xref: /aosp_15_r20/external/leveldb/db/version_set.cc (revision 9507f98c5f32dee4b5f9e4a38cd499f3ff5c4490)
1 // Copyright (c) 2011 The LevelDB Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. See the AUTHORS file for names of contributors.
4 
5 #include "db/version_set.h"
6 
7 #include <algorithm>
8 #include <cstdio>
9 
10 #include "db/filename.h"
11 #include "db/log_reader.h"
12 #include "db/log_writer.h"
13 #include "db/memtable.h"
14 #include "db/table_cache.h"
15 #include "leveldb/env.h"
16 #include "leveldb/table_builder.h"
17 #include "table/merger.h"
18 #include "table/two_level_iterator.h"
19 #include "util/coding.h"
20 #include "util/logging.h"
21 
22 namespace leveldb {
23 
TargetFileSize(const Options * options)24 static size_t TargetFileSize(const Options* options) {
25   return options->max_file_size;
26 }
27 
28 // Maximum bytes of overlaps in grandparent (i.e., level+2) before we
29 // stop building a single file in a level->level+1 compaction.
MaxGrandParentOverlapBytes(const Options * options)30 static int64_t MaxGrandParentOverlapBytes(const Options* options) {
31   return 10 * TargetFileSize(options);
32 }
33 
34 // Maximum number of bytes in all compacted files.  We avoid expanding
35 // the lower level file set of a compaction if it would make the
36 // total compaction cover more than this many bytes.
ExpandedCompactionByteSizeLimit(const Options * options)37 static int64_t ExpandedCompactionByteSizeLimit(const Options* options) {
38   return 25 * TargetFileSize(options);
39 }
40 
MaxBytesForLevel(const Options * options,int level)41 static double MaxBytesForLevel(const Options* options, int level) {
42   // Note: the result for level zero is not really used since we set
43   // the level-0 compaction threshold based on number of files.
44 
45   // Result for both level-0 and level-1
46   double result = 10. * 1048576.0;
47   while (level > 1) {
48     result *= 10;
49     level--;
50   }
51   return result;
52 }
53 
MaxFileSizeForLevel(const Options * options,int level)54 static uint64_t MaxFileSizeForLevel(const Options* options, int level) {
55   // We could vary per level to reduce number of files?
56   return TargetFileSize(options);
57 }
58 
TotalFileSize(const std::vector<FileMetaData * > & files)59 static int64_t TotalFileSize(const std::vector<FileMetaData*>& files) {
60   int64_t sum = 0;
61   for (size_t i = 0; i < files.size(); i++) {
62     sum += files[i]->file_size;
63   }
64   return sum;
65 }
66 
~Version()67 Version::~Version() {
68   assert(refs_ == 0);
69 
70   // Remove from linked list
71   prev_->next_ = next_;
72   next_->prev_ = prev_;
73 
74   // Drop references to files
75   for (int level = 0; level < config::kNumLevels; level++) {
76     for (size_t i = 0; i < files_[level].size(); i++) {
77       FileMetaData* f = files_[level][i];
78       assert(f->refs > 0);
79       f->refs--;
80       if (f->refs <= 0) {
81         delete f;
82       }
83     }
84   }
85 }
86 
FindFile(const InternalKeyComparator & icmp,const std::vector<FileMetaData * > & files,const Slice & key)87 int FindFile(const InternalKeyComparator& icmp,
88              const std::vector<FileMetaData*>& files, const Slice& key) {
89   uint32_t left = 0;
90   uint32_t right = files.size();
91   while (left < right) {
92     uint32_t mid = (left + right) / 2;
93     const FileMetaData* f = files[mid];
94     if (icmp.InternalKeyComparator::Compare(f->largest.Encode(), key) < 0) {
95       // Key at "mid.largest" is < "target".  Therefore all
96       // files at or before "mid" are uninteresting.
97       left = mid + 1;
98     } else {
99       // Key at "mid.largest" is >= "target".  Therefore all files
100       // after "mid" are uninteresting.
101       right = mid;
102     }
103   }
104   return right;
105 }
106 
AfterFile(const Comparator * ucmp,const Slice * user_key,const FileMetaData * f)107 static bool AfterFile(const Comparator* ucmp, const Slice* user_key,
108                       const FileMetaData* f) {
109   // null user_key occurs before all keys and is therefore never after *f
110   return (user_key != nullptr &&
111           ucmp->Compare(*user_key, f->largest.user_key()) > 0);
112 }
113 
BeforeFile(const Comparator * ucmp,const Slice * user_key,const FileMetaData * f)114 static bool BeforeFile(const Comparator* ucmp, const Slice* user_key,
115                        const FileMetaData* f) {
116   // null user_key occurs after all keys and is therefore never before *f
117   return (user_key != nullptr &&
118           ucmp->Compare(*user_key, f->smallest.user_key()) < 0);
119 }
120 
SomeFileOverlapsRange(const InternalKeyComparator & icmp,bool disjoint_sorted_files,const std::vector<FileMetaData * > & files,const Slice * smallest_user_key,const Slice * largest_user_key)121 bool SomeFileOverlapsRange(const InternalKeyComparator& icmp,
122                            bool disjoint_sorted_files,
123                            const std::vector<FileMetaData*>& files,
124                            const Slice* smallest_user_key,
125                            const Slice* largest_user_key) {
126   const Comparator* ucmp = icmp.user_comparator();
127   if (!disjoint_sorted_files) {
128     // Need to check against all files
129     for (size_t i = 0; i < files.size(); i++) {
130       const FileMetaData* f = files[i];
131       if (AfterFile(ucmp, smallest_user_key, f) ||
132           BeforeFile(ucmp, largest_user_key, f)) {
133         // No overlap
134       } else {
135         return true;  // Overlap
136       }
137     }
138     return false;
139   }
140 
141   // Binary search over file list
142   uint32_t index = 0;
143   if (smallest_user_key != nullptr) {
144     // Find the earliest possible internal key for smallest_user_key
145     InternalKey small_key(*smallest_user_key, kMaxSequenceNumber,
146                           kValueTypeForSeek);
147     index = FindFile(icmp, files, small_key.Encode());
148   }
149 
150   if (index >= files.size()) {
151     // beginning of range is after all files, so no overlap.
152     return false;
153   }
154 
155   return !BeforeFile(ucmp, largest_user_key, files[index]);
156 }
157 
158 // An internal iterator.  For a given version/level pair, yields
159 // information about the files in the level.  For a given entry, key()
160 // is the largest key that occurs in the file, and value() is an
161 // 16-byte value containing the file number and file size, both
162 // encoded using EncodeFixed64.
163 class Version::LevelFileNumIterator : public Iterator {
164  public:
LevelFileNumIterator(const InternalKeyComparator & icmp,const std::vector<FileMetaData * > * flist)165   LevelFileNumIterator(const InternalKeyComparator& icmp,
166                        const std::vector<FileMetaData*>* flist)
167       : icmp_(icmp), flist_(flist), index_(flist->size()) {  // Marks as invalid
168   }
Valid() const169   bool Valid() const override { return index_ < flist_->size(); }
Seek(const Slice & target)170   void Seek(const Slice& target) override {
171     index_ = FindFile(icmp_, *flist_, target);
172   }
SeekToFirst()173   void SeekToFirst() override { index_ = 0; }
SeekToLast()174   void SeekToLast() override {
175     index_ = flist_->empty() ? 0 : flist_->size() - 1;
176   }
Next()177   void Next() override {
178     assert(Valid());
179     index_++;
180   }
Prev()181   void Prev() override {
182     assert(Valid());
183     if (index_ == 0) {
184       index_ = flist_->size();  // Marks as invalid
185     } else {
186       index_--;
187     }
188   }
key() const189   Slice key() const override {
190     assert(Valid());
191     return (*flist_)[index_]->largest.Encode();
192   }
value() const193   Slice value() const override {
194     assert(Valid());
195     EncodeFixed64(value_buf_, (*flist_)[index_]->number);
196     EncodeFixed64(value_buf_ + 8, (*flist_)[index_]->file_size);
197     return Slice(value_buf_, sizeof(value_buf_));
198   }
status() const199   Status status() const override { return Status::OK(); }
200 
201  private:
202   const InternalKeyComparator icmp_;
203   const std::vector<FileMetaData*>* const flist_;
204   uint32_t index_;
205 
206   // Backing store for value().  Holds the file number and size.
207   mutable char value_buf_[16];
208 };
209 
GetFileIterator(void * arg,const ReadOptions & options,const Slice & file_value)210 static Iterator* GetFileIterator(void* arg, const ReadOptions& options,
211                                  const Slice& file_value) {
212   TableCache* cache = reinterpret_cast<TableCache*>(arg);
213   if (file_value.size() != 16) {
214     return NewErrorIterator(
215         Status::Corruption("FileReader invoked with unexpected value"));
216   } else {
217     return cache->NewIterator(options, DecodeFixed64(file_value.data()),
218                               DecodeFixed64(file_value.data() + 8));
219   }
220 }
221 
NewConcatenatingIterator(const ReadOptions & options,int level) const222 Iterator* Version::NewConcatenatingIterator(const ReadOptions& options,
223                                             int level) const {
224   return NewTwoLevelIterator(
225       new LevelFileNumIterator(vset_->icmp_, &files_[level]), &GetFileIterator,
226       vset_->table_cache_, options);
227 }
228 
AddIterators(const ReadOptions & options,std::vector<Iterator * > * iters)229 void Version::AddIterators(const ReadOptions& options,
230                            std::vector<Iterator*>* iters) {
231   // Merge all level zero files together since they may overlap
232   for (size_t i = 0; i < files_[0].size(); i++) {
233     iters->push_back(vset_->table_cache_->NewIterator(
234         options, files_[0][i]->number, files_[0][i]->file_size));
235   }
236 
237   // For levels > 0, we can use a concatenating iterator that sequentially
238   // walks through the non-overlapping files in the level, opening them
239   // lazily.
240   for (int level = 1; level < config::kNumLevels; level++) {
241     if (!files_[level].empty()) {
242       iters->push_back(NewConcatenatingIterator(options, level));
243     }
244   }
245 }
246 
247 // Callback from TableCache::Get()
248 namespace {
249 enum SaverState {
250   kNotFound,
251   kFound,
252   kDeleted,
253   kCorrupt,
254 };
255 struct Saver {
256   SaverState state;
257   const Comparator* ucmp;
258   Slice user_key;
259   std::string* value;
260 };
261 }  // namespace
SaveValue(void * arg,const Slice & ikey,const Slice & v)262 static void SaveValue(void* arg, const Slice& ikey, const Slice& v) {
263   Saver* s = reinterpret_cast<Saver*>(arg);
264   ParsedInternalKey parsed_key;
265   if (!ParseInternalKey(ikey, &parsed_key)) {
266     s->state = kCorrupt;
267   } else {
268     if (s->ucmp->Compare(parsed_key.user_key, s->user_key) == 0) {
269       s->state = (parsed_key.type == kTypeValue) ? kFound : kDeleted;
270       if (s->state == kFound) {
271         s->value->assign(v.data(), v.size());
272       }
273     }
274   }
275 }
276 
NewestFirst(FileMetaData * a,FileMetaData * b)277 static bool NewestFirst(FileMetaData* a, FileMetaData* b) {
278   return a->number > b->number;
279 }
280 
ForEachOverlapping(Slice user_key,Slice internal_key,void * arg,bool (* func)(void *,int,FileMetaData *))281 void Version::ForEachOverlapping(Slice user_key, Slice internal_key, void* arg,
282                                  bool (*func)(void*, int, FileMetaData*)) {
283   const Comparator* ucmp = vset_->icmp_.user_comparator();
284 
285   // Search level-0 in order from newest to oldest.
286   std::vector<FileMetaData*> tmp;
287   tmp.reserve(files_[0].size());
288   for (uint32_t i = 0; i < files_[0].size(); i++) {
289     FileMetaData* f = files_[0][i];
290     if (ucmp->Compare(user_key, f->smallest.user_key()) >= 0 &&
291         ucmp->Compare(user_key, f->largest.user_key()) <= 0) {
292       tmp.push_back(f);
293     }
294   }
295   if (!tmp.empty()) {
296     std::sort(tmp.begin(), tmp.end(), NewestFirst);
297     for (uint32_t i = 0; i < tmp.size(); i++) {
298       if (!(*func)(arg, 0, tmp[i])) {
299         return;
300       }
301     }
302   }
303 
304   // Search other levels.
305   for (int level = 1; level < config::kNumLevels; level++) {
306     size_t num_files = files_[level].size();
307     if (num_files == 0) continue;
308 
309     // Binary search to find earliest index whose largest key >= internal_key.
310     uint32_t index = FindFile(vset_->icmp_, files_[level], internal_key);
311     if (index < num_files) {
312       FileMetaData* f = files_[level][index];
313       if (ucmp->Compare(user_key, f->smallest.user_key()) < 0) {
314         // All of "f" is past any data for user_key
315       } else {
316         if (!(*func)(arg, level, f)) {
317           return;
318         }
319       }
320     }
321   }
322 }
323 
Get(const ReadOptions & options,const LookupKey & k,std::string * value,GetStats * stats)324 Status Version::Get(const ReadOptions& options, const LookupKey& k,
325                     std::string* value, GetStats* stats) {
326   stats->seek_file = nullptr;
327   stats->seek_file_level = -1;
328 
329   struct State {
330     Saver saver;
331     GetStats* stats;
332     const ReadOptions* options;
333     Slice ikey;
334     FileMetaData* last_file_read;
335     int last_file_read_level;
336 
337     VersionSet* vset;
338     Status s;
339     bool found;
340 
341     static bool Match(void* arg, int level, FileMetaData* f) {
342       State* state = reinterpret_cast<State*>(arg);
343 
344       if (state->stats->seek_file == nullptr &&
345           state->last_file_read != nullptr) {
346         // We have had more than one seek for this read.  Charge the 1st file.
347         state->stats->seek_file = state->last_file_read;
348         state->stats->seek_file_level = state->last_file_read_level;
349       }
350 
351       state->last_file_read = f;
352       state->last_file_read_level = level;
353 
354       state->s = state->vset->table_cache_->Get(*state->options, f->number,
355                                                 f->file_size, state->ikey,
356                                                 &state->saver, SaveValue);
357       if (!state->s.ok()) {
358         state->found = true;
359         return false;
360       }
361       switch (state->saver.state) {
362         case kNotFound:
363           return true;  // Keep searching in other files
364         case kFound:
365           state->found = true;
366           return false;
367         case kDeleted:
368           return false;
369         case kCorrupt:
370           state->s =
371               Status::Corruption("corrupted key for ", state->saver.user_key);
372           state->found = true;
373           return false;
374       }
375 
376       // Not reached. Added to avoid false compilation warnings of
377       // "control reaches end of non-void function".
378       return false;
379     }
380   };
381 
382   State state;
383   state.found = false;
384   state.stats = stats;
385   state.last_file_read = nullptr;
386   state.last_file_read_level = -1;
387 
388   state.options = &options;
389   state.ikey = k.internal_key();
390   state.vset = vset_;
391 
392   state.saver.state = kNotFound;
393   state.saver.ucmp = vset_->icmp_.user_comparator();
394   state.saver.user_key = k.user_key();
395   state.saver.value = value;
396 
397   ForEachOverlapping(state.saver.user_key, state.ikey, &state, &State::Match);
398 
399   return state.found ? state.s : Status::NotFound(Slice());
400 }
401 
UpdateStats(const GetStats & stats)402 bool Version::UpdateStats(const GetStats& stats) {
403   FileMetaData* f = stats.seek_file;
404   if (f != nullptr) {
405     f->allowed_seeks--;
406     if (f->allowed_seeks <= 0 && file_to_compact_ == nullptr) {
407       file_to_compact_ = f;
408       file_to_compact_level_ = stats.seek_file_level;
409       return true;
410     }
411   }
412   return false;
413 }
414 
RecordReadSample(Slice internal_key)415 bool Version::RecordReadSample(Slice internal_key) {
416   ParsedInternalKey ikey;
417   if (!ParseInternalKey(internal_key, &ikey)) {
418     return false;
419   }
420 
421   struct State {
422     GetStats stats;  // Holds first matching file
423     int matches;
424 
425     static bool Match(void* arg, int level, FileMetaData* f) {
426       State* state = reinterpret_cast<State*>(arg);
427       state->matches++;
428       if (state->matches == 1) {
429         // Remember first match.
430         state->stats.seek_file = f;
431         state->stats.seek_file_level = level;
432       }
433       // We can stop iterating once we have a second match.
434       return state->matches < 2;
435     }
436   };
437 
438   State state;
439   state.matches = 0;
440   ForEachOverlapping(ikey.user_key, internal_key, &state, &State::Match);
441 
442   // Must have at least two matches since we want to merge across
443   // files. But what if we have a single file that contains many
444   // overwrites and deletions?  Should we have another mechanism for
445   // finding such files?
446   if (state.matches >= 2) {
447     // 1MB cost is about 1 seek (see comment in Builder::Apply).
448     return UpdateStats(state.stats);
449   }
450   return false;
451 }
452 
Ref()453 void Version::Ref() { ++refs_; }
454 
Unref()455 void Version::Unref() {
456   assert(this != &vset_->dummy_versions_);
457   assert(refs_ >= 1);
458   --refs_;
459   if (refs_ == 0) {
460     delete this;
461   }
462 }
463 
OverlapInLevel(int level,const Slice * smallest_user_key,const Slice * largest_user_key)464 bool Version::OverlapInLevel(int level, const Slice* smallest_user_key,
465                              const Slice* largest_user_key) {
466   return SomeFileOverlapsRange(vset_->icmp_, (level > 0), files_[level],
467                                smallest_user_key, largest_user_key);
468 }
469 
PickLevelForMemTableOutput(const Slice & smallest_user_key,const Slice & largest_user_key)470 int Version::PickLevelForMemTableOutput(const Slice& smallest_user_key,
471                                         const Slice& largest_user_key) {
472   int level = 0;
473   if (!OverlapInLevel(0, &smallest_user_key, &largest_user_key)) {
474     // Push to next level if there is no overlap in next level,
475     // and the #bytes overlapping in the level after that are limited.
476     InternalKey start(smallest_user_key, kMaxSequenceNumber, kValueTypeForSeek);
477     InternalKey limit(largest_user_key, 0, static_cast<ValueType>(0));
478     std::vector<FileMetaData*> overlaps;
479     while (level < config::kMaxMemCompactLevel) {
480       if (OverlapInLevel(level + 1, &smallest_user_key, &largest_user_key)) {
481         break;
482       }
483       if (level + 2 < config::kNumLevels) {
484         // Check that file does not overlap too many grandparent bytes.
485         GetOverlappingInputs(level + 2, &start, &limit, &overlaps);
486         const int64_t sum = TotalFileSize(overlaps);
487         if (sum > MaxGrandParentOverlapBytes(vset_->options_)) {
488           break;
489         }
490       }
491       level++;
492     }
493   }
494   return level;
495 }
496 
497 // Store in "*inputs" all files in "level" that overlap [begin,end]
GetOverlappingInputs(int level,const InternalKey * begin,const InternalKey * end,std::vector<FileMetaData * > * inputs)498 void Version::GetOverlappingInputs(int level, const InternalKey* begin,
499                                    const InternalKey* end,
500                                    std::vector<FileMetaData*>* inputs) {
501   assert(level >= 0);
502   assert(level < config::kNumLevels);
503   inputs->clear();
504   Slice user_begin, user_end;
505   if (begin != nullptr) {
506     user_begin = begin->user_key();
507   }
508   if (end != nullptr) {
509     user_end = end->user_key();
510   }
511   const Comparator* user_cmp = vset_->icmp_.user_comparator();
512   for (size_t i = 0; i < files_[level].size();) {
513     FileMetaData* f = files_[level][i++];
514     const Slice file_start = f->smallest.user_key();
515     const Slice file_limit = f->largest.user_key();
516     if (begin != nullptr && user_cmp->Compare(file_limit, user_begin) < 0) {
517       // "f" is completely before specified range; skip it
518     } else if (end != nullptr && user_cmp->Compare(file_start, user_end) > 0) {
519       // "f" is completely after specified range; skip it
520     } else {
521       inputs->push_back(f);
522       if (level == 0) {
523         // Level-0 files may overlap each other.  So check if the newly
524         // added file has expanded the range.  If so, restart search.
525         if (begin != nullptr && user_cmp->Compare(file_start, user_begin) < 0) {
526           user_begin = file_start;
527           inputs->clear();
528           i = 0;
529         } else if (end != nullptr &&
530                    user_cmp->Compare(file_limit, user_end) > 0) {
531           user_end = file_limit;
532           inputs->clear();
533           i = 0;
534         }
535       }
536     }
537   }
538 }
539 
DebugString() const540 std::string Version::DebugString() const {
541   std::string r;
542   for (int level = 0; level < config::kNumLevels; level++) {
543     // E.g.,
544     //   --- level 1 ---
545     //   17:123['a' .. 'd']
546     //   20:43['e' .. 'g']
547     r.append("--- level ");
548     AppendNumberTo(&r, level);
549     r.append(" ---\n");
550     const std::vector<FileMetaData*>& files = files_[level];
551     for (size_t i = 0; i < files.size(); i++) {
552       r.push_back(' ');
553       AppendNumberTo(&r, files[i]->number);
554       r.push_back(':');
555       AppendNumberTo(&r, files[i]->file_size);
556       r.append("[");
557       r.append(files[i]->smallest.DebugString());
558       r.append(" .. ");
559       r.append(files[i]->largest.DebugString());
560       r.append("]\n");
561     }
562   }
563   return r;
564 }
565 
566 // A helper class so we can efficiently apply a whole sequence
567 // of edits to a particular state without creating intermediate
568 // Versions that contain full copies of the intermediate state.
569 class VersionSet::Builder {
570  private:
571   // Helper to sort by v->files_[file_number].smallest
572   struct BySmallestKey {
573     const InternalKeyComparator* internal_comparator;
574 
operator ()leveldb::VersionSet::Builder::BySmallestKey575     bool operator()(FileMetaData* f1, FileMetaData* f2) const {
576       int r = internal_comparator->Compare(f1->smallest, f2->smallest);
577       if (r != 0) {
578         return (r < 0);
579       } else {
580         // Break ties by file number
581         return (f1->number < f2->number);
582       }
583     }
584   };
585 
586   typedef std::set<FileMetaData*, BySmallestKey> FileSet;
587   struct LevelState {
588     std::set<uint64_t> deleted_files;
589     FileSet* added_files;
590   };
591 
592   VersionSet* vset_;
593   Version* base_;
594   LevelState levels_[config::kNumLevels];
595 
596  public:
597   // Initialize a builder with the files from *base and other info from *vset
Builder(VersionSet * vset,Version * base)598   Builder(VersionSet* vset, Version* base) : vset_(vset), base_(base) {
599     base_->Ref();
600     BySmallestKey cmp;
601     cmp.internal_comparator = &vset_->icmp_;
602     for (int level = 0; level < config::kNumLevels; level++) {
603       levels_[level].added_files = new FileSet(cmp);
604     }
605   }
606 
~Builder()607   ~Builder() {
608     for (int level = 0; level < config::kNumLevels; level++) {
609       const FileSet* added = levels_[level].added_files;
610       std::vector<FileMetaData*> to_unref;
611       to_unref.reserve(added->size());
612       for (FileSet::const_iterator it = added->begin(); it != added->end();
613            ++it) {
614         to_unref.push_back(*it);
615       }
616       delete added;
617       for (uint32_t i = 0; i < to_unref.size(); i++) {
618         FileMetaData* f = to_unref[i];
619         f->refs--;
620         if (f->refs <= 0) {
621           delete f;
622         }
623       }
624     }
625     base_->Unref();
626   }
627 
628   // Apply all of the edits in *edit to the current state.
Apply(VersionEdit * edit)629   void Apply(VersionEdit* edit) {
630     // Update compaction pointers
631     for (size_t i = 0; i < edit->compact_pointers_.size(); i++) {
632       const int level = edit->compact_pointers_[i].first;
633       vset_->compact_pointer_[level] =
634           edit->compact_pointers_[i].second.Encode().ToString();
635     }
636 
637     // Delete files
638     for (const auto& deleted_file_set_kvp : edit->deleted_files_) {
639       const int level = deleted_file_set_kvp.first;
640       const uint64_t number = deleted_file_set_kvp.second;
641       levels_[level].deleted_files.insert(number);
642     }
643 
644     // Add new files
645     for (size_t i = 0; i < edit->new_files_.size(); i++) {
646       const int level = edit->new_files_[i].first;
647       FileMetaData* f = new FileMetaData(edit->new_files_[i].second);
648       f->refs = 1;
649 
650       // We arrange to automatically compact this file after
651       // a certain number of seeks.  Let's assume:
652       //   (1) One seek costs 10ms
653       //   (2) Writing or reading 1MB costs 10ms (100MB/s)
654       //   (3) A compaction of 1MB does 25MB of IO:
655       //         1MB read from this level
656       //         10-12MB read from next level (boundaries may be misaligned)
657       //         10-12MB written to next level
658       // This implies that 25 seeks cost the same as the compaction
659       // of 1MB of data.  I.e., one seek costs approximately the
660       // same as the compaction of 40KB of data.  We are a little
661       // conservative and allow approximately one seek for every 16KB
662       // of data before triggering a compaction.
663       f->allowed_seeks = static_cast<int>((f->file_size / 16384U));
664       if (f->allowed_seeks < 100) f->allowed_seeks = 100;
665 
666       levels_[level].deleted_files.erase(f->number);
667       levels_[level].added_files->insert(f);
668     }
669   }
670 
671   // Save the current state in *v.
SaveTo(Version * v)672   void SaveTo(Version* v) {
673     BySmallestKey cmp;
674     cmp.internal_comparator = &vset_->icmp_;
675     for (int level = 0; level < config::kNumLevels; level++) {
676       // Merge the set of added files with the set of pre-existing files.
677       // Drop any deleted files.  Store the result in *v.
678       const std::vector<FileMetaData*>& base_files = base_->files_[level];
679       std::vector<FileMetaData*>::const_iterator base_iter = base_files.begin();
680       std::vector<FileMetaData*>::const_iterator base_end = base_files.end();
681       const FileSet* added_files = levels_[level].added_files;
682       v->files_[level].reserve(base_files.size() + added_files->size());
683       for (const auto& added_file : *added_files) {
684         // Add all smaller files listed in base_
685         for (std::vector<FileMetaData*>::const_iterator bpos =
686                  std::upper_bound(base_iter, base_end, added_file, cmp);
687              base_iter != bpos; ++base_iter) {
688           MaybeAddFile(v, level, *base_iter);
689         }
690 
691         MaybeAddFile(v, level, added_file);
692       }
693 
694       // Add remaining base files
695       for (; base_iter != base_end; ++base_iter) {
696         MaybeAddFile(v, level, *base_iter);
697       }
698 
699 #ifndef NDEBUG
700       // Make sure there is no overlap in levels > 0
701       if (level > 0) {
702         for (uint32_t i = 1; i < v->files_[level].size(); i++) {
703           const InternalKey& prev_end = v->files_[level][i - 1]->largest;
704           const InternalKey& this_begin = v->files_[level][i]->smallest;
705           if (vset_->icmp_.Compare(prev_end, this_begin) >= 0) {
706             std::fprintf(stderr, "overlapping ranges in same level %s vs. %s\n",
707                          prev_end.DebugString().c_str(),
708                          this_begin.DebugString().c_str());
709             std::abort();
710           }
711         }
712       }
713 #endif
714     }
715   }
716 
MaybeAddFile(Version * v,int level,FileMetaData * f)717   void MaybeAddFile(Version* v, int level, FileMetaData* f) {
718     if (levels_[level].deleted_files.count(f->number) > 0) {
719       // File is deleted: do nothing
720     } else {
721       std::vector<FileMetaData*>* files = &v->files_[level];
722       if (level > 0 && !files->empty()) {
723         // Must not overlap
724         assert(vset_->icmp_.Compare((*files)[files->size() - 1]->largest,
725                                     f->smallest) < 0);
726       }
727       f->refs++;
728       files->push_back(f);
729     }
730   }
731 };
732 
VersionSet(const std::string & dbname,const Options * options,TableCache * table_cache,const InternalKeyComparator * cmp)733 VersionSet::VersionSet(const std::string& dbname, const Options* options,
734                        TableCache* table_cache,
735                        const InternalKeyComparator* cmp)
736     : env_(options->env),
737       dbname_(dbname),
738       options_(options),
739       table_cache_(table_cache),
740       icmp_(*cmp),
741       next_file_number_(2),
742       manifest_file_number_(0),  // Filled by Recover()
743       last_sequence_(0),
744       log_number_(0),
745       prev_log_number_(0),
746       descriptor_file_(nullptr),
747       descriptor_log_(nullptr),
748       dummy_versions_(this),
749       current_(nullptr) {
750   AppendVersion(new Version(this));
751 }
752 
~VersionSet()753 VersionSet::~VersionSet() {
754   current_->Unref();
755   assert(dummy_versions_.next_ == &dummy_versions_);  // List must be empty
756   delete descriptor_log_;
757   delete descriptor_file_;
758 }
759 
AppendVersion(Version * v)760 void VersionSet::AppendVersion(Version* v) {
761   // Make "v" current
762   assert(v->refs_ == 0);
763   assert(v != current_);
764   if (current_ != nullptr) {
765     current_->Unref();
766   }
767   current_ = v;
768   v->Ref();
769 
770   // Append to linked list
771   v->prev_ = dummy_versions_.prev_;
772   v->next_ = &dummy_versions_;
773   v->prev_->next_ = v;
774   v->next_->prev_ = v;
775 }
776 
LogAndApply(VersionEdit * edit,port::Mutex * mu)777 Status VersionSet::LogAndApply(VersionEdit* edit, port::Mutex* mu) {
778   if (edit->has_log_number_) {
779     assert(edit->log_number_ >= log_number_);
780     assert(edit->log_number_ < next_file_number_);
781   } else {
782     edit->SetLogNumber(log_number_);
783   }
784 
785   if (!edit->has_prev_log_number_) {
786     edit->SetPrevLogNumber(prev_log_number_);
787   }
788 
789   edit->SetNextFile(next_file_number_);
790   edit->SetLastSequence(last_sequence_);
791 
792   Version* v = new Version(this);
793   {
794     Builder builder(this, current_);
795     builder.Apply(edit);
796     builder.SaveTo(v);
797   }
798   Finalize(v);
799 
800   // Initialize new descriptor log file if necessary by creating
801   // a temporary file that contains a snapshot of the current version.
802   std::string new_manifest_file;
803   Status s;
804   if (descriptor_log_ == nullptr) {
805     // No reason to unlock *mu here since we only hit this path in the
806     // first call to LogAndApply (when opening the database).
807     assert(descriptor_file_ == nullptr);
808     new_manifest_file = DescriptorFileName(dbname_, manifest_file_number_);
809     edit->SetNextFile(next_file_number_);
810     s = env_->NewWritableFile(new_manifest_file, &descriptor_file_);
811     if (s.ok()) {
812       descriptor_log_ = new log::Writer(descriptor_file_);
813       s = WriteSnapshot(descriptor_log_);
814     }
815   }
816 
817   // Unlock during expensive MANIFEST log write
818   {
819     mu->Unlock();
820 
821     // Write new record to MANIFEST log
822     if (s.ok()) {
823       std::string record;
824       edit->EncodeTo(&record);
825       s = descriptor_log_->AddRecord(record);
826       if (s.ok()) {
827         s = descriptor_file_->Sync();
828       }
829       if (!s.ok()) {
830         Log(options_->info_log, "MANIFEST write: %s\n", s.ToString().c_str());
831       }
832     }
833 
834     // If we just created a new descriptor file, install it by writing a
835     // new CURRENT file that points to it.
836     if (s.ok() && !new_manifest_file.empty()) {
837       s = SetCurrentFile(env_, dbname_, manifest_file_number_);
838     }
839 
840     mu->Lock();
841   }
842 
843   // Install the new version
844   if (s.ok()) {
845     AppendVersion(v);
846     log_number_ = edit->log_number_;
847     prev_log_number_ = edit->prev_log_number_;
848   } else {
849     delete v;
850     if (!new_manifest_file.empty()) {
851       delete descriptor_log_;
852       delete descriptor_file_;
853       descriptor_log_ = nullptr;
854       descriptor_file_ = nullptr;
855       env_->RemoveFile(new_manifest_file);
856     }
857   }
858 
859   return s;
860 }
861 
Recover(bool * save_manifest)862 Status VersionSet::Recover(bool* save_manifest) {
863   struct LogReporter : public log::Reader::Reporter {
864     Status* status;
865     void Corruption(size_t bytes, const Status& s) override {
866       if (this->status->ok()) *this->status = s;
867     }
868   };
869 
870   // Read "CURRENT" file, which contains a pointer to the current manifest file
871   std::string current;
872   Status s = ReadFileToString(env_, CurrentFileName(dbname_), &current);
873   if (!s.ok()) {
874     return s;
875   }
876   if (current.empty() || current[current.size() - 1] != '\n') {
877     return Status::Corruption("CURRENT file does not end with newline");
878   }
879   current.resize(current.size() - 1);
880 
881   std::string dscname = dbname_ + "/" + current;
882   SequentialFile* file;
883   s = env_->NewSequentialFile(dscname, &file);
884   if (!s.ok()) {
885     if (s.IsNotFound()) {
886       return Status::Corruption("CURRENT points to a non-existent file",
887                                 s.ToString());
888     }
889     return s;
890   }
891 
892   bool have_log_number = false;
893   bool have_prev_log_number = false;
894   bool have_next_file = false;
895   bool have_last_sequence = false;
896   uint64_t next_file = 0;
897   uint64_t last_sequence = 0;
898   uint64_t log_number = 0;
899   uint64_t prev_log_number = 0;
900   Builder builder(this, current_);
901   int read_records = 0;
902 
903   {
904     LogReporter reporter;
905     reporter.status = &s;
906     log::Reader reader(file, &reporter, true /*checksum*/,
907                        0 /*initial_offset*/);
908     Slice record;
909     std::string scratch;
910     while (reader.ReadRecord(&record, &scratch) && s.ok()) {
911       ++read_records;
912       VersionEdit edit;
913       s = edit.DecodeFrom(record);
914       if (s.ok()) {
915         if (edit.has_comparator_ &&
916             edit.comparator_ != icmp_.user_comparator()->Name()) {
917           s = Status::InvalidArgument(
918               edit.comparator_ + " does not match existing comparator ",
919               icmp_.user_comparator()->Name());
920         }
921       }
922 
923       if (s.ok()) {
924         builder.Apply(&edit);
925       }
926 
927       if (edit.has_log_number_) {
928         log_number = edit.log_number_;
929         have_log_number = true;
930       }
931 
932       if (edit.has_prev_log_number_) {
933         prev_log_number = edit.prev_log_number_;
934         have_prev_log_number = true;
935       }
936 
937       if (edit.has_next_file_number_) {
938         next_file = edit.next_file_number_;
939         have_next_file = true;
940       }
941 
942       if (edit.has_last_sequence_) {
943         last_sequence = edit.last_sequence_;
944         have_last_sequence = true;
945       }
946     }
947   }
948   delete file;
949   file = nullptr;
950 
951   if (s.ok()) {
952     if (!have_next_file) {
953       s = Status::Corruption("no meta-nextfile entry in descriptor");
954     } else if (!have_log_number) {
955       s = Status::Corruption("no meta-lognumber entry in descriptor");
956     } else if (!have_last_sequence) {
957       s = Status::Corruption("no last-sequence-number entry in descriptor");
958     }
959 
960     if (!have_prev_log_number) {
961       prev_log_number = 0;
962     }
963 
964     MarkFileNumberUsed(prev_log_number);
965     MarkFileNumberUsed(log_number);
966   }
967 
968   if (s.ok()) {
969     Version* v = new Version(this);
970     builder.SaveTo(v);
971     // Install recovered version
972     Finalize(v);
973     AppendVersion(v);
974     manifest_file_number_ = next_file;
975     next_file_number_ = next_file + 1;
976     last_sequence_ = last_sequence;
977     log_number_ = log_number;
978     prev_log_number_ = prev_log_number;
979 
980     // See if we can reuse the existing MANIFEST file.
981     if (ReuseManifest(dscname, current)) {
982       // No need to save new manifest
983     } else {
984       *save_manifest = true;
985     }
986   } else {
987     std::string error = s.ToString();
988     Log(options_->info_log, "Error recovering version set with %d records: %s",
989         read_records, error.c_str());
990   }
991 
992   return s;
993 }
994 
ReuseManifest(const std::string & dscname,const std::string & dscbase)995 bool VersionSet::ReuseManifest(const std::string& dscname,
996                                const std::string& dscbase) {
997   if (!options_->reuse_logs) {
998     return false;
999   }
1000   FileType manifest_type;
1001   uint64_t manifest_number;
1002   uint64_t manifest_size;
1003   if (!ParseFileName(dscbase, &manifest_number, &manifest_type) ||
1004       manifest_type != kDescriptorFile ||
1005       !env_->GetFileSize(dscname, &manifest_size).ok() ||
1006       // Make new compacted MANIFEST if old one is too big
1007       manifest_size >= TargetFileSize(options_)) {
1008     return false;
1009   }
1010 
1011   assert(descriptor_file_ == nullptr);
1012   assert(descriptor_log_ == nullptr);
1013   Status r = env_->NewAppendableFile(dscname, &descriptor_file_);
1014   if (!r.ok()) {
1015     Log(options_->info_log, "Reuse MANIFEST: %s\n", r.ToString().c_str());
1016     assert(descriptor_file_ == nullptr);
1017     return false;
1018   }
1019 
1020   Log(options_->info_log, "Reusing MANIFEST %s\n", dscname.c_str());
1021   descriptor_log_ = new log::Writer(descriptor_file_, manifest_size);
1022   manifest_file_number_ = manifest_number;
1023   return true;
1024 }
1025 
MarkFileNumberUsed(uint64_t number)1026 void VersionSet::MarkFileNumberUsed(uint64_t number) {
1027   if (next_file_number_ <= number) {
1028     next_file_number_ = number + 1;
1029   }
1030 }
1031 
Finalize(Version * v)1032 void VersionSet::Finalize(Version* v) {
1033   // Precomputed best level for next compaction
1034   int best_level = -1;
1035   double best_score = -1;
1036 
1037   for (int level = 0; level < config::kNumLevels - 1; level++) {
1038     double score;
1039     if (level == 0) {
1040       // We treat level-0 specially by bounding the number of files
1041       // instead of number of bytes for two reasons:
1042       //
1043       // (1) With larger write-buffer sizes, it is nice not to do too
1044       // many level-0 compactions.
1045       //
1046       // (2) The files in level-0 are merged on every read and
1047       // therefore we wish to avoid too many files when the individual
1048       // file size is small (perhaps because of a small write-buffer
1049       // setting, or very high compression ratios, or lots of
1050       // overwrites/deletions).
1051       score = v->files_[level].size() /
1052               static_cast<double>(config::kL0_CompactionTrigger);
1053     } else {
1054       // Compute the ratio of current size to size limit.
1055       const uint64_t level_bytes = TotalFileSize(v->files_[level]);
1056       score =
1057           static_cast<double>(level_bytes) / MaxBytesForLevel(options_, level);
1058     }
1059 
1060     if (score > best_score) {
1061       best_level = level;
1062       best_score = score;
1063     }
1064   }
1065 
1066   v->compaction_level_ = best_level;
1067   v->compaction_score_ = best_score;
1068 }
1069 
WriteSnapshot(log::Writer * log)1070 Status VersionSet::WriteSnapshot(log::Writer* log) {
1071   // TODO: Break up into multiple records to reduce memory usage on recovery?
1072 
1073   // Save metadata
1074   VersionEdit edit;
1075   edit.SetComparatorName(icmp_.user_comparator()->Name());
1076 
1077   // Save compaction pointers
1078   for (int level = 0; level < config::kNumLevels; level++) {
1079     if (!compact_pointer_[level].empty()) {
1080       InternalKey key;
1081       key.DecodeFrom(compact_pointer_[level]);
1082       edit.SetCompactPointer(level, key);
1083     }
1084   }
1085 
1086   // Save files
1087   for (int level = 0; level < config::kNumLevels; level++) {
1088     const std::vector<FileMetaData*>& files = current_->files_[level];
1089     for (size_t i = 0; i < files.size(); i++) {
1090       const FileMetaData* f = files[i];
1091       edit.AddFile(level, f->number, f->file_size, f->smallest, f->largest);
1092     }
1093   }
1094 
1095   std::string record;
1096   edit.EncodeTo(&record);
1097   return log->AddRecord(record);
1098 }
1099 
NumLevelFiles(int level) const1100 int VersionSet::NumLevelFiles(int level) const {
1101   assert(level >= 0);
1102   assert(level < config::kNumLevels);
1103   return current_->files_[level].size();
1104 }
1105 
LevelSummary(LevelSummaryStorage * scratch) const1106 const char* VersionSet::LevelSummary(LevelSummaryStorage* scratch) const {
1107   // Update code if kNumLevels changes
1108   static_assert(config::kNumLevels == 7, "");
1109   std::snprintf(
1110       scratch->buffer, sizeof(scratch->buffer), "files[ %d %d %d %d %d %d %d ]",
1111       int(current_->files_[0].size()), int(current_->files_[1].size()),
1112       int(current_->files_[2].size()), int(current_->files_[3].size()),
1113       int(current_->files_[4].size()), int(current_->files_[5].size()),
1114       int(current_->files_[6].size()));
1115   return scratch->buffer;
1116 }
1117 
ApproximateOffsetOf(Version * v,const InternalKey & ikey)1118 uint64_t VersionSet::ApproximateOffsetOf(Version* v, const InternalKey& ikey) {
1119   uint64_t result = 0;
1120   for (int level = 0; level < config::kNumLevels; level++) {
1121     const std::vector<FileMetaData*>& files = v->files_[level];
1122     for (size_t i = 0; i < files.size(); i++) {
1123       if (icmp_.Compare(files[i]->largest, ikey) <= 0) {
1124         // Entire file is before "ikey", so just add the file size
1125         result += files[i]->file_size;
1126       } else if (icmp_.Compare(files[i]->smallest, ikey) > 0) {
1127         // Entire file is after "ikey", so ignore
1128         if (level > 0) {
1129           // Files other than level 0 are sorted by meta->smallest, so
1130           // no further files in this level will contain data for
1131           // "ikey".
1132           break;
1133         }
1134       } else {
1135         // "ikey" falls in the range for this table.  Add the
1136         // approximate offset of "ikey" within the table.
1137         Table* tableptr;
1138         Iterator* iter = table_cache_->NewIterator(
1139             ReadOptions(), files[i]->number, files[i]->file_size, &tableptr);
1140         if (tableptr != nullptr) {
1141           result += tableptr->ApproximateOffsetOf(ikey.Encode());
1142         }
1143         delete iter;
1144       }
1145     }
1146   }
1147   return result;
1148 }
1149 
AddLiveFiles(std::set<uint64_t> * live)1150 void VersionSet::AddLiveFiles(std::set<uint64_t>* live) {
1151   for (Version* v = dummy_versions_.next_; v != &dummy_versions_;
1152        v = v->next_) {
1153     for (int level = 0; level < config::kNumLevels; level++) {
1154       const std::vector<FileMetaData*>& files = v->files_[level];
1155       for (size_t i = 0; i < files.size(); i++) {
1156         live->insert(files[i]->number);
1157       }
1158     }
1159   }
1160 }
1161 
NumLevelBytes(int level) const1162 int64_t VersionSet::NumLevelBytes(int level) const {
1163   assert(level >= 0);
1164   assert(level < config::kNumLevels);
1165   return TotalFileSize(current_->files_[level]);
1166 }
1167 
MaxNextLevelOverlappingBytes()1168 int64_t VersionSet::MaxNextLevelOverlappingBytes() {
1169   int64_t result = 0;
1170   std::vector<FileMetaData*> overlaps;
1171   for (int level = 1; level < config::kNumLevels - 1; level++) {
1172     for (size_t i = 0; i < current_->files_[level].size(); i++) {
1173       const FileMetaData* f = current_->files_[level][i];
1174       current_->GetOverlappingInputs(level + 1, &f->smallest, &f->largest,
1175                                      &overlaps);
1176       const int64_t sum = TotalFileSize(overlaps);
1177       if (sum > result) {
1178         result = sum;
1179       }
1180     }
1181   }
1182   return result;
1183 }
1184 
1185 // Stores the minimal range that covers all entries in inputs in
1186 // *smallest, *largest.
1187 // REQUIRES: inputs is not empty
GetRange(const std::vector<FileMetaData * > & inputs,InternalKey * smallest,InternalKey * largest)1188 void VersionSet::GetRange(const std::vector<FileMetaData*>& inputs,
1189                           InternalKey* smallest, InternalKey* largest) {
1190   assert(!inputs.empty());
1191   smallest->Clear();
1192   largest->Clear();
1193   for (size_t i = 0; i < inputs.size(); i++) {
1194     FileMetaData* f = inputs[i];
1195     if (i == 0) {
1196       *smallest = f->smallest;
1197       *largest = f->largest;
1198     } else {
1199       if (icmp_.Compare(f->smallest, *smallest) < 0) {
1200         *smallest = f->smallest;
1201       }
1202       if (icmp_.Compare(f->largest, *largest) > 0) {
1203         *largest = f->largest;
1204       }
1205     }
1206   }
1207 }
1208 
1209 // Stores the minimal range that covers all entries in inputs1 and inputs2
1210 // in *smallest, *largest.
1211 // REQUIRES: inputs is not empty
GetRange2(const std::vector<FileMetaData * > & inputs1,const std::vector<FileMetaData * > & inputs2,InternalKey * smallest,InternalKey * largest)1212 void VersionSet::GetRange2(const std::vector<FileMetaData*>& inputs1,
1213                            const std::vector<FileMetaData*>& inputs2,
1214                            InternalKey* smallest, InternalKey* largest) {
1215   std::vector<FileMetaData*> all = inputs1;
1216   all.insert(all.end(), inputs2.begin(), inputs2.end());
1217   GetRange(all, smallest, largest);
1218 }
1219 
MakeInputIterator(Compaction * c)1220 Iterator* VersionSet::MakeInputIterator(Compaction* c) {
1221   ReadOptions options;
1222   options.verify_checksums = options_->paranoid_checks;
1223   options.fill_cache = false;
1224 
1225   // Level-0 files have to be merged together.  For other levels,
1226   // we will make a concatenating iterator per level.
1227   // TODO(opt): use concatenating iterator for level-0 if there is no overlap
1228   const int space = (c->level() == 0 ? c->inputs_[0].size() + 1 : 2);
1229   Iterator** list = new Iterator*[space];
1230   int num = 0;
1231   for (int which = 0; which < 2; which++) {
1232     if (!c->inputs_[which].empty()) {
1233       if (c->level() + which == 0) {
1234         const std::vector<FileMetaData*>& files = c->inputs_[which];
1235         for (size_t i = 0; i < files.size(); i++) {
1236           list[num++] = table_cache_->NewIterator(options, files[i]->number,
1237                                                   files[i]->file_size);
1238         }
1239       } else {
1240         // Create concatenating iterator for the files from this level
1241         list[num++] = NewTwoLevelIterator(
1242             new Version::LevelFileNumIterator(icmp_, &c->inputs_[which]),
1243             &GetFileIterator, table_cache_, options);
1244       }
1245     }
1246   }
1247   assert(num <= space);
1248   Iterator* result = NewMergingIterator(&icmp_, list, num);
1249   delete[] list;
1250   return result;
1251 }
1252 
PickCompaction()1253 Compaction* VersionSet::PickCompaction() {
1254   Compaction* c;
1255   int level;
1256 
1257   // We prefer compactions triggered by too much data in a level over
1258   // the compactions triggered by seeks.
1259   const bool size_compaction = (current_->compaction_score_ >= 1);
1260   const bool seek_compaction = (current_->file_to_compact_ != nullptr);
1261   if (size_compaction) {
1262     level = current_->compaction_level_;
1263     assert(level >= 0);
1264     assert(level + 1 < config::kNumLevels);
1265     c = new Compaction(options_, level);
1266 
1267     // Pick the first file that comes after compact_pointer_[level]
1268     for (size_t i = 0; i < current_->files_[level].size(); i++) {
1269       FileMetaData* f = current_->files_[level][i];
1270       if (compact_pointer_[level].empty() ||
1271           icmp_.Compare(f->largest.Encode(), compact_pointer_[level]) > 0) {
1272         c->inputs_[0].push_back(f);
1273         break;
1274       }
1275     }
1276     if (c->inputs_[0].empty()) {
1277       // Wrap-around to the beginning of the key space
1278       c->inputs_[0].push_back(current_->files_[level][0]);
1279     }
1280   } else if (seek_compaction) {
1281     level = current_->file_to_compact_level_;
1282     c = new Compaction(options_, level);
1283     c->inputs_[0].push_back(current_->file_to_compact_);
1284   } else {
1285     return nullptr;
1286   }
1287 
1288   c->input_version_ = current_;
1289   c->input_version_->Ref();
1290 
1291   // Files in level 0 may overlap each other, so pick up all overlapping ones
1292   if (level == 0) {
1293     InternalKey smallest, largest;
1294     GetRange(c->inputs_[0], &smallest, &largest);
1295     // Note that the next call will discard the file we placed in
1296     // c->inputs_[0] earlier and replace it with an overlapping set
1297     // which will include the picked file.
1298     current_->GetOverlappingInputs(0, &smallest, &largest, &c->inputs_[0]);
1299     assert(!c->inputs_[0].empty());
1300   }
1301 
1302   SetupOtherInputs(c);
1303 
1304   return c;
1305 }
1306 
1307 // Finds the largest key in a vector of files. Returns true if files it not
1308 // empty.
FindLargestKey(const InternalKeyComparator & icmp,const std::vector<FileMetaData * > & files,InternalKey * largest_key)1309 bool FindLargestKey(const InternalKeyComparator& icmp,
1310                     const std::vector<FileMetaData*>& files,
1311                     InternalKey* largest_key) {
1312   if (files.empty()) {
1313     return false;
1314   }
1315   *largest_key = files[0]->largest;
1316   for (size_t i = 1; i < files.size(); ++i) {
1317     FileMetaData* f = files[i];
1318     if (icmp.Compare(f->largest, *largest_key) > 0) {
1319       *largest_key = f->largest;
1320     }
1321   }
1322   return true;
1323 }
1324 
1325 // Finds minimum file b2=(l2, u2) in level file for which l2 > u1 and
1326 // user_key(l2) = user_key(u1)
FindSmallestBoundaryFile(const InternalKeyComparator & icmp,const std::vector<FileMetaData * > & level_files,const InternalKey & largest_key)1327 FileMetaData* FindSmallestBoundaryFile(
1328     const InternalKeyComparator& icmp,
1329     const std::vector<FileMetaData*>& level_files,
1330     const InternalKey& largest_key) {
1331   const Comparator* user_cmp = icmp.user_comparator();
1332   FileMetaData* smallest_boundary_file = nullptr;
1333   for (size_t i = 0; i < level_files.size(); ++i) {
1334     FileMetaData* f = level_files[i];
1335     if (icmp.Compare(f->smallest, largest_key) > 0 &&
1336         user_cmp->Compare(f->smallest.user_key(), largest_key.user_key()) ==
1337             0) {
1338       if (smallest_boundary_file == nullptr ||
1339           icmp.Compare(f->smallest, smallest_boundary_file->smallest) < 0) {
1340         smallest_boundary_file = f;
1341       }
1342     }
1343   }
1344   return smallest_boundary_file;
1345 }
1346 
1347 // Extracts the largest file b1 from |compaction_files| and then searches for a
1348 // b2 in |level_files| for which user_key(u1) = user_key(l2). If it finds such a
1349 // file b2 (known as a boundary file) it adds it to |compaction_files| and then
1350 // searches again using this new upper bound.
1351 //
1352 // If there are two blocks, b1=(l1, u1) and b2=(l2, u2) and
1353 // user_key(u1) = user_key(l2), and if we compact b1 but not b2 then a
1354 // subsequent get operation will yield an incorrect result because it will
1355 // return the record from b2 in level i rather than from b1 because it searches
1356 // level by level for records matching the supplied user key.
1357 //
1358 // parameters:
1359 //   in     level_files:      List of files to search for boundary files.
1360 //   in/out compaction_files: List of files to extend by adding boundary files.
AddBoundaryInputs(const InternalKeyComparator & icmp,const std::vector<FileMetaData * > & level_files,std::vector<FileMetaData * > * compaction_files)1361 void AddBoundaryInputs(const InternalKeyComparator& icmp,
1362                        const std::vector<FileMetaData*>& level_files,
1363                        std::vector<FileMetaData*>* compaction_files) {
1364   InternalKey largest_key;
1365 
1366   // Quick return if compaction_files is empty.
1367   if (!FindLargestKey(icmp, *compaction_files, &largest_key)) {
1368     return;
1369   }
1370 
1371   bool continue_searching = true;
1372   while (continue_searching) {
1373     FileMetaData* smallest_boundary_file =
1374         FindSmallestBoundaryFile(icmp, level_files, largest_key);
1375 
1376     // If a boundary file was found advance largest_key, otherwise we're done.
1377     if (smallest_boundary_file != NULL) {
1378       compaction_files->push_back(smallest_boundary_file);
1379       largest_key = smallest_boundary_file->largest;
1380     } else {
1381       continue_searching = false;
1382     }
1383   }
1384 }
1385 
SetupOtherInputs(Compaction * c)1386 void VersionSet::SetupOtherInputs(Compaction* c) {
1387   const int level = c->level();
1388   InternalKey smallest, largest;
1389 
1390   AddBoundaryInputs(icmp_, current_->files_[level], &c->inputs_[0]);
1391   GetRange(c->inputs_[0], &smallest, &largest);
1392 
1393   current_->GetOverlappingInputs(level + 1, &smallest, &largest,
1394                                  &c->inputs_[1]);
1395 
1396   // Get entire range covered by compaction
1397   InternalKey all_start, all_limit;
1398   GetRange2(c->inputs_[0], c->inputs_[1], &all_start, &all_limit);
1399 
1400   // See if we can grow the number of inputs in "level" without
1401   // changing the number of "level+1" files we pick up.
1402   if (!c->inputs_[1].empty()) {
1403     std::vector<FileMetaData*> expanded0;
1404     current_->GetOverlappingInputs(level, &all_start, &all_limit, &expanded0);
1405     AddBoundaryInputs(icmp_, current_->files_[level], &expanded0);
1406     const int64_t inputs0_size = TotalFileSize(c->inputs_[0]);
1407     const int64_t inputs1_size = TotalFileSize(c->inputs_[1]);
1408     const int64_t expanded0_size = TotalFileSize(expanded0);
1409     if (expanded0.size() > c->inputs_[0].size() &&
1410         inputs1_size + expanded0_size <
1411             ExpandedCompactionByteSizeLimit(options_)) {
1412       InternalKey new_start, new_limit;
1413       GetRange(expanded0, &new_start, &new_limit);
1414       std::vector<FileMetaData*> expanded1;
1415       current_->GetOverlappingInputs(level + 1, &new_start, &new_limit,
1416                                      &expanded1);
1417       if (expanded1.size() == c->inputs_[1].size()) {
1418         Log(options_->info_log,
1419             "Expanding@%d %d+%d (%ld+%ld bytes) to %d+%d (%ld+%ld bytes)\n",
1420             level, int(c->inputs_[0].size()), int(c->inputs_[1].size()),
1421             long(inputs0_size), long(inputs1_size), int(expanded0.size()),
1422             int(expanded1.size()), long(expanded0_size), long(inputs1_size));
1423         smallest = new_start;
1424         largest = new_limit;
1425         c->inputs_[0] = expanded0;
1426         c->inputs_[1] = expanded1;
1427         GetRange2(c->inputs_[0], c->inputs_[1], &all_start, &all_limit);
1428       }
1429     }
1430   }
1431 
1432   // Compute the set of grandparent files that overlap this compaction
1433   // (parent == level+1; grandparent == level+2)
1434   if (level + 2 < config::kNumLevels) {
1435     current_->GetOverlappingInputs(level + 2, &all_start, &all_limit,
1436                                    &c->grandparents_);
1437   }
1438 
1439   // Update the place where we will do the next compaction for this level.
1440   // We update this immediately instead of waiting for the VersionEdit
1441   // to be applied so that if the compaction fails, we will try a different
1442   // key range next time.
1443   compact_pointer_[level] = largest.Encode().ToString();
1444   c->edit_.SetCompactPointer(level, largest);
1445 }
1446 
CompactRange(int level,const InternalKey * begin,const InternalKey * end)1447 Compaction* VersionSet::CompactRange(int level, const InternalKey* begin,
1448                                      const InternalKey* end) {
1449   std::vector<FileMetaData*> inputs;
1450   current_->GetOverlappingInputs(level, begin, end, &inputs);
1451   if (inputs.empty()) {
1452     return nullptr;
1453   }
1454 
1455   // Avoid compacting too much in one shot in case the range is large.
1456   // But we cannot do this for level-0 since level-0 files can overlap
1457   // and we must not pick one file and drop another older file if the
1458   // two files overlap.
1459   if (level > 0) {
1460     const uint64_t limit = MaxFileSizeForLevel(options_, level);
1461     uint64_t total = 0;
1462     for (size_t i = 0; i < inputs.size(); i++) {
1463       uint64_t s = inputs[i]->file_size;
1464       total += s;
1465       if (total >= limit) {
1466         inputs.resize(i + 1);
1467         break;
1468       }
1469     }
1470   }
1471 
1472   Compaction* c = new Compaction(options_, level);
1473   c->input_version_ = current_;
1474   c->input_version_->Ref();
1475   c->inputs_[0] = inputs;
1476   SetupOtherInputs(c);
1477   return c;
1478 }
1479 
Compaction(const Options * options,int level)1480 Compaction::Compaction(const Options* options, int level)
1481     : level_(level),
1482       max_output_file_size_(MaxFileSizeForLevel(options, level)),
1483       input_version_(nullptr),
1484       grandparent_index_(0),
1485       seen_key_(false),
1486       overlapped_bytes_(0) {
1487   for (int i = 0; i < config::kNumLevels; i++) {
1488     level_ptrs_[i] = 0;
1489   }
1490 }
1491 
~Compaction()1492 Compaction::~Compaction() {
1493   if (input_version_ != nullptr) {
1494     input_version_->Unref();
1495   }
1496 }
1497 
IsTrivialMove() const1498 bool Compaction::IsTrivialMove() const {
1499   const VersionSet* vset = input_version_->vset_;
1500   // Avoid a move if there is lots of overlapping grandparent data.
1501   // Otherwise, the move could create a parent file that will require
1502   // a very expensive merge later on.
1503   return (num_input_files(0) == 1 && num_input_files(1) == 0 &&
1504           TotalFileSize(grandparents_) <=
1505               MaxGrandParentOverlapBytes(vset->options_));
1506 }
1507 
AddInputDeletions(VersionEdit * edit)1508 void Compaction::AddInputDeletions(VersionEdit* edit) {
1509   for (int which = 0; which < 2; which++) {
1510     for (size_t i = 0; i < inputs_[which].size(); i++) {
1511       edit->RemoveFile(level_ + which, inputs_[which][i]->number);
1512     }
1513   }
1514 }
1515 
IsBaseLevelForKey(const Slice & user_key)1516 bool Compaction::IsBaseLevelForKey(const Slice& user_key) {
1517   // Maybe use binary search to find right entry instead of linear search?
1518   const Comparator* user_cmp = input_version_->vset_->icmp_.user_comparator();
1519   for (int lvl = level_ + 2; lvl < config::kNumLevels; lvl++) {
1520     const std::vector<FileMetaData*>& files = input_version_->files_[lvl];
1521     while (level_ptrs_[lvl] < files.size()) {
1522       FileMetaData* f = files[level_ptrs_[lvl]];
1523       if (user_cmp->Compare(user_key, f->largest.user_key()) <= 0) {
1524         // We've advanced far enough
1525         if (user_cmp->Compare(user_key, f->smallest.user_key()) >= 0) {
1526           // Key falls in this file's range, so definitely not base level
1527           return false;
1528         }
1529         break;
1530       }
1531       level_ptrs_[lvl]++;
1532     }
1533   }
1534   return true;
1535 }
1536 
ShouldStopBefore(const Slice & internal_key)1537 bool Compaction::ShouldStopBefore(const Slice& internal_key) {
1538   const VersionSet* vset = input_version_->vset_;
1539   // Scan to find earliest grandparent file that contains key.
1540   const InternalKeyComparator* icmp = &vset->icmp_;
1541   while (grandparent_index_ < grandparents_.size() &&
1542          icmp->Compare(internal_key,
1543                        grandparents_[grandparent_index_]->largest.Encode()) >
1544              0) {
1545     if (seen_key_) {
1546       overlapped_bytes_ += grandparents_[grandparent_index_]->file_size;
1547     }
1548     grandparent_index_++;
1549   }
1550   seen_key_ = true;
1551 
1552   if (overlapped_bytes_ > MaxGrandParentOverlapBytes(vset->options_)) {
1553     // Too much overlap for current output; start new output
1554     overlapped_bytes_ = 0;
1555     return true;
1556   } else {
1557     return false;
1558   }
1559 }
1560 
ReleaseInputs()1561 void Compaction::ReleaseInputs() {
1562   if (input_version_ != nullptr) {
1563     input_version_->Unref();
1564     input_version_ = nullptr;
1565   }
1566 }
1567 
1568 }  // namespace leveldb
1569