1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <assert.h>
13 #include <math.h>
14
15 #include "config/aom_dsp_rtcd.h"
16
17 #include "aom_dsp/ssim.h"
18 #include "aom_ports/mem.h"
19
aom_ssim_parms_8x8_c(const uint8_t * s,int sp,const uint8_t * r,int rp,uint32_t * sum_s,uint32_t * sum_r,uint32_t * sum_sq_s,uint32_t * sum_sq_r,uint32_t * sum_sxr)20 void aom_ssim_parms_8x8_c(const uint8_t *s, int sp, const uint8_t *r, int rp,
21 uint32_t *sum_s, uint32_t *sum_r, uint32_t *sum_sq_s,
22 uint32_t *sum_sq_r, uint32_t *sum_sxr) {
23 int i, j;
24 for (i = 0; i < 8; i++, s += sp, r += rp) {
25 for (j = 0; j < 8; j++) {
26 *sum_s += s[j];
27 *sum_r += r[j];
28 *sum_sq_s += s[j] * s[j];
29 *sum_sq_r += r[j] * r[j];
30 *sum_sxr += s[j] * r[j];
31 }
32 }
33 }
34
35 static const int64_t cc1 = 26634; // (64^2*(.01*255)^2
36 static const int64_t cc2 = 239708; // (64^2*(.03*255)^2
37 static const int64_t cc1_10 = 428658; // (64^2*(.01*1023)^2
38 static const int64_t cc2_10 = 3857925; // (64^2*(.03*1023)^2
39 static const int64_t cc1_12 = 6868593; // (64^2*(.01*4095)^2
40 static const int64_t cc2_12 = 61817334; // (64^2*(.03*4095)^2
41
similarity(uint32_t sum_s,uint32_t sum_r,uint32_t sum_sq_s,uint32_t sum_sq_r,uint32_t sum_sxr,int count,uint32_t bd)42 static double similarity(uint32_t sum_s, uint32_t sum_r, uint32_t sum_sq_s,
43 uint32_t sum_sq_r, uint32_t sum_sxr, int count,
44 uint32_t bd) {
45 double ssim_n, ssim_d;
46 int64_t c1 = 0, c2 = 0;
47 if (bd == 8) {
48 // scale the constants by number of pixels
49 c1 = (cc1 * count * count) >> 12;
50 c2 = (cc2 * count * count) >> 12;
51 } else if (bd == 10) {
52 c1 = (cc1_10 * count * count) >> 12;
53 c2 = (cc2_10 * count * count) >> 12;
54 } else if (bd == 12) {
55 c1 = (cc1_12 * count * count) >> 12;
56 c2 = (cc2_12 * count * count) >> 12;
57 } else {
58 assert(0);
59 // Return similarity as zero for unsupported bit-depth values.
60 return 0;
61 }
62
63 ssim_n = (2.0 * sum_s * sum_r + c1) *
64 (2.0 * count * sum_sxr - 2.0 * sum_s * sum_r + c2);
65
66 ssim_d = ((double)sum_s * sum_s + (double)sum_r * sum_r + c1) *
67 ((double)count * sum_sq_s - (double)sum_s * sum_s +
68 (double)count * sum_sq_r - (double)sum_r * sum_r + c2);
69
70 return ssim_n / ssim_d;
71 }
72
ssim_8x8(const uint8_t * s,int sp,const uint8_t * r,int rp)73 static double ssim_8x8(const uint8_t *s, int sp, const uint8_t *r, int rp) {
74 uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
75 aom_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
76 &sum_sxr);
77 return similarity(sum_s, sum_r, sum_sq_s, sum_sq_r, sum_sxr, 64, 8);
78 }
79
80 // We are using a 8x8 moving window with starting location of each 8x8 window
81 // on the 4x4 pixel grid. Such arrangement allows the windows to overlap
82 // block boundaries to penalize blocking artifacts.
aom_ssim2(const uint8_t * img1,const uint8_t * img2,int stride_img1,int stride_img2,int width,int height)83 double aom_ssim2(const uint8_t *img1, const uint8_t *img2, int stride_img1,
84 int stride_img2, int width, int height) {
85 int i, j;
86 int samples = 0;
87 double ssim_total = 0;
88
89 // sample point start with each 4x4 location
90 for (i = 0; i <= height - 8;
91 i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
92 for (j = 0; j <= width - 8; j += 4) {
93 double v = ssim_8x8(img1 + j, stride_img1, img2 + j, stride_img2);
94 ssim_total += v;
95 samples++;
96 }
97 }
98 ssim_total /= samples;
99 return ssim_total;
100 }
101
102 #if CONFIG_INTERNAL_STATS
aom_lowbd_calc_ssim(const YV12_BUFFER_CONFIG * source,const YV12_BUFFER_CONFIG * dest,double * weight,double * fast_ssim)103 void aom_lowbd_calc_ssim(const YV12_BUFFER_CONFIG *source,
104 const YV12_BUFFER_CONFIG *dest, double *weight,
105 double *fast_ssim) {
106 double abc[3];
107 for (int i = 0; i < 3; ++i) {
108 const int is_uv = i > 0;
109 abc[i] = aom_ssim2(source->buffers[i], dest->buffers[i],
110 source->strides[is_uv], dest->strides[is_uv],
111 source->crop_widths[is_uv], source->crop_heights[is_uv]);
112 }
113
114 *weight = 1;
115 *fast_ssim = abc[0] * .8 + .1 * (abc[1] + abc[2]);
116 }
117
118 // traditional ssim as per: http://en.wikipedia.org/wiki/Structural_similarity
119 //
120 // Re working out the math ->
121 //
122 // ssim(x,y) = (2*mean(x)*mean(y) + c1)*(2*cov(x,y)+c2) /
123 // ((mean(x)^2+mean(y)^2+c1)*(var(x)+var(y)+c2))
124 //
125 // mean(x) = sum(x) / n
126 //
127 // cov(x,y) = (n*sum(xi*yi)-sum(x)*sum(y))/(n*n)
128 //
129 // var(x) = (n*sum(xi*xi)-sum(xi)*sum(xi))/(n*n)
130 //
131 // ssim(x,y) =
132 // (2*sum(x)*sum(y)/(n*n) + c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))/(n*n)+c2) /
133 // (((sum(x)*sum(x)+sum(y)*sum(y))/(n*n) +c1) *
134 // ((n*sum(xi*xi) - sum(xi)*sum(xi))/(n*n)+
135 // (n*sum(yi*yi) - sum(yi)*sum(yi))/(n*n)+c2)))
136 //
137 // factoring out n*n
138 //
139 // ssim(x,y) =
140 // (2*sum(x)*sum(y) + n*n*c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))+n*n*c2) /
141 // (((sum(x)*sum(x)+sum(y)*sum(y)) + n*n*c1) *
142 // (n*sum(xi*xi)-sum(xi)*sum(xi)+n*sum(yi*yi)-sum(yi)*sum(yi)+n*n*c2))
143 //
144 // Replace c1 with n*n * c1 for the final step that leads to this code:
145 // The final step scales by 12 bits so we don't lose precision in the constants.
146
ssimv_similarity(const Ssimv * sv,int64_t n)147 static double ssimv_similarity(const Ssimv *sv, int64_t n) {
148 // Scale the constants by number of pixels.
149 const int64_t c1 = (cc1 * n * n) >> 12;
150 const int64_t c2 = (cc2 * n * n) >> 12;
151
152 const double l = 1.0 * (2 * sv->sum_s * sv->sum_r + c1) /
153 (sv->sum_s * sv->sum_s + sv->sum_r * sv->sum_r + c1);
154
155 // Since these variables are unsigned sums, convert to double so
156 // math is done in double arithmetic.
157 const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) /
158 (n * sv->sum_sq_s - sv->sum_s * sv->sum_s +
159 n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2);
160
161 return l * v;
162 }
163
164 // The first term of the ssim metric is a luminance factor.
165 //
166 // (2*mean(x)*mean(y) + c1)/ (mean(x)^2+mean(y)^2+c1)
167 //
168 // This luminance factor is super sensitive to the dark side of luminance
169 // values and completely insensitive on the white side. check out 2 sets
170 // (1,3) and (250,252) the term gives ( 2*1*3/(1+9) = .60
171 // 2*250*252/ (250^2+252^2) => .99999997
172 //
173 // As a result in this tweaked version of the calculation in which the
174 // luminance is taken as percentage off from peak possible.
175 //
176 // 255 * 255 - (sum_s - sum_r) / count * (sum_s - sum_r) / count
177 //
ssimv_similarity2(const Ssimv * sv,int64_t n)178 static double ssimv_similarity2(const Ssimv *sv, int64_t n) {
179 // Scale the constants by number of pixels.
180 const int64_t c1 = (cc1 * n * n) >> 12;
181 const int64_t c2 = (cc2 * n * n) >> 12;
182
183 const double mean_diff = (1.0 * sv->sum_s - sv->sum_r) / n;
184 const double l = (255 * 255 - mean_diff * mean_diff + c1) / (255 * 255 + c1);
185
186 // Since these variables are unsigned, sums convert to double so
187 // math is done in double arithmetic.
188 const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) /
189 (n * sv->sum_sq_s - sv->sum_s * sv->sum_s +
190 n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2);
191
192 return l * v;
193 }
ssimv_parms(uint8_t * img1,int img1_pitch,uint8_t * img2,int img2_pitch,Ssimv * sv)194 static void ssimv_parms(uint8_t *img1, int img1_pitch, uint8_t *img2,
195 int img2_pitch, Ssimv *sv) {
196 aom_ssim_parms_8x8(img1, img1_pitch, img2, img2_pitch, &sv->sum_s, &sv->sum_r,
197 &sv->sum_sq_s, &sv->sum_sq_r, &sv->sum_sxr);
198 }
199
aom_get_ssim_metrics(uint8_t * img1,int img1_pitch,uint8_t * img2,int img2_pitch,int width,int height,Ssimv * sv2,Metrics * m,int do_inconsistency)200 double aom_get_ssim_metrics(uint8_t *img1, int img1_pitch, uint8_t *img2,
201 int img2_pitch, int width, int height, Ssimv *sv2,
202 Metrics *m, int do_inconsistency) {
203 double dssim_total = 0;
204 double ssim_total = 0;
205 double ssim2_total = 0;
206 double inconsistency_total = 0;
207 int i, j;
208 int c = 0;
209 double norm;
210 double old_ssim_total = 0;
211 // We can sample points as frequently as we like start with 1 per 4x4.
212 for (i = 0; i < height;
213 i += 4, img1 += img1_pitch * 4, img2 += img2_pitch * 4) {
214 for (j = 0; j < width; j += 4, ++c) {
215 Ssimv sv = { 0, 0, 0, 0, 0, 0 };
216 double ssim;
217 double ssim2;
218 double dssim;
219 uint32_t var_new;
220 uint32_t var_old;
221 uint32_t mean_new;
222 uint32_t mean_old;
223 double ssim_new;
224 double ssim_old;
225
226 // Not sure there's a great way to handle the edge pixels
227 // in ssim when using a window. Seems biased against edge pixels
228 // however you handle this. This uses only samples that are
229 // fully in the frame.
230 if (j + 8 <= width && i + 8 <= height) {
231 ssimv_parms(img1 + j, img1_pitch, img2 + j, img2_pitch, &sv);
232 }
233
234 ssim = ssimv_similarity(&sv, 64);
235 ssim2 = ssimv_similarity2(&sv, 64);
236
237 sv.ssim = ssim2;
238
239 // dssim is calculated to use as an actual error metric and
240 // is scaled up to the same range as sum square error.
241 // Since we are subsampling every 16th point maybe this should be
242 // *16 ?
243 dssim = 255 * 255 * (1 - ssim2) / 2;
244
245 // Here I introduce a new error metric: consistency-weighted
246 // SSIM-inconsistency. This metric isolates frames where the
247 // SSIM 'suddenly' changes, e.g. if one frame in every 8 is much
248 // sharper or blurrier than the others. Higher values indicate a
249 // temporally inconsistent SSIM. There are two ideas at work:
250 //
251 // 1) 'SSIM-inconsistency': the total inconsistency value
252 // reflects how much SSIM values are changing between this
253 // source / reference frame pair and the previous pair.
254 //
255 // 2) 'consistency-weighted': weights de-emphasize areas in the
256 // frame where the scene content has changed. Changes in scene
257 // content are detected via changes in local variance and local
258 // mean.
259 //
260 // Thus the overall measure reflects how inconsistent the SSIM
261 // values are, over consistent regions of the frame.
262 //
263 // The metric has three terms:
264 //
265 // term 1 -> uses change in scene Variance to weight error score
266 // 2 * var(Fi)*var(Fi-1) / (var(Fi)^2+var(Fi-1)^2)
267 // larger changes from one frame to the next mean we care
268 // less about consistency.
269 //
270 // term 2 -> uses change in local scene luminance to weight error
271 // 2 * avg(Fi)*avg(Fi-1) / (avg(Fi)^2+avg(Fi-1)^2)
272 // larger changes from one frame to the next mean we care
273 // less about consistency.
274 //
275 // term3 -> measures inconsistency in ssim scores between frames
276 // 1 - ( 2 * ssim(Fi)*ssim(Fi-1)/(ssim(Fi)^2+sssim(Fi-1)^2).
277 //
278 // This term compares the ssim score for the same location in 2
279 // subsequent frames.
280 var_new = sv.sum_sq_s - sv.sum_s * sv.sum_s / 64;
281 var_old = sv2[c].sum_sq_s - sv2[c].sum_s * sv2[c].sum_s / 64;
282 mean_new = sv.sum_s;
283 mean_old = sv2[c].sum_s;
284 ssim_new = sv.ssim;
285 ssim_old = sv2[c].ssim;
286
287 if (do_inconsistency) {
288 // We do the metric once for every 4x4 block in the image. Since
289 // we are scaling the error to SSE for use in a psnr calculation
290 // 1.0 = 4x4x255x255 the worst error we can possibly have.
291 static const double kScaling = 4. * 4 * 255 * 255;
292
293 // The constants have to be non 0 to avoid potential divide by 0
294 // issues other than that they affect kind of a weighting between
295 // the terms. No testing of what the right terms should be has been
296 // done.
297 static const double c1 = 1, c2 = 1, c3 = 1;
298
299 // This measures how much consistent variance is in two consecutive
300 // source frames. 1.0 means they have exactly the same variance.
301 const double variance_term =
302 (2.0 * var_old * var_new + c1) /
303 (1.0 * var_old * var_old + 1.0 * var_new * var_new + c1);
304
305 // This measures how consistent the local mean are between two
306 // consecutive frames. 1.0 means they have exactly the same mean.
307 const double mean_term =
308 (2.0 * mean_old * mean_new + c2) /
309 (1.0 * mean_old * mean_old + 1.0 * mean_new * mean_new + c2);
310
311 // This measures how consistent the ssims of two
312 // consecutive frames is. 1.0 means they are exactly the same.
313 double ssim_term =
314 pow((2.0 * ssim_old * ssim_new + c3) /
315 (ssim_old * ssim_old + ssim_new * ssim_new + c3),
316 5);
317
318 double this_inconsistency;
319
320 // Floating point math sometimes makes this > 1 by a tiny bit.
321 // We want the metric to scale between 0 and 1.0 so we can convert
322 // it to an snr scaled value.
323 if (ssim_term > 1) ssim_term = 1;
324
325 // This converts the consistency metric to an inconsistency metric
326 // ( so we can scale it like psnr to something like sum square error.
327 // The reason for the variance and mean terms is the assumption that
328 // if there are big changes in the source we shouldn't penalize
329 // inconsistency in ssim scores a bit less as it will be less visible
330 // to the user.
331 this_inconsistency = (1 - ssim_term) * variance_term * mean_term;
332
333 this_inconsistency *= kScaling;
334 inconsistency_total += this_inconsistency;
335 }
336 sv2[c] = sv;
337 ssim_total += ssim;
338 ssim2_total += ssim2;
339 dssim_total += dssim;
340
341 old_ssim_total += ssim_old;
342 }
343 old_ssim_total += 0;
344 }
345
346 norm = 1. / (width / 4) / (height / 4);
347 ssim_total *= norm;
348 ssim2_total *= norm;
349 m->ssim2 = ssim2_total;
350 m->ssim = ssim_total;
351 if (old_ssim_total == 0) inconsistency_total = 0;
352
353 m->ssimc = inconsistency_total;
354
355 m->dssim = dssim_total;
356 return inconsistency_total;
357 }
358 #endif // CONFIG_INTERNAL_STATS
359
360 #if CONFIG_AV1_HIGHBITDEPTH
aom_highbd_ssim_parms_8x8_c(const uint16_t * s,int sp,const uint16_t * r,int rp,uint32_t * sum_s,uint32_t * sum_r,uint32_t * sum_sq_s,uint32_t * sum_sq_r,uint32_t * sum_sxr)361 void aom_highbd_ssim_parms_8x8_c(const uint16_t *s, int sp, const uint16_t *r,
362 int rp, uint32_t *sum_s, uint32_t *sum_r,
363 uint32_t *sum_sq_s, uint32_t *sum_sq_r,
364 uint32_t *sum_sxr) {
365 int i, j;
366 for (i = 0; i < 8; i++, s += sp, r += rp) {
367 for (j = 0; j < 8; j++) {
368 *sum_s += s[j];
369 *sum_r += r[j];
370 *sum_sq_s += s[j] * s[j];
371 *sum_sq_r += r[j] * r[j];
372 *sum_sxr += s[j] * r[j];
373 }
374 }
375 }
376
highbd_ssim_8x8(const uint16_t * s,int sp,const uint16_t * r,int rp,uint32_t bd,uint32_t shift)377 static double highbd_ssim_8x8(const uint16_t *s, int sp, const uint16_t *r,
378 int rp, uint32_t bd, uint32_t shift) {
379 uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
380 aom_highbd_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
381 &sum_sxr);
382 return similarity(sum_s >> shift, sum_r >> shift, sum_sq_s >> (2 * shift),
383 sum_sq_r >> (2 * shift), sum_sxr >> (2 * shift), 64, bd);
384 }
385
aom_highbd_ssim2(const uint8_t * img1,const uint8_t * img2,int stride_img1,int stride_img2,int width,int height,uint32_t bd,uint32_t shift)386 double aom_highbd_ssim2(const uint8_t *img1, const uint8_t *img2,
387 int stride_img1, int stride_img2, int width, int height,
388 uint32_t bd, uint32_t shift) {
389 int i, j;
390 int samples = 0;
391 double ssim_total = 0;
392
393 // sample point start with each 4x4 location
394 for (i = 0; i <= height - 8;
395 i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
396 for (j = 0; j <= width - 8; j += 4) {
397 double v = highbd_ssim_8x8(CONVERT_TO_SHORTPTR(img1 + j), stride_img1,
398 CONVERT_TO_SHORTPTR(img2 + j), stride_img2, bd,
399 shift);
400 ssim_total += v;
401 samples++;
402 }
403 }
404 ssim_total /= samples;
405 return ssim_total;
406 }
407
408 #if CONFIG_INTERNAL_STATS
aom_highbd_calc_ssim(const YV12_BUFFER_CONFIG * source,const YV12_BUFFER_CONFIG * dest,double * weight,uint32_t bd,uint32_t in_bd,double * fast_ssim)409 void aom_highbd_calc_ssim(const YV12_BUFFER_CONFIG *source,
410 const YV12_BUFFER_CONFIG *dest, double *weight,
411 uint32_t bd, uint32_t in_bd, double *fast_ssim) {
412 assert(bd >= in_bd);
413 uint32_t shift = bd - in_bd;
414
415 double abc[3];
416 for (int i = 0; i < 3; ++i) {
417 const int is_uv = i > 0;
418 abc[i] = aom_highbd_ssim2(source->buffers[i], dest->buffers[i],
419 source->strides[is_uv], dest->strides[is_uv],
420 source->crop_widths[is_uv],
421 source->crop_heights[is_uv], in_bd, shift);
422 }
423
424 weight[0] = 1;
425 fast_ssim[0] = abc[0] * .8 + .1 * (abc[1] + abc[2]);
426
427 if (bd > in_bd) {
428 // Compute SSIM based on stream bit depth
429 shift = 0;
430 for (int i = 0; i < 3; ++i) {
431 const int is_uv = i > 0;
432 abc[i] = aom_highbd_ssim2(source->buffers[i], dest->buffers[i],
433 source->strides[is_uv], dest->strides[is_uv],
434 source->crop_widths[is_uv],
435 source->crop_heights[is_uv], bd, shift);
436 }
437
438 weight[1] = 1;
439 fast_ssim[1] = abc[0] * .8 + .1 * (abc[1] + abc[2]);
440 }
441 }
442 #endif // CONFIG_INTERNAL_STATS
443 #endif // CONFIG_AV1_HIGHBITDEPTH
444
445 #if CONFIG_INTERNAL_STATS
aom_calc_ssim(const YV12_BUFFER_CONFIG * orig,const YV12_BUFFER_CONFIG * recon,const uint32_t bit_depth,const uint32_t in_bit_depth,int is_hbd,double * weight,double * frame_ssim2)446 void aom_calc_ssim(const YV12_BUFFER_CONFIG *orig,
447 const YV12_BUFFER_CONFIG *recon, const uint32_t bit_depth,
448 const uint32_t in_bit_depth, int is_hbd, double *weight,
449 double *frame_ssim2) {
450 #if CONFIG_AV1_HIGHBITDEPTH
451 if (is_hbd) {
452 aom_highbd_calc_ssim(orig, recon, weight, bit_depth, in_bit_depth,
453 frame_ssim2);
454 return;
455 }
456 #else
457 (void)bit_depth;
458 (void)in_bit_depth;
459 (void)is_hbd;
460 #endif // CONFIG_AV1_HIGHBITDEPTH
461 aom_lowbd_calc_ssim(orig, recon, weight, frame_ssim2);
462 }
463 #endif // CONFIG_INTERNAL_STATS
464