static std::string GetToName() { return GetTypeName<To>(); }
2022 
2023  private:
2024   static void GetCastTypeDescription(::std::ostream* os) {
2025     *os << "when dynamic_cast to " << GetToName() << ", ";
2026   }
2027 };
2028 
2029 // Primary template.
2030 // To is a pointer. Cast and forward the result.
2031 template <typename To>
2032 class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> {
2033  public:
2034   explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher)
2035       : WhenDynamicCastToMatcherBase<To>(matcher) {}
2036 
2037   template <typename From>
2038   bool MatchAndExplain(From from, MatchResultListener* listener) const {
2039     To to = dynamic_cast<To>(from);
2040     return MatchPrintAndExplain(to, this->matcher_, listener);
2041   }
2042 };
2043 
2044 // Specialize for references.
2045 // In this case we return false if the dynamic_cast fails.
2046 template <typename To>
2047 class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> {
2048  public:
2049   explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher)
2050       : WhenDynamicCastToMatcherBase<To&>(matcher) {}
2051 
2052   template <typename From>
2053   bool MatchAndExplain(From& from, MatchResultListener* listener) const {
2054     // We don't want an std::bad_cast here, so do the cast with pointers.
2055     To* to = dynamic_cast<To*>(&from);
2056     if (to == nullptr) {
2057       *listener << "which cannot be dynamic_cast to " << this->GetToName();
2058       return false;
2059     }
2060     return MatchPrintAndExplain(*to, this->matcher_, listener);
2061   }
2062 };
2063 #endif  // GTEST_HAS_RTTI
2064 
2065 // Implements the Field() matcher for matching a field (i.e. member
2066 // variable) of an object.
2067 template <typename Class, typename FieldType>
2068 class FieldMatcher {
2069  public:
2070   FieldMatcher(FieldType Class::*field,
2071                const Matcher<const FieldType&>& matcher)
2072       : field_(field), matcher_(matcher), whose_field_("whose given field ") {}
2073 
2074   FieldMatcher(const std::string& field_name, FieldType Class::*field,
2075                const Matcher<const FieldType&>& matcher)
2076       : field_(field),
2077         matcher_(matcher),
2078         whose_field_("whose field `" + field_name + "` ") {}
2079 
2080   void DescribeTo(::std::ostream* os) const {
2081     *os << "is an object " << whose_field_;
2082     matcher_.DescribeTo(os);
2083   }
2084 
2085   void DescribeNegationTo(::std::ostream* os) const {
2086     *os << "is an object " << whose_field_;
2087     matcher_.DescribeNegationTo(os);
2088   }
2089 
2090   template <typename T>
2091   bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
2092     // FIXME: The dispatch on std::is_pointer was introduced as a workaround for
2093     // a compiler bug, and can now be removed.
2094     return MatchAndExplainImpl(
2095         typename std::is_pointer<typename std::remove_const<T>::type>::type(),
2096         value, listener);
2097   }
2098 
2099  private:
2100   bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
2101                            const Class& obj,
2102                            MatchResultListener* listener) const {
2103     *listener << whose_field_ << "is ";
2104     return MatchPrintAndExplain(obj.*field_, matcher_, listener);
2105   }
2106 
2107   bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
2108                            MatchResultListener* listener) const {
2109     if (p == nullptr) return false;
2110 
2111     *listener << "which points to an object ";
2112     // Since *p has a field, it must be a class/struct/union type and
2113     // thus cannot be a pointer.  Therefore we pass false_type() as
2114     // the first argument.
2115     return MatchAndExplainImpl(std::false_type(), *p, listener);
2116   }
2117 
2118   const FieldType Class::*field_;
2119   const Matcher<const FieldType&> matcher_;
2120 
2121   // Contains either "whose given field " if the name of the field is unknown
2122   // or "whose field `name_of_field` " if the name is known.
2123   const std::string whose_field_;
2124 };
2125 
2126 // Implements the Property() matcher for matching a property
2127 // (i.e. return value of a getter method) of an object.
2128 //
2129 // Property is a const-qualified member function of Class returning
2130 // PropertyType.
2131 template <typename Class, typename PropertyType, typename Property>
2132 class PropertyMatcher {
2133  public:
2134   typedef const PropertyType& RefToConstProperty;
2135 
2136   PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher)
2137       : property_(property),
2138         matcher_(matcher),
2139         whose_property_("whose given property ") {}
2140 
2141   PropertyMatcher(const std::string& property_name, Property property,
2142                   const Matcher<RefToConstProperty>& matcher)
2143       : property_(property),
2144         matcher_(matcher),
2145         whose_property_("whose property `" + property_name + "` ") {}
2146 
2147   void DescribeTo(::std::ostream* os) const {
2148     *os << "is an object " << whose_property_;
2149     matcher_.DescribeTo(os);
2150   }
2151 
2152   void DescribeNegationTo(::std::ostream* os) const {
2153     *os << "is an object " << whose_property_;
2154     matcher_.DescribeNegationTo(os);
2155   }
2156 
2157   template <typename T>
2158   bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
2159     return MatchAndExplainImpl(
2160         typename std::is_pointer<typename std::remove_const<T>::type>::type(),
2161         value, listener);
2162   }
2163 
2164  private:
2165   bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
2166                            const Class& obj,
2167                            MatchResultListener* listener) const {
2168     *listener << whose_property_ << "is ";
2169     // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
2170     // which takes a non-const reference as argument.
2171     RefToConstProperty result = (obj.*property_)();
2172     return MatchPrintAndExplain(result, matcher_, listener);
2173   }
2174 
2175   bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
2176                            MatchResultListener* listener) const {
2177     if (p == nullptr) return false;
2178 
2179     *listener << "which points to an object ";
2180     // Since *p has a property method, it must be a class/struct/union
2181     // type and thus cannot be a pointer.  Therefore we pass
2182     // false_type() as the first argument.
2183     return MatchAndExplainImpl(std::false_type(), *p, listener);
2184   }
2185 
2186   Property property_;
2187   const Matcher<RefToConstProperty> matcher_;
2188 
2189   // Contains either "whose given property " if the name of the property is
2190   // unknown or "whose property `name_of_property` " if the name is known.
2191   const std::string whose_property_;
2192 };
2193 
2194 // Type traits specifying various features of different functors for ResultOf.
2195 // The default template specifies features for functor objects.
2196 template <typename Functor>
2197 struct CallableTraits {
2198   typedef Functor StorageType;
2199 
2200   static void CheckIsValid(Functor /* functor */) {}
2201 
2202   template <typename T>
2203   static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) {
2204     return f(arg);
2205   }
2206 };
2207 
2208 // Specialization for function pointers.
2209 template <typename ArgType, typename ResType>
2210 struct CallableTraits<ResType (*)(ArgType)> {
2211   typedef ResType ResultType;
2212   typedef ResType (*StorageType)(ArgType);
2213 
2214   static void CheckIsValid(ResType (*f)(ArgType)) {
2215     GTEST_CHECK_(f != nullptr)
2216         << "NULL function pointer is passed into ResultOf().";
2217   }
2218   template <typename T>
2219   static ResType Invoke(ResType (*f)(ArgType), T arg) {
2220     return (*f)(arg);
2221   }
2222 };
2223 
2224 // Implements the ResultOf() matcher for matching a return value of a
2225 // unary function of an object.
2226 template <typename Callable, typename InnerMatcher>
2227 class ResultOfMatcher {
2228  public:
2229   ResultOfMatcher(Callable callable, InnerMatcher matcher)
2230       : ResultOfMatcher(/*result_description=*/"", std::move(callable),
2231                         std::move(matcher)) {}
2232 
2233   ResultOfMatcher(const std::string& result_description, Callable callable,
2234                   InnerMatcher matcher)
2235       : result_description_(result_description),
2236         callable_(std::move(callable)),
2237         matcher_(std::move(matcher)) {
2238     CallableTraits<Callable>::CheckIsValid(callable_);
2239   }
2240 
2241   template <typename T>
2242   operator Matcher<T>() const {
2243     return Matcher<T>(
2244         new Impl<const T&>(result_description_, callable_, matcher_));
2245   }
2246 
2247  private:
2248   typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
2249 
2250   template <typename T>
2251   class Impl : public MatcherInterface<T> {
2252     using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>(
2253         std::declval<CallableStorageType>(), std::declval<T>()));
2254 
2255    public:
2256     template <typename M>
2257     Impl(const std::string& result_description,
2258          const CallableStorageType& callable, const M& matcher)
2259         : result_description_(result_description),
2260           callable_(callable),
2261           matcher_(MatcherCast<ResultType>(matcher)) {}
2262 
2263     void DescribeTo(::std::ostream* os) const override {
2264       if (result_description_.empty()) {
2265         *os << "is mapped by the given callable to a value that ";
2266       } else {
2267         *os << "whose " << result_description_ << " ";
2268       }
2269       matcher_.DescribeTo(os);
2270     }
2271 
2272     void DescribeNegationTo(::std::ostream* os) const override {
2273       if (result_description_.empty()) {
2274         *os << "is mapped by the given callable to a value that ";
2275       } else {
2276         *os << "whose " << result_description_ << " ";
2277       }
2278       matcher_.DescribeNegationTo(os);
2279     }
2280 
2281     bool MatchAndExplain(T obj, MatchResultListener* listener) const override {
2282       if (result_description_.empty()) {
2283         *listener << "which is mapped by the given callable to ";
2284       } else {
2285         *listener << "whose " << result_description_ << " is ";
2286       }
2287       // Cannot pass the return value directly to MatchPrintAndExplain, which
2288       // takes a non-const reference as argument.
2289       // Also, specifying template argument explicitly is needed because T could
2290       // be a non-const reference (e.g. Matcher<Uncopyable&>).
2291       ResultType result =
2292           CallableTraits<Callable>::template Invoke<T>(callable_, obj);
2293       return MatchPrintAndExplain(result, matcher_, listener);
2294     }
2295 
2296    private:
2297     const std::string result_description_;
2298     // Functors often define operator() as non-const method even though
2299     // they are actually stateless. But we need to use them even when
2300     // 'this' is a const pointer. It's the user's responsibility not to
2301     // use stateful callables with ResultOf(), which doesn't guarantee
2302     // how many times the callable will be invoked.
2303     mutable CallableStorageType callable_;
2304     const Matcher<ResultType> matcher_;
2305   };  // class Impl
2306 
2307   const std::string result_description_;
2308   const CallableStorageType callable_;
2309   const InnerMatcher matcher_;
2310 };
2311 
2312 // Implements a matcher that checks the size of an STL-style container.
2313 template <typename SizeMatcher>
2314 class SizeIsMatcher {
2315  public:
2316   explicit SizeIsMatcher(const SizeMatcher& size_matcher)
2317       : size_matcher_(size_matcher) {}
2318 
2319   template <typename Container>
2320   operator Matcher<Container>() const {
2321     return Matcher<Container>(new Impl<const Container&>(size_matcher_));
2322   }
2323 
2324   template <typename Container>
2325   class Impl : public MatcherInterface<Container> {
2326    public:
2327     using SizeType = decltype(std::declval<Container>().size());
2328     explicit Impl(const SizeMatcher& size_matcher)
2329         : size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
2330 
2331     void DescribeTo(::std::ostream* os) const override {
2332       *os << "has a size that ";
2333       size_matcher_.DescribeTo(os);
2334     }
2335     void DescribeNegationTo(::std::ostream* os) const override {
2336       *os << "has a size that ";
2337       size_matcher_.DescribeNegationTo(os);
2338     }
2339 
2340     bool MatchAndExplain(Container container,
2341                          MatchResultListener* listener) const override {
2342       SizeType size = container.size();
2343       StringMatchResultListener size_listener;
2344       const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
2345       *listener << "whose size " << size
2346                 << (result ? " matches" : " doesn't match");
2347       PrintIfNotEmpty(size_listener.str(), listener->stream());
2348       return result;
2349     }
2350 
2351    private:
2352     const Matcher<SizeType> size_matcher_;
2353   };
2354 
2355  private:
2356   const SizeMatcher size_matcher_;
2357 };
2358 
2359 // Implements a matcher that checks the begin()..end() distance of an STL-style
2360 // container.
2361 template <typename DistanceMatcher>
2362 class BeginEndDistanceIsMatcher {
2363  public:
2364   explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher)
2365       : distance_matcher_(distance_matcher) {}
2366 
2367   template <typename Container>
2368   operator Matcher<Container>() const {
2369     return Matcher<Container>(new Impl<const Container&>(distance_matcher_));
2370   }
2371 
2372   template <typename Container>
2373   class Impl : public MatcherInterface<Container> {
2374    public:
2375     typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2376         Container)>
2377         ContainerView;
2378     typedef typename std::iterator_traits<
2379         typename ContainerView::type::const_iterator>::difference_type
2380         DistanceType;
2381     explicit Impl(const DistanceMatcher& distance_matcher)
2382         : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}
2383 
2384     void DescribeTo(::std::ostream* os) const override {
2385       *os << "distance between begin() and end() ";
2386       distance_matcher_.DescribeTo(os);
2387     }
2388     void DescribeNegationTo(::std::ostream* os) const override {
2389       *os << "distance between begin() and end() ";
2390       distance_matcher_.DescribeNegationTo(os);
2391     }
2392 
2393     bool MatchAndExplain(Container container,
2394                          MatchResultListener* listener) const override {
2395       using std::begin;
2396       using std::end;
2397       DistanceType distance = std::distance(begin(container), end(container));
2398       StringMatchResultListener distance_listener;
2399       const bool result =
2400           distance_matcher_.MatchAndExplain(distance, &distance_listener);
2401       *listener << "whose distance between begin() and end() " << distance
2402                 << (result ? " matches" : " doesn't match");
2403       PrintIfNotEmpty(distance_listener.str(), listener->stream());
2404       return result;
2405     }
2406 
2407    private:
2408     const Matcher<DistanceType> distance_matcher_;
2409   };
2410 
2411  private:
2412   const DistanceMatcher distance_matcher_;
2413 };
2414 
2415 // Implements an equality matcher for any STL-style container whose elements
2416 // support ==. This matcher is like Eq(), but its failure explanations provide
2417 // more detailed information that is useful when the container is used as a set.
2418 // The failure message reports elements that are in one of the operands but not
2419 // the other. The failure messages do not report duplicate or out-of-order
2420 // elements in the containers (which don't properly matter to sets, but can
2421 // occur if the containers are vectors or lists, for example).
2422 //
2423 // Uses the container's const_iterator, value_type, operator ==,
2424 // begin(), and end().
2425 template <typename Container>
2426 class ContainerEqMatcher {
2427  public:
2428   typedef internal::StlContainerView<Container> View;
2429   typedef typename View::type StlContainer;
2430   typedef typename View::const_reference StlContainerReference;
2431 
2432   static_assert(!std::is_const<Container>::value,
2433                 "Container type must not be const");
2434   static_assert(!std::is_reference<Container>::value,
2435                 "Container type must not be a reference");
2436 
2437   // We make a copy of expected in case the elements in it are modified
2438   // after this matcher is created.
2439   explicit ContainerEqMatcher(const Container& expected)
2440       : expected_(View::Copy(expected)) {}
2441 
2442   void DescribeTo(::std::ostream* os) const {
2443     *os << "equals ";
2444     UniversalPrint(expected_, os);
2445   }
2446   void DescribeNegationTo(::std::ostream* os) const {
2447     *os << "does not equal ";
2448     UniversalPrint(expected_, os);
2449   }
2450 
2451   template <typename LhsContainer>
2452   bool MatchAndExplain(const LhsContainer& lhs,
2453                        MatchResultListener* listener) const {
2454     typedef internal::StlContainerView<
2455         typename std::remove_const<LhsContainer>::type>
2456         LhsView;
2457     StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2458     if (lhs_stl_container == expected_) return true;
2459 
2460     ::std::ostream* const os = listener->stream();
2461     if (os != nullptr) {
2462       // Something is different. Check for extra values first.
2463       bool printed_header = false;
2464       for (auto it = lhs_stl_container.begin(); it != lhs_stl_container.end();
2465            ++it) {
2466         if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) ==
2467             expected_.end()) {
2468           if (printed_header) {
2469             *os << ", ";
2470           } else {
2471             *os << "which has these unexpected elements: ";
2472             printed_header = true;
2473           }
2474           UniversalPrint(*it, os);
2475         }
2476       }
2477 
2478       // Now check for missing values.
2479       bool printed_header2 = false;
2480       for (auto it = expected_.begin(); it != expected_.end(); ++it) {
2481         if (internal::ArrayAwareFind(lhs_stl_container.begin(),
2482                                      lhs_stl_container.end(),
2483                                      *it) == lhs_stl_container.end()) {
2484           if (printed_header2) {
2485             *os << ", ";
2486           } else {
2487             *os << (printed_header ? ",\nand" : "which")
2488                 << " doesn't have these expected elements: ";
2489             printed_header2 = true;
2490           }
2491           UniversalPrint(*it, os);
2492         }
2493       }
2494     }
2495 
2496     return false;
2497   }
2498 
2499  private:
2500   const StlContainer expected_;
2501 };
2502 
2503 // A comparator functor that uses the < operator to compare two values.
2504 struct LessComparator {
2505   template <typename T, typename U>
2506   bool operator()(const T& lhs, const U& rhs) const {
2507     return lhs < rhs;
2508   }
2509 };
2510 
2511 // Implements WhenSortedBy(comparator, container_matcher).
2512 template <typename Comparator, typename ContainerMatcher>
2513 class WhenSortedByMatcher {
2514  public:
2515   WhenSortedByMatcher(const Comparator& comparator,
2516                       const ContainerMatcher& matcher)
2517       : comparator_(comparator), matcher_(matcher) {}
2518 
2519   template <typename LhsContainer>
2520   operator Matcher<LhsContainer>() const {
2521     return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
2522   }
2523 
2524   template <typename LhsContainer>
2525   class Impl : public MatcherInterface<LhsContainer> {
2526    public:
2527     typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2528         LhsContainer)>
2529         LhsView;
2530     typedef typename LhsView::type LhsStlContainer;
2531     typedef typename LhsView::const_reference LhsStlContainerReference;
2532     // Transforms std::pair<const Key, Value> into std::pair<Key, Value>
2533     // so that we can match associative containers.
2534     typedef
2535         typename RemoveConstFromKey<typename LhsStlContainer::value_type>::type
2536             LhsValue;
2537 
2538     Impl(const Comparator& comparator, const ContainerMatcher& matcher)
2539         : comparator_(comparator), matcher_(matcher) {}
2540 
2541     void DescribeTo(::std::ostream* os) const override {
2542       *os << "(when sorted) ";
2543       matcher_.DescribeTo(os);
2544     }
2545 
2546     void DescribeNegationTo(::std::ostream* os) const override {
2547       *os << "(when sorted) ";
2548       matcher_.DescribeNegationTo(os);
2549     }
2550 
2551     bool MatchAndExplain(LhsContainer lhs,
2552                          MatchResultListener* listener) const override {
2553       LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2554       ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
2555                                                lhs_stl_container.end());
2556       ::std::sort(sorted_container.begin(), sorted_container.end(),
2557                   comparator_);
2558 
2559       if (!listener->IsInterested()) {
2560         // If the listener is not interested, we do not need to
2561         // construct the inner explanation.
2562         return matcher_.Matches(sorted_container);
2563       }
2564 
2565       *listener << "which is ";
2566       UniversalPrint(sorted_container, listener->stream());
2567       *listener << " when sorted";
2568 
2569       StringMatchResultListener inner_listener;
2570       const bool match =
2571           matcher_.MatchAndExplain(sorted_container, &inner_listener);
2572       PrintIfNotEmpty(inner_listener.str(), listener->stream());
2573       return match;
2574     }
2575 
2576    private:
2577     const Comparator comparator_;
2578     const Matcher<const ::std::vector<LhsValue>&> matcher_;
2579 
2580     Impl(const Impl&) = delete;
2581     Impl& operator=(const Impl&) = delete;
2582   };
2583 
2584  private:
2585   const Comparator comparator_;
2586   const ContainerMatcher matcher_;
2587 };
2588 
2589 // Implements Pointwise(tuple_matcher, rhs_container).  tuple_matcher
2590 // must be able to be safely cast to Matcher<std::tuple<const T1&, const
2591 // T2&> >, where T1 and T2 are the types of elements in the LHS
2592 // container and the RHS container respectively.
2593 template <typename TupleMatcher, typename RhsContainer>
2594 class PointwiseMatcher {
2595   static_assert(
2596       !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value,
2597       "use UnorderedPointwise with hash tables");
2598 
2599  public:
2600   typedef internal::StlContainerView<RhsContainer> RhsView;
2601   typedef typename RhsView::type RhsStlContainer;
2602   typedef typename RhsStlContainer::value_type RhsValue;
2603 
2604   static_assert(!std::is_const<RhsContainer>::value,
2605                 "RhsContainer type must not be const");
2606   static_assert(!std::is_reference<RhsContainer>::value,
2607                 "RhsContainer type must not be a reference");
2608 
2609   // Like ContainerEq, we make a copy of rhs in case the elements in
2610   // it are modified after this matcher is created.
2611   PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
2612       : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {}
2613 
2614   template <typename LhsContainer>
2615   operator Matcher<LhsContainer>() const {
2616     static_assert(
2617         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value,
2618         "use UnorderedPointwise with hash tables");
2619 
2620     return Matcher<LhsContainer>(
2621         new Impl<const LhsContainer&>(tuple_matcher_, rhs_));
2622   }
2623 
2624   template <typename LhsContainer>
2625   class Impl : public MatcherInterface<LhsContainer> {
2626    public:
2627     typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2628         LhsContainer)>
2629         LhsView;
2630     typedef typename LhsView::type LhsStlContainer;
2631     typedef typename LhsView::const_reference LhsStlContainerReference;
2632     typedef typename LhsStlContainer::value_type LhsValue;
2633     // We pass the LHS value and the RHS value to the inner matcher by
2634     // reference, as they may be expensive to copy.  We must use tuple
2635     // instead of pair here, as a pair cannot hold references (C++ 98,
2636     // 20.2.2 [lib.pairs]).
2637     typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
2638 
2639     Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
2640         // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
2641         : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
2642           rhs_(rhs) {}
2643 
2644     void DescribeTo(::std::ostream* os) const override {
2645       *os << "contains " << rhs_.size()
2646           << " values, where each value and its corresponding value in ";
2647       UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
2648       *os << " ";
2649       mono_tuple_matcher_.DescribeTo(os);
2650     }
2651     void DescribeNegationTo(::std::ostream* os) const override {
2652       *os << "doesn't contain exactly " << rhs_.size()
2653           << " values, or contains a value x at some index i"
2654           << " where x and the i-th value of ";
2655       UniversalPrint(rhs_, os);
2656       *os << " ";
2657       mono_tuple_matcher_.DescribeNegationTo(os);
2658     }
2659 
2660     bool MatchAndExplain(LhsContainer lhs,
2661                          MatchResultListener* listener) const override {
2662       LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2663       const size_t actual_size = lhs_stl_container.size();
2664       if (actual_size != rhs_.size()) {
2665         *listener << "which contains " << actual_size << " values";
2666         return false;
2667       }
2668 
2669       auto left = lhs_stl_container.begin();
2670       auto right = rhs_.begin();
2671       for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
2672         if (listener->IsInterested()) {
2673           StringMatchResultListener inner_listener;
2674           // Create InnerMatcherArg as a temporarily object to avoid it outlives
2675           // *left and *right. Dereference or the conversion to `const T&` may
2676           // return temp objects, e.g. for vector<bool>.
2677           if (!mono_tuple_matcher_.MatchAndExplain(
2678                   InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
2679                                   ImplicitCast_<const RhsValue&>(*right)),
2680                   &inner_listener)) {
2681             *listener << "where the value pair (";
2682             UniversalPrint(*left, listener->stream());
2683             *listener << ", ";
2684             UniversalPrint(*right, listener->stream());
2685             *listener << ") at index #" << i << " don't match";
2686             PrintIfNotEmpty(inner_listener.str(), listener->stream());
2687             return false;
2688           }
2689         } else {
2690           if (!mono_tuple_matcher_.Matches(
2691                   InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
2692                                   ImplicitCast_<const RhsValue&>(*right))))
2693             return false;
2694         }
2695       }
2696 
2697       return true;
2698     }
2699 
2700    private:
2701     const Matcher<InnerMatcherArg> mono_tuple_matcher_;
2702     const RhsStlContainer rhs_;
2703   };
2704 
2705  private:
2706   const TupleMatcher tuple_matcher_;
2707   const RhsStlContainer rhs_;
2708 };
2709 
2710 // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
2711 template <typename Container>
2712 class QuantifierMatcherImpl : public MatcherInterface<Container> {
2713  public:
2714   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2715   typedef StlContainerView<RawContainer> View;
2716   typedef typename View::type StlContainer;
2717   typedef typename View::const_reference StlContainerReference;
2718   typedef typename StlContainer::value_type Element;
2719 
2720   template <typename InnerMatcher>
2721   explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
2722       : inner_matcher_(
2723             testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
2724 
2725   // Checks whether:
2726   // * All elements in the container match, if all_elements_should_match.
2727   // * Any element in the container matches, if !all_elements_should_match.
2728   bool MatchAndExplainImpl(bool all_elements_should_match, Container container,
2729                            MatchResultListener* listener) const {
2730     StlContainerReference stl_container = View::ConstReference(container);
2731     size_t i = 0;
2732     for (auto it = stl_container.begin(); it != stl_container.end();
2733          ++it, ++i) {
2734       StringMatchResultListener inner_listener;
2735       const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2736 
2737       if (matches != all_elements_should_match) {
2738         *listener << "whose element #" << i
2739                   << (matches ? " matches" : " doesn't match");
2740         PrintIfNotEmpty(inner_listener.str(), listener->stream());
2741         return !all_elements_should_match;
2742       }
2743     }
2744     return all_elements_should_match;
2745   }
2746 
2747   bool MatchAndExplainImpl(const Matcher<size_t>& count_matcher,
2748                            Container container,
2749                            MatchResultListener* listener) const {
2750     StlContainerReference stl_container = View::ConstReference(container);
2751     size_t i = 0;
2752     std::vector<size_t> match_elements;
2753     for (auto it = stl_container.begin(); it != stl_container.end();
2754          ++it, ++i) {
2755       StringMatchResultListener inner_listener;
2756       const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2757       if (matches) {
2758         match_elements.push_back(i);
2759       }
2760     }
2761     if (listener->IsInterested()) {
2762       if (match_elements.empty()) {
2763         *listener << "has no element that matches";
2764       } else if (match_elements.size() == 1) {
2765         *listener << "whose element #" << match_elements[0] << " matches";
2766       } else {
2767         *listener << "whose elements (";
2768         std::string sep = "";
2769         for (size_t e : match_elements) {
2770           *listener << sep << e;
2771           sep = ", ";
2772         }
2773         *listener << ") match";
2774       }
2775     }
2776     StringMatchResultListener count_listener;
2777     if (count_matcher.MatchAndExplain(match_elements.size(), &count_listener)) {
2778       *listener << " and whose match quantity of " << match_elements.size()
2779                 << " matches";
2780       PrintIfNotEmpty(count_listener.str(), listener->stream());
2781       return true;
2782     } else {
2783       if (match_elements.empty()) {
2784         *listener << " and";
2785       } else {
2786         *listener << " but";
2787       }
2788       *listener << " whose match quantity of " << match_elements.size()
2789                 << " does not match";
2790       PrintIfNotEmpty(count_listener.str(), listener->stream());
2791       return false;
2792     }
2793   }
2794 
2795  protected:
2796   const Matcher<const Element&> inner_matcher_;
2797 };
2798 
2799 // Implements Contains(element_matcher) for the given argument type Container.
2800 // Symmetric to EachMatcherImpl.
2801 template <typename Container>
2802 class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
2803  public:
2804   template <typename InnerMatcher>
2805   explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
2806       : QuantifierMatcherImpl<Container>(inner_matcher) {}
2807 
2808   // Describes what this matcher does.
2809   void DescribeTo(::std::ostream* os) const override {
2810     *os << "contains at least one element that ";
2811     this->inner_matcher_.DescribeTo(os);
2812   }
2813 
2814   void DescribeNegationTo(::std::ostream* os) const override {
2815     *os << "doesn't contain any element that ";
2816     this->inner_matcher_.DescribeTo(os);
2817   }
2818 
2819   bool MatchAndExplain(Container container,
2820                        MatchResultListener* listener) const override {
2821     return this->MatchAndExplainImpl(false, container, listener);
2822   }
2823 };
2824 
2825 // Implements Each(element_matcher) for the given argument type Container.
2826 // Symmetric to ContainsMatcherImpl.
2827 template <typename Container>
2828 class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
2829  public:
2830   template <typename InnerMatcher>
2831   explicit EachMatcherImpl(InnerMatcher inner_matcher)
2832       : QuantifierMatcherImpl<Container>(inner_matcher) {}
2833 
2834   // Describes what this matcher does.
2835   void DescribeTo(::std::ostream* os) const override {
2836     *os << "only contains elements that ";
2837     this->inner_matcher_.DescribeTo(os);
2838   }
2839 
2840   void DescribeNegationTo(::std::ostream* os) const override {
2841     *os << "contains some element that ";
2842     this->inner_matcher_.DescribeNegationTo(os);
2843   }
2844 
2845   bool MatchAndExplain(Container container,
2846                        MatchResultListener* listener) const override {
2847     return this->MatchAndExplainImpl(true, container, listener);
2848   }
2849 };
2850 
2851 // Implements Contains(element_matcher).Times(n) for the given argument type
2852 // Container.
2853 template <typename Container>
2854 class ContainsTimesMatcherImpl : public QuantifierMatcherImpl<Container> {
2855  public:
2856   template <typename InnerMatcher>
2857   explicit ContainsTimesMatcherImpl(InnerMatcher inner_matcher,
2858                                     Matcher<size_t> count_matcher)
2859       : QuantifierMatcherImpl<Container>(inner_matcher),
2860         count_matcher_(std::move(count_matcher)) {}
2861 
2862   void DescribeTo(::std::ostream* os) const override {
2863     *os << "quantity of elements that match ";
2864     this->inner_matcher_.DescribeTo(os);
2865     *os << " ";
2866     count_matcher_.DescribeTo(os);
2867   }
2868 
2869   void DescribeNegationTo(::std::ostream* os) const override {
2870     *os << "quantity of elements that match ";
2871     this->inner_matcher_.DescribeTo(os);
2872     *os << " ";
2873     count_matcher_.DescribeNegationTo(os);
2874   }
2875 
2876   bool MatchAndExplain(Container container,
2877                        MatchResultListener* listener) const override {
2878     return this->MatchAndExplainImpl(count_matcher_, container, listener);
2879   }
2880 
2881  private:
2882   const Matcher<size_t> count_matcher_;
2883 };
2884 
2885 // Implements polymorphic Contains(element_matcher).Times(n).
2886 template <typename M>
2887 class ContainsTimesMatcher {
2888  public:
2889   explicit ContainsTimesMatcher(M m, Matcher<size_t> count_matcher)
2890       : inner_matcher_(m), count_matcher_(std::move(count_matcher)) {}
2891 
2892   template <typename Container>
2893   operator Matcher<Container>() const {  // NOLINT
2894     return Matcher<Container>(new ContainsTimesMatcherImpl<const Container&>(
2895         inner_matcher_, count_matcher_));
2896   }
2897 
2898  private:
2899   const M inner_matcher_;
2900   const Matcher<size_t> count_matcher_;
2901 };
2902 
2903 // Implements polymorphic Contains(element_matcher).
2904 template <typename M>
2905 class ContainsMatcher {
2906  public:
2907   explicit ContainsMatcher(M m) : inner_matcher_(m) {}
2908 
2909   template <typename Container>
2910   operator Matcher<Container>() const {  // NOLINT
2911     return Matcher<Container>(
2912         new ContainsMatcherImpl<const Container&>(inner_matcher_));
2913   }
2914 
2915   ContainsTimesMatcher<M> Times(Matcher<size_t> count_matcher) const {
2916     return ContainsTimesMatcher<M>(inner_matcher_, std::move(count_matcher));
2917   }
2918 
2919  private:
2920   const M inner_matcher_;
2921 };
2922 
2923 // Implements polymorphic Each(element_matcher).
2924 template <typename M>
2925 class EachMatcher {
2926  public:
2927   explicit EachMatcher(M m) : inner_matcher_(m) {}
2928 
2929   template <typename Container>
2930   operator Matcher<Container>() const {  // NOLINT
2931     return Matcher<Container>(
2932         new EachMatcherImpl<const Container&>(inner_matcher_));
2933   }
2934 
2935  private:
2936   const M inner_matcher_;
2937 };
2938 
2939 // Use go/ranked-overloads for dispatching.
2940 struct Rank0 {};
2941 struct Rank1 : Rank0 {};
2942 
2943 namespace pair_getters {
2944 using std::get;
2945 template <typename T>
2946 auto First(T& x, Rank0) -> decltype(get<0>(x)) {  // NOLINT
2947   return get<0>(x);
2948 }
2949 template <typename T>
2950 auto First(T& x, Rank1) -> decltype((x.first)) {  // NOLINT
2951   return x.first;
2952 }
2953 
2954 template <typename T>
2955 auto Second(T& x, Rank0) -> decltype(get<1>(x)) {  // NOLINT
2956   return get<1>(x);
2957 }
2958 template <typename T>
2959 auto Second(T& x, Rank1) -> decltype((x.second)) {  // NOLINT
2960   return x.second;
2961 }
2962 }  // namespace pair_getters
2963 
2964 // Implements Key(inner_matcher) for the given argument pair type.
2965 // Key(inner_matcher) matches an std::pair whose 'first' field matches
2966 // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
2967 // std::map that contains at least one element whose key is >= 5.
2968 template <typename PairType>
2969 class KeyMatcherImpl : public MatcherInterface<PairType> {
2970  public:
2971   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
2972   typedef typename RawPairType::first_type KeyType;
2973 
2974   template <typename InnerMatcher>
2975   explicit KeyMatcherImpl(InnerMatcher inner_matcher)
2976       : inner_matcher_(
2977             testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {}
2978 
2979   // Returns true if and only if 'key_value.first' (the key) matches the inner
2980   // matcher.
2981   bool MatchAndExplain(PairType key_value,
2982                        MatchResultListener* listener) const override {
2983     StringMatchResultListener inner_listener;
2984     const bool match = inner_matcher_.MatchAndExplain(
2985         pair_getters::First(key_value, Rank1()), &inner_listener);
2986     const std::string explanation = inner_listener.str();
2987     if (!explanation.empty()) {
2988       *listener << "whose first field is a value " << explanation;
2989     }
2990     return match;
2991   }
2992 
2993   // Describes what this matcher does.
2994   void DescribeTo(::std::ostream* os) const override {
2995     *os << "has a key that ";
2996     inner_matcher_.DescribeTo(os);
2997   }
2998 
2999   // Describes what the negation of this matcher does.
3000   void DescribeNegationTo(::std::ostream* os) const override {
3001     *os << "doesn't have a key that ";
3002     inner_matcher_.DescribeTo(os);
3003   }
3004 
3005  private:
3006   const Matcher<const KeyType&> inner_matcher_;
3007 };
3008 
3009 // Implements polymorphic Key(matcher_for_key).
3010 template <typename M>
3011 class KeyMatcher {
3012  public:
3013   explicit KeyMatcher(M m) : matcher_for_key_(m) {}
3014 
3015   template <typename PairType>
3016   operator Matcher<PairType>() const {
3017     return Matcher<PairType>(
3018         new KeyMatcherImpl<const PairType&>(matcher_for_key_));
3019   }
3020 
3021  private:
3022   const M matcher_for_key_;
3023 };
3024 
3025 // Implements polymorphic Address(matcher_for_address).
3026 template <typename InnerMatcher>
3027 class AddressMatcher {
3028  public:
3029   explicit AddressMatcher(InnerMatcher m) : matcher_(m) {}
3030 
3031   template <typename Type>
3032   operator Matcher<Type>() const {  // NOLINT
3033     return Matcher<Type>(new Impl<const Type&>(matcher_));
3034   }
3035 
3036  private:
3037   // The monomorphic implementation that works for a particular object type.
3038   template <typename Type>
3039   class Impl : public MatcherInterface<Type> {
3040    public:
3041     using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *;
3042     explicit Impl(const InnerMatcher& matcher)
3043         : matcher_(MatcherCast<Address>(matcher)) {}
3044 
3045     void DescribeTo(::std::ostream* os) const override {
3046       *os << "has address that ";
3047       matcher_.DescribeTo(os);
3048     }
3049 
3050     void DescribeNegationTo(::std::ostream* os) const override {
3051       *os << "does not have address that ";
3052       matcher_.DescribeTo(os);
3053     }
3054 
3055     bool MatchAndExplain(Type object,
3056                          MatchResultListener* listener) const override {
3057       *listener << "which has address ";
3058       Address address = std::addressof(object);
3059       return MatchPrintAndExplain(address, matcher_, listener);
3060     }
3061 
3062    private:
3063     const Matcher<Address> matcher_;
3064   };
3065   const InnerMatcher matcher_;
3066 };
3067 
3068 // Implements Pair(first_matcher, second_matcher) for the given argument pair
3069 // type with its two matchers. See Pair() function below.
3070 template <typename PairType>
3071 class PairMatcherImpl : public MatcherInterface<PairType> {
3072  public:
3073   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
3074   typedef typename RawPairType::first_type FirstType;
3075   typedef typename RawPairType::second_type SecondType;
3076 
3077   template <typename FirstMatcher, typename SecondMatcher>
3078   PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
3079       : first_matcher_(
3080             testing::SafeMatcherCast<const FirstType&>(first_matcher)),
3081         second_matcher_(
3082             testing::SafeMatcherCast<const SecondType&>(second_matcher)) {}
3083 
3084   // Describes what this matcher does.
3085   void DescribeTo(::std::ostream* os) const override {
3086     *os << "has a first field that ";
3087     first_matcher_.DescribeTo(os);
3088     *os << ", and has a second field that ";
3089     second_matcher_.DescribeTo(os);
3090   }
3091 
3092   // Describes what the negation of this matcher does.
3093   void DescribeNegationTo(::std::ostream* os) const override {
3094     *os << "has a first field that ";
3095     first_matcher_.DescribeNegationTo(os);
3096     *os << ", or has a second field that ";
3097     second_matcher_.DescribeNegationTo(os);
3098   }
3099 
3100   // Returns true if and only if 'a_pair.first' matches first_matcher and
3101   // 'a_pair.second' matches second_matcher.
3102   bool MatchAndExplain(PairType a_pair,
3103                        MatchResultListener* listener) const override {
3104     if (!listener->IsInterested()) {
3105       // If the listener is not interested, we don't need to construct the
3106       // explanation.
3107       return first_matcher_.Matches(pair_getters::First(a_pair, Rank1())) &&
3108              second_matcher_.Matches(pair_getters::Second(a_pair, Rank1()));
3109     }
3110     StringMatchResultListener first_inner_listener;
3111     if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank1()),
3112                                         &first_inner_listener)) {
3113       *listener << "whose first field does not match";
3114       PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
3115       return false;
3116     }
3117     StringMatchResultListener second_inner_listener;
3118     if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank1()),
3119                                          &second_inner_listener)) {
3120       *listener << "whose second field does not match";
3121       PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
3122       return false;
3123     }
3124     ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
3125                    listener);
3126     return true;
3127   }
3128 
3129  private:
3130   void ExplainSuccess(const std::string& first_explanation,
3131                       const std::string& second_explanation,
3132                       MatchResultListener* listener) const {
3133     *listener << "whose both fields match";
3134     if (!first_explanation.empty()) {
3135       *listener << ", where the first field is a value " << first_explanation;
3136     }
3137     if (!second_explanation.empty()) {
3138       *listener << ", ";
3139       if (!first_explanation.empty()) {
3140         *listener << "and ";
3141       } else {
3142         *listener << "where ";
3143       }
3144       *listener << "the second field is a value " << second_explanation;
3145     }
3146   }
3147 
3148   const Matcher<const FirstType&> first_matcher_;
3149   const Matcher<const SecondType&> second_matcher_;
3150 };
3151 
3152 // Implements polymorphic Pair(first_matcher, second_matcher).
3153 template <typename FirstMatcher, typename SecondMatcher>
3154 class PairMatcher {
3155  public:
3156   PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
3157       : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
3158 
3159   template <typename PairType>
3160   operator Matcher<PairType>() const {
3161     return Matcher<PairType>(
3162         new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_));
3163   }
3164 
3165  private:
3166   const FirstMatcher first_matcher_;
3167   const SecondMatcher second_matcher_;
3168 };
3169 
3170 template <typename T, size_t... I>
3171 auto UnpackStructImpl(const T& t, std::index_sequence<I...>,
3172                       int) -> decltype(std::tie(get<I>(t)...)) {
3173   static_assert(std::tuple_size<T>::value == sizeof...(I),
3174                 "Number of arguments doesn't match the number of fields.");
3175   return std::tie(get<I>(t)...);
3176 }
3177 
3178 #if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606
3179 template <typename T>
3180 auto UnpackStructImpl(const T& t, std::make_index_sequence<1>, char) {
3181   const auto& [a] = t;
3182   return std::tie(a);
3183 }
3184 template <typename T>
3185 auto UnpackStructImpl(const T& t, std::make_index_sequence<2>, char) {
3186   const auto& [a, b] = t;
3187   return std::tie(a, b);
3188 }
3189 template <typename T>
3190 auto UnpackStructImpl(const T& t, std::make_index_sequence<3>, char) {
3191   const auto& [a, b, c] = t;
3192   return std::tie(a, b, c);
3193 }
3194 template <typename T>
3195 auto UnpackStructImpl(const T& t, std::make_index_sequence<4>, char) {
3196   const auto& [a, b, c, d] = t;
3197   return std::tie(a, b, c, d);
3198 }
3199 template <typename T>
3200 auto UnpackStructImpl(const T& t, std::make_index_sequence<5>, char) {
3201   const auto& [a, b, c, d, e] = t;
3202   return std::tie(a, b, c, d, e);
3203 }
3204 template <typename T>
3205 auto UnpackStructImpl(const T& t, std::make_index_sequence<6>, char) {
3206   const auto& [a, b, c, d, e, f] = t;
3207   return std::tie(a, b, c, d, e, f);
3208 }
3209 template <typename T>
3210 auto UnpackStructImpl(const T& t, std::make_index_sequence<7>, char) {
3211   const auto& [a, b, c, d, e, f, g] = t;
3212   return std::tie(a, b, c, d, e, f, g);
3213 }
3214 template <typename T>
3215 auto UnpackStructImpl(const T& t, std::make_index_sequence<8>, char) {
3216   const auto& [a, b, c, d, e, f, g, h] = t;
3217   return std::tie(a, b, c, d, e, f, g, h);
3218 }
3219 template <typename T>
3220 auto UnpackStructImpl(const T& t, std::make_index_sequence<9>, char) {
3221   const auto& [a, b, c, d, e, f, g, h, i] = t;
3222   return std::tie(a, b, c, d, e, f, g, h, i);
3223 }
3224 template <typename T>
3225 auto UnpackStructImpl(const T& t, std::make_index_sequence<10>, char) {
3226   const auto& [a, b, c, d, e, f, g, h, i, j] = t;
3227   return std::tie(a, b, c, d, e, f, g, h, i, j);
3228 }
3229 template <typename T>
3230 auto UnpackStructImpl(const T& t, std::make_index_sequence<11>, char) {
3231   const auto& [a, b, c, d, e, f, g, h, i, j, k] = t;
3232   return std::tie(a, b, c, d, e, f, g, h, i, j, k);
3233 }
3234 template <typename T>
3235 auto UnpackStructImpl(const T& t, std::make_index_sequence<12>, char) {
3236   const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t;
3237   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l);
3238 }
3239 template <typename T>
3240 auto UnpackStructImpl(const T& t, std::make_index_sequence<13>, char) {
3241   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t;
3242   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m);
3243 }
3244 template <typename T>
3245 auto UnpackStructImpl(const T& t, std::make_index_sequence<14>, char) {
3246   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t;
3247   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n);
3248 }
3249 template <typename T>
3250 auto UnpackStructImpl(const T& t, std::make_index_sequence<15>, char) {
3251   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t;
3252   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o);
3253 }
3254 template <typename T>
3255 auto UnpackStructImpl(const T& t, std::make_index_sequence<16>, char) {
3256   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t;
3257   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p);
3258 }
3259 template <typename T>
3260 auto UnpackStructImpl(const T& t, std::make_index_sequence<17>, char) {
3261   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q] = t;
3262   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q);
3263 }
3264 template <typename T>
3265 auto UnpackStructImpl(const T& t, std::make_index_sequence<18>, char) {
3266   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r] = t;
3267   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r);
3268 }
3269 template <typename T>
3270 auto UnpackStructImpl(const T& t, std::make_index_sequence<19>, char) {
3271   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s] = t;
3272   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s);
3273 }
3274 #endif  // defined(__cpp_structured_bindings)
3275 
3276 template <size_t I, typename T>
3277 auto UnpackStruct(const T& t)
3278     -> decltype((UnpackStructImpl)(t, std::make_index_sequence<I>{}, 0)) {
3279   return (UnpackStructImpl)(t, std::make_index_sequence<I>{}, 0);
3280 }
3281 
3282 // Helper function to do comma folding in C++11.
3283 // The array ensures left-to-right order of evaluation.
3284 // Usage: VariadicExpand({expr...});
3285 template <typename T, size_t N>
3286 void VariadicExpand(const T (&)[N]) {}
3287 
3288 template <typename Struct, typename StructSize>
3289 class FieldsAreMatcherImpl;
3290 
3291 template <typename Struct, size_t... I>
3292 class FieldsAreMatcherImpl<Struct, std::index_sequence<I...>>
3293     : public MatcherInterface<Struct> {
3294   using UnpackedType =
3295       decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>()));
3296   using MatchersType = std::tuple<
3297       Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>;
3298 
3299  public:
3300   template <typename Inner>
3301   explicit FieldsAreMatcherImpl(const Inner& matchers)
3302       : matchers_(testing::SafeMatcherCast<
3303                   const typename std::tuple_element<I, UnpackedType>::type&>(
3304             std::get<I>(matchers))...) {}
3305 
3306   void DescribeTo(::std::ostream* os) const override {
3307     const char* separator = "";
3308     VariadicExpand(
3309         {(*os << separator << "has field #" << I << " that ",
3310           std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...});
3311   }
3312 
3313   void DescribeNegationTo(::std::ostream* os) const override {
3314     const char* separator = "";
3315     VariadicExpand({(*os << separator << "has field #" << I << " that ",
3316                      std::get<I>(matchers_).DescribeNegationTo(os),
3317                      separator = ", or ")...});
3318   }
3319 
3320   bool MatchAndExplain(Struct t, MatchResultListener* listener) const override {
3321     return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener);
3322   }
3323 
3324  private:
3325   bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const {
3326     if (!listener->IsInterested()) {
3327       // If the listener is not interested, we don't need to construct the
3328       // explanation.
3329       bool good = true;
3330       VariadicExpand({good = good && std::get<I>(matchers_).Matches(
3331                                          std::get<I>(tuple))...});
3332       return good;
3333     }
3334 
3335     size_t failed_pos = ~size_t{};
3336 
3337     std::vector<StringMatchResultListener> inner_listener(sizeof...(I));
3338 
3339     VariadicExpand(
3340         {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain(
3341                                         std::get<I>(tuple), &inner_listener[I])
3342              ? failed_pos = I
3343              : 0 ...});
3344     if (failed_pos != ~size_t{}) {
3345       *listener << "whose field #" << failed_pos << " does not match";
3346       PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream());
3347       return false;
3348     }
3349 
3350     *listener << "whose all elements match";
3351     const char* separator = ", where";
3352     for (size_t index = 0; index < sizeof...(I); ++index) {
3353       const std::string str = inner_listener[index].str();
3354       if (!str.empty()) {
3355         *listener << separator << " field #" << index << " is a value " << str;
3356         separator = ", and";
3357       }
3358     }
3359 
3360     return true;
3361   }
3362 
3363   MatchersType matchers_;
3364 };
3365 
3366 template <typename... Inner>
3367 class FieldsAreMatcher {
3368  public:
3369   explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {}
3370 
3371   template <typename Struct>
3372   operator Matcher<Struct>() const {  // NOLINT
3373     return Matcher<Struct>(
3374         new FieldsAreMatcherImpl<const Struct&,
3375                                  std::index_sequence_for<Inner...>>(matchers_));
3376   }
3377 
3378  private:
3379   std::tuple<Inner...> matchers_;
3380 };
3381 
3382 // Implements ElementsAre() and ElementsAreArray().
3383 template <typename Container>
3384 class ElementsAreMatcherImpl : public MatcherInterface<Container> {
3385  public:
3386   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3387   typedef internal::StlContainerView<RawContainer> View;
3388   typedef typename View::type StlContainer;
3389   typedef typename View::const_reference StlContainerReference;
3390   typedef typename StlContainer::value_type Element;
3391 
3392   // Constructs the matcher from a sequence of element values or
3393   // element matchers.
3394   template <typename InputIter>
3395   ElementsAreMatcherImpl(InputIter first, InputIter last) {
3396     while (first != last) {
3397       matchers_.push_back(MatcherCast<const Element&>(*first++));
3398     }
3399   }
3400 
3401   // Describes what this matcher does.
3402   void DescribeTo(::std::ostream* os) const override {
3403     if (count() == 0) {
3404       *os << "is empty";
3405     } else if (count() == 1) {
3406       *os << "has 1 element that ";
3407       matchers_[0].DescribeTo(os);
3408     } else {
3409       *os << "has " << Elements(count()) << " where\n";
3410       for (size_t i = 0; i != count(); ++i) {
3411         *os << "element #" << i << " ";
3412         matchers_[i].DescribeTo(os);
3413         if (i + 1 < count()) {
3414           *os << ",\n";
3415         }
3416       }
3417     }
3418   }
3419 
3420   // Describes what the negation of this matcher does.
3421   void DescribeNegationTo(::std::ostream* os) const override {
3422     if (count() == 0) {
3423       *os << "isn't empty";
3424       return;
3425     }
3426 
3427     *os << "doesn't have " << Elements(count()) << ", or\n";
3428     for (size_t i = 0; i != count(); ++i) {
3429       *os << "element #" << i << " ";
3430       matchers_[i].DescribeNegationTo(os);
3431       if (i + 1 < count()) {
3432         *os << ", or\n";
3433       }
3434     }
3435   }
3436 
3437   bool MatchAndExplain(Container container,
3438                        MatchResultListener* listener) const override {
3439     // To work with stream-like "containers", we must only walk
3440     // through the elements in one pass.
3441 
3442     const bool listener_interested = listener->IsInterested();
3443 
3444     // explanations[i] is the explanation of the element at index i.
3445     ::std::vector<std::string> explanations(count());
3446     StlContainerReference stl_container = View::ConstReference(container);
3447     auto it = stl_container.begin();
3448     size_t exam_pos = 0;
3449     bool mismatch_found = false;  // Have we found a mismatched element yet?
3450 
3451     // Go through the elements and matchers in pairs, until we reach
3452     // the end of either the elements or the matchers, or until we find a
3453     // mismatch.
3454     for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
3455       bool match;  // Does the current element match the current matcher?
3456       if (listener_interested) {
3457         StringMatchResultListener s;
3458         match = matchers_[exam_pos].MatchAndExplain(*it, &s);
3459         explanations[exam_pos] = s.str();
3460       } else {
3461         match = matchers_[exam_pos].Matches(*it);
3462       }
3463 
3464       if (!match) {
3465         mismatch_found = true;
3466         break;
3467       }
3468     }
3469     // If mismatch_found is true, 'exam_pos' is the index of the mismatch.
3470 
3471     // Find how many elements the actual container has.  We avoid
3472     // calling size() s.t. this code works for stream-like "containers"
3473     // that don't define size().
3474     size_t actual_count = exam_pos;
3475     for (; it != stl_container.end(); ++it) {
3476       ++actual_count;
3477     }
3478 
3479     if (actual_count != count()) {
3480       // The element count doesn't match.  If the container is empty,
3481       // there's no need to explain anything as Google Mock already
3482       // prints the empty container.  Otherwise we just need to show
3483       // how many elements there actually are.
3484       if (listener_interested && (actual_count != 0)) {
3485         *listener << "which has " << Elements(actual_count);
3486       }
3487       return false;
3488     }
3489 
3490     if (mismatch_found) {
3491       // The element count matches, but the exam_pos-th element doesn't match.
3492       if (listener_interested) {
3493         *listener << "whose element #" << exam_pos << " doesn't match";
3494         PrintIfNotEmpty(explanations[exam_pos], listener->stream());
3495       }
3496       return false;
3497     }
3498 
3499     // Every element matches its expectation.  We need to explain why
3500     // (the obvious ones can be skipped).
3501     if (listener_interested) {
3502       bool reason_printed = false;
3503       for (size_t i = 0; i != count(); ++i) {
3504         const std::string& s = explanations[i];
3505         if (!s.empty()) {
3506           if (reason_printed) {
3507             *listener << ",\nand ";
3508           }
3509           *listener << "whose element #" << i << " matches, " << s;
3510           reason_printed = true;
3511         }
3512       }
3513     }
3514     return true;
3515   }
3516 
3517  private:
3518   static Message Elements(size_t count) {
3519     return Message() << count << (count == 1 ? " element" : " elements");
3520   }
3521 
3522   size_t count() const { return matchers_.size(); }
3523 
3524   ::std::vector<Matcher<const Element&>> matchers_;
3525 };
3526 
3527 // Connectivity matrix of (elements X matchers), in element-major order.
3528 // Initially, there are no edges.
3529 // Use NextGraph() to iterate over all possible edge configurations.
3530 // Use Randomize() to generate a random edge configuration.
3531 class GTEST_API_ MatchMatrix {
3532  public:
3533   MatchMatrix(size_t num_elements, size_t num_matchers)
3534       : num_elements_(num_elements),
3535         num_matchers_(num_matchers),
3536         matched_(num_elements_ * num_matchers_, 0) {}
3537 
3538   size_t LhsSize() const { return num_elements_; }
3539   size_t RhsSize() const { return num_matchers_; }
3540   bool HasEdge(size_t ilhs, size_t irhs) const {
3541     return matched_[SpaceIndex(ilhs, irhs)] == 1;
3542   }
3543   void SetEdge(size_t ilhs, size_t irhs, bool b) {
3544     matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
3545   }
3546 
3547   // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
3548   // adds 1 to that number; returns false if incrementing the graph left it
3549   // empty.
3550   bool NextGraph();
3551 
3552   void Randomize();
3553 
3554   std::string DebugString() const;
3555 
3556  private:
3557   size_t SpaceIndex(size_t ilhs, size_t irhs) const {
3558     return ilhs * num_matchers_ + irhs;
3559   }
3560 
3561   size_t num_elements_;
3562   size_t num_matchers_;
3563 
3564   // Each element is a char interpreted as bool. They are stored as a
3565   // flattened array in lhs-major order, use 'SpaceIndex()' to translate
3566   // a (ilhs, irhs) matrix coordinate into an offset.
3567   ::std::vector<char> matched_;
3568 };
3569 
3570 typedef ::std::pair<size_t, size_t> ElementMatcherPair;
3571 typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
3572 
3573 // Returns a maximum bipartite matching for the specified graph 'g'.
3574 // The matching is represented as a vector of {element, matcher} pairs.
3575 GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g);
3576 
3577 struct UnorderedMatcherRequire {
3578   enum Flags {
3579     Superset = 1 << 0,
3580     Subset = 1 << 1,
3581     ExactMatch = Superset | Subset,
3582   };
3583 };
3584 
3585 // Untyped base class for implementing UnorderedElementsAre.  By
3586 // putting logic that's not specific to the element type here, we
3587 // reduce binary bloat and increase compilation speed.
3588 class GTEST_API_ UnorderedElementsAreMatcherImplBase {
3589  protected:
3590   explicit UnorderedElementsAreMatcherImplBase(
3591       UnorderedMatcherRequire::Flags matcher_flags)
3592       : match_flags_(matcher_flags) {}
3593 
3594   // A vector of matcher describers, one for each element matcher.
3595   // Does not own the describers (and thus can be used only when the
3596   // element matchers are alive).
3597   typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
3598 
3599   // Describes this UnorderedElementsAre matcher.
3600   void DescribeToImpl(::std::ostream* os) const;
3601 
3602   // Describes the negation of this UnorderedElementsAre matcher.
3603   void DescribeNegationToImpl(::std::ostream* os) const;
3604 
3605   bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts,
3606                          const MatchMatrix& matrix,
3607                          MatchResultListener* listener) const;
3608 
3609   bool FindPairing(const MatchMatrix& matrix,
3610                    MatchResultListener* listener) const;
3611 
3612   MatcherDescriberVec& matcher_describers() { return matcher_describers_; }
3613 
3614   static Message Elements(size_t n) {
3615     return Message() << n << " element" << (n == 1 ? "" : "s");
3616   }
3617 
3618   UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; }
3619 
3620  private:
3621   UnorderedMatcherRequire::Flags match_flags_;
3622   MatcherDescriberVec matcher_describers_;
3623 };
3624 
3625 // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and
3626 // IsSupersetOf.
3627 template <typename Container>
3628 class UnorderedElementsAreMatcherImpl
3629     : public MatcherInterface<Container>,
3630       public UnorderedElementsAreMatcherImplBase {
3631  public:
3632   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3633   typedef internal::StlContainerView<RawContainer> View;
3634   typedef typename View::type StlContainer;
3635   typedef typename View::const_reference StlContainerReference;
3636   typedef typename StlContainer::value_type Element;
3637 
3638   template <typename InputIter>
3639   UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags,
3640                                   InputIter first, InputIter last)
3641       : UnorderedElementsAreMatcherImplBase(matcher_flags) {
3642     for (; first != last; ++first) {
3643       matchers_.push_back(MatcherCast<const Element&>(*first));
3644     }
3645     for (const auto& m : matchers_) {
3646       matcher_describers().push_back(m.GetDescriber());
3647     }
3648   }
3649 
3650   // Describes what this matcher does.
3651   void DescribeTo(::std::ostream* os) const override {
3652     return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
3653   }
3654 
3655   // Describes what the negation of this matcher does.
3656   void DescribeNegationTo(::std::ostream* os) const override {
3657     return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
3658   }
3659 
3660   bool MatchAndExplain(Container container,
3661                        MatchResultListener* listener) const override {
3662     StlContainerReference stl_container = View::ConstReference(container);
3663     ::std::vector<std::string> element_printouts;
3664     MatchMatrix matrix =
3665         AnalyzeElements(stl_container.begin(), stl_container.end(),
3666                         &element_printouts, listener);
3667 
3668     return VerifyMatchMatrix(element_printouts, matrix, listener) &&
3669            FindPairing(matrix, listener);
3670   }
3671 
3672  private:
3673   template <typename ElementIter>
3674   MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
3675                               ::std::vector<std::string>* element_printouts,
3676                               MatchResultListener* listener) const {
3677     element_printouts->clear();
3678     ::std::vector<char> did_match;
3679     size_t num_elements = 0;
3680     DummyMatchResultListener dummy;
3681     for (; elem_first != elem_last; ++num_elements, ++elem_first) {
3682       if (listener->IsInterested()) {
3683         element_printouts->push_back(PrintToString(*elem_first));
3684       }
3685       for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3686         did_match.push_back(
3687             matchers_[irhs].MatchAndExplain(*elem_first, &dummy));
3688       }
3689     }
3690 
3691     MatchMatrix matrix(num_elements, matchers_.size());
3692     ::std::vector<char>::const_iterator did_match_iter = did_match.begin();
3693     for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
3694       for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3695         matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0);
3696       }
3697     }
3698     return matrix;
3699   }
3700 
3701   ::std::vector<Matcher<const Element&>> matchers_;
3702 };
3703 
3704 // Functor for use in TransformTuple.
3705 // Performs MatcherCast<Target> on an input argument of any type.
3706 template <typename Target>
3707 struct CastAndAppendTransform {
3708   template <typename Arg>
3709   Matcher<Target> operator()(const Arg& a) const {
3710     return MatcherCast<Target>(a);
3711   }
3712 };
3713 
3714 // Implements UnorderedElementsAre.
3715 template <typename MatcherTuple>
3716 class UnorderedElementsAreMatcher {
3717  public:
3718   explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
3719       : matchers_(args) {}
3720 
3721   template <typename Container>
3722   operator Matcher<Container>() const {
3723     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3724     typedef typename internal::StlContainerView<RawContainer>::type View;
3725     typedef typename View::value_type Element;
3726     typedef ::std::vector<Matcher<const Element&>> MatcherVec;
3727     MatcherVec matchers;
3728     matchers.reserve(::std::tuple_size<MatcherTuple>::value);
3729     TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3730                          ::std::back_inserter(matchers));
3731     return Matcher<Container>(
3732         new UnorderedElementsAreMatcherImpl<const Container&>(
3733             UnorderedMatcherRequire::ExactMatch, matchers.begin(),
3734             matchers.end()));
3735   }
3736 
3737  private:
3738   const MatcherTuple matchers_;
3739 };
3740 
3741 // Implements ElementsAre.
3742 template <typename MatcherTuple>
3743 class ElementsAreMatcher {
3744  public:
3745   explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
3746 
3747   template <typename Container>
3748   operator Matcher<Container>() const {
3749     static_assert(
3750         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value ||
3751             ::std::tuple_size<MatcherTuple>::value < 2,
3752         "use UnorderedElementsAre with hash tables");
3753 
3754     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3755     typedef typename internal::StlContainerView<RawContainer>::type View;
3756     typedef typename View::value_type Element;
3757     typedef ::std::vector<Matcher<const Element&>> MatcherVec;
3758     MatcherVec matchers;
3759     matchers.reserve(::std::tuple_size<MatcherTuple>::value);
3760     TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3761                          ::std::back_inserter(matchers));
3762     return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
3763         matchers.begin(), matchers.end()));
3764   }
3765 
3766  private:
3767   const MatcherTuple matchers_;
3768 };
3769 
3770 // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf().
3771 template <typename T>
3772 class UnorderedElementsAreArrayMatcher {
3773  public:
3774   template <typename Iter>
3775   UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags,
3776                                    Iter first, Iter last)
3777       : match_flags_(match_flags), matchers_(first, last) {}
3778 
3779   template <typename Container>
3780   operator Matcher<Container>() const {
3781     return Matcher<Container>(
3782         new UnorderedElementsAreMatcherImpl<const Container&>(
3783             match_flags_, matchers_.begin(), matchers_.end()));
3784   }
3785 
3786  private:
3787   UnorderedMatcherRequire::Flags match_flags_;
3788   ::std::vector<T> matchers_;
3789 };
3790 
3791 // Implements ElementsAreArray().
3792 template <typename T>
3793 class ElementsAreArrayMatcher {
3794  public:
3795   template <typename Iter>
3796   ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
3797 
3798   template <typename Container>
3799   operator Matcher<Container>() const {
3800     static_assert(
3801         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value,
3802         "use UnorderedElementsAreArray with hash tables");
3803 
3804     return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
3805         matchers_.begin(), matchers_.end()));
3806   }
3807 
3808  private:
3809   const ::std::vector<T> matchers_;
3810 };
3811 
3812 // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
3813 // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
3814 // second) is a polymorphic matcher that matches a value x if and only if
3815 // tm matches tuple (x, second).  Useful for implementing
3816 // UnorderedPointwise() in terms of UnorderedElementsAreArray().
3817 //
3818 // BoundSecondMatcher is copyable and assignable, as we need to put
3819 // instances of this class in a vector when implementing
3820 // UnorderedPointwise().
3821 template <typename Tuple2Matcher, typename Second>
3822 class BoundSecondMatcher {
3823  public:
3824   BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second)
3825       : tuple2_matcher_(tm), second_value_(second) {}
3826 
3827   BoundSecondMatcher(const BoundSecondMatcher& other) = default;
3828 
3829   template <typename T>
3830   operator Matcher<T>() const {
3831     return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_));
3832   }
3833 
3834   // We have to define this for UnorderedPointwise() to compile in
3835   // C++98 mode, as it puts BoundSecondMatcher instances in a vector,
3836   // which requires the elements to be assignable in C++98.  The
3837   // compiler cannot generate the operator= for us, as Tuple2Matcher
3838   // and Second may not be assignable.
3839   //
3840   // However, this should never be called, so the implementation just
3841   // need to assert.
3842   void operator=(const BoundSecondMatcher& /*rhs*/) {
3843     GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned.";
3844   }
3845 
3846  private:
3847   template <typename T>
3848   class Impl : public MatcherInterface<T> {
3849    public:
3850     typedef ::std::tuple<T, Second> ArgTuple;
3851 
3852     Impl(const Tuple2Matcher& tm, const Second& second)
3853         : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)),
3854           second_value_(second) {}
3855 
3856     void DescribeTo(::std::ostream* os) const override {
3857       *os << "and ";
3858       UniversalPrint(second_value_, os);
3859       *os << " ";
3860       mono_tuple2_matcher_.DescribeTo(os);
3861     }
3862 
3863     bool MatchAndExplain(T x, MatchResultListener* listener) const override {
3864       return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_),
3865                                                   listener);
3866     }
3867 
3868    private:
3869     const Matcher<const ArgTuple&> mono_tuple2_matcher_;
3870     const Second second_value_;
3871   };
3872 
3873   const Tuple2Matcher tuple2_matcher_;
3874   const Second second_value_;
3875 };
3876 
3877 // Given a 2-tuple matcher tm and a value second,
3878 // MatcherBindSecond(tm, second) returns a matcher that matches a
3879 // value x if and only if tm matches tuple (x, second).  Useful for
3880 // implementing UnorderedPointwise() in terms of UnorderedElementsAreArray().
3881 template <typename Tuple2Matcher, typename Second>
3882 BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond(
3883     const Tuple2Matcher& tm, const Second& second) {
3884   return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second);
3885 }
3886 
3887 // Returns the description for a matcher defined using the MATCHER*()
3888 // macro where the user-supplied description string is "", if
3889 // 'negation' is false; otherwise returns the description of the
3890 // negation of the matcher.  'param_values' contains a list of strings
3891 // that are the print-out of the matcher's parameters.
3892 GTEST_API_ std::string FormatMatcherDescription(
3893     bool negation, const char* matcher_name,
3894     const std::vector<const char*>& param_names, const Strings& param_values);
3895 
3896 // Implements a matcher that checks the value of a optional<> type variable.
3897 template <typename ValueMatcher>
3898 class OptionalMatcher {
3899  public:
3900   explicit OptionalMatcher(const ValueMatcher& value_matcher)
3901       : value_matcher_(value_matcher) {}
3902 
3903   template <typename Optional>
3904   operator Matcher<Optional>() const {
3905     return Matcher<Optional>(new Impl<const Optional&>(value_matcher_));
3906   }
3907 
3908   template <typename Optional>
3909   class Impl : public MatcherInterface<Optional> {
3910    public:
3911     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView;
3912     typedef typename OptionalView::value_type ValueType;
3913     explicit Impl(const ValueMatcher& value_matcher)
3914         : value_matcher_(MatcherCast<ValueType>(value_matcher)) {}
3915 
3916     void DescribeTo(::std::ostream* os) const override {
3917       *os << "value ";
3918       value_matcher_.DescribeTo(os);
3919     }
3920 
3921     void DescribeNegationTo(::std::ostream* os) const override {
3922       *os << "value ";
3923       value_matcher_.DescribeNegationTo(os);
3924     }
3925 
3926     bool MatchAndExplain(Optional optional,
3927                          MatchResultListener* listener) const override {
3928       if (!optional) {
3929         *listener << "which is not engaged";
3930         return false;
3931       }
3932       const ValueType& value = *optional;
3933       StringMatchResultListener value_listener;
3934       const bool match = value_matcher_.MatchAndExplain(value, &value_listener);
3935       *listener << "whose value " << PrintToString(value)
3936                 << (match ? " matches" : " doesn't match");
3937       PrintIfNotEmpty(value_listener.str(), listener->stream());
3938       return match;
3939     }
3940 
3941    private:
3942     const Matcher<ValueType> value_matcher_;
3943   };
3944 
3945  private:
3946   const ValueMatcher value_matcher_;
3947 };
3948 
3949 namespace variant_matcher {
3950 // Overloads to allow VariantMatcher to do proper ADL lookup.
3951 template <typename T>
3952 void holds_alternative() {}
3953 template <typename T>
3954 void get() {}
3955 
3956 // Implements a matcher that checks the value of a variant<> type variable.
3957 template <typename T>
3958 class VariantMatcher {
3959  public:
3960   explicit VariantMatcher(::testing::Matcher<const T&> matcher)
3961       : matcher_(std::move(matcher)) {}
3962 
3963   template <typename Variant>
3964   bool MatchAndExplain(const Variant& value,
3965                        ::testing::MatchResultListener* listener) const {
3966     using std::get;
3967     if (!listener->IsInterested()) {
3968       return holds_alternative<T>(value) && matcher_.Matches(get<T>(value));
3969     }
3970 
3971     if (!holds_alternative<T>(value)) {
3972       *listener << "whose value is not of type '" << GetTypeName() << "'";
3973       return false;
3974     }
3975 
3976     const T& elem = get<T>(value);
3977     StringMatchResultListener elem_listener;
3978     const bool match = matcher_.MatchAndExplain(elem, &elem_listener);
3979     *listener << "whose value " << PrintToString(elem)
3980               << (match ? " matches" : " doesn't match");
3981     PrintIfNotEmpty(elem_listener.str(), listener->stream());
3982     return match;
3983   }
3984 
3985   void DescribeTo(std::ostream* os) const {
3986     *os << "is a variant<> with value of type '" << GetTypeName()
3987         << "' and the value ";
3988     matcher_.DescribeTo(os);
3989   }
3990 
3991   void DescribeNegationTo(std::ostream* os) const {
3992     *os << "is a variant<> with value of type other than '" << GetTypeName()
3993         << "' or the value ";
3994     matcher_.DescribeNegationTo(os);
3995   }
3996 
3997  private:
3998   static std::string GetTypeName() {
3999 #if GTEST_HAS_RTTI
4000     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
4001         return internal::GetTypeName<T>());
4002 #endif
4003     return "the element type";
4004   }
4005 
4006   const ::testing::Matcher<const T&> matcher_;
4007 };
4008 
4009 }  // namespace variant_matcher
4010 
4011 namespace any_cast_matcher {
4012 
4013 // Overloads to allow AnyCastMatcher to do proper ADL lookup.
4014 template <typename T>
4015 void any_cast() {}
4016 
4017 // Implements a matcher that any_casts the value.
4018 template <typename T>
4019 class AnyCastMatcher {
4020  public:
4021   explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher)
4022       : matcher_(matcher) {}
4023 
4024   template <typename AnyType>
4025   bool MatchAndExplain(const AnyType& value,
4026                        ::testing::MatchResultListener* listener) const {
4027     if (!listener->IsInterested()) {
4028       const T* ptr = any_cast<T>(&value);
4029       return ptr != nullptr && matcher_.Matches(*ptr);
4030     }
4031 
4032     const T* elem = any_cast<T>(&value);
4033     if (elem == nullptr) {
4034       *listener << "whose value is not of type '" << GetTypeName() << "'";
4035       return false;
4036     }
4037 
4038     StringMatchResultListener elem_listener;
4039     const bool match = matcher_.MatchAndExplain(*elem, &elem_listener);
4040     *listener << "whose value " << PrintToString(*elem)
4041               << (match ? " matches" : " doesn't match");
4042     PrintIfNotEmpty(elem_listener.str(), listener->stream());
4043     return match;
4044   }
4045 
4046   void DescribeTo(std::ostream* os) const {
4047     *os << "is an 'any' type with value of type '" << GetTypeName()
4048         << "' and the value ";
4049     matcher_.DescribeTo(os);
4050   }
4051 
4052   void DescribeNegationTo(std::ostream* os) const {
4053     *os << "is an 'any' type with value of type other than '" << GetTypeName()
4054         << "' or the value ";
4055     matcher_.DescribeNegationTo(os);
4056   }
4057 
4058  private:
4059   static std::string GetTypeName() {
4060 #if GTEST_HAS_RTTI
4061     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
4062         return internal::GetTypeName<T>());
4063 #endif
4064     return "the element type";
4065   }
4066 
4067   const ::testing::Matcher<const T&> matcher_;
4068 };
4069 
4070 }  // namespace any_cast_matcher
4071 
4072 // Implements the Args() matcher.
4073 template <class ArgsTuple, size_t... k>
4074 class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
4075  public:
4076   using RawArgsTuple = typename std::decay<ArgsTuple>::type;
4077   using SelectedArgs =
4078       std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>;
4079   using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>;
4080 
4081   template <typename InnerMatcher>
4082   explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
4083       : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}
4084 
4085   bool MatchAndExplain(ArgsTuple args,
4086                        MatchResultListener* listener) const override {
4087     // Workaround spurious C4100 on MSVC<=15.7 when k is empty.
4088     (void)args;
4089     const SelectedArgs& selected_args =
4090         std::forward_as_tuple(std::get<k>(args)...);
4091     if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args);
4092 
4093     PrintIndices(listener->stream());
4094     *listener << "are " << PrintToString(selected_args);
4095 
4096     StringMatchResultListener inner_listener;
4097     const bool match =
4098         inner_matcher_.MatchAndExplain(selected_args, &inner_listener);
4099     PrintIfNotEmpty(inner_listener.str(), listener->stream());
4100     return match;
4101   }
4102 
4103   void DescribeTo(::std::ostream* os) const override {
4104     *os << "are a tuple ";
4105     PrintIndices(os);
4106     inner_matcher_.DescribeTo(os);
4107   }
4108 
4109   void DescribeNegationTo(::std::ostream* os) const override {
4110     *os << "are a tuple ";
4111     PrintIndices(os);
4112     inner_matcher_.DescribeNegationTo(os);
4113   }
4114 
4115  private:
4116   // Prints the indices of the selected fields.
4117   static void PrintIndices(::std::ostream* os) {
4118     *os << "whose fields (";
4119     const char* sep = "";
4120     // Workaround spurious C4189 on MSVC<=15.7 when k is empty.
4121     (void)sep;
4122     // The static_cast to void is needed to silence Clang's -Wcomma warning.
4123     // This pattern looks suspiciously like we may have mismatched parentheses
4124     // and may have been trying to use the first operation of the comma operator
4125     // as a member of the array, so Clang warns that we may have made a mistake.
4126     const char* dummy[] = {
4127         "", (static_cast<void>(*os << sep << "#" << k), sep = ", ")...};
4128     (void)dummy;
4129     *os << ") ";
4130   }
4131 
4132   MonomorphicInnerMatcher inner_matcher_;
4133 };
4134 
4135 template <class InnerMatcher, size_t... k>
4136 class ArgsMatcher {
4137  public:
4138   explicit ArgsMatcher(InnerMatcher inner_matcher)
4139       : inner_matcher_(std::move(inner_matcher)) {}
4140 
4141   template <typename ArgsTuple>
4142   operator Matcher<ArgsTuple>() const {  // NOLINT
4143     return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_));
4144   }
4145 
4146  private:
4147   InnerMatcher inner_matcher_;
4148 };
4149 
4150 }  // namespace internal
4151 
4152 // ElementsAreArray(iterator_first, iterator_last)
4153 // ElementsAreArray(pointer, count)
4154 // ElementsAreArray(array)
4155 // ElementsAreArray(container)
4156 // ElementsAreArray({ e1, e2, ..., en })
4157 //
4158 // The ElementsAreArray() functions are like ElementsAre(...), except
4159 // that they are given a homogeneous sequence rather than taking each
4160 // element as a function argument. The sequence can be specified as an
4161 // array, a pointer and count, a vector, an initializer list, or an
4162 // STL iterator range. In each of these cases, the underlying sequence
4163 // can be either a sequence of values or a sequence of matchers.
4164 //
4165 // All forms of ElementsAreArray() make a copy of the input matcher sequence.
4166 
4167 template <typename Iter>
4168 inline internal::ElementsAreArrayMatcher<
4169     typename ::std::iterator_traits<Iter>::value_type>
4170 ElementsAreArray(Iter first, Iter last) {
4171   typedef typename ::std::iterator_traits<Iter>::value_type T;
4172   return internal::ElementsAreArrayMatcher<T>(first, last);
4173 }
4174 
4175 template <typename T>
4176 inline auto ElementsAreArray(const T* pointer, size_t count)
4177     -> decltype(ElementsAreArray(pointer, pointer + count)) {
4178   return ElementsAreArray(pointer, pointer + count);
4179 }
4180 
4181 template <typename T, size_t N>
4182 inline auto ElementsAreArray(const T (&array)[N])
4183     -> decltype(ElementsAreArray(array, N)) {
4184   return ElementsAreArray(array, N);
4185 }
4186 
4187 template <typename Container>
4188 inline auto ElementsAreArray(const Container& container)
4189     -> decltype(ElementsAreArray(container.begin(), container.end())) {
4190   return ElementsAreArray(container.begin(), container.end());
4191 }
4192 
4193 template <typename T>
4194 inline auto ElementsAreArray(::std::initializer_list<T> xs)
4195     -> decltype(ElementsAreArray(xs.begin(), xs.end())) {
4196   return ElementsAreArray(xs.begin(), xs.end());
4197 }
4198 
4199 // UnorderedElementsAreArray(iterator_first, iterator_last)
4200 // UnorderedElementsAreArray(pointer, count)
4201 // UnorderedElementsAreArray(array)
4202 // UnorderedElementsAreArray(container)
4203 // UnorderedElementsAreArray({ e1, e2, ..., en })
4204 //
4205 // UnorderedElementsAreArray() verifies that a bijective mapping onto a
4206 // collection of matchers exists.
4207 //
4208 // The matchers can be specified as an array, a pointer and count, a container,
4209 // an initializer list, or an STL iterator range. In each of these cases, the
4210 // underlying matchers can be either values or matchers.
4211 
4212 template <typename Iter>
4213 inline internal::UnorderedElementsAreArrayMatcher<
4214     typename ::std::iterator_traits<Iter>::value_type>
4215 UnorderedElementsAreArray(Iter first, Iter last) {
4216   typedef typename ::std::iterator_traits<Iter>::value_type T;
4217   return internal::UnorderedElementsAreArrayMatcher<T>(
4218       internal::UnorderedMatcherRequire::ExactMatch, first, last);
4219 }
4220 
4221 template <typename T>
4222 inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4223     const T* pointer, size_t count) {
4224   return UnorderedElementsAreArray(pointer, pointer + count);
4225 }
4226 
4227 template <typename T, size_t N>
4228 inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4229     const T (&array)[N]) {
4230   return UnorderedElementsAreArray(array, N);
4231 }
4232 
4233 template <typename Container>
4234 inline internal::UnorderedElementsAreArrayMatcher<
4235     typename Container::value_type>
4236 UnorderedElementsAreArray(const Container& container) {
4237   return UnorderedElementsAreArray(container.begin(), container.end());
4238 }
4239 
4240 template <typename T>
4241 inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4242     ::std::initializer_list<T> xs) {
4243   return UnorderedElementsAreArray(xs.begin(), xs.end());
4244 }
4245 
4246 // _ is a matcher that matches anything of any type.
4247 //
4248 // This definition is fine as:
4249 //
4250 //   1. The C++ standard permits using the name _ in a namespace that
4251 //      is not the global namespace or ::std.
4252 //   2. The AnythingMatcher class has no data member or constructor,
4253 //      so it's OK to create global variables of this type.
4254 //   3. c-style has approved of using _ in this case.
4255 const internal::AnythingMatcher _ = {};
4256 // Creates a matcher that matches any value of the given type T.
4257 template <typename T>
4258 inline Matcher<T> A() {
4259   return _;
4260 }
4261 
4262 // Creates a matcher that matches any value of the given type T.
4263 template <typename T>
4264 inline Matcher<T> An() {
4265   return _;
4266 }
4267 
4268 template <typename T, typename M>
4269 Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl(
4270     const M& value, std::false_type /* convertible_to_matcher */,
4271     std::false_type /* convertible_to_T */) {
4272   return Eq(value);
4273 }
4274 
4275 // Creates a polymorphic matcher that matches any NULL pointer.
4276 inline PolymorphicMatcher<internal::IsNullMatcher> IsNull() {
4277   return MakePolymorphicMatcher(internal::IsNullMatcher());
4278 }
4279 
4280 // Creates a polymorphic matcher that matches any non-NULL pointer.
4281 // This is convenient as Not(NULL) doesn't compile (the compiler
4282 // thinks that that expression is comparing a pointer with an integer).
4283 inline PolymorphicMatcher<internal::NotNullMatcher> NotNull() {
4284   return MakePolymorphicMatcher(internal::NotNullMatcher());
4285 }
4286 
4287 // Creates a polymorphic matcher that matches any argument that
4288 // references variable x.
4289 template <typename T>
4290 inline internal::RefMatcher<T&> Ref(T& x) {  // NOLINT
4291   return internal::RefMatcher<T&>(x);
4292 }
4293 
4294 // Creates a polymorphic matcher that matches any NaN floating point.
4295 inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() {
4296   return MakePolymorphicMatcher(internal::IsNanMatcher());
4297 }
4298 
4299 // Creates a matcher that matches any double argument approximately
4300 // equal to rhs, where two NANs are considered unequal.
4301 inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
4302   return internal::FloatingEqMatcher<double>(rhs, false);
4303 }
4304 
4305 // Creates a matcher that matches any double argument approximately
4306 // equal to rhs, including NaN values when rhs is NaN.
4307 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
4308   return internal::FloatingEqMatcher<double>(rhs, true);
4309 }
4310 
4311 // Creates a matcher that matches any double argument approximately equal to
4312 // rhs, up to the specified max absolute error bound, where two NANs are
4313 // considered unequal.  The max absolute error bound must be non-negative.
4314 inline internal::FloatingEqMatcher<double> DoubleNear(double rhs,
4315                                                       double max_abs_error) {
4316   return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
4317 }
4318 
4319 // Creates a matcher that matches any double argument approximately equal to
4320 // rhs, up to the specified max absolute error bound, including NaN values when
4321 // rhs is NaN.  The max absolute error bound must be non-negative.
4322 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
4323     double rhs, double max_abs_error) {
4324   return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
4325 }
4326 
4327 // Creates a matcher that matches any float argument approximately
4328 // equal to rhs, where two NANs are considered unequal.
4329 inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
4330   return internal::FloatingEqMatcher<float>(rhs, false);
4331 }
4332 
4333 // Creates a matcher that matches any float argument approximately
4334 // equal to rhs, including NaN values when rhs is NaN.
4335 inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
4336   return internal::FloatingEqMatcher<float>(rhs, true);
4337 }
4338 
4339 // Creates a matcher that matches any float argument approximately equal to
4340 // rhs, up to the specified max absolute error bound, where two NANs are
4341 // considered unequal.  The max absolute error bound must be non-negative.
4342 inline internal::FloatingEqMatcher<float> FloatNear(float rhs,
4343                                                     float max_abs_error) {
4344   return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
4345 }
4346 
4347 // Creates a matcher that matches any float argument approximately equal to
4348 // rhs, up to the specified max absolute error bound, including NaN values when
4349 // rhs is NaN.  The max absolute error bound must be non-negative.
4350 inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
4351     float rhs, float max_abs_error) {
4352   return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
4353 }
4354 
4355 // Creates a matcher that matches a pointer (raw or smart) that points
4356 // to a value that matches inner_matcher.
4357 template <typename InnerMatcher>
4358 inline internal::PointeeMatcher<InnerMatcher> Pointee(
4359     const InnerMatcher& inner_matcher) {
4360   return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
4361 }
4362 
4363 #if GTEST_HAS_RTTI
4364 // Creates a matcher that matches a pointer or reference that matches
4365 // inner_matcher when dynamic_cast<To> is applied.
4366 // The result of dynamic_cast<To> is forwarded to the inner matcher.
4367 // If To is a pointer and the cast fails, the inner matcher will receive NULL.
4368 // If To is a reference and the cast fails, this matcher returns false
4369 // immediately.
4370 template <typename To>
4371 inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To>>
4372 WhenDynamicCastTo(const Matcher<To>& inner_matcher) {
4373   return MakePolymorphicMatcher(
4374       internal::WhenDynamicCastToMatcher<To>(inner_matcher));
4375 }
4376 #endif  // GTEST_HAS_RTTI
4377 
4378 // Creates a matcher that matches an object whose given field matches
4379 // 'matcher'.  For example,
4380 //   Field(&Foo::number, Ge(5))
4381 // matches a Foo object x if and only if x.number >= 5.
4382 template <typename Class, typename FieldType, typename FieldMatcher>
4383 inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field(
4384     FieldType Class::*field, const FieldMatcher& matcher) {
4385   return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
4386       field, MatcherCast<const FieldType&>(matcher)));
4387   // The call to MatcherCast() is required for supporting inner
4388   // matchers of compatible types.  For example, it allows
4389   //   Field(&Foo::bar, m)
4390   // to compile where bar is an int32 and m is a matcher for int64.
4391 }
4392 
4393 // Same as Field() but also takes the name of the field to provide better error
4394 // messages.
4395 template <typename Class, typename FieldType, typename FieldMatcher>
4396 inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field(
4397     const std::string& field_name, FieldType Class::*field,
4398     const FieldMatcher& matcher) {
4399   return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
4400       field_name, field, MatcherCast<const FieldType&>(matcher)));
4401 }
4402 
4403 // Creates a matcher that matches an object whose given property
4404 // matches 'matcher'.  For example,
4405 //   Property(&Foo::str, StartsWith("hi"))
4406 // matches a Foo object x if and only if x.str() starts with "hi".
4407 template <typename Class, typename PropertyType, typename PropertyMatcher>
4408 inline PolymorphicMatcher<internal::PropertyMatcher<
4409     Class, PropertyType, PropertyType (Class::*)() const>>
4410 Property(PropertyType (Class::*property)() const,
4411          const PropertyMatcher& matcher) {
4412   return MakePolymorphicMatcher(
4413       internal::PropertyMatcher<Class, PropertyType,
4414                                 PropertyType (Class::*)() const>(
4415           property, MatcherCast<const PropertyType&>(matcher)));
4416   // The call to MatcherCast() is required for supporting inner
4417   // matchers of compatible types.  For example, it allows
4418   //   Property(&Foo::bar, m)
4419   // to compile where bar() returns an int32 and m is a matcher for int64.
4420 }
4421 
4422 // Same as Property() above, but also takes the name of the property to provide
4423 // better error messages.
4424 template <typename Class, typename PropertyType, typename PropertyMatcher>
4425 inline PolymorphicMatcher<internal::PropertyMatcher<
4426     Class, PropertyType, PropertyType (Class::*)() const>>
4427 Property(const std::string& property_name,
4428          PropertyType (Class::*property)() const,
4429          const PropertyMatcher& matcher) {
4430   return MakePolymorphicMatcher(
4431       internal::PropertyMatcher<Class, PropertyType,
4432                                 PropertyType (Class::*)() const>(
4433           property_name, property, MatcherCast<const PropertyType&>(matcher)));
4434 }
4435 
4436 // The same as above but for reference-qualified member functions.
4437 template <typename Class, typename PropertyType, typename PropertyMatcher>
4438 inline PolymorphicMatcher<internal::PropertyMatcher<
4439     Class, PropertyType, PropertyType (Class::*)() const&>>
4440 Property(PropertyType (Class::*property)() const&,
4441          const PropertyMatcher& matcher) {
4442   return MakePolymorphicMatcher(
4443       internal::PropertyMatcher<Class, PropertyType,
4444                                 PropertyType (Class::*)() const&>(
4445           property, MatcherCast<const PropertyType&>(matcher)));
4446 }
4447 
4448 // Three-argument form for reference-qualified member functions.
4449 template <typename Class, typename PropertyType, typename PropertyMatcher>
4450 inline PolymorphicMatcher<internal::PropertyMatcher<
4451     Class, PropertyType, PropertyType (Class::*)() const&>>
4452 Property(const std::string& property_name,
4453          PropertyType (Class::*property)() const&,
4454          const PropertyMatcher& matcher) {
4455   return MakePolymorphicMatcher(
4456       internal::PropertyMatcher<Class, PropertyType,
4457                                 PropertyType (Class::*)() const&>(
4458           property_name, property, MatcherCast<const PropertyType&>(matcher)));
4459 }
4460 
4461 // Creates a matcher that matches an object if and only if the result of
4462 // applying a callable to x matches 'matcher'. For example,
4463 //   ResultOf(f, StartsWith("hi"))
4464 // matches a Foo object x if and only if f(x) starts with "hi".
4465 // `callable` parameter can be a function, function pointer, or a functor. It is
4466 // required to keep no state affecting the results of the calls on it and make
4467 // no assumptions about how many calls will be made. Any state it keeps must be
4468 // protected from the concurrent access.
4469 template <typename Callable, typename InnerMatcher>
4470 internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
4471     Callable callable, InnerMatcher matcher) {
4472   return internal::ResultOfMatcher<Callable, InnerMatcher>(std::move(callable),
4473                                                            std::move(matcher));
4474 }
4475 
4476 // Same as ResultOf() above, but also takes a description of the `callable`
4477 // result to provide better error messages.
4478 template <typename Callable, typename InnerMatcher>
4479 internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
4480     const std::string& result_description, Callable callable,
4481     InnerMatcher matcher) {
4482   return internal::ResultOfMatcher<Callable, InnerMatcher>(
4483       result_description, std::move(callable), std::move(matcher));
4484 }
4485 
4486 // String matchers.
4487 
4488 // Matches a string equal to str.
4489 template <typename T = std::string>
4490 PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrEq(
4491     const internal::StringLike<T>& str) {
4492   return MakePolymorphicMatcher(
4493       internal::StrEqualityMatcher<std::string>(std::string(str), true, true));
4494 }
4495 
4496 // Matches a string not equal to str.
4497 template <typename T = std::string>
4498 PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrNe(
4499     const internal::StringLike<T>& str) {
4500   return MakePolymorphicMatcher(
4501       internal::StrEqualityMatcher<std::string>(std::string(str), false, true));
4502 }
4503 
4504 // Matches a string equal to str, ignoring case.
4505 template <typename T = std::string>
4506 PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseEq(
4507     const internal::StringLike<T>& str) {
4508   return MakePolymorphicMatcher(
4509       internal::StrEqualityMatcher<std::string>(std::string(str), true, false));
4510 }
4511 
4512 // Matches a string not equal to str, ignoring case.
4513 template <typename T = std::string>
4514 PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseNe(
4515     const internal::StringLike<T>& str) {
4516   return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>(
4517       std::string(str), false, false));
4518 }
4519 
4520 // Creates a matcher that matches any string, std::string, or C string
4521 // that contains the given substring.
4522 template <typename T = std::string>
4523 PolymorphicMatcher<internal::HasSubstrMatcher<std::string>> HasSubstr(
4524     const internal::StringLike<T>& substring) {
4525   return MakePolymorphicMatcher(
4526       internal::HasSubstrMatcher<std::string>(std::string(substring)));
4527 }
4528 
4529 // Matches a string that starts with 'prefix' (case-sensitive).
4530 template <typename T = std::string>
4531 PolymorphicMatcher<internal::StartsWithMatcher<std::string>> StartsWith(
4532     const internal::StringLike<T>& prefix) {
4533   return MakePolymorphicMatcher(
4534       internal::StartsWithMatcher<std::string>(std::string(prefix)));
4535 }
4536 
4537 // Matches a string that ends with 'suffix' (case-sensitive).
4538 template <typename T = std::string>
4539 PolymorphicMatcher<internal::EndsWithMatcher<std::string>> EndsWith(
4540     const internal::StringLike<T>& suffix) {
4541   return MakePolymorphicMatcher(
4542       internal::EndsWithMatcher<std::string>(std::string(suffix)));
4543 }
4544 
4545 #if GTEST_HAS_STD_WSTRING
4546 // Wide string matchers.
4547 
4548 // Matches a string equal to str.
4549 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrEq(
4550     const std::wstring& str) {
4551   return MakePolymorphicMatcher(
4552       internal::StrEqualityMatcher<std::wstring>(str, true, true));
4553 }
4554 
4555 // Matches a string not equal to str.
4556 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrNe(
4557     const std::wstring& str) {
4558   return MakePolymorphicMatcher(
4559       internal::StrEqualityMatcher<std::wstring>(str, false, true));
4560 }
4561 
4562 // Matches a string equal to str, ignoring case.
4563 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseEq(
4564     const std::wstring& str) {
4565   return MakePolymorphicMatcher(
4566       internal::StrEqualityMatcher<std::wstring>(str, true, false));
4567 }
4568 
4569 // Matches a string not equal to str, ignoring case.
4570 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseNe(
4571     const std::wstring& str) {
4572   return MakePolymorphicMatcher(
4573       internal::StrEqualityMatcher<std::wstring>(str, false, false));
4574 }
4575 
4576 // Creates a matcher that matches any ::wstring, std::wstring, or C wide string
4577 // that contains the given substring.
4578 inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring>> HasSubstr(
4579     const std::wstring& substring) {
4580   return MakePolymorphicMatcher(
4581       internal::HasSubstrMatcher<std::wstring>(substring));
4582 }
4583 
4584 // Matches a string that starts with 'prefix' (case-sensitive).
4585 inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring>> StartsWith(
4586     const std::wstring& prefix) {
4587   return MakePolymorphicMatcher(
4588       internal::StartsWithMatcher<std::wstring>(prefix));
4589 }
4590 
4591 // Matches a string that ends with 'suffix' (case-sensitive).
4592 inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring>> EndsWith(
4593     const std::wstring& suffix) {
4594   return MakePolymorphicMatcher(
4595       internal::EndsWithMatcher<std::wstring>(suffix));
4596 }
4597 
4598 #endif  // GTEST_HAS_STD_WSTRING
4599 
4600 // Creates a polymorphic matcher that matches a 2-tuple where the
4601 // first field == the second field.
4602 inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
4603 
4604 // Creates a polymorphic matcher that matches a 2-tuple where the
4605 // first field >= the second field.
4606 inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
4607 
4608 // Creates a polymorphic matcher that matches a 2-tuple where the
4609 // first field > the second field.
4610 inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
4611 
4612 // Creates a polymorphic matcher that matches a 2-tuple where the
4613 // first field <= the second field.
4614 inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
4615 
4616 // Creates a polymorphic matcher that matches a 2-tuple where the
4617 // first field < the second field.
4618 inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
4619 
4620 // Creates a polymorphic matcher that matches a 2-tuple where the
4621 // first field != the second field.
4622 inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
4623 
4624 // Creates a polymorphic matcher that matches a 2-tuple where
4625 // FloatEq(first field) matches the second field.
4626 inline internal::FloatingEq2Matcher<float> FloatEq() {
4627   return internal::FloatingEq2Matcher<float>();
4628 }
4629 
4630 // Creates a polymorphic matcher that matches a 2-tuple where
4631 // DoubleEq(first field) matches the second field.
4632 inline internal::FloatingEq2Matcher<double> DoubleEq() {
4633   return internal::FloatingEq2Matcher<double>();
4634 }
4635 
4636 // Creates a polymorphic matcher that matches a 2-tuple where
4637 // FloatEq(first field) matches the second field with NaN equality.
4638 inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() {
4639   return internal::FloatingEq2Matcher<float>(true);
4640 }
4641 
4642 // Creates a polymorphic matcher that matches a 2-tuple where
4643 // DoubleEq(first field) matches the second field with NaN equality.
4644 inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() {
4645   return internal::FloatingEq2Matcher<double>(true);
4646 }
4647 
4648 // Creates a polymorphic matcher that matches a 2-tuple where
4649 // FloatNear(first field, max_abs_error) matches the second field.
4650 inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) {
4651   return internal::FloatingEq2Matcher<float>(max_abs_error);
4652 }
4653 
4654 // Creates a polymorphic matcher that matches a 2-tuple where
4655 // DoubleNear(first field, max_abs_error) matches the second field.
4656 inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) {
4657   return internal::FloatingEq2Matcher<double>(max_abs_error);
4658 }
4659 
4660 // Creates a polymorphic matcher that matches a 2-tuple where
4661 // FloatNear(first field, max_abs_error) matches the second field with NaN
4662 // equality.
4663 inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear(
4664     float max_abs_error) {
4665   return internal::FloatingEq2Matcher<float>(max_abs_error, true);
4666 }
4667 
4668 // Creates a polymorphic matcher that matches a 2-tuple where
4669 // DoubleNear(first field, max_abs_error) matches the second field with NaN
4670 // equality.
4671 inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear(
4672     double max_abs_error) {
4673   return internal::FloatingEq2Matcher<double>(max_abs_error, true);
4674 }
4675 
4676 // Creates a matcher that matches any value of type T that m doesn't
4677 // match.
4678 template <typename InnerMatcher>
4679 inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
4680   return internal::NotMatcher<InnerMatcher>(m);
4681 }
4682 
4683 // Returns a matcher that matches anything that satisfies the given
4684 // predicate.  The predicate can be any unary function or functor
4685 // whose return type can be implicitly converted to bool.
4686 template <typename Predicate>
4687 inline PolymorphicMatcher<internal::TrulyMatcher<Predicate>> Truly(
4688     Predicate pred) {
4689   return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
4690 }
4691 
4692 // Returns a matcher that matches the container size. The container must
4693 // support both size() and size_type which all STL-like containers provide.
4694 // Note that the parameter 'size' can be a value of type size_type as well as
4695 // matcher. For instance:
4696 //   EXPECT_THAT(container, SizeIs(2));     // Checks container has 2 elements.
4697 //   EXPECT_THAT(container, SizeIs(Le(2));  // Checks container has at most 2.
4698 template <typename SizeMatcher>
4699 inline internal::SizeIsMatcher<SizeMatcher> SizeIs(
4700     const SizeMatcher& size_matcher) {
4701   return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
4702 }
4703 
4704 // Returns a matcher that matches the distance between the container's begin()
4705 // iterator and its end() iterator, i.e. the size of the container. This matcher
4706 // can be used instead of SizeIs with containers such as std::forward_list which
4707 // do not implement size(). The container must provide const_iterator (with
4708 // valid iterator_traits), begin() and end().
4709 template <typename DistanceMatcher>
4710 inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> BeginEndDistanceIs(
4711     const DistanceMatcher& distance_matcher) {
4712   return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher);
4713 }
4714 
4715 // Returns a matcher that matches an equal container.
4716 // This matcher behaves like Eq(), but in the event of mismatch lists the
4717 // values that are included in one container but not the other. (Duplicate
4718 // values and order differences are not explained.)
4719 template <typename Container>
4720 inline PolymorphicMatcher<
4721     internal::ContainerEqMatcher<typename std::remove_const<Container>::type>>
4722 ContainerEq(const Container& rhs) {
4723   return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs));
4724 }
4725 
4726 // Returns a matcher that matches a container that, when sorted using
4727 // the given comparator, matches container_matcher.
4728 template <typename Comparator, typename ContainerMatcher>
4729 inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> WhenSortedBy(
4730     const Comparator& comparator, const ContainerMatcher& container_matcher) {
4731   return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
4732       comparator, container_matcher);
4733 }
4734 
4735 // Returns a matcher that matches a container that, when sorted using
4736 // the < operator, matches container_matcher.
4737 template <typename ContainerMatcher>
4738 inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
4739 WhenSorted(const ContainerMatcher& container_matcher) {
4740   return internal::WhenSortedByMatcher<internal::LessComparator,
4741                                        ContainerMatcher>(
4742       internal::LessComparator(), container_matcher);
4743 }
4744 
4745 // Matches an STL-style container or a native array that contains the
4746 // same number of elements as in rhs, where its i-th element and rhs's
4747 // i-th element (as a pair) satisfy the given pair matcher, for all i.
4748 // TupleMatcher must be able to be safely cast to Matcher<std::tuple<const
4749 // T1&, const T2&> >, where T1 and T2 are the types of elements in the
4750 // LHS container and the RHS container respectively.
4751 template <typename TupleMatcher, typename Container>
4752 inline internal::PointwiseMatcher<TupleMatcher,
4753                                   typename std::remove_const<Container>::type>
4754 Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
4755   return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher,
4756                                                              rhs);
4757 }
4758 
4759 // Supports the Pointwise(m, {a, b, c}) syntax.
4760 template <typename TupleMatcher, typename T>
4761 inline internal::PointwiseMatcher<TupleMatcher, std::vector<T>> Pointwise(
4762     const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) {
4763   return Pointwise(tuple_matcher, std::vector<T>(rhs));
4764 }
4765 
4766 // UnorderedPointwise(pair_matcher, rhs) matches an STL-style
4767 // container or a native array that contains the same number of
4768 // elements as in rhs, where in some permutation of the container, its
4769 // i-th element and rhs's i-th element (as a pair) satisfy the given
4770 // pair matcher, for all i.  Tuple2Matcher must be able to be safely
4771 // cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are
4772 // the types of elements in the LHS container and the RHS container
4773 // respectively.
4774 //
4775 // This is like Pointwise(pair_matcher, rhs), except that the element
4776 // order doesn't matter.
4777 template <typename Tuple2Matcher, typename RhsContainer>
4778 inline internal::UnorderedElementsAreArrayMatcher<
4779     typename internal::BoundSecondMatcher<
4780         Tuple2Matcher,
4781         typename internal::StlContainerView<
4782             typename std::remove_const<RhsContainer>::type>::type::value_type>>
4783 UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4784                    const RhsContainer& rhs_container) {
4785   // RhsView allows the same code to handle RhsContainer being a
4786   // STL-style container and it being a native C-style array.
4787   typedef typename internal::StlContainerView<RhsContainer> RhsView;
4788   typedef typename RhsView::type RhsStlContainer;
4789   typedef typename RhsStlContainer::value_type Second;
4790   const RhsStlContainer& rhs_stl_container =
4791       RhsView::ConstReference(rhs_container);
4792 
4793   // Create a matcher for each element in rhs_container.
4794   ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second>> matchers;
4795   for (auto it = rhs_stl_container.begin(); it != rhs_stl_container.end();
4796        ++it) {
4797     matchers.push_back(internal::MatcherBindSecond(tuple2_matcher, *it));
4798   }
4799 
4800   // Delegate the work to UnorderedElementsAreArray().
4801   return UnorderedElementsAreArray(matchers);
4802 }
4803 
4804 // Supports the UnorderedPointwise(m, {a, b, c}) syntax.
4805 template <typename Tuple2Matcher, typename T>
4806 inline internal::UnorderedElementsAreArrayMatcher<
4807     typename internal::BoundSecondMatcher<Tuple2Matcher, T>>
4808 UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4809                    std::initializer_list<T> rhs) {
4810   return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs));
4811 }
4812 
4813 // Matches an STL-style container or a native array that contains at
4814 // least one element matching the given value or matcher.
4815 //
4816 // Examples:
4817 //   ::std::set<int> page_ids;
4818 //   page_ids.insert(3);
4819 //   page_ids.insert(1);
4820 //   EXPECT_THAT(page_ids, Contains(1));
4821 //   EXPECT_THAT(page_ids, Contains(Gt(2)));
4822 //   EXPECT_THAT(page_ids, Not(Contains(4)));  // See below for Times(0)
4823 //
4824 //   ::std::map<int, size_t> page_lengths;
4825 //   page_lengths[1] = 100;
4826 //   EXPECT_THAT(page_lengths,
4827 //               Contains(::std::pair<const int, size_t>(1, 100)));
4828 //
4829 //   const char* user_ids[] = { "joe", "mike", "tom" };
4830 //   EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
4831 //
4832 // The matcher supports a modifier `Times` that allows to check for arbitrary
4833 // occurrences including testing for absence with Times(0).
4834 //
4835 // Examples:
4836 //   ::std::vector<int> ids;
4837 //   ids.insert(1);
4838 //   ids.insert(1);
4839 //   ids.insert(3);
4840 //   EXPECT_THAT(ids, Contains(1).Times(2));      // 1 occurs 2 times
4841 //   EXPECT_THAT(ids, Contains(2).Times(0));      // 2 is not present
4842 //   EXPECT_THAT(ids, Contains(3).Times(Ge(1)));  // 3 occurs at least once
4843 
4844 template <typename M>
4845 inline internal::ContainsMatcher<M> Contains(M matcher) {
4846   return internal::ContainsMatcher<M>(matcher);
4847 }
4848 
4849 // IsSupersetOf(iterator_first, iterator_last)
4850 // IsSupersetOf(pointer, count)
4851 // IsSupersetOf(array)
4852 // IsSupersetOf(container)
4853 // IsSupersetOf({e1, e2, ..., en})
4854 //
4855 // IsSupersetOf() verifies that a surjective partial mapping onto a collection
4856 // of matchers exists. In other words, a container matches
4857 // IsSupersetOf({e1, ..., en}) if and only if there is a permutation
4858 // {y1, ..., yn} of some of the container's elements where y1 matches e1,
4859 // ..., and yn matches en. Obviously, the size of the container must be >= n
4860 // in order to have a match. Examples:
4861 //
4862 // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and
4863 //   1 matches Ne(0).
4864 // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches
4865 //   both Eq(1) and Lt(2). The reason is that different matchers must be used
4866 //   for elements in different slots of the container.
4867 // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches
4868 //   Eq(1) and (the second) 1 matches Lt(2).
4869 // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first)
4870 //   Gt(1) and 3 matches (the second) Gt(1).
4871 //
4872 // The matchers can be specified as an array, a pointer and count, a container,
4873 // an initializer list, or an STL iterator range. In each of these cases, the
4874 // underlying matchers can be either values or matchers.
4875 
4876 template <typename Iter>
4877 inline internal::UnorderedElementsAreArrayMatcher<
4878     typename ::std::iterator_traits<Iter>::value_type>
4879 IsSupersetOf(Iter first, Iter last) {
4880   typedef typename ::std::iterator_traits<Iter>::value_type T;
4881   return internal::UnorderedElementsAreArrayMatcher<T>(
4882       internal::UnorderedMatcherRequire::Superset, first, last);
4883 }
4884 
4885 template <typename T>
4886 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4887     const T* pointer, size_t count) {
4888   return IsSupersetOf(pointer, pointer + count);
4889 }
4890 
4891 template <typename T, size_t N>
4892 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4893     const T (&array)[N]) {
4894   return IsSupersetOf(array, N);
4895 }
4896 
4897 template <typename Container>
4898 inline internal::UnorderedElementsAreArrayMatcher<
4899     typename Container::value_type>
4900 IsSupersetOf(const Container& container) {
4901   return IsSupersetOf(container.begin(), container.end());
4902 }
4903 
4904 template <typename T>
4905 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4906     ::std::initializer_list<T> xs) {
4907   return IsSupersetOf(xs.begin(), xs.end());
4908 }
4909 
4910 // IsSubsetOf(iterator_first, iterator_last)
4911 // IsSubsetOf(pointer, count)
4912 // IsSubsetOf(array)
4913 // IsSubsetOf(container)
4914 // IsSubsetOf({e1, e2, ..., en})
4915 //
4916 // IsSubsetOf() verifies that an injective mapping onto a collection of matchers
4917 // exists.  In other words, a container matches IsSubsetOf({e1, ..., en}) if and
4918 // only if there is a subset of matchers {m1, ..., mk} which would match the
4919 // container using UnorderedElementsAre.  Obviously, the size of the container
4920 // must be <= n in order to have a match. Examples:
4921 //
4922 // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0).
4923 // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1
4924 //   matches Lt(0).
4925 // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both
4926 //   match Gt(0). The reason is that different matchers must be used for
4927 //   elements in different slots of the container.
4928 //
4929 // The matchers can be specified as an array, a pointer and count, a container,
4930 // an initializer list, or an STL iterator range. In each of these cases, the
4931 // underlying matchers can be either values or matchers.
4932 
4933 template <typename Iter>
4934 inline internal::UnorderedElementsAreArrayMatcher<
4935     typename ::std::iterator_traits<Iter>::value_type>
4936 IsSubsetOf(Iter first, Iter last) {
4937   typedef typename ::std::iterator_traits<Iter>::value_type T;
4938   return internal::UnorderedElementsAreArrayMatcher<T>(
4939       internal::UnorderedMatcherRequire::Subset, first, last);
4940 }
4941 
4942 template <typename T>
4943 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4944     const T* pointer, size_t count) {
4945   return IsSubsetOf(pointer, pointer + count);
4946 }
4947 
4948 template <typename T, size_t N>
4949 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4950     const T (&array)[N]) {
4951   return IsSubsetOf(array, N);
4952 }
4953 
4954 template <typename Container>
4955 inline internal::UnorderedElementsAreArrayMatcher<
4956     typename Container::value_type>
4957 IsSubsetOf(const Container& container) {
4958   return IsSubsetOf(container.begin(), container.end());
4959 }
4960 
4961 template <typename T>
4962 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4963     ::std::initializer_list<T> xs) {
4964   return IsSubsetOf(xs.begin(), xs.end());
4965 }
4966 
4967 // Matches an STL-style container or a native array that contains only
4968 // elements matching the given value or matcher.
4969 //
4970 // Each(m) is semantically equivalent to `Not(Contains(Not(m)))`. Only
4971 // the messages are different.
4972 //
4973 // Examples:
4974 //   ::std::set<int> page_ids;
4975 //   // Each(m) matches an empty container, regardless of what m is.
4976 //   EXPECT_THAT(page_ids, Each(Eq(1)));
4977 //   EXPECT_THAT(page_ids, Each(Eq(77)));
4978 //
4979 //   page_ids.insert(3);
4980 //   EXPECT_THAT(page_ids, Each(Gt(0)));
4981 //   EXPECT_THAT(page_ids, Not(Each(Gt(4))));
4982 //   page_ids.insert(1);
4983 //   EXPECT_THAT(page_ids, Not(Each(Lt(2))));
4984 //
4985 //   ::std::map<int, size_t> page_lengths;
4986 //   page_lengths[1] = 100;
4987 //   page_lengths[2] = 200;
4988 //   page_lengths[3] = 300;
4989 //   EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
4990 //   EXPECT_THAT(page_lengths, Each(Key(Le(3))));
4991 //
4992 //   const char* user_ids[] = { "joe", "mike", "tom" };
4993 //   EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
4994 template <typename M>
4995 inline internal::EachMatcher<M> Each(M matcher) {
4996   return internal::EachMatcher<M>(matcher);
4997 }
4998 
4999 // Key(inner_matcher) matches an std::pair whose 'first' field matches
5000 // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
5001 // std::map that contains at least one element whose key is >= 5.
5002 template <typename M>
5003 inline internal::KeyMatcher<M> Key(M inner_matcher) {
5004   return internal::KeyMatcher<M>(inner_matcher);
5005 }
5006 
5007 // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
5008 // matches first_matcher and whose 'second' field matches second_matcher.  For
5009 // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
5010 // to match a std::map<int, string> that contains exactly one element whose key
5011 // is >= 5 and whose value equals "foo".
5012 template <typename FirstMatcher, typename SecondMatcher>
5013 inline internal::PairMatcher<FirstMatcher, SecondMatcher> Pair(
5014     FirstMatcher first_matcher, SecondMatcher second_matcher) {
5015   return internal::PairMatcher<FirstMatcher, SecondMatcher>(first_matcher,
5016                                                             second_matcher);
5017 }
5018 
5019 namespace no_adl {
5020 // Conditional() creates a matcher that conditionally uses either the first or
5021 // second matcher provided. For example, we could create an `equal if, and only
5022 // if' matcher using the Conditional wrapper as follows:
5023 //
5024 //   EXPECT_THAT(result, Conditional(condition, Eq(expected), Ne(expected)));
5025 template <typename MatcherTrue, typename MatcherFalse>
5026 internal::ConditionalMatcher<MatcherTrue, MatcherFalse> Conditional(
5027     bool condition, MatcherTrue matcher_true, MatcherFalse matcher_false) {
5028   return internal::ConditionalMatcher<MatcherTrue, MatcherFalse>(
5029       condition, std::move(matcher_true), std::move(matcher_false));
5030 }
5031 
5032 // FieldsAre(matchers...) matches piecewise the fields of compatible structs.
5033 // These include those that support `get<I>(obj)`, and when structured bindings
5034 // are enabled any class that supports them.
5035 // In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types.
5036 template <typename... M>
5037 internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre(
5038     M&&... matchers) {
5039   return internal::FieldsAreMatcher<typename std::decay<M>::type...>(
5040       std::forward<M>(matchers)...);
5041 }
5042 
5043 // Creates a matcher that matches a pointer (raw or smart) that matches
5044 // inner_matcher.
5045 template <typename InnerMatcher>
5046 inline internal::PointerMatcher<InnerMatcher> Pointer(
5047     const InnerMatcher& inner_matcher) {
5048   return internal::PointerMatcher<InnerMatcher>(inner_matcher);
5049 }
5050 
5051 // Creates a matcher that matches an object that has an address that matches
5052 // inner_matcher.
5053 template <typename InnerMatcher>
5054 inline internal::AddressMatcher<InnerMatcher> Address(
5055     const InnerMatcher& inner_matcher) {
5056   return internal::AddressMatcher<InnerMatcher>(inner_matcher);
5057 }
5058 
5059 // Matches a base64 escaped string, when the unescaped string matches the
5060 // internal matcher.
5061 template <typename MatcherType>
5062 internal::WhenBase64UnescapedMatcher WhenBase64Unescaped(
5063     const MatcherType& internal_matcher) {
5064   return internal::WhenBase64UnescapedMatcher(internal_matcher);
5065 }
5066 }  // namespace no_adl
5067 
5068 // Returns a predicate that is satisfied by anything that matches the
5069 // given matcher.
5070 template <typename M>
5071 inline internal::MatcherAsPredicate<M> Matches(M matcher) {
5072   return internal::MatcherAsPredicate<M>(matcher);
5073 }
5074 
5075 // Returns true if and only if the value matches the matcher.
5076 template <typename T, typename M>
5077 inline bool Value(const T& value, M matcher) {
5078   return testing::Matches(matcher)(value);
5079 }
5080 
5081 // Matches the value against the given matcher and explains the match
5082 // result to listener.
5083 template <typename T, typename M>
5084 inline bool ExplainMatchResult(M matcher, const T& value,
5085                                MatchResultListener* listener) {
5086   return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
5087 }
5088 
5089 // Returns a string representation of the given matcher.  Useful for description
5090 // strings of matchers defined using MATCHER_P* macros that accept matchers as
5091 // their arguments.  For example:
5092 //
5093 // MATCHER_P(XAndYThat, matcher,
5094 //           "X that " + DescribeMatcher<int>(matcher, negation) +
5095 //               (negation ? " or" : " and") + " Y that " +
5096 //               DescribeMatcher<double>(matcher, negation)) {
5097 //   return ExplainMatchResult(matcher, arg.x(), result_listener) &&
5098 //          ExplainMatchResult(matcher, arg.y(), result_listener);
5099 // }
5100 template <typename T, typename M>
5101 std::string DescribeMatcher(const M& matcher, bool negation = false) {
5102   ::std::stringstream ss;
5103   Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher);
5104   if (negation) {
5105     monomorphic_matcher.DescribeNegationTo(&ss);
5106   } else {
5107     monomorphic_matcher.DescribeTo(&ss);
5108   }
5109   return ss.str();
5110 }
5111 
5112 template <typename... Args>
5113 internal::ElementsAreMatcher<
5114     std::tuple<typename std::decay<const Args&>::type...>>
5115 ElementsAre(const Args&... matchers) {
5116   return internal::ElementsAreMatcher<
5117       std::tuple<typename std::decay<const Args&>::type...>>(
5118       std::make_tuple(matchers...));
5119 }
5120 
5121 template <typename... Args>
5122 internal::UnorderedElementsAreMatcher<
5123     std::tuple<typename std::decay<const Args&>::type...>>
5124 UnorderedElementsAre(const Args&... matchers) {
5125   return internal::UnorderedElementsAreMatcher<
5126       std::tuple<typename std::decay<const Args&>::type...>>(
5127       std::make_tuple(matchers...));
5128 }
5129 
5130 // Define variadic matcher versions.
5131 template <typename... Args>
5132 internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf(
5133     const Args&... matchers) {
5134   return internal::AllOfMatcher<typename std::decay<const Args&>::type...>(
5135       matchers...);
5136 }
5137 
5138 template <typename... Args>
5139 internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf(
5140     const Args&... matchers) {
5141   return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>(
5142       matchers...);
5143 }
5144 
5145 // AnyOfArray(array)
5146 // AnyOfArray(pointer, count)
5147 // AnyOfArray(container)
5148 // AnyOfArray({ e1, e2, ..., en })
5149 // AnyOfArray(iterator_first, iterator_last)
5150 //
5151 // AnyOfArray() verifies whether a given value matches any member of a
5152 // collection of matchers.
5153 //
5154 // AllOfArray(array)
5155 // AllOfArray(pointer, count)
5156 // AllOfArray(container)
5157 // AllOfArray({ e1, e2, ..., en })
5158 // AllOfArray(iterator_first, iterator_last)
5159 //
5160 // AllOfArray() verifies whether a given value matches all members of a
5161 // collection of matchers.
5162 //
5163 // The matchers can be specified as an array, a pointer and count, a container,
5164 // an initializer list, or an STL iterator range. In each of these cases, the
5165 // underlying matchers can be either values or matchers.
5166 
5167 template <typename Iter>
5168 inline internal::AnyOfArrayMatcher<
5169     typename ::std::iterator_traits<Iter>::value_type>
5170 AnyOfArray(Iter first, Iter last) {
5171   return internal::AnyOfArrayMatcher<
5172       typename ::std::iterator_traits<Iter>::value_type>(first, last);
5173 }
5174 
5175 template <typename Iter>
5176 inline internal::AllOfArrayMatcher<
5177     typename ::std::iterator_traits<Iter>::value_type>
5178 AllOfArray(Iter first, Iter last) {
5179   return internal::AllOfArrayMatcher<
5180       typename ::std::iterator_traits<Iter>::value_type>(first, last);
5181 }
5182 
5183 template <typename T>
5184 inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) {
5185   return AnyOfArray(ptr, ptr + count);
5186 }
5187 
5188 template <typename T>
5189 inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) {
5190   return AllOfArray(ptr, ptr + count);
5191 }
5192 
5193 template <typename T, size_t N>
5194 inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) {
5195   return AnyOfArray(array, N);
5196 }
5197 
5198 template <typename T, size_t N>
5199 inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) {
5200   return AllOfArray(array, N);
5201 }
5202 
5203 template <typename Container>
5204 inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray(
5205     const Container& container) {
5206   return AnyOfArray(container.begin(), container.end());
5207 }
5208 
5209 template <typename Container>
5210 inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray(
5211     const Container& container) {
5212   return AllOfArray(container.begin(), container.end());
5213 }
5214 
5215 template <typename T>
5216 inline internal::AnyOfArrayMatcher<T> AnyOfArray(
5217     ::std::initializer_list<T> xs) {
5218   return AnyOfArray(xs.begin(), xs.end());
5219 }
5220 
5221 template <typename T>
5222 inline internal::AllOfArrayMatcher<T> AllOfArray(
5223     ::std::initializer_list<T> xs) {
5224   return AllOfArray(xs.begin(), xs.end());
5225 }
5226 
5227 // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
5228 // fields of it matches a_matcher.  C++ doesn't support default
5229 // arguments for function templates, so we have to overload it.
5230 template <size_t... k, typename InnerMatcher>
5231 internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args(
5232     InnerMatcher&& matcher) {
5233   return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>(
5234       std::forward<InnerMatcher>(matcher));
5235 }
5236 
5237 // AllArgs(m) is a synonym of m.  This is useful in
5238 //
5239 //   EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
5240 //
5241 // which is easier to read than
5242 //
5243 //   EXPECT_CALL(foo, Bar(_, _)).With(Eq());
5244 template <typename InnerMatcher>
5245 inline InnerMatcher AllArgs(const InnerMatcher& matcher) {
5246   return matcher;
5247 }
5248 
5249 // Returns a matcher that matches the value of an optional<> type variable.
5250 // The matcher implementation only uses '!arg' and requires that the optional<>
5251 // type has a 'value_type' member type and that '*arg' is of type 'value_type'
5252 // and is printable using 'PrintToString'. It is compatible with
5253 // std::optional/std::experimental::optional.
5254 // Note that to compare an optional type variable against nullopt you should
5255 // use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the
5256 // optional value contains an optional itself.
5257 template <typename ValueMatcher>
5258 inline internal::OptionalMatcher<ValueMatcher> Optional(
5259     const ValueMatcher& value_matcher) {
5260   return internal::OptionalMatcher<ValueMatcher>(value_matcher);
5261 }
5262 
5263 // Returns a matcher that matches the value of a absl::any type variable.
5264 template <typename T>
5265 PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T>> AnyWith(
5266     const Matcher<const T&>& matcher) {
5267   return MakePolymorphicMatcher(
5268       internal::any_cast_matcher::AnyCastMatcher<T>(matcher));
5269 }
5270 
5271 // Returns a matcher that matches the value of a variant<> type variable.
5272 // The matcher implementation uses ADL to find the holds_alternative and get
5273 // functions.
5274 // It is compatible with std::variant.
5275 template <typename T>
5276 PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T>> VariantWith(
5277     const Matcher<const T&>& matcher) {
5278   return MakePolymorphicMatcher(
5279       internal::variant_matcher::VariantMatcher<T>(matcher));
5280 }
5281 
5282 #if GTEST_HAS_EXCEPTIONS
5283 
5284 // Anything inside the `internal` namespace is internal to the implementation
5285 // and must not be used in user code!
5286 namespace internal {
5287 
5288 class WithWhatMatcherImpl {
5289  public:
5290   WithWhatMatcherImpl(Matcher<std::string> matcher)
5291       : matcher_(std::move(matcher)) {}
5292 
5293   void DescribeTo(std::ostream* os) const {
5294     *os << "contains .what() that ";
5295     matcher_.DescribeTo(os);
5296   }
5297 
5298   void DescribeNegationTo(std::ostream* os) const {
5299     *os << "contains .what() that does not ";
5300     matcher_.DescribeTo(os);
5301   }
5302 
5303   template <typename Err>
5304   bool MatchAndExplain(const Err& err, MatchResultListener* listener) const {
5305     *listener << "which contains .what() (of value = " << err.what()
5306               << ") that ";
5307     return matcher_.MatchAndExplain(err.what(), listener);
5308   }
5309 
5310  private:
5311   const Matcher<std::string> matcher_;
5312 };
5313 
5314 inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat(
5315     Matcher<std::string> m) {
5316   return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m)));
5317 }
5318 
5319 template <typename Err>
5320 class ExceptionMatcherImpl {
5321   class NeverThrown {
5322    public:
5323     const char* what() const noexcept {
5324       return "this exception should never be thrown";
5325     }
5326   };
5327 
5328   // If the matchee raises an exception of a wrong type, we'd like to
5329   // catch it and print its message and type. To do that, we add an additional
5330   // catch clause:
5331   //
5332   //     try { ... }
5333   //     catch (const Err&) { /* an expected exception */ }
5334   //     catch (const std::exception&) { /* exception of a wrong type */ }
5335   //
5336   // However, if the `Err` itself is `std::exception`, we'd end up with two
5337   // identical `catch` clauses:
5338   //
5339   //     try { ... }
5340   //     catch (const std::exception&) { /* an expected exception */ }
5341   //     catch (const std::exception&) { /* exception of a wrong type */ }
5342   //
5343   // This can cause a warning or an error in some compilers. To resolve
5344   // the issue, we use a fake error type whenever `Err` is `std::exception`:
5345   //
5346   //     try { ... }
5347   //     catch (const std::exception&) { /* an expected exception */ }
5348   //     catch (const NeverThrown&) { /* exception of a wrong type */ }
5349   using DefaultExceptionType = typename std::conditional<
5350       std::is_same<typename std::remove_cv<
5351                        typename std::remove_reference<Err>::type>::type,
5352                    std::exception>::value,
5353       const NeverThrown&, const std::exception&>::type;
5354 
5355  public:
5356   ExceptionMatcherImpl(Matcher<const Err&> matcher)
5357       : matcher_(std::move(matcher)) {}
5358 
5359   void DescribeTo(std::ostream* os) const {
5360     *os << "throws an exception which is a " << GetTypeName<Err>();
5361     *os << " which ";
5362     matcher_.DescribeTo(os);
5363   }
5364 
5365   void DescribeNegationTo(std::ostream* os) const {
5366     *os << "throws an exception which is not a " << GetTypeName<Err>();
5367     *os << " which ";
5368     matcher_.DescribeNegationTo(os);
5369   }
5370 
5371   template <typename T>
5372   bool MatchAndExplain(T&& x, MatchResultListener* listener) const {
5373     try {
5374       (void)(std::forward<T>(x)());
5375     } catch (const Err& err) {
5376       *listener << "throws an exception which is a " << GetTypeName<Err>();
5377       *listener << " ";
5378       return matcher_.MatchAndExplain(err, listener);
5379     } catch (DefaultExceptionType err) {
5380 #if GTEST_HAS_RTTI
5381       *listener << "throws an exception of type " << GetTypeName(typeid(err));
5382       *listener << " ";
5383 #else
5384       *listener << "throws an std::exception-derived type ";
5385 #endif
5386       *listener << "with description \"" << err.what() << "\"";
5387       return false;
5388     } catch (...) {
5389       *listener << "throws an exception of an unknown type";
5390       return false;
5391     }
5392 
5393     *listener << "does not throw any exception";
5394     return false;
5395   }
5396 
5397  private:
5398   const Matcher<const Err&> matcher_;
5399 };
5400 
5401 }  // namespace internal
5402 
5403 // Throws()
5404 // Throws(exceptionMatcher)
5405 // ThrowsMessage(messageMatcher)
5406 //
5407 // This matcher accepts a callable and verifies that when invoked, it throws
5408 // an exception with the given type and properties.
5409 //
5410 // Examples:
5411 //
5412 //   EXPECT_THAT(
5413 //       []() { throw std::runtime_error("message"); },
5414 //       Throws<std::runtime_error>());
5415 //
5416 //   EXPECT_THAT(
5417 //       []() { throw std::runtime_error("message"); },
5418 //       ThrowsMessage<std::runtime_error>(HasSubstr("message")));
5419 //
5420 //   EXPECT_THAT(
5421 //       []() { throw std::runtime_error("message"); },
5422 //       Throws<std::runtime_error>(
5423 //           Property(&std::runtime_error::what, HasSubstr("message"))));
5424 
5425 template <typename Err>
5426 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() {
5427   return MakePolymorphicMatcher(
5428       internal::ExceptionMatcherImpl<Err>(A<const Err&>()));
5429 }
5430 
5431 template <typename Err, typename ExceptionMatcher>
5432 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws(
5433     const ExceptionMatcher& exception_matcher) {
5434   // Using matcher cast allows users to pass a matcher of a more broad type.
5435   // For example user may want to pass Matcher<std::exception>
5436   // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>.
5437   return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>(
5438       SafeMatcherCast<const Err&>(exception_matcher)));
5439 }
5440 
5441 template <typename Err, typename MessageMatcher>
5442 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage(
5443     MessageMatcher&& message_matcher) {
5444   static_assert(std::is_base_of<std::exception, Err>::value,
5445                 "expected an std::exception-derived type");
5446   return Throws<Err>(internal::WithWhat(
5447       MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher))));
5448 }
5449 
5450 #endif  // GTEST_HAS_EXCEPTIONS
5451 
5452 // These macros allow using matchers to check values in Google Test
5453 // tests.  ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
5454 // succeed if and only if the value matches the matcher.  If the assertion
5455 // fails, the value and the description of the matcher will be printed.
5456 #define ASSERT_THAT(value, matcher) \
5457   ASSERT_PRED_FORMAT1(              \
5458       ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5459 #define EXPECT_THAT(value, matcher) \
5460   EXPECT_PRED_FORMAT1(              \
5461       ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5462 
5463 // MATCHER* macros itself are listed below.
5464 #define MATCHER(name, description)                                            \
5465   class name##Matcher                                                         \
5466       : public ::testing::internal::MatcherBaseImpl<name##Matcher> {          \
5467    public:                                                                    \
5468     template <typename arg_type>                                              \
5469     class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> {  \
5470      public:                                                                  \
5471       gmock_Impl() {}                                                         \
5472       bool MatchAndExplain(                                                   \
5473           const arg_type& arg,                                                \
5474           ::testing::MatchResultListener* result_listener) const override;    \
5475       void DescribeTo(::std::ostream* gmock_os) const override {              \
5476         *gmock_os << FormatDescription(false);                                \
5477       }                                                                       \
5478       void DescribeNegationTo(::std::ostream* gmock_os) const override {      \
5479         *gmock_os << FormatDescription(true);                                 \
5480       }                                                                       \
5481                                                                               \
5482      private:                                                                 \
5483       ::std::string FormatDescription(bool negation) const {                  \
5484         /* NOLINTNEXTLINE readability-redundant-string-init */                \
5485         ::std::string gmock_description = (description);                      \
5486         if (!gmock_description.empty()) {                                     \
5487           return gmock_description;                                           \
5488         }                                                                     \
5489         return ::testing::internal::FormatMatcherDescription(negation, #name, \
5490                                                              {}, {});         \
5491       }                                                                       \
5492     };                                                                        \
5493   };                                                                          \
5494   inline name##Matcher GMOCK_INTERNAL_WARNING_PUSH()                          \
5495       GMOCK_INTERNAL_WARNING_CLANG(ignored, "-Wunused-function")              \
5496           GMOCK_INTERNAL_WARNING_CLANG(ignored, "-Wunused-member-function")   \
5497               name GMOCK_INTERNAL_WARNING_POP()() {                           \
5498     return {};                                                                \
5499   }                                                                           \
5500   template <typename arg_type>                                                \
5501   bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain(                  \
5502       const arg_type& arg,                                                    \
5503       GTEST_INTERNAL_ATTRIBUTE_MAYBE_UNUSED ::testing::MatchResultListener*   \
5504           result_listener) const
5505 
5506 #define MATCHER_P(name, p0, description) \
5507   GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (#p0), (p0))
5508 #define MATCHER_P2(name, p0, p1, description)                            \
5509   GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (#p0, #p1), \
5510                          (p0, p1))
5511 #define MATCHER_P3(name, p0, p1, p2, description)                             \
5512   GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (#p0, #p1, #p2), \
5513                          (p0, p1, p2))
5514 #define MATCHER_P4(name, p0, p1, p2, p3, description)        \
5515   GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, \
5516                          (#p0, #p1, #p2, #p3), (p0, p1, p2, p3))
5517 #define MATCHER_P5(name, p0, p1, p2, p3, p4, description)    \
5518   GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \
5519                          (#p0, #p1, #p2, #p3, #p4), (p0, p1, p2, p3, p4))
5520 #define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \
5521   GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description,  \
5522                          (#p0, #p1, #p2, #p3, #p4, #p5),      \
5523                          (p0, p1, p2, p3, p4, p5))
5524 #define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \
5525   GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description,      \
5526                          (#p0, #p1, #p2, #p3, #p4, #p5, #p6),     \
5527                          (p0, p1, p2, p3, p4, p5, p6))
5528 #define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \
5529   GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description,          \
5530                          (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7),    \
5531                          (p0, p1, p2, p3, p4, p5, p6, p7))
5532 #define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \
5533   GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description,              \
5534                          (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8),   \
5535                          (p0, p1, p2, p3, p4, p5, p6, p7, p8))
5536 #define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \
5537   GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description,                  \
5538                          (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8, #p9),   \
5539                          (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9))
5540 
5541 #define GMOCK_INTERNAL_MATCHER(name, full_name, description, arg_names, args)  \
5542   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
5543   class full_name : public ::testing::internal::MatcherBaseImpl<               \
5544                         full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \
5545    public:                                                                     \
5546     using full_name::MatcherBaseImpl::MatcherBaseImpl;                         \
5547     template <typename arg_type>                                               \
5548     class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> {   \
5549      public:                                                                   \
5550       explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args))          \
5551           : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {}                       \
5552       bool MatchAndExplain(                                                    \
5553           const arg_type& arg,                                                 \
5554           ::testing::MatchResultListener* result_listener) const override;     \
5555       void DescribeTo(::std::ostream* gmock_os) const override {               \
5556         *gmock_os << FormatDescription(false);                                 \
5557       }                                                                        \
5558       void DescribeNegationTo(::std::ostream* gmock_os) const override {       \
5559         *gmock_os << FormatDescription(true);                                  \
5560       }                                                                        \
5561       GMOCK_INTERNAL_MATCHER_MEMBERS(args)                                     \
5562                                                                                \
5563      private:                                                                  \
5564       ::std::string FormatDescription(bool negation) const {                   \
5565         ::std::string gmock_description;                                       \
5566         gmock_description = (description);                                     \
5567         if (!gmock_description.empty()) {                                      \
5568           return gmock_description;                                            \
5569         }                                                                      \
5570         return ::testing::internal::FormatMatcherDescription(                  \
5571             negation, #name, {GMOCK_PP_REMOVE_PARENS(arg_names)},              \
5572             ::testing::internal::UniversalTersePrintTupleFieldsToStrings(      \
5573                 ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>(        \
5574                     GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args))));             \
5575       }                                                                        \
5576     };                                                                         \
5577   };                                                                           \
5578   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
5579   inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name(             \
5580       GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) {                            \
5581     return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>(                \
5582         GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args));                              \
5583   }                                                                            \
5584   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
5585   template <typename arg_type>                                                 \
5586   bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::                   \
5587       gmock_Impl<arg_type>::MatchAndExplain(                                   \
5588           const arg_type& arg,                                                 \
5589           GTEST_INTERNAL_ATTRIBUTE_MAYBE_UNUSED ::testing::                    \
5590               MatchResultListener* result_listener) const
5591 
5592 #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \
5593   GMOCK_PP_TAIL(                                     \
5594       GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args))
5595 #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \
5596   , typename arg##_type
5597 
5598 #define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \
5599   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args))
5600 #define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \
5601   , arg##_type
5602 
5603 #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \
5604   GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH(     \
5605       GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args))
5606 #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \
5607   , arg##_type gmock_p##i
5608 
5609 #define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \
5610   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args))
5611 #define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \
5612   , arg(::std::forward<arg##_type>(gmock_p##i))
5613 
5614 #define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
5615   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args)
5616 #define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \
5617   const arg##_type arg;
5618 
5619 #define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \
5620   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args))
5621 #define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg
5622 
5623 #define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \
5624   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args))
5625 #define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg) \
5626   , ::std::forward<arg##_type>(gmock_p##i)
5627 
5628 // To prevent ADL on certain functions we put them on a separate namespace.
5629 using namespace no_adl;  // NOLINT
5630 
5631 }  // namespace testing
5632 
5633 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251 5046
5634 
5635 // Include any custom callback matchers added by the local installation.
5636 // We must include this header at the end to make sure it can use the
5637 // declarations from this file.
5638 #include "gmock/internal/custom/gmock-matchers.h"
5639 
5640 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
5641