xref: /aosp_15_r20/external/libaom/av1/common/arm/convolve_neon_i8mm.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2023, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <arm_neon.h>
13 
14 #include "config/aom_config.h"
15 #include "config/av1_rtcd.h"
16 
17 #include "aom_dsp/aom_dsp_common.h"
18 #include "aom_dsp/arm/mem_neon.h"
19 #include "aom_ports/mem.h"
20 #include "av1/common/arm/convolve_neon.h"
21 #include "av1/common/arm/convolve_neon_i8mm.h"
22 #include "av1/common/convolve.h"
23 #include "av1/common/filter.h"
24 
25 DECLARE_ALIGNED(16, static const uint8_t, kDotProdMergeBlockTbl[48]) = {
26   // Shift left and insert new last column in transposed 4x4 block.
27   1, 2, 3, 16, 5, 6, 7, 20, 9, 10, 11, 24, 13, 14, 15, 28,
28   // Shift left and insert two new columns in transposed 4x4 block.
29   2, 3, 16, 17, 6, 7, 20, 21, 10, 11, 24, 25, 14, 15, 28, 29,
30   // Shift left and insert three new columns in transposed 4x4 block.
31   3, 16, 17, 18, 7, 20, 21, 22, 11, 24, 25, 26, 15, 28, 29, 30
32 };
33 
convolve12_4_x(uint8x16_t samples[2],const int8x16_t filter[2],const uint8x16_t permute_tbl,const int32x4_t horiz_const)34 static inline int16x4_t convolve12_4_x(uint8x16_t samples[2],
35                                        const int8x16_t filter[2],
36                                        const uint8x16_t permute_tbl,
37                                        const int32x4_t horiz_const) {
38   // Permute samples ready for matrix multiply.
39   // {  0,  1,  2,  3,  4,  5,  6,  7,  2,  3,  4,  5,  6,  7,  8,  9 }
40   // {  4,  5,  6,  7,  8,  9, 10, 11,  6,  7,  8,  9, 10, 11, 12, 13 }
41   uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples[0], permute_tbl),
42                                  vqtbl1q_u8(samples[1], permute_tbl) };
43 
44   // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix
45   // (filter), destructively accumulating into the destination register.
46   int32x4_t sum = vusmmlaq_s32(horiz_const, perm_samples[0], filter[0]);
47   sum = vusmmlaq_s32(sum, perm_samples[1], filter[1]);
48 
49   return vqrshrn_n_s32(sum, FILTER_BITS);
50 }
51 
convolve12_8_x(uint8x16_t samples[2],const int8x16_t filter[2],const uint8x16x2_t permute_tbl,const int32x4_t horiz_const)52 static inline uint8x8_t convolve12_8_x(uint8x16_t samples[2],
53                                        const int8x16_t filter[2],
54                                        const uint8x16x2_t permute_tbl,
55                                        const int32x4_t horiz_const) {
56   // Permute samples ready for matrix multiply.
57   // {  0,  1,  2,  3,  4,  5,  6,  7,  2,  3,  4,  5,  6,  7,  8,  9 }
58   // {  4,  5,  6,  7,  8,  9, 10, 11,  6,  7,  8,  9, 10, 11, 12, 13 }
59   // {  6,  7,  8,  9, 10, 11, 12, 13,  8,  9, 10, 11, 12, 13, 14, 15 }
60   // { 10, 11, 12, 13, 14, 15, 16, 17, 12, 13, 14, 15, 16, 17, 18, 19 }
61   uint8x16_t perm_samples[4] = { vqtbl1q_u8(samples[0], permute_tbl.val[0]),
62                                  vqtbl1q_u8(samples[0], permute_tbl.val[1]),
63                                  vqtbl1q_u8(samples[1], permute_tbl.val[0]),
64                                  vqtbl1q_u8(samples[1], permute_tbl.val[1]) };
65 
66   // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix
67   // (filter), destructively accumulating into the destination register.
68   int32x4_t sum0123 = vusmmlaq_s32(horiz_const, perm_samples[0], filter[0]);
69   int32x4_t sum4567 = vusmmlaq_s32(horiz_const, perm_samples[1], filter[0]);
70   sum0123 = vusmmlaq_s32(sum0123, perm_samples[2], filter[1]);
71   sum4567 = vusmmlaq_s32(sum4567, perm_samples[3], filter[1]);
72 
73   // Narrow and re-pack.
74   int16x8_t sum_s16 = vcombine_s16(vqrshrn_n_s32(sum0123, FILTER_BITS),
75                                    vqrshrn_n_s32(sum4567, FILTER_BITS));
76   return vqmovun_s16(sum_s16);
77 }
78 
convolve_x_sr_12tap_neon_i8mm(const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,int w,int h,const int16_t * x_filter_ptr)79 static inline void convolve_x_sr_12tap_neon_i8mm(const uint8_t *src,
80                                                  int src_stride, uint8_t *dst,
81                                                  int dst_stride, int w, int h,
82                                                  const int16_t *x_filter_ptr) {
83   // The no-op filter should never be used here.
84   assert(x_filter_ptr[5] != 128);
85 
86   // Split 12-tap filter into two 6-tap filters, masking the top two elements.
87   // { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0 }
88   const int8x8_t mask = vcreate_s8(0x0000ffffffffffff);
89   const int8x8_t filter_0 = vand_s8(vmovn_s16(vld1q_s16(x_filter_ptr)), mask);
90   const int8x8_t filter_1 =
91       vext_s8(vmovn_s16(vld1q_s16(x_filter_ptr + 4)), vdup_n_s8(0), 2);
92 
93   // Stagger each 6-tap filter to enable use of matrix multiply instructions.
94   // { f0, f1, f2, f3, f4, f5,  0,  0,  0, f0, f1, f2, f3, f4, f5,  0 }
95   const int8x16_t filter[2] = {
96     vcombine_s8(filter_0, vext_s8(filter_0, filter_0, 7)),
97     vcombine_s8(filter_1, vext_s8(filter_1, filter_1, 7))
98   };
99 
100   // A shim of 1 << (ROUND0_BITS - 1) enables us to simplify computation in the
101   // convolution kernels: Adding this shim enables us to use a single rounding
102   // right shift by FILTER_BITS instead of two rounding right shifts: first by
103   // ROUND0_BITS, and then subsequently by FILTER_BITS - ROUND0_BITS.
104   const int32x4_t horiz_const = vdupq_n_s32(1 << (ROUND0_BITS - 1));
105 
106   if (w <= 4) {
107     const uint8x16_t permute_tbl = vld1q_u8(kMatMulPermuteTbl);
108 
109     do {
110       uint8x16_t s0[2], s1[2], s2[2], s3[2];
111       load_u8_16x4(src, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]);
112       load_u8_16x4(src + 6, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]);
113 
114       int16x4_t d0 = convolve12_4_x(s0, filter, permute_tbl, horiz_const);
115       int16x4_t d1 = convolve12_4_x(s1, filter, permute_tbl, horiz_const);
116       int16x4_t d2 = convolve12_4_x(s2, filter, permute_tbl, horiz_const);
117       int16x4_t d3 = convolve12_4_x(s3, filter, permute_tbl, horiz_const);
118 
119       uint8x8_t d01 = vqmovun_s16(vcombine_s16(d0, d1));
120       uint8x8_t d23 = vqmovun_s16(vcombine_s16(d2, d3));
121 
122       store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01);
123       store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23);
124 
125       dst += 4 * dst_stride;
126       src += 4 * src_stride;
127       h -= 4;
128     } while (h != 0);
129   } else {
130     const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMulPermuteTbl);
131 
132     do {
133       const uint8_t *s = src;
134       uint8_t *d = dst;
135       int width = w;
136 
137       do {
138         uint8x16_t s0[2], s1[2], s2[2], s3[2];
139         load_u8_16x4(s, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]);
140         load_u8_16x4(s + 6, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]);
141 
142         uint8x8_t d0 = convolve12_8_x(s0, filter, permute_tbl, horiz_const);
143         uint8x8_t d1 = convolve12_8_x(s1, filter, permute_tbl, horiz_const);
144         uint8x8_t d2 = convolve12_8_x(s2, filter, permute_tbl, horiz_const);
145         uint8x8_t d3 = convolve12_8_x(s3, filter, permute_tbl, horiz_const);
146 
147         store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
148 
149         s += 8;
150         d += 8;
151         width -= 8;
152       } while (width != 0);
153       src += 4 * src_stride;
154       dst += 4 * dst_stride;
155       h -= 4;
156     } while (h != 0);
157   }
158 }
159 
convolve8_8_x(uint8x16_t samples,const int8x8_t filter,const uint8x16x3_t permute_tbl,const int32x4_t horiz_const)160 static inline uint8x8_t convolve8_8_x(uint8x16_t samples, const int8x8_t filter,
161                                       const uint8x16x3_t permute_tbl,
162                                       const int32x4_t horiz_const) {
163   // Permute samples ready for dot product.
164   // { 0,  1,  2,  3,  1,  2,  3,  4,  2,  3,  4,  5,  3,  4,  5,  6 }
165   // { 4,  5,  6,  7,  5,  6,  7,  8,  6,  7,  8,  9,  7,  8,  9, 10 }
166   // { 8,  9, 10, 11,  9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
167   uint8x16_t perm_samples[3] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
168                                  vqtbl1q_u8(samples, permute_tbl.val[1]),
169                                  vqtbl1q_u8(samples, permute_tbl.val[2]) };
170 
171   int32x4_t sum0123 = vusdotq_lane_s32(horiz_const, perm_samples[0], filter, 0);
172   sum0123 = vusdotq_lane_s32(sum0123, perm_samples[1], filter, 1);
173 
174   int32x4_t sum4567 = vusdotq_lane_s32(horiz_const, perm_samples[1], filter, 0);
175   sum4567 = vusdotq_lane_s32(sum4567, perm_samples[2], filter, 1);
176 
177   int16x8_t sum_s16 = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567));
178   // We halved the convolution filter values so - 1 from the right shift.
179   return vqrshrun_n_s16(sum_s16, FILTER_BITS - 1);
180 }
181 
convolve_x_sr_8tap_neon_i8mm(const uint8_t * src,ptrdiff_t src_stride,uint8_t * dst,ptrdiff_t dst_stride,int width,int height,const int16_t * filter_x,const int32x4_t horiz_const)182 static inline void convolve_x_sr_8tap_neon_i8mm(
183     const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
184     ptrdiff_t dst_stride, int width, int height, const int16_t *filter_x,
185     const int32x4_t horiz_const) {
186   // Filter values are even, so halve to reduce intermediate precision reqs.
187   const int8x8_t x_filter = vshrn_n_s16(vld1q_s16(filter_x), 1);
188   const uint8x16x3_t permute_tbl = vld1q_u8_x3(kDotProdPermuteTbl);
189 
190   do {
191     const uint8_t *s = src;
192     uint8_t *d = dst;
193     int w = width;
194 
195     do {
196       uint8x16_t s0, s1, s2, s3;
197       load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
198 
199       uint8x8_t d0 = convolve8_8_x(s0, x_filter, permute_tbl, horiz_const);
200       uint8x8_t d1 = convolve8_8_x(s1, x_filter, permute_tbl, horiz_const);
201       uint8x8_t d2 = convolve8_8_x(s2, x_filter, permute_tbl, horiz_const);
202       uint8x8_t d3 = convolve8_8_x(s3, x_filter, permute_tbl, horiz_const);
203 
204       store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
205 
206       s += 8;
207       d += 8;
208       w -= 8;
209     } while (w != 0);
210     src += 4 * src_stride;
211     dst += 4 * dst_stride;
212     height -= 4;
213   } while (height != 0);
214 }
215 
convolve6_4_x(uint8x16_t samples,const int8x16_t filter,const uint8x16_t permute_tbl,const int32x4_t horiz_const)216 static inline int16x4_t convolve6_4_x(uint8x16_t samples,
217                                       const int8x16_t filter,
218                                       const uint8x16_t permute_tbl,
219                                       const int32x4_t horiz_const) {
220   // Permute samples ready for matrix multiply.
221   // { 0,  1,  2,  3,  4,  5,  6,  7,  2,  3,  4,  5,  6,  7,  8,  9 }
222   uint8x16_t perm_samples = vqtbl1q_u8(samples, permute_tbl);
223 
224   // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix
225   // (filter), destructively accumulating into the destination register.
226   int32x4_t sum = vusmmlaq_s32(horiz_const, perm_samples, filter);
227 
228   // Further narrowing and packing is performed by the caller.
229   return vmovn_s32(sum);
230 }
231 
convolve6_8_x(uint8x16_t samples,const int8x16_t filter,const uint8x16x2_t permute_tbl,const int32x4_t horiz_const)232 static inline uint8x8_t convolve6_8_x(uint8x16_t samples,
233                                       const int8x16_t filter,
234                                       const uint8x16x2_t permute_tbl,
235                                       const int32x4_t horiz_const) {
236   // Permute samples ready for matrix multiply.
237   // { 0,  1,  2,  3,  4,  5,  6,  7,  2,  3,  4,  5,  6,  7,  8,  9 }
238   // { 4,  5,  6,  7,  8,  9, 10, 11,  6,  7,  8,  9, 10, 11, 12, 13 }
239   uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
240                                  vqtbl1q_u8(samples, permute_tbl.val[1]) };
241 
242   // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix
243   // (filter), destructively accumulating into the destination register.
244   int32x4_t sum0123 = vusmmlaq_s32(horiz_const, perm_samples[0], filter);
245   int32x4_t sum4567 = vusmmlaq_s32(horiz_const, perm_samples[1], filter);
246 
247   int16x8_t sum = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567));
248   // We halved the convolution filter values so - 1 from the right shift.
249   return vqrshrun_n_s16(sum, FILTER_BITS - 1);
250 }
251 
convolve_x_sr_6tap_neon_i8mm(const uint8_t * src,ptrdiff_t src_stride,uint8_t * dst,ptrdiff_t dst_stride,int width,int height,const int16_t * filter_x,const int32x4_t horiz_const)252 static inline void convolve_x_sr_6tap_neon_i8mm(
253     const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
254     ptrdiff_t dst_stride, int width, int height, const int16_t *filter_x,
255     const int32x4_t horiz_const) {
256   // Filter values are even, so halve to reduce intermediate precision reqs.
257   const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(filter_x), 1);
258   // Stagger the filter for use with the matrix multiply instructions.
259   // { f0, f1, f2, f3, f4, f5,  0,  0,  0, f0, f1, f2, f3, f4, f5,  0 }
260   const int8x16_t x_filter =
261       vcombine_s8(vext_s8(x_filter_s8, x_filter_s8, 1), x_filter_s8);
262 
263   if (width == 4) {
264     const uint8x16_t permute_tbl = vld1q_u8(kMatMulPermuteTbl);
265     do {
266       uint8x16_t s0, s1, s2, s3;
267       load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3);
268 
269       int16x4_t t0 = convolve6_4_x(s0, x_filter, permute_tbl, horiz_const);
270       int16x4_t t1 = convolve6_4_x(s1, x_filter, permute_tbl, horiz_const);
271       int16x4_t t2 = convolve6_4_x(s2, x_filter, permute_tbl, horiz_const);
272       int16x4_t t3 = convolve6_4_x(s3, x_filter, permute_tbl, horiz_const);
273       // We halved the filter values so -1 from right shift.
274       uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(t0, t1), FILTER_BITS - 1);
275       uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(t2, t3), FILTER_BITS - 1);
276 
277       store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01);
278       store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23);
279 
280       src += 4 * src_stride;
281       dst += 4 * dst_stride;
282       height -= 4;
283     } while (height != 0);
284   } else {
285     const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMulPermuteTbl);
286     do {
287       const uint8_t *s = src;
288       uint8_t *d = dst;
289       int w = width;
290 
291       do {
292         uint8x16_t s0, s1, s2, s3;
293         load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
294 
295         uint8x8_t d0 = convolve6_8_x(s0, x_filter, permute_tbl, horiz_const);
296         uint8x8_t d1 = convolve6_8_x(s1, x_filter, permute_tbl, horiz_const);
297         uint8x8_t d2 = convolve6_8_x(s2, x_filter, permute_tbl, horiz_const);
298         uint8x8_t d3 = convolve6_8_x(s3, x_filter, permute_tbl, horiz_const);
299 
300         store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
301 
302         s += 8;
303         d += 8;
304         w -= 8;
305       } while (w != 0);
306       src += 4 * src_stride;
307       dst += 4 * dst_stride;
308       height -= 4;
309     } while (height != 0);
310   }
311 }
312 
av1_convolve_x_sr_neon_i8mm(const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,int w,int h,const InterpFilterParams * filter_params_x,const int subpel_x_qn,ConvolveParams * conv_params)313 void av1_convolve_x_sr_neon_i8mm(const uint8_t *src, int src_stride,
314                                  uint8_t *dst, int dst_stride, int w, int h,
315                                  const InterpFilterParams *filter_params_x,
316                                  const int subpel_x_qn,
317                                  ConvolveParams *conv_params) {
318   if (w == 2 || h == 2) {
319     av1_convolve_x_sr_c(src, src_stride, dst, dst_stride, w, h, filter_params_x,
320                         subpel_x_qn, conv_params);
321     return;
322   }
323 
324   const uint8_t horiz_offset = filter_params_x->taps / 2 - 1;
325   src -= horiz_offset;
326 
327   const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
328       filter_params_x, subpel_x_qn & SUBPEL_MASK);
329 
330   int filter_taps = get_filter_tap(filter_params_x, subpel_x_qn & SUBPEL_MASK);
331 
332   // A shim of 1 << (ROUND0_BITS - 1) enables us to simplify computation in the
333   // convolution kernels: Adding this shim enables us to use a single rounding
334   // right shift by FILTER_BITS instead of two rounding right shifts: first by
335   // ROUND0_BITS, and then subsequently by FILTER_BITS - ROUND0_BITS.
336   // Halve the total because we will halve the filter values.
337   const int32x4_t horiz_const = vdupq_n_s32((1 << ((ROUND0_BITS - 1)) / 2));
338 
339   if (filter_taps <= 6) {
340     convolve_x_sr_6tap_neon_i8mm(src + 1, src_stride, dst, dst_stride, w, h,
341                                  x_filter_ptr, horiz_const);
342     return;
343   }
344 
345   if (filter_taps > 8) {
346     convolve_x_sr_12tap_neon_i8mm(src, src_stride, dst, dst_stride, w, h,
347                                   x_filter_ptr);
348     return;
349   }
350 
351   convolve_x_sr_8tap_neon_i8mm(src, src_stride, dst, dst_stride, w, h,
352                                x_filter_ptr, horiz_const);
353 }
354 
transpose_concat_4x4(uint8x8_t a0,uint8x8_t a1,uint8x8_t a2,uint8x8_t a3,uint8x16_t * b)355 static inline void transpose_concat_4x4(uint8x8_t a0, uint8x8_t a1,
356                                         uint8x8_t a2, uint8x8_t a3,
357                                         uint8x16_t *b) {
358   // Transpose 8-bit elements and concatenate result rows as follows:
359   // a0: 00, 01, 02, 03, XX, XX, XX, XX
360   // a1: 10, 11, 12, 13, XX, XX, XX, XX
361   // a2: 20, 21, 22, 23, XX, XX, XX, XX
362   // a3: 30, 31, 32, 33, XX, XX, XX, XX
363   //
364   // b: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33
365 
366   uint8x16_t a0q = vcombine_u8(a0, vdup_n_u8(0));
367   uint8x16_t a1q = vcombine_u8(a1, vdup_n_u8(0));
368   uint8x16_t a2q = vcombine_u8(a2, vdup_n_u8(0));
369   uint8x16_t a3q = vcombine_u8(a3, vdup_n_u8(0));
370 
371   uint8x16_t a01 = vzipq_u8(a0q, a1q).val[0];
372   uint8x16_t a23 = vzipq_u8(a2q, a3q).val[0];
373 
374   uint16x8_t a0123 =
375       vzipq_u16(vreinterpretq_u16_u8(a01), vreinterpretq_u16_u8(a23)).val[0];
376 
377   *b = vreinterpretq_u8_u16(a0123);
378 }
379 
transpose_concat_8x4(uint8x8_t a0,uint8x8_t a1,uint8x8_t a2,uint8x8_t a3,uint8x16_t * b0,uint8x16_t * b1)380 static inline void transpose_concat_8x4(uint8x8_t a0, uint8x8_t a1,
381                                         uint8x8_t a2, uint8x8_t a3,
382                                         uint8x16_t *b0, uint8x16_t *b1) {
383   // Transpose 8-bit elements and concatenate result rows as follows:
384   // a0: 00, 01, 02, 03, 04, 05, 06, 07
385   // a1: 10, 11, 12, 13, 14, 15, 16, 17
386   // a2: 20, 21, 22, 23, 24, 25, 26, 27
387   // a3: 30, 31, 32, 33, 34, 35, 36, 37
388   //
389   // b0: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33
390   // b1: 04, 14, 24, 34, 05, 15, 25, 35, 06, 16, 26, 36, 07, 17, 27, 37
391 
392   uint8x16_t a0q = vcombine_u8(a0, vdup_n_u8(0));
393   uint8x16_t a1q = vcombine_u8(a1, vdup_n_u8(0));
394   uint8x16_t a2q = vcombine_u8(a2, vdup_n_u8(0));
395   uint8x16_t a3q = vcombine_u8(a3, vdup_n_u8(0));
396 
397   uint8x16_t a01 = vzipq_u8(a0q, a1q).val[0];
398   uint8x16_t a23 = vzipq_u8(a2q, a3q).val[0];
399 
400   uint16x8x2_t a0123 =
401       vzipq_u16(vreinterpretq_u16_u8(a01), vreinterpretq_u16_u8(a23));
402 
403   *b0 = vreinterpretq_u8_u16(a0123.val[0]);
404   *b1 = vreinterpretq_u8_u16(a0123.val[1]);
405 }
406 
convolve12_4_y(const uint8x16_t s0,const uint8x16_t s1,const uint8x16_t s2,const int8x8_t filters_0_7,const int8x8_t filters_4_11)407 static inline int16x4_t convolve12_4_y(const uint8x16_t s0, const uint8x16_t s1,
408                                        const uint8x16_t s2,
409                                        const int8x8_t filters_0_7,
410                                        const int8x8_t filters_4_11) {
411   int32x4_t sum = vusdotq_lane_s32(vdupq_n_s32(0), s0, filters_0_7, 0);
412   sum = vusdotq_lane_s32(sum, s1, filters_0_7, 1);
413   sum = vusdotq_lane_s32(sum, s2, filters_4_11, 1);
414 
415   // Further narrowing and packing is performed by the caller.
416   return vqmovn_s32(sum);
417 }
418 
convolve12_8_y(const uint8x16_t s0_lo,const uint8x16_t s0_hi,const uint8x16_t s1_lo,const uint8x16_t s1_hi,const uint8x16_t s2_lo,const uint8x16_t s2_hi,const int8x8_t filters_0_7,const int8x8_t filters_4_11)419 static inline uint8x8_t convolve12_8_y(
420     const uint8x16_t s0_lo, const uint8x16_t s0_hi, const uint8x16_t s1_lo,
421     const uint8x16_t s1_hi, const uint8x16_t s2_lo, const uint8x16_t s2_hi,
422     const int8x8_t filters_0_7, const int8x8_t filters_4_11) {
423   int32x4_t sum0123 = vusdotq_lane_s32(vdupq_n_s32(0), s0_lo, filters_0_7, 0);
424   sum0123 = vusdotq_lane_s32(sum0123, s1_lo, filters_0_7, 1);
425   sum0123 = vusdotq_lane_s32(sum0123, s2_lo, filters_4_11, 1);
426 
427   int32x4_t sum4567 = vusdotq_lane_s32(vdupq_n_s32(0), s0_hi, filters_0_7, 0);
428   sum4567 = vusdotq_lane_s32(sum4567, s1_hi, filters_0_7, 1);
429   sum4567 = vusdotq_lane_s32(sum4567, s2_hi, filters_4_11, 1);
430 
431   // Narrow and re-pack.
432   int16x8_t sum = vcombine_s16(vqmovn_s32(sum0123), vqmovn_s32(sum4567));
433   return vqrshrun_n_s16(sum, FILTER_BITS);
434 }
435 
convolve_y_sr_12tap_neon_i8mm(const uint8_t * src_ptr,int src_stride,uint8_t * dst_ptr,int dst_stride,int w,int h,const int16_t * y_filter_ptr)436 static inline void convolve_y_sr_12tap_neon_i8mm(const uint8_t *src_ptr,
437                                                  int src_stride,
438                                                  uint8_t *dst_ptr,
439                                                  int dst_stride, int w, int h,
440                                                  const int16_t *y_filter_ptr) {
441   // The no-op filter should never be used here.
442   assert(y_filter_ptr[5] != 128);
443 
444   const int8x8_t filter_0_7 = vmovn_s16(vld1q_s16(y_filter_ptr));
445   const int8x8_t filter_4_11 = vmovn_s16(vld1q_s16(y_filter_ptr + 4));
446 
447   const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl);
448 
449   if (w == 4) {
450     uint8x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, sA;
451     load_u8_8x11(src_ptr, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7,
452                  &s8, &s9, &sA);
453     src_ptr += 11 * src_stride;
454 
455     // This operation combines a conventional transpose and the sample permute
456     // (see horizontal case) required before computing the dot product.
457     uint8x16_t s0123, s1234, s2345, s3456, s4567, s5678, s6789, s789A;
458     transpose_concat_4x4(s0, s1, s2, s3, &s0123);
459     transpose_concat_4x4(s1, s2, s3, s4, &s1234);
460     transpose_concat_4x4(s2, s3, s4, s5, &s2345);
461     transpose_concat_4x4(s3, s4, s5, s6, &s3456);
462     transpose_concat_4x4(s4, s5, s6, s7, &s4567);
463     transpose_concat_4x4(s5, s6, s7, s8, &s5678);
464     transpose_concat_4x4(s6, s7, s8, s9, &s6789);
465     transpose_concat_4x4(s7, s8, s9, sA, &s789A);
466 
467     do {
468       uint8x8_t sB, sC, sD, sE;
469       load_u8_8x4(src_ptr, src_stride, &sB, &sC, &sD, &sE);
470 
471       uint8x16_t s89AB, s9ABC, sABCD, sBCDE;
472       transpose_concat_4x4(sB, sC, sD, sE, &sBCDE);
473 
474       // Merge new data into block from previous iteration.
475       uint8x16x2_t samples_LUT = { { s789A, sBCDE } };
476       s89AB = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
477       s9ABC = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
478       sABCD = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
479 
480       int16x4_t d0 =
481           convolve12_4_y(s0123, s4567, s89AB, filter_0_7, filter_4_11);
482       int16x4_t d1 =
483           convolve12_4_y(s1234, s5678, s9ABC, filter_0_7, filter_4_11);
484       int16x4_t d2 =
485           convolve12_4_y(s2345, s6789, sABCD, filter_0_7, filter_4_11);
486       int16x4_t d3 =
487           convolve12_4_y(s3456, s789A, sBCDE, filter_0_7, filter_4_11);
488       uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS);
489       uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS);
490 
491       store_u8x4_strided_x2(dst_ptr + 0 * dst_stride, dst_stride, d01);
492       store_u8x4_strided_x2(dst_ptr + 2 * dst_stride, dst_stride, d23);
493 
494       // Prepare block for next iteration - re-using as much as possible.
495       // Shuffle everything up four rows.
496       s0123 = s4567;
497       s1234 = s5678;
498       s2345 = s6789;
499       s3456 = s789A;
500       s4567 = s89AB;
501       s5678 = s9ABC;
502       s6789 = sABCD;
503       s789A = sBCDE;
504 
505       src_ptr += 4 * src_stride;
506       dst_ptr += 4 * dst_stride;
507       h -= 4;
508     } while (h != 0);
509   } else {
510     do {
511       int height = h;
512       const uint8_t *s = src_ptr;
513       uint8_t *d = dst_ptr;
514 
515       uint8x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, sA;
516       load_u8_8x11(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7, &s8,
517                    &s9, &sA);
518       s += 11 * src_stride;
519 
520       // This operation combines a conventional transpose and the sample
521       // permute (see horizontal case) required before computing the dot
522       // product.
523       uint8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi,
524           s3456_lo, s3456_hi, s4567_lo, s4567_hi, s5678_lo, s5678_hi, s6789_lo,
525           s6789_hi, s789A_lo, s789A_hi;
526       transpose_concat_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi);
527       transpose_concat_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi);
528       transpose_concat_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi);
529       transpose_concat_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi);
530       transpose_concat_8x4(s4, s5, s6, s7, &s4567_lo, &s4567_hi);
531       transpose_concat_8x4(s5, s6, s7, s8, &s5678_lo, &s5678_hi);
532       transpose_concat_8x4(s6, s7, s8, s9, &s6789_lo, &s6789_hi);
533       transpose_concat_8x4(s7, s8, s9, sA, &s789A_lo, &s789A_hi);
534 
535       do {
536         uint8x8_t sB, sC, sD, sE;
537         load_u8_8x4(s, src_stride, &sB, &sC, &sD, &sE);
538 
539         uint8x16_t s89AB_lo, s89AB_hi, s9ABC_lo, s9ABC_hi, sABCD_lo, sABCD_hi,
540             sBCDE_lo, sBCDE_hi;
541         transpose_concat_8x4(sB, sC, sD, sE, &sBCDE_lo, &sBCDE_hi);
542 
543         // Merge new data into block from previous iteration.
544         uint8x16x2_t samples_LUT_lo = { { s789A_lo, sBCDE_lo } };
545         s89AB_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[0]);
546         s9ABC_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[1]);
547         sABCD_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[2]);
548 
549         uint8x16x2_t samples_LUT_hi = { { s789A_hi, sBCDE_hi } };
550         s89AB_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[0]);
551         s9ABC_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[1]);
552         sABCD_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[2]);
553 
554         uint8x8_t d0 =
555             convolve12_8_y(s0123_lo, s0123_hi, s4567_lo, s4567_hi, s89AB_lo,
556                            s89AB_hi, filter_0_7, filter_4_11);
557         uint8x8_t d1 =
558             convolve12_8_y(s1234_lo, s1234_hi, s5678_lo, s5678_hi, s9ABC_lo,
559                            s9ABC_hi, filter_0_7, filter_4_11);
560         uint8x8_t d2 =
561             convolve12_8_y(s2345_lo, s2345_hi, s6789_lo, s6789_hi, sABCD_lo,
562                            sABCD_hi, filter_0_7, filter_4_11);
563         uint8x8_t d3 =
564             convolve12_8_y(s3456_lo, s3456_hi, s789A_lo, s789A_hi, sBCDE_lo,
565                            sBCDE_hi, filter_0_7, filter_4_11);
566 
567         store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
568 
569         // Prepare block for next iteration - re-using as much as possible.
570         // Shuffle everything up four rows.
571         s0123_lo = s4567_lo;
572         s0123_hi = s4567_hi;
573         s1234_lo = s5678_lo;
574         s1234_hi = s5678_hi;
575         s2345_lo = s6789_lo;
576         s2345_hi = s6789_hi;
577         s3456_lo = s789A_lo;
578         s3456_hi = s789A_hi;
579         s4567_lo = s89AB_lo;
580         s4567_hi = s89AB_hi;
581         s5678_lo = s9ABC_lo;
582         s5678_hi = s9ABC_hi;
583         s6789_lo = sABCD_lo;
584         s6789_hi = sABCD_hi;
585         s789A_lo = sBCDE_lo;
586         s789A_hi = sBCDE_hi;
587 
588         s += 4 * src_stride;
589         d += 4 * dst_stride;
590         height -= 4;
591       } while (height != 0);
592       src_ptr += 8;
593       dst_ptr += 8;
594       w -= 8;
595     } while (w != 0);
596   }
597 }
598 
convolve8_4_y(const uint8x16_t s0,const uint8x16_t s1,const int8x8_t filters)599 static inline int16x4_t convolve8_4_y(const uint8x16_t s0, const uint8x16_t s1,
600                                       const int8x8_t filters) {
601   int32x4_t sum = vusdotq_lane_s32(vdupq_n_s32(0), s0, filters, 0);
602   sum = vusdotq_lane_s32(sum, s1, filters, 1);
603 
604   // Further narrowing and packing is performed by the caller.
605   return vqmovn_s32(sum);
606 }
607 
convolve8_8_y(const uint8x16_t s0_lo,const uint8x16_t s0_hi,const uint8x16_t s1_lo,const uint8x16_t s1_hi,const int8x8_t filters)608 static inline uint8x8_t convolve8_8_y(const uint8x16_t s0_lo,
609                                       const uint8x16_t s0_hi,
610                                       const uint8x16_t s1_lo,
611                                       const uint8x16_t s1_hi,
612                                       const int8x8_t filters) {
613   int32x4_t sum0123 = vusdotq_lane_s32(vdupq_n_s32(0), s0_lo, filters, 0);
614   sum0123 = vusdotq_lane_s32(sum0123, s1_lo, filters, 1);
615 
616   int32x4_t sum4567 = vusdotq_lane_s32(vdupq_n_s32(0), s0_hi, filters, 0);
617   sum4567 = vusdotq_lane_s32(sum4567, s1_hi, filters, 1);
618 
619   // Narrow and re-pack.
620   int16x8_t sum = vcombine_s16(vqmovn_s32(sum0123), vqmovn_s32(sum4567));
621   return vqrshrun_n_s16(sum, FILTER_BITS);
622 }
623 
convolve_y_sr_8tap_neon_i8mm(const uint8_t * src_ptr,int src_stride,uint8_t * dst_ptr,int dst_stride,int w,int h,const int16_t * y_filter_ptr)624 static inline void convolve_y_sr_8tap_neon_i8mm(const uint8_t *src_ptr,
625                                                 int src_stride,
626                                                 uint8_t *dst_ptr,
627                                                 int dst_stride, int w, int h,
628                                                 const int16_t *y_filter_ptr) {
629   const int8x8_t filter = vmovn_s16(vld1q_s16(y_filter_ptr));
630 
631   const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl);
632 
633   if (w == 4) {
634     uint8x8_t s0, s1, s2, s3, s4, s5, s6;
635     load_u8_8x7(src_ptr, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
636     src_ptr += 7 * src_stride;
637 
638     // This operation combines a conventional transpose and the sample permute
639     // (see horizontal case) required before computing the dot product.
640     uint8x16_t s0123, s1234, s2345, s3456;
641     transpose_concat_4x4(s0, s1, s2, s3, &s0123);
642     transpose_concat_4x4(s1, s2, s3, s4, &s1234);
643     transpose_concat_4x4(s2, s3, s4, s5, &s2345);
644     transpose_concat_4x4(s3, s4, s5, s6, &s3456);
645 
646     do {
647       uint8x8_t s7, s8, s9, s10;
648       load_u8_8x4(src_ptr, src_stride, &s7, &s8, &s9, &s10);
649 
650       uint8x16_t s4567, s5678, s6789, s78910;
651       transpose_concat_4x4(s7, s8, s9, s10, &s78910);
652 
653       // Merge new data into block from previous iteration.
654       uint8x16x2_t samples_LUT = { { s3456, s78910 } };
655       s4567 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
656       s5678 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
657       s6789 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
658 
659       int16x4_t d0 = convolve8_4_y(s0123, s4567, filter);
660       int16x4_t d1 = convolve8_4_y(s1234, s5678, filter);
661       int16x4_t d2 = convolve8_4_y(s2345, s6789, filter);
662       int16x4_t d3 = convolve8_4_y(s3456, s78910, filter);
663       uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS);
664       uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS);
665 
666       store_u8x4_strided_x2(dst_ptr + 0 * dst_stride, dst_stride, d01);
667       store_u8x4_strided_x2(dst_ptr + 2 * dst_stride, dst_stride, d23);
668 
669       // Prepare block for next iteration - re-using as much as possible.
670       // Shuffle everything up four rows.
671       s0123 = s4567;
672       s1234 = s5678;
673       s2345 = s6789;
674       s3456 = s78910;
675 
676       src_ptr += 4 * src_stride;
677       dst_ptr += 4 * dst_stride;
678       h -= 4;
679     } while (h != 0);
680   } else {
681     do {
682       int height = h;
683       const uint8_t *s = src_ptr;
684       uint8_t *d = dst_ptr;
685 
686       uint8x8_t s0, s1, s2, s3, s4, s5, s6;
687       load_u8_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
688       s += 7 * src_stride;
689 
690       // This operation combines a conventional transpose and the sample
691       // permute (see horizontal case) required before computing the dot
692       // product.
693       uint8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi,
694           s3456_lo, s3456_hi;
695       transpose_concat_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi);
696       transpose_concat_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi);
697       transpose_concat_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi);
698       transpose_concat_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi);
699 
700       do {
701         uint8x8_t s7, s8, s9, s10;
702         load_u8_8x4(s, src_stride, &s7, &s8, &s9, &s10);
703 
704         uint8x16_t s4567_lo, s4567_hi, s5678_lo, s5678_hi, s6789_lo, s6789_hi,
705             s78910_lo, s78910_hi;
706         transpose_concat_8x4(s7, s8, s9, s10, &s78910_lo, &s78910_hi);
707 
708         // Merge new data into block from previous iteration.
709         uint8x16x2_t samples_LUT_lo = { { s3456_lo, s78910_lo } };
710         s4567_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[0]);
711         s5678_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[1]);
712         s6789_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[2]);
713 
714         uint8x16x2_t samples_LUT_hi = { { s3456_hi, s78910_hi } };
715         s4567_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[0]);
716         s5678_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[1]);
717         s6789_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[2]);
718 
719         uint8x8_t d0 =
720             convolve8_8_y(s0123_lo, s0123_hi, s4567_lo, s4567_hi, filter);
721         uint8x8_t d1 =
722             convolve8_8_y(s1234_lo, s1234_hi, s5678_lo, s5678_hi, filter);
723         uint8x8_t d2 =
724             convolve8_8_y(s2345_lo, s2345_hi, s6789_lo, s6789_hi, filter);
725         uint8x8_t d3 =
726             convolve8_8_y(s3456_lo, s3456_hi, s78910_lo, s78910_hi, filter);
727 
728         store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
729 
730         // Prepare block for next iteration - re-using as much as possible.
731         // Shuffle everything up four rows.
732         s0123_lo = s4567_lo;
733         s0123_hi = s4567_hi;
734         s1234_lo = s5678_lo;
735         s1234_hi = s5678_hi;
736         s2345_lo = s6789_lo;
737         s2345_hi = s6789_hi;
738         s3456_lo = s78910_lo;
739         s3456_hi = s78910_hi;
740 
741         s += 4 * src_stride;
742         d += 4 * dst_stride;
743         height -= 4;
744       } while (height != 0);
745       src_ptr += 8;
746       dst_ptr += 8;
747       w -= 8;
748     } while (w != 0);
749   }
750 }
751 
av1_convolve_y_sr_neon_i8mm(const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,int w,int h,const InterpFilterParams * filter_params_y,const int subpel_y_qn)752 void av1_convolve_y_sr_neon_i8mm(const uint8_t *src, int src_stride,
753                                  uint8_t *dst, int dst_stride, int w, int h,
754                                  const InterpFilterParams *filter_params_y,
755                                  const int subpel_y_qn) {
756   if (w == 2 || h == 2) {
757     av1_convolve_y_sr_c(src, src_stride, dst, dst_stride, w, h, filter_params_y,
758                         subpel_y_qn);
759     return;
760   }
761 
762   const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn);
763 
764   if (y_filter_taps <= 6) {
765     av1_convolve_y_sr_neon(src, src_stride, dst, dst_stride, w, h,
766                            filter_params_y, subpel_y_qn);
767     return;
768   }
769 
770   const int vert_offset = y_filter_taps / 2 - 1;
771   src -= vert_offset * src_stride;
772 
773   const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel(
774       filter_params_y, subpel_y_qn & SUBPEL_MASK);
775 
776   if (y_filter_taps > 8) {
777     convolve_y_sr_12tap_neon_i8mm(src, src_stride, dst, dst_stride, w, h,
778                                   y_filter_ptr);
779     return;
780   }
781   convolve_y_sr_8tap_neon_i8mm(src, src_stride, dst, dst_stride, w, h,
782                                y_filter_ptr);
783 }
784 
convolve8_8_2d_h(uint8x16_t samples,const int8x8_t filters,const uint8x16x3_t permute_tbl,const int32x4_t horiz_const)785 static inline int16x8_t convolve8_8_2d_h(uint8x16_t samples,
786                                          const int8x8_t filters,
787                                          const uint8x16x3_t permute_tbl,
788                                          const int32x4_t horiz_const) {
789   // Permute samples ready for dot product.
790   // { 0,  1,  2,  3,  1,  2,  3,  4,  2,  3,  4,  5,  3,  4,  5,  6 }
791   // { 4,  5,  6,  7,  5,  6,  7,  8,  6,  7,  8,  9,  7,  8,  9, 10 }
792   // { 8,  9, 10, 11,  9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
793   uint8x16_t perm_samples[3] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
794                                  vqtbl1q_u8(samples, permute_tbl.val[1]),
795                                  vqtbl1q_u8(samples, permute_tbl.val[2]) };
796 
797   int32x4_t sum0123 =
798       vusdotq_lane_s32(horiz_const, perm_samples[0], filters, 0);
799   sum0123 = vusdotq_lane_s32(sum0123, perm_samples[1], filters, 1);
800 
801   int32x4_t sum4567 =
802       vusdotq_lane_s32(horiz_const, perm_samples[1], filters, 0);
803   sum4567 = vusdotq_lane_s32(sum4567, perm_samples[2], filters, 1);
804 
805   // Narrow and re-pack.
806   // We halved the convolution filter values so -1 from the right shift.
807   return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1),
808                       vshrn_n_s32(sum4567, ROUND0_BITS - 1));
809 }
810 
convolve_2d_sr_horiz_8tap_neon_i8mm(const uint8_t * src,int src_stride,int16_t * im_block,int im_stride,int w,int im_h,const int16_t * x_filter_ptr)811 static inline void convolve_2d_sr_horiz_8tap_neon_i8mm(
812     const uint8_t *src, int src_stride, int16_t *im_block, int im_stride, int w,
813     int im_h, const int16_t *x_filter_ptr) {
814   // Filter values are even, so halve to reduce intermediate precision reqs.
815   const int8x8_t x_filter = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1);
816 
817   const int bd = 8;
818   // This shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding
819   // shifts - which are generally faster than rounding shifts on modern CPUs.
820   // The outermost -1 is needed because we halved the filter values.
821   const int32x4_t horiz_const = vdupq_n_s32((1 << (bd + FILTER_BITS - 2)) +
822                                             (1 << ((ROUND0_BITS - 1) - 1)));
823 
824   const uint8_t *src_ptr = src;
825   int16_t *dst_ptr = im_block;
826   int dst_stride = im_stride;
827   int height = im_h;
828 
829   const uint8x16x3_t permute_tbl = vld1q_u8_x3(kDotProdPermuteTbl);
830   do {
831     const uint8_t *s = src_ptr;
832     int16_t *d = dst_ptr;
833     int width = w;
834 
835     do {
836       uint8x16_t s0, s1, s2, s3;
837       load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
838 
839       int16x8_t d0 = convolve8_8_2d_h(s0, x_filter, permute_tbl, horiz_const);
840       int16x8_t d1 = convolve8_8_2d_h(s1, x_filter, permute_tbl, horiz_const);
841       int16x8_t d2 = convolve8_8_2d_h(s2, x_filter, permute_tbl, horiz_const);
842       int16x8_t d3 = convolve8_8_2d_h(s3, x_filter, permute_tbl, horiz_const);
843 
844       store_s16_8x4(d, dst_stride, d0, d1, d2, d3);
845 
846       s += 8;
847       d += 8;
848       width -= 8;
849     } while (width != 0);
850     src_ptr += 4 * src_stride;
851     dst_ptr += 4 * dst_stride;
852     height -= 4;
853   } while (height > 4);
854 
855   do {
856     const uint8_t *s = src_ptr;
857     int16_t *d = dst_ptr;
858     int width = w;
859 
860     do {
861       uint8x16_t s0 = vld1q_u8(s);
862       int16x8_t d0 = convolve8_8_2d_h(s0, x_filter, permute_tbl, horiz_const);
863       vst1q_s16(d, d0);
864 
865       s += 8;
866       d += 8;
867       width -= 8;
868     } while (width != 0);
869     src_ptr += src_stride;
870     dst_ptr += dst_stride;
871   } while (--height != 0);
872 }
873 
convolve4_4_2d_h(const uint8x16_t samples,const int8x8_t filters,const uint8x16_t permute_tbl,const int32x4_t horiz_const)874 static inline int16x4_t convolve4_4_2d_h(const uint8x16_t samples,
875                                          const int8x8_t filters,
876                                          const uint8x16_t permute_tbl,
877                                          const int32x4_t horiz_const) {
878   // Permute samples ready for dot product.
879   // { 0,  1,  2,  3,  1,  2,  3,  4,  2,  3,  4,  5,  3,  4,  5,  6 }
880   uint8x16_t perm_samples = vqtbl1q_u8(samples, permute_tbl);
881 
882   int32x4_t sum = vusdotq_lane_s32(horiz_const, perm_samples, filters, 0);
883 
884   // We halved the convolution filter values so -1 from the right shift.
885   return vshrn_n_s32(sum, ROUND0_BITS - 1);
886 }
887 
convolve4_8_2d_h(const uint8x16_t samples,const int8x8_t filters,const uint8x16x2_t permute_tbl,const int32x4_t horiz_const)888 static inline int16x8_t convolve4_8_2d_h(const uint8x16_t samples,
889                                          const int8x8_t filters,
890                                          const uint8x16x2_t permute_tbl,
891                                          const int32x4_t horiz_const) {
892   // Permute samples ready for dot product.
893   // { 0,  1,  2,  3,  1,  2,  3,  4,  2,  3,  4,  5,  3,  4,  5,  6 }
894   // { 4,  5,  6,  7,  5,  6,  7,  8,  6,  7,  8,  9,  7,  8,  9, 10 }
895   uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
896                                  vqtbl1q_u8(samples, permute_tbl.val[1]) };
897 
898   int32x4_t sum0123 =
899       vusdotq_lane_s32(horiz_const, perm_samples[0], filters, 0);
900   int32x4_t sum4567 =
901       vusdotq_lane_s32(horiz_const, perm_samples[1], filters, 0);
902 
903   // Narrow and re-pack.
904   // We halved the filter values so -1 from right shift.
905   return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1),
906                       vshrn_n_s32(sum4567, ROUND0_BITS - 1));
907 }
908 
convolve_2d_sr_horiz_4tap_neon_i8mm(const uint8_t * src,int src_stride,int16_t * dst,int dst_stride,int width,int height,const int16_t * filter_x)909 static inline void convolve_2d_sr_horiz_4tap_neon_i8mm(
910     const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int width,
911     int height, const int16_t *filter_x) {
912   const int bd = 8;
913   const int16x4_t x_filter = vld1_s16(filter_x + 2);
914   // All 4-tap and bilinear filter values are even, so halve them to reduce
915   // intermediate precision requirements.
916   const int8x8_t filter = vshrn_n_s16(vcombine_s16(x_filter, vdup_n_s16(0)), 1);
917 
918   // Adding a shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding
919   // shifts - which are generally faster than rounding shifts on modern CPUs.
920   // Halve the total because we halved the filter values.
921   const int32x4_t horiz_const = vdupq_n_s32(
922       (((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))) / 2));
923 
924   if (width == 4) {
925     const uint8x16_t perm_tbl = vld1q_u8(kDotProdPermuteTbl);
926     do {
927       uint8x16_t s0, s1, s2, s3;
928       load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3);
929 
930       int16x4_t d0 = convolve4_4_2d_h(s0, filter, perm_tbl, horiz_const);
931       int16x4_t d1 = convolve4_4_2d_h(s1, filter, perm_tbl, horiz_const);
932       int16x4_t d2 = convolve4_4_2d_h(s2, filter, perm_tbl, horiz_const);
933       int16x4_t d3 = convolve4_4_2d_h(s3, filter, perm_tbl, horiz_const);
934 
935       store_s16_4x4(dst, dst_stride, d0, d1, d2, d3);
936 
937       src += 4 * src_stride;
938       dst += 4 * dst_stride;
939       height -= 4;
940     } while (height > 4);
941 
942     do {
943       uint8x16_t s0 = vld1q_u8(src);
944       int16x4_t d0 = convolve4_4_2d_h(s0, filter, perm_tbl, horiz_const);
945       vst1_s16(dst, d0);
946 
947       src += src_stride;
948       dst += dst_stride;
949     } while (--height != 0);
950   } else {
951     const uint8x16x2_t perm_tbl = vld1q_u8_x2(kDotProdPermuteTbl);
952     do {
953       int w = width;
954       const uint8_t *s = src;
955       int16_t *d = dst;
956 
957       do {
958         uint8x16_t s0, s1, s2, s3;
959         load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
960 
961         int16x8_t d0 = convolve4_8_2d_h(s0, filter, perm_tbl, horiz_const);
962         int16x8_t d1 = convolve4_8_2d_h(s1, filter, perm_tbl, horiz_const);
963         int16x8_t d2 = convolve4_8_2d_h(s2, filter, perm_tbl, horiz_const);
964         int16x8_t d3 = convolve4_8_2d_h(s3, filter, perm_tbl, horiz_const);
965 
966         store_s16_8x4(d, dst_stride, d0, d1, d2, d3);
967 
968         s += 8;
969         d += 8;
970         w -= 8;
971       } while (w != 0);
972       src += 4 * src_stride;
973       dst += 4 * dst_stride;
974       height -= 4;
975     } while (height > 4);
976 
977     do {
978       const uint8_t *s = src;
979       int16_t *d = dst;
980       int w = width;
981 
982       do {
983         uint8x16_t s0 = vld1q_u8(s);
984         int16x8_t d0 = convolve4_8_2d_h(s0, filter, perm_tbl, horiz_const);
985         vst1q_s16(d, d0);
986 
987         s += 8;
988         d += 8;
989         w -= 8;
990       } while (w != 0);
991       src += src_stride;
992       dst += dst_stride;
993     } while (--height != 0);
994   }
995 }
996 
convolve6_4_2d_h(uint8x16_t samples,const int8x16_t filter,const uint8x16_t permute_tbl,const int32x4_t horiz_const)997 static inline int16x4_t convolve6_4_2d_h(uint8x16_t samples,
998                                          const int8x16_t filter,
999                                          const uint8x16_t permute_tbl,
1000                                          const int32x4_t horiz_const) {
1001   // Permute samples ready for matrix multiply.
1002   // { 0,  1,  2,  3,  4,  5,  6,  7,  2,  3,  4,  5,  6,  7,  8,  9 }
1003   uint8x16_t perm_samples = vqtbl1q_u8(samples, permute_tbl);
1004 
1005   // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix
1006   // (filter), destructively accumulating into the destination register.
1007   int32x4_t sum = vusmmlaq_s32(horiz_const, perm_samples, filter);
1008 
1009   // We halved the convolution filter values so -1 from the right shift.
1010   return vshrn_n_s32(sum, ROUND0_BITS - 1);
1011 }
1012 
convolve6_8_2d_h(uint8x16_t samples,const int8x16_t filter,const uint8x16x2_t permute_tbl,const int32x4_t horiz_const)1013 static inline int16x8_t convolve6_8_2d_h(uint8x16_t samples,
1014                                          const int8x16_t filter,
1015                                          const uint8x16x2_t permute_tbl,
1016                                          const int32x4_t horiz_const) {
1017   // Permute samples ready for matrix multiply.
1018   // { 0,  1,  2,  3,  4,  5,  6,  7,  2,  3,  4,  5,  6,  7,  8,  9 }
1019   // { 4,  5,  6,  7,  8,  9, 10, 11,  6,  7,  8,  9, 10, 11, 12, 13 }
1020   uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
1021                                  vqtbl1q_u8(samples, permute_tbl.val[1]) };
1022 
1023   // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix
1024   // (filter), destructively accumulating into the destination register.
1025   int32x4_t sum0123 = vusmmlaq_s32(horiz_const, perm_samples[0], filter);
1026   int32x4_t sum4567 = vusmmlaq_s32(horiz_const, perm_samples[1], filter);
1027 
1028   // Narrow and re-pack.
1029   // We halved the convolution filter values so -1 from the right shift.
1030   return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1),
1031                       vshrn_n_s32(sum4567, ROUND0_BITS - 1));
1032 }
1033 
convolve_2d_sr_6tap_neon_i8mm(const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,int w,int h,const int16_t * x_filter_ptr,const int16_t * y_filter_ptr)1034 static inline void convolve_2d_sr_6tap_neon_i8mm(const uint8_t *src,
1035                                                  int src_stride, uint8_t *dst,
1036                                                  int dst_stride, int w, int h,
1037                                                  const int16_t *x_filter_ptr,
1038                                                  const int16_t *y_filter_ptr) {
1039   const int16x8_t y_filter = vld1q_s16(y_filter_ptr);
1040   // Filter values are even, so halve to reduce intermediate precision reqs.
1041   const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1);
1042   // Stagger the filter for use with the matrix multiply instructions.
1043   // { f0, f1, f2, f3, f4, f5,  0,  0,  0, f0, f1, f2, f3, f4, f5,  0 }
1044   const int8x16_t x_filter =
1045       vcombine_s8(vext_s8(x_filter_s8, x_filter_s8, 1), x_filter_s8);
1046 
1047   const int bd = 8;
1048   // This shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding
1049   // shifts in convolution kernels - which are generally faster than rounding
1050   // shifts on modern CPUs. The outermost -1 is needed because we halved the
1051   // filter values.
1052   const int32x4_t horiz_const = vdupq_n_s32((1 << (bd + FILTER_BITS - 2)) +
1053                                             (1 << ((ROUND0_BITS - 1) - 1)));
1054   const int16x8_t vert_const = vdupq_n_s16(1 << (bd - 1));
1055   const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMulPermuteTbl);
1056 
1057   do {
1058     const uint8_t *s = src;
1059     uint8_t *d = dst;
1060     int height = h;
1061 
1062     uint8x16_t h_s0, h_s1, h_s2, h_s3, h_s4;
1063     load_u8_16x5(s, src_stride, &h_s0, &h_s1, &h_s2, &h_s3, &h_s4);
1064     s += 5 * src_stride;
1065 
1066     int16x8_t v_s0 = convolve6_8_2d_h(h_s0, x_filter, permute_tbl, horiz_const);
1067     int16x8_t v_s1 = convolve6_8_2d_h(h_s1, x_filter, permute_tbl, horiz_const);
1068     int16x8_t v_s2 = convolve6_8_2d_h(h_s2, x_filter, permute_tbl, horiz_const);
1069     int16x8_t v_s3 = convolve6_8_2d_h(h_s3, x_filter, permute_tbl, horiz_const);
1070     int16x8_t v_s4 = convolve6_8_2d_h(h_s4, x_filter, permute_tbl, horiz_const);
1071 
1072     do {
1073       uint8x16_t h_s5, h_s6, h_s7, h_s8;
1074       load_u8_16x4(s, src_stride, &h_s5, &h_s6, &h_s7, &h_s8);
1075 
1076       int16x8_t v_s5 =
1077           convolve6_8_2d_h(h_s5, x_filter, permute_tbl, horiz_const);
1078       int16x8_t v_s6 =
1079           convolve6_8_2d_h(h_s6, x_filter, permute_tbl, horiz_const);
1080       int16x8_t v_s7 =
1081           convolve6_8_2d_h(h_s7, x_filter, permute_tbl, horiz_const);
1082       int16x8_t v_s8 =
1083           convolve6_8_2d_h(h_s8, x_filter, permute_tbl, horiz_const);
1084 
1085       uint8x8_t d0 = convolve6_8_2d_v(v_s0, v_s1, v_s2, v_s3, v_s4, v_s5,
1086                                       y_filter, vert_const);
1087       uint8x8_t d1 = convolve6_8_2d_v(v_s1, v_s2, v_s3, v_s4, v_s5, v_s6,
1088                                       y_filter, vert_const);
1089       uint8x8_t d2 = convolve6_8_2d_v(v_s2, v_s3, v_s4, v_s5, v_s6, v_s7,
1090                                       y_filter, vert_const);
1091       uint8x8_t d3 = convolve6_8_2d_v(v_s3, v_s4, v_s5, v_s6, v_s7, v_s8,
1092                                       y_filter, vert_const);
1093 
1094       store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
1095 
1096       v_s0 = v_s4;
1097       v_s1 = v_s5;
1098       v_s2 = v_s6;
1099       v_s3 = v_s7;
1100       v_s4 = v_s8;
1101 
1102       s += 4 * src_stride;
1103       d += 4 * dst_stride;
1104       height -= 4;
1105     } while (height != 0);
1106     src += 8;
1107     dst += 8;
1108     w -= 8;
1109   } while (w != 0);
1110 }
1111 
convolve_2d_sr_6tap_4tap_neon_i8mm(const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,int w,int h,const int16_t * x_filter_ptr,const int16_t * y_filter_ptr)1112 static inline void convolve_2d_sr_6tap_4tap_neon_i8mm(
1113     const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w,
1114     int h, const int16_t *x_filter_ptr, const int16_t *y_filter_ptr) {
1115   const int16x4_t y_filter = vld1_s16(y_filter_ptr + 2);
1116   // Filter values are even, so halve to reduce intermediate precision reqs.
1117   const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1);
1118   // Stagger the filter for use with the matrix multiply instructions.
1119   // { f0, f1, f2, f3, f4, f5,  0,  0,  0, f0, f1, f2, f3, f4, f5,  0 }
1120   const int8x16_t x_filter =
1121       vcombine_s8(vext_s8(x_filter_s8, x_filter_s8, 1), x_filter_s8);
1122 
1123   const int bd = 8;
1124   // Adding a shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding
1125   // shifts - which are generally faster than rounding shifts on modern CPUs.
1126   // Halve the total because we halved the filter values.
1127   const int32x4_t horiz_const = vdupq_n_s32(
1128       ((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))) / 2);
1129   const int16x8_t vert_const = vdupq_n_s16(1 << (bd - 1));
1130 
1131   if (w == 4) {
1132     const uint8x16_t permute_tbl = vld1q_u8(kMatMulPermuteTbl);
1133     uint8x16_t h_s0, h_s1, h_s2;
1134     load_u8_16x3(src, src_stride, &h_s0, &h_s1, &h_s2);
1135 
1136     int16x4_t v_s0 = convolve6_4_2d_h(h_s0, x_filter, permute_tbl, horiz_const);
1137     int16x4_t v_s1 = convolve6_4_2d_h(h_s1, x_filter, permute_tbl, horiz_const);
1138     int16x4_t v_s2 = convolve6_4_2d_h(h_s2, x_filter, permute_tbl, horiz_const);
1139 
1140     src += 3 * src_stride;
1141 
1142     do {
1143       uint8x16_t h_s3, h_s4, h_s5, h_s6;
1144       load_u8_16x4(src, src_stride, &h_s3, &h_s4, &h_s5, &h_s6);
1145 
1146       int16x4_t v_s3 =
1147           convolve6_4_2d_h(h_s3, x_filter, permute_tbl, horiz_const);
1148       int16x4_t v_s4 =
1149           convolve6_4_2d_h(h_s4, x_filter, permute_tbl, horiz_const);
1150       int16x4_t v_s5 =
1151           convolve6_4_2d_h(h_s5, x_filter, permute_tbl, horiz_const);
1152       int16x4_t v_s6 =
1153           convolve6_4_2d_h(h_s6, x_filter, permute_tbl, horiz_const);
1154 
1155       int16x4_t d0 = convolve4_4_2d_v(v_s0, v_s1, v_s2, v_s3, y_filter);
1156       int16x4_t d1 = convolve4_4_2d_v(v_s1, v_s2, v_s3, v_s4, y_filter);
1157       int16x4_t d2 = convolve4_4_2d_v(v_s2, v_s3, v_s4, v_s5, y_filter);
1158       int16x4_t d3 = convolve4_4_2d_v(v_s3, v_s4, v_s5, v_s6, y_filter);
1159 
1160       uint8x8_t d01 = vqmovun_s16(vsubq_s16(vcombine_s16(d0, d1), vert_const));
1161       uint8x8_t d23 = vqmovun_s16(vsubq_s16(vcombine_s16(d2, d3), vert_const));
1162 
1163       store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01);
1164       store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23);
1165 
1166       v_s0 = v_s4;
1167       v_s1 = v_s5;
1168       v_s2 = v_s6;
1169 
1170       src += 4 * src_stride;
1171       dst += 4 * dst_stride;
1172       h -= 4;
1173     } while (h != 0);
1174   } else {
1175     const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMulPermuteTbl);
1176 
1177     do {
1178       int height = h;
1179       const uint8_t *s = src;
1180       uint8_t *d = dst;
1181 
1182       uint8x16_t h_s0, h_s1, h_s2;
1183       load_u8_16x3(src, src_stride, &h_s0, &h_s1, &h_s2);
1184 
1185       int16x8_t v_s0 =
1186           convolve6_8_2d_h(h_s0, x_filter, permute_tbl, horiz_const);
1187       int16x8_t v_s1 =
1188           convolve6_8_2d_h(h_s1, x_filter, permute_tbl, horiz_const);
1189       int16x8_t v_s2 =
1190           convolve6_8_2d_h(h_s2, x_filter, permute_tbl, horiz_const);
1191 
1192       s += 3 * src_stride;
1193 
1194       do {
1195         uint8x16_t h_s3, h_s4, h_s5, h_s6;
1196         load_u8_16x4(s, src_stride, &h_s3, &h_s4, &h_s5, &h_s6);
1197 
1198         int16x8_t v_s3 =
1199             convolve6_8_2d_h(h_s3, x_filter, permute_tbl, horiz_const);
1200         int16x8_t v_s4 =
1201             convolve6_8_2d_h(h_s4, x_filter, permute_tbl, horiz_const);
1202         int16x8_t v_s5 =
1203             convolve6_8_2d_h(h_s5, x_filter, permute_tbl, horiz_const);
1204         int16x8_t v_s6 =
1205             convolve6_8_2d_h(h_s6, x_filter, permute_tbl, horiz_const);
1206 
1207         uint8x8_t d0 =
1208             convolve4_8_2d_v(v_s0, v_s1, v_s2, v_s3, y_filter, vert_const);
1209         uint8x8_t d1 =
1210             convolve4_8_2d_v(v_s1, v_s2, v_s3, v_s4, y_filter, vert_const);
1211         uint8x8_t d2 =
1212             convolve4_8_2d_v(v_s2, v_s3, v_s4, v_s5, y_filter, vert_const);
1213         uint8x8_t d3 =
1214             convolve4_8_2d_v(v_s3, v_s4, v_s5, v_s6, y_filter, vert_const);
1215 
1216         store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
1217 
1218         v_s0 = v_s4;
1219         v_s1 = v_s5;
1220         v_s2 = v_s6;
1221 
1222         s += 4 * src_stride;
1223         d += 4 * dst_stride;
1224         height -= 4;
1225       } while (height != 0);
1226       src += 8;
1227       dst += 8;
1228       w -= 8;
1229     } while (w != 0);
1230   }
1231 }
1232 
av1_convolve_2d_sr_neon_i8mm(const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,int w,int h,const InterpFilterParams * filter_params_x,const InterpFilterParams * filter_params_y,const int subpel_x_qn,const int subpel_y_qn,ConvolveParams * conv_params)1233 void av1_convolve_2d_sr_neon_i8mm(const uint8_t *src, int src_stride,
1234                                   uint8_t *dst, int dst_stride, int w, int h,
1235                                   const InterpFilterParams *filter_params_x,
1236                                   const InterpFilterParams *filter_params_y,
1237                                   const int subpel_x_qn, const int subpel_y_qn,
1238                                   ConvolveParams *conv_params) {
1239   if (w == 2 || h == 2) {
1240     av1_convolve_2d_sr_c(src, src_stride, dst, dst_stride, w, h,
1241                          filter_params_x, filter_params_y, subpel_x_qn,
1242                          subpel_y_qn, conv_params);
1243     return;
1244   }
1245 
1246   const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn);
1247   const int x_filter_taps = get_filter_tap(filter_params_x, subpel_x_qn);
1248   const int clamped_y_taps = y_filter_taps < 4 ? 4 : y_filter_taps;
1249   const int im_h = h + clamped_y_taps - 1;
1250   const int im_stride = MAX_SB_SIZE;
1251   const int vert_offset = clamped_y_taps / 2 - 1;
1252   const int horiz_offset = filter_params_x->taps / 2 - 1;
1253   const uint8_t *src_ptr = src - vert_offset * src_stride - horiz_offset;
1254 
1255   const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
1256       filter_params_x, subpel_x_qn & SUBPEL_MASK);
1257   const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel(
1258       filter_params_y, subpel_y_qn & SUBPEL_MASK);
1259 
1260   if (filter_params_x->taps > 8) {
1261     DECLARE_ALIGNED(16, int16_t,
1262                     im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE]);
1263 
1264     const int16x8_t y_filter_0_7 = vld1q_s16(y_filter_ptr);
1265     const int16x4_t y_filter_8_11 = vld1_s16(y_filter_ptr + 8);
1266 
1267     convolve_2d_sr_horiz_12tap_neon_i8mm(src_ptr, src_stride, im_block,
1268                                          im_stride, w, im_h, x_filter_ptr);
1269 
1270     convolve_2d_sr_vert_12tap_neon(im_block, im_stride, dst, dst_stride, w, h,
1271                                    y_filter_0_7, y_filter_8_11);
1272   } else {
1273     DECLARE_ALIGNED(16, int16_t,
1274                     im_block[(MAX_SB_SIZE + SUBPEL_TAPS - 1) * MAX_SB_SIZE]);
1275 
1276     if (x_filter_taps == 6 && y_filter_taps == 6) {
1277       convolve_2d_sr_6tap_neon_i8mm(src_ptr + 1, src_stride, dst, dst_stride, w,
1278                                     h, x_filter_ptr, y_filter_ptr);
1279       return;
1280     }
1281 
1282     // Used for both 6, 4 and 4, 4 horiz, vert filter tap combinations.
1283     if (x_filter_taps <= 6 && y_filter_taps <= 4) {
1284       convolve_2d_sr_6tap_4tap_neon_i8mm(src_ptr + 1, src_stride, dst,
1285                                          dst_stride, w, h, x_filter_ptr,
1286                                          y_filter_ptr);
1287       return;
1288     }
1289 
1290     if (x_filter_taps <= 4) {
1291       convolve_2d_sr_horiz_4tap_neon_i8mm(src_ptr + 2, src_stride, im_block,
1292                                           im_stride, w, im_h, x_filter_ptr);
1293     } else {
1294       convolve_2d_sr_horiz_8tap_neon_i8mm(src_ptr, src_stride, im_block,
1295                                           im_stride, w, im_h, x_filter_ptr);
1296     }
1297 
1298     const int16x8_t y_filter = vld1q_s16(y_filter_ptr);
1299 
1300     if (clamped_y_taps <= 4) {
1301       convolve_2d_sr_vert_4tap_neon(im_block, im_stride, dst, dst_stride, w, h,
1302                                     y_filter_ptr);
1303     } else if (clamped_y_taps == 6) {
1304       convolve_2d_sr_vert_6tap_neon(im_block, im_stride, dst, dst_stride, w, h,
1305                                     y_filter);
1306     } else {
1307       convolve_2d_sr_vert_8tap_neon(im_block, im_stride, dst, dst_stride, w, h,
1308                                     y_filter);
1309     }
1310   }
1311 }
1312