xref: /aosp_15_r20/external/libaom/av1/common/cdef_block_simd.h (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #ifndef AOM_AV1_COMMON_CDEF_BLOCK_SIMD_H_
13 #define AOM_AV1_COMMON_CDEF_BLOCK_SIMD_H_
14 
15 #include "config/aom_config.h"
16 #include "config/av1_rtcd.h"
17 
18 #include "av1/common/cdef_block.h"
19 
20 /* partial A is a 16-bit vector of the form:
21    [x8 x7 x6 x5 x4 x3 x2 x1] and partial B has the form:
22    [0  y1 y2 y3 y4 y5 y6 y7].
23    This function computes (x1^2+y1^2)*C1 + (x2^2+y2^2)*C2 + ...
24    (x7^2+y2^7)*C7 + (x8^2+0^2)*C8 where the C1..C8 constants are in const1
25    and const2. */
fold_mul_and_sum(v128 partiala,v128 partialb,v128 const1,v128 const2)26 static inline v128 fold_mul_and_sum(v128 partiala, v128 partialb, v128 const1,
27                                     v128 const2) {
28   v128 tmp;
29   /* Reverse partial B. */
30   partialb = v128_shuffle_8(
31       partialb, v128_from_32(0x0f0e0100, 0x03020504, 0x07060908, 0x0b0a0d0c));
32   /* Interleave the x and y values of identical indices and pair x8 with 0. */
33   tmp = partiala;
34   partiala = v128_ziplo_16(partialb, partiala);
35   partialb = v128_ziphi_16(partialb, tmp);
36   /* Square and add the corresponding x and y values. */
37   partiala = v128_madd_s16(partiala, partiala);
38   partialb = v128_madd_s16(partialb, partialb);
39   /* Multiply by constant. */
40   partiala = v128_mullo_s32(partiala, const1);
41   partialb = v128_mullo_s32(partialb, const2);
42   /* Sum all results. */
43   partiala = v128_add_32(partiala, partialb);
44   return partiala;
45 }
46 
hsum4(v128 x0,v128 x1,v128 x2,v128 x3)47 static inline v128 hsum4(v128 x0, v128 x1, v128 x2, v128 x3) {
48   v128 t0, t1, t2, t3;
49   t0 = v128_ziplo_32(x1, x0);
50   t1 = v128_ziplo_32(x3, x2);
51   t2 = v128_ziphi_32(x1, x0);
52   t3 = v128_ziphi_32(x3, x2);
53   x0 = v128_ziplo_64(t1, t0);
54   x1 = v128_ziphi_64(t1, t0);
55   x2 = v128_ziplo_64(t3, t2);
56   x3 = v128_ziphi_64(t3, t2);
57   return v128_add_32(v128_add_32(x0, x1), v128_add_32(x2, x3));
58 }
59 
60 /* Computes cost for directions 0, 5, 6 and 7. We can call this function again
61    to compute the remaining directions. */
compute_directions(v128 lines[8],int32_t tmp_cost1[4])62 static inline v128 compute_directions(v128 lines[8], int32_t tmp_cost1[4]) {
63   v128 partial4a, partial4b, partial5a, partial5b, partial7a, partial7b;
64   v128 partial6;
65   v128 tmp;
66   /* Partial sums for lines 0 and 1. */
67   partial4a = v128_shl_n_byte(lines[0], 14);
68   partial4b = v128_shr_n_byte(lines[0], 2);
69   partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[1], 12));
70   partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[1], 4));
71   tmp = v128_add_16(lines[0], lines[1]);
72   partial5a = v128_shl_n_byte(tmp, 10);
73   partial5b = v128_shr_n_byte(tmp, 6);
74   partial7a = v128_shl_n_byte(tmp, 4);
75   partial7b = v128_shr_n_byte(tmp, 12);
76   partial6 = tmp;
77 
78   /* Partial sums for lines 2 and 3. */
79   partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[2], 10));
80   partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[2], 6));
81   partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[3], 8));
82   partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[3], 8));
83   tmp = v128_add_16(lines[2], lines[3]);
84   partial5a = v128_add_16(partial5a, v128_shl_n_byte(tmp, 8));
85   partial5b = v128_add_16(partial5b, v128_shr_n_byte(tmp, 8));
86   partial7a = v128_add_16(partial7a, v128_shl_n_byte(tmp, 6));
87   partial7b = v128_add_16(partial7b, v128_shr_n_byte(tmp, 10));
88   partial6 = v128_add_16(partial6, tmp);
89 
90   /* Partial sums for lines 4 and 5. */
91   partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[4], 6));
92   partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[4], 10));
93   partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[5], 4));
94   partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[5], 12));
95   tmp = v128_add_16(lines[4], lines[5]);
96   partial5a = v128_add_16(partial5a, v128_shl_n_byte(tmp, 6));
97   partial5b = v128_add_16(partial5b, v128_shr_n_byte(tmp, 10));
98   partial7a = v128_add_16(partial7a, v128_shl_n_byte(tmp, 8));
99   partial7b = v128_add_16(partial7b, v128_shr_n_byte(tmp, 8));
100   partial6 = v128_add_16(partial6, tmp);
101 
102   /* Partial sums for lines 6 and 7. */
103   partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[6], 2));
104   partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[6], 14));
105   partial4a = v128_add_16(partial4a, lines[7]);
106   tmp = v128_add_16(lines[6], lines[7]);
107   partial5a = v128_add_16(partial5a, v128_shl_n_byte(tmp, 4));
108   partial5b = v128_add_16(partial5b, v128_shr_n_byte(tmp, 12));
109   partial7a = v128_add_16(partial7a, v128_shl_n_byte(tmp, 10));
110   partial7b = v128_add_16(partial7b, v128_shr_n_byte(tmp, 6));
111   partial6 = v128_add_16(partial6, tmp);
112 
113   /* Compute costs in terms of partial sums. */
114   partial4a =
115       fold_mul_and_sum(partial4a, partial4b, v128_from_32(210, 280, 420, 840),
116                        v128_from_32(105, 120, 140, 168));
117   partial7a =
118       fold_mul_and_sum(partial7a, partial7b, v128_from_32(210, 420, 0, 0),
119                        v128_from_32(105, 105, 105, 140));
120   partial5a =
121       fold_mul_and_sum(partial5a, partial5b, v128_from_32(210, 420, 0, 0),
122                        v128_from_32(105, 105, 105, 140));
123   partial6 = v128_madd_s16(partial6, partial6);
124   partial6 = v128_mullo_s32(partial6, v128_dup_32(105));
125 
126   partial4a = hsum4(partial4a, partial5a, partial6, partial7a);
127   v128_store_unaligned(tmp_cost1, partial4a);
128   return partial4a;
129 }
130 
131 /* transpose and reverse the order of the lines -- equivalent to a 90-degree
132    counter-clockwise rotation of the pixels. */
array_reverse_transpose_8x8(v128 * in,v128 * res)133 static inline void array_reverse_transpose_8x8(v128 *in, v128 *res) {
134   const v128 tr0_0 = v128_ziplo_16(in[1], in[0]);
135   const v128 tr0_1 = v128_ziplo_16(in[3], in[2]);
136   const v128 tr0_2 = v128_ziphi_16(in[1], in[0]);
137   const v128 tr0_3 = v128_ziphi_16(in[3], in[2]);
138   const v128 tr0_4 = v128_ziplo_16(in[5], in[4]);
139   const v128 tr0_5 = v128_ziplo_16(in[7], in[6]);
140   const v128 tr0_6 = v128_ziphi_16(in[5], in[4]);
141   const v128 tr0_7 = v128_ziphi_16(in[7], in[6]);
142 
143   const v128 tr1_0 = v128_ziplo_32(tr0_1, tr0_0);
144   const v128 tr1_1 = v128_ziplo_32(tr0_5, tr0_4);
145   const v128 tr1_2 = v128_ziphi_32(tr0_1, tr0_0);
146   const v128 tr1_3 = v128_ziphi_32(tr0_5, tr0_4);
147   const v128 tr1_4 = v128_ziplo_32(tr0_3, tr0_2);
148   const v128 tr1_5 = v128_ziplo_32(tr0_7, tr0_6);
149   const v128 tr1_6 = v128_ziphi_32(tr0_3, tr0_2);
150   const v128 tr1_7 = v128_ziphi_32(tr0_7, tr0_6);
151 
152   res[7] = v128_ziplo_64(tr1_1, tr1_0);
153   res[6] = v128_ziphi_64(tr1_1, tr1_0);
154   res[5] = v128_ziplo_64(tr1_3, tr1_2);
155   res[4] = v128_ziphi_64(tr1_3, tr1_2);
156   res[3] = v128_ziplo_64(tr1_5, tr1_4);
157   res[2] = v128_ziphi_64(tr1_5, tr1_4);
158   res[1] = v128_ziplo_64(tr1_7, tr1_6);
159   res[0] = v128_ziphi_64(tr1_7, tr1_6);
160 }
161 
SIMD_FUNC(cdef_find_dir)162 int SIMD_FUNC(cdef_find_dir)(const uint16_t *img, int stride, int32_t *var,
163                              int coeff_shift) {
164   int i;
165   int32_t cost[8];
166   int32_t best_cost = 0;
167   int best_dir = 0;
168   v128 lines[8];
169   for (i = 0; i < 8; i++) {
170     lines[i] = v128_load_unaligned(&img[i * stride]);
171     lines[i] =
172         v128_sub_16(v128_shr_s16(lines[i], coeff_shift), v128_dup_16(128));
173   }
174 
175   /* Compute "mostly vertical" directions. */
176   v128 dir47 = compute_directions(lines, cost + 4);
177 
178   array_reverse_transpose_8x8(lines, lines);
179 
180   /* Compute "mostly horizontal" directions. */
181   v128 dir03 = compute_directions(lines, cost);
182 
183   v128 max = v128_max_s32(dir03, dir47);
184   max = v128_max_s32(max, v128_align(max, max, 8));
185   max = v128_max_s32(max, v128_align(max, max, 4));
186   best_cost = v128_low_u32(max);
187   v128 t =
188       v128_pack_s32_s16(v128_cmpeq_32(max, dir47), v128_cmpeq_32(max, dir03));
189   best_dir = v128_movemask_8(v128_pack_s16_s8(t, t));
190   best_dir = get_msb(best_dir ^ (best_dir - 1));  // Count trailing zeros
191 
192   /* Difference between the optimal variance and the variance along the
193      orthogonal direction. Again, the sum(x^2) terms cancel out. */
194   *var = best_cost - cost[(best_dir + 4) & 7];
195   /* We'd normally divide by 840, but dividing by 1024 is close enough
196      for what we're going to do with this. */
197   *var >>= 10;
198   return best_dir;
199 }
200 
201 // Work around compiler out of memory issues with Win32 builds. This issue has
202 // been observed with Visual Studio 2017, 2019, and 2022 (version 17.10.3).
203 #if defined(_MSC_VER) && defined(_M_IX86)
204 #define CDEF_INLINE static inline
205 #else
206 #define CDEF_INLINE SIMD_INLINE
207 #endif
208 
209 // sign(a-b) * min(abs(a-b), max(0, threshold - (abs(a-b) >> adjdamp)))
constrain16(v256 a,v256 b,unsigned int threshold,unsigned int adjdamp)210 CDEF_INLINE v256 constrain16(v256 a, v256 b, unsigned int threshold,
211                              unsigned int adjdamp) {
212   v256 diff = v256_sub_16(a, b);
213   const v256 sign = v256_shr_n_s16(diff, 15);
214   diff = v256_abs_s16(diff);
215   const v256 s =
216       v256_ssub_u16(v256_dup_16(threshold), v256_shr_u16(diff, adjdamp));
217   return v256_xor(v256_add_16(sign, v256_min_s16(diff, s)), sign);
218 }
219 
get_max_primary(const int is_lowbd,v256 * tap,v256 max,v256 cdef_large_value_mask)220 SIMD_INLINE v256 get_max_primary(const int is_lowbd, v256 *tap, v256 max,
221                                  v256 cdef_large_value_mask) {
222   if (is_lowbd) {
223     v256 max_u8;
224     max_u8 = tap[0];
225     max_u8 = v256_max_u8(max_u8, tap[1]);
226     max_u8 = v256_max_u8(max_u8, tap[2]);
227     max_u8 = v256_max_u8(max_u8, tap[3]);
228     /* The source is 16 bits, however, we only really care about the lower
229     8 bits.  The upper 8 bits contain the "large" flag.  After the final
230     primary max has been calculated, zero out the upper 8 bits.  Use this
231     to find the "16 bit" max. */
232     max = v256_max_s16(max, v256_and(max_u8, cdef_large_value_mask));
233   } else {
234     /* Convert CDEF_VERY_LARGE to 0 before calculating max. */
235     max = v256_max_s16(max, v256_and(tap[0], cdef_large_value_mask));
236     max = v256_max_s16(max, v256_and(tap[1], cdef_large_value_mask));
237     max = v256_max_s16(max, v256_and(tap[2], cdef_large_value_mask));
238     max = v256_max_s16(max, v256_and(tap[3], cdef_large_value_mask));
239   }
240   return max;
241 }
242 
get_max_secondary(const int is_lowbd,v256 * tap,v256 max,v256 cdef_large_value_mask)243 SIMD_INLINE v256 get_max_secondary(const int is_lowbd, v256 *tap, v256 max,
244                                    v256 cdef_large_value_mask) {
245   if (is_lowbd) {
246     v256 max_u8;
247     max_u8 = tap[0];
248     max_u8 = v256_max_u8(max_u8, tap[1]);
249     max_u8 = v256_max_u8(max_u8, tap[2]);
250     max_u8 = v256_max_u8(max_u8, tap[3]);
251     max_u8 = v256_max_u8(max_u8, tap[4]);
252     max_u8 = v256_max_u8(max_u8, tap[5]);
253     max_u8 = v256_max_u8(max_u8, tap[6]);
254     max_u8 = v256_max_u8(max_u8, tap[7]);
255     /* The source is 16 bits, however, we only really care about the lower
256     8 bits.  The upper 8 bits contain the "large" flag.  After the final
257     primary max has been calculated, zero out the upper 8 bits.  Use this
258     to find the "16 bit" max. */
259     max = v256_max_s16(max, v256_and(max_u8, cdef_large_value_mask));
260   } else {
261     /* Convert CDEF_VERY_LARGE to 0 before calculating max. */
262     max = v256_max_s16(max, v256_and(tap[0], cdef_large_value_mask));
263     max = v256_max_s16(max, v256_and(tap[1], cdef_large_value_mask));
264     max = v256_max_s16(max, v256_and(tap[2], cdef_large_value_mask));
265     max = v256_max_s16(max, v256_and(tap[3], cdef_large_value_mask));
266     max = v256_max_s16(max, v256_and(tap[4], cdef_large_value_mask));
267     max = v256_max_s16(max, v256_and(tap[5], cdef_large_value_mask));
268     max = v256_max_s16(max, v256_and(tap[6], cdef_large_value_mask));
269     max = v256_max_s16(max, v256_and(tap[7], cdef_large_value_mask));
270   }
271   return max;
272 }
273 
274 // MSVC takes far too much time optimizing these.
275 // https://bugs.chromium.org/p/aomedia/issues/detail?id=3395
276 #if defined(_MSC_VER) && !defined(__clang__)
277 #pragma optimize("", off)
278 #endif
279 
filter_block_4x4(const int is_lowbd,void * dest,int dstride,const uint16_t * in,int pri_strength,int sec_strength,int dir,int pri_damping,int sec_damping,int coeff_shift,int height,int enable_primary,int enable_secondary)280 CDEF_INLINE void filter_block_4x4(const int is_lowbd, void *dest, int dstride,
281                                   const uint16_t *in, int pri_strength,
282                                   int sec_strength, int dir, int pri_damping,
283                                   int sec_damping, int coeff_shift, int height,
284                                   int enable_primary, int enable_secondary) {
285   uint8_t *dst8 = (uint8_t *)dest;
286   uint16_t *dst16 = (uint16_t *)dest;
287   const int clipping_required = enable_primary && enable_secondary;
288   v256 p0, p1, p2, p3;
289   v256 sum, row, res;
290   v256 max, min;
291   const v256 cdef_large_value_mask = v256_dup_16((uint16_t)~CDEF_VERY_LARGE);
292   const int po1 = cdef_directions[dir][0];
293   const int po2 = cdef_directions[dir][1];
294   const int s1o1 = cdef_directions[dir + 2][0];
295   const int s1o2 = cdef_directions[dir + 2][1];
296   const int s2o1 = cdef_directions[dir - 2][0];
297   const int s2o2 = cdef_directions[dir - 2][1];
298   const int *pri_taps = cdef_pri_taps[(pri_strength >> coeff_shift) & 1];
299   const int *sec_taps = cdef_sec_taps;
300   int i;
301 
302   if (enable_primary && pri_strength)
303     pri_damping = AOMMAX(0, pri_damping - get_msb(pri_strength));
304   if (enable_secondary && sec_strength)
305     sec_damping = AOMMAX(0, sec_damping - get_msb(sec_strength));
306 
307   for (i = 0; i < height; i += 4) {
308     sum = v256_zero();
309     row = v256_from_v64(v64_load_aligned(&in[(i + 0) * CDEF_BSTRIDE]),
310                         v64_load_aligned(&in[(i + 1) * CDEF_BSTRIDE]),
311                         v64_load_aligned(&in[(i + 2) * CDEF_BSTRIDE]),
312                         v64_load_aligned(&in[(i + 3) * CDEF_BSTRIDE]));
313     max = min = row;
314 
315     if (enable_primary) {
316       v256 tap[4];
317       // Primary near taps
318       tap[0] =
319           v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE + po1]),
320                         v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + po1]),
321                         v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE + po1]),
322                         v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE + po1]));
323       p0 = constrain16(tap[0], row, pri_strength, pri_damping);
324       tap[1] =
325           v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE - po1]),
326                         v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - po1]),
327                         v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE - po1]),
328                         v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE - po1]));
329       p1 = constrain16(tap[1], row, pri_strength, pri_damping);
330 
331       // sum += pri_taps[0] * (p0 + p1)
332       sum = v256_add_16(
333           sum, v256_mullo_s16(v256_dup_16(pri_taps[0]), v256_add_16(p0, p1)));
334 
335       // Primary far taps
336       tap[2] =
337           v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE + po2]),
338                         v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + po2]),
339                         v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE + po2]),
340                         v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE + po2]));
341       p0 = constrain16(tap[2], row, pri_strength, pri_damping);
342       tap[3] =
343           v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE - po2]),
344                         v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - po2]),
345                         v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE - po2]),
346                         v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE - po2]));
347       p1 = constrain16(tap[3], row, pri_strength, pri_damping);
348 
349       // sum += pri_taps[1] * (p0 + p1)
350       sum = v256_add_16(
351           sum, v256_mullo_s16(v256_dup_16(pri_taps[1]), v256_add_16(p0, p1)));
352       if (clipping_required) {
353         max = get_max_primary(is_lowbd, tap, max, cdef_large_value_mask);
354 
355         min = v256_min_s16(min, tap[0]);
356         min = v256_min_s16(min, tap[1]);
357         min = v256_min_s16(min, tap[2]);
358         min = v256_min_s16(min, tap[3]);
359       }
360     }
361 
362     if (enable_secondary) {
363       v256 tap[8];
364       // Secondary near taps
365       tap[0] =
366           v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE + s1o1]),
367                         v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s1o1]),
368                         v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE + s1o1]),
369                         v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE + s1o1]));
370       p0 = constrain16(tap[0], row, sec_strength, sec_damping);
371       tap[1] =
372           v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE - s1o1]),
373                         v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s1o1]),
374                         v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE - s1o1]),
375                         v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE - s1o1]));
376       p1 = constrain16(tap[1], row, sec_strength, sec_damping);
377       tap[2] =
378           v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE + s2o1]),
379                         v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s2o1]),
380                         v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE + s2o1]),
381                         v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE + s2o1]));
382       p2 = constrain16(tap[2], row, sec_strength, sec_damping);
383       tap[3] =
384           v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE - s2o1]),
385                         v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s2o1]),
386                         v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE - s2o1]),
387                         v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE - s2o1]));
388       p3 = constrain16(tap[3], row, sec_strength, sec_damping);
389 
390       // sum += sec_taps[0] * (p0 + p1 + p2 + p3)
391       sum = v256_add_16(sum, v256_mullo_s16(v256_dup_16(sec_taps[0]),
392                                             v256_add_16(v256_add_16(p0, p1),
393                                                         v256_add_16(p2, p3))));
394 
395       // Secondary far taps
396       tap[4] =
397           v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE + s1o2]),
398                         v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s1o2]),
399                         v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE + s1o2]),
400                         v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE + s1o2]));
401       p0 = constrain16(tap[4], row, sec_strength, sec_damping);
402       tap[5] =
403           v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE - s1o2]),
404                         v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s1o2]),
405                         v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE - s1o2]),
406                         v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE - s1o2]));
407       p1 = constrain16(tap[5], row, sec_strength, sec_damping);
408       tap[6] =
409           v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE + s2o2]),
410                         v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s2o2]),
411                         v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE + s2o2]),
412                         v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE + s2o2]));
413       p2 = constrain16(tap[6], row, sec_strength, sec_damping);
414       tap[7] =
415           v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE - s2o2]),
416                         v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s2o2]),
417                         v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE - s2o2]),
418                         v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE - s2o2]));
419       p3 = constrain16(tap[7], row, sec_strength, sec_damping);
420 
421       // sum += sec_taps[1] * (p0 + p1 + p2 + p3)
422       sum = v256_add_16(sum, v256_mullo_s16(v256_dup_16(sec_taps[1]),
423                                             v256_add_16(v256_add_16(p0, p1),
424                                                         v256_add_16(p2, p3))));
425 
426       if (clipping_required) {
427         max = get_max_secondary(is_lowbd, tap, max, cdef_large_value_mask);
428 
429         min = v256_min_s16(min, tap[0]);
430         min = v256_min_s16(min, tap[1]);
431         min = v256_min_s16(min, tap[2]);
432         min = v256_min_s16(min, tap[3]);
433         min = v256_min_s16(min, tap[4]);
434         min = v256_min_s16(min, tap[5]);
435         min = v256_min_s16(min, tap[6]);
436         min = v256_min_s16(min, tap[7]);
437       }
438     }
439 
440     // res = row + ((sum - (sum < 0) + 8) >> 4)
441     sum = v256_add_16(sum, v256_cmplt_s16(sum, v256_zero()));
442     res = v256_add_16(sum, v256_dup_16(8));
443     res = v256_shr_n_s16(res, 4);
444     res = v256_add_16(row, res);
445     if (clipping_required) {
446       res = v256_min_s16(v256_max_s16(res, min), max);
447     }
448 
449     if (is_lowbd) {
450       const v128 res_128 = v256_low_v128(v256_pack_s16_u8(res, res));
451       u32_store_aligned(&dst8[(i + 0) * dstride],
452                         v64_high_u32(v128_high_v64(res_128)));
453       u32_store_aligned(&dst8[(i + 1) * dstride],
454                         v64_low_u32(v128_high_v64(res_128)));
455       u32_store_aligned(&dst8[(i + 2) * dstride],
456                         v64_high_u32(v128_low_v64(res_128)));
457       u32_store_aligned(&dst8[(i + 3) * dstride],
458                         v64_low_u32(v128_low_v64(res_128)));
459     } else {
460       v64_store_aligned(&dst16[(i + 0) * dstride],
461                         v128_high_v64(v256_high_v128(res)));
462       v64_store_aligned(&dst16[(i + 1) * dstride],
463                         v128_low_v64(v256_high_v128(res)));
464       v64_store_aligned(&dst16[(i + 2) * dstride],
465                         v128_high_v64(v256_low_v128(res)));
466       v64_store_aligned(&dst16[(i + 3) * dstride],
467                         v128_low_v64(v256_low_v128(res)));
468     }
469   }
470 }
471 
filter_block_8x8(const int is_lowbd,void * dest,int dstride,const uint16_t * in,int pri_strength,int sec_strength,int dir,int pri_damping,int sec_damping,int coeff_shift,int height,int enable_primary,int enable_secondary)472 CDEF_INLINE void filter_block_8x8(const int is_lowbd, void *dest, int dstride,
473                                   const uint16_t *in, int pri_strength,
474                                   int sec_strength, int dir, int pri_damping,
475                                   int sec_damping, int coeff_shift, int height,
476                                   int enable_primary, int enable_secondary) {
477   uint8_t *dst8 = (uint8_t *)dest;
478   uint16_t *dst16 = (uint16_t *)dest;
479   const int clipping_required = enable_primary && enable_secondary;
480   int i;
481   v256 sum, p0, p1, p2, p3, row, res;
482   const v256 cdef_large_value_mask = v256_dup_16((uint16_t)~CDEF_VERY_LARGE);
483   v256 max, min;
484   const int po1 = cdef_directions[dir][0];
485   const int po2 = cdef_directions[dir][1];
486   const int s1o1 = cdef_directions[dir + 2][0];
487   const int s1o2 = cdef_directions[dir + 2][1];
488   const int s2o1 = cdef_directions[dir - 2][0];
489   const int s2o2 = cdef_directions[dir - 2][1];
490   const int *pri_taps = cdef_pri_taps[(pri_strength >> coeff_shift) & 1];
491   const int *sec_taps = cdef_sec_taps;
492 
493   if (enable_primary && pri_strength)
494     pri_damping = AOMMAX(0, pri_damping - get_msb(pri_strength));
495   if (enable_secondary && sec_strength)
496     sec_damping = AOMMAX(0, sec_damping - get_msb(sec_strength));
497 
498   for (i = 0; i < height; i += 2) {
499     v256 tap[8];
500     sum = v256_zero();
501     row = v256_from_v128(v128_load_aligned(&in[i * CDEF_BSTRIDE]),
502                          v128_load_aligned(&in[(i + 1) * CDEF_BSTRIDE]));
503 
504     min = max = row;
505     if (enable_primary) {
506       // Primary near taps
507       tap[0] = v256_from_v128(
508           v128_load_unaligned(&in[i * CDEF_BSTRIDE + po1]),
509           v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + po1]));
510       tap[1] = v256_from_v128(
511           v128_load_unaligned(&in[i * CDEF_BSTRIDE - po1]),
512           v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - po1]));
513       p0 = constrain16(tap[0], row, pri_strength, pri_damping);
514       p1 = constrain16(tap[1], row, pri_strength, pri_damping);
515 
516       // sum += pri_taps[0] * (p0 + p1)
517       sum = v256_add_16(
518           sum, v256_mullo_s16(v256_dup_16(pri_taps[0]), v256_add_16(p0, p1)));
519 
520       // Primary far taps
521       tap[2] = v256_from_v128(
522           v128_load_unaligned(&in[i * CDEF_BSTRIDE + po2]),
523           v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + po2]));
524       tap[3] = v256_from_v128(
525           v128_load_unaligned(&in[i * CDEF_BSTRIDE - po2]),
526           v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - po2]));
527       p0 = constrain16(tap[2], row, pri_strength, pri_damping);
528       p1 = constrain16(tap[3], row, pri_strength, pri_damping);
529 
530       // sum += pri_taps[1] * (p0 + p1)
531       sum = v256_add_16(
532           sum, v256_mullo_s16(v256_dup_16(pri_taps[1]), v256_add_16(p0, p1)));
533 
534       if (clipping_required) {
535         max = get_max_primary(is_lowbd, tap, max, cdef_large_value_mask);
536 
537         min = v256_min_s16(min, tap[0]);
538         min = v256_min_s16(min, tap[1]);
539         min = v256_min_s16(min, tap[2]);
540         min = v256_min_s16(min, tap[3]);
541       }
542       // End primary
543     }
544 
545     if (enable_secondary) {
546       // Secondary near taps
547       tap[0] = v256_from_v128(
548           v128_load_unaligned(&in[i * CDEF_BSTRIDE + s1o1]),
549           v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s1o1]));
550       tap[1] = v256_from_v128(
551           v128_load_unaligned(&in[i * CDEF_BSTRIDE - s1o1]),
552           v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s1o1]));
553       tap[2] = v256_from_v128(
554           v128_load_unaligned(&in[i * CDEF_BSTRIDE + s2o1]),
555           v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s2o1]));
556       tap[3] = v256_from_v128(
557           v128_load_unaligned(&in[i * CDEF_BSTRIDE - s2o1]),
558           v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s2o1]));
559       p0 = constrain16(tap[0], row, sec_strength, sec_damping);
560       p1 = constrain16(tap[1], row, sec_strength, sec_damping);
561       p2 = constrain16(tap[2], row, sec_strength, sec_damping);
562       p3 = constrain16(tap[3], row, sec_strength, sec_damping);
563 
564       // sum += sec_taps[0] * (p0 + p1 + p2 + p3)
565       sum = v256_add_16(sum, v256_mullo_s16(v256_dup_16(sec_taps[0]),
566                                             v256_add_16(v256_add_16(p0, p1),
567                                                         v256_add_16(p2, p3))));
568 
569       // Secondary far taps
570       tap[4] = v256_from_v128(
571           v128_load_unaligned(&in[i * CDEF_BSTRIDE + s1o2]),
572           v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s1o2]));
573       tap[5] = v256_from_v128(
574           v128_load_unaligned(&in[i * CDEF_BSTRIDE - s1o2]),
575           v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s1o2]));
576       tap[6] = v256_from_v128(
577           v128_load_unaligned(&in[i * CDEF_BSTRIDE + s2o2]),
578           v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s2o2]));
579       tap[7] = v256_from_v128(
580           v128_load_unaligned(&in[i * CDEF_BSTRIDE - s2o2]),
581           v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s2o2]));
582       p0 = constrain16(tap[4], row, sec_strength, sec_damping);
583       p1 = constrain16(tap[5], row, sec_strength, sec_damping);
584       p2 = constrain16(tap[6], row, sec_strength, sec_damping);
585       p3 = constrain16(tap[7], row, sec_strength, sec_damping);
586 
587       // sum += sec_taps[1] * (p0 + p1 + p2 + p3)
588       sum = v256_add_16(sum, v256_mullo_s16(v256_dup_16(sec_taps[1]),
589                                             v256_add_16(v256_add_16(p0, p1),
590                                                         v256_add_16(p2, p3))));
591 
592       if (clipping_required) {
593         max = get_max_secondary(is_lowbd, tap, max, cdef_large_value_mask);
594 
595         min = v256_min_s16(min, tap[0]);
596         min = v256_min_s16(min, tap[1]);
597         min = v256_min_s16(min, tap[2]);
598         min = v256_min_s16(min, tap[3]);
599         min = v256_min_s16(min, tap[4]);
600         min = v256_min_s16(min, tap[5]);
601         min = v256_min_s16(min, tap[6]);
602         min = v256_min_s16(min, tap[7]);
603       }
604       // End secondary
605     }
606 
607     // res = row + ((sum - (sum < 0) + 8) >> 4)
608     sum = v256_add_16(sum, v256_cmplt_s16(sum, v256_zero()));
609     res = v256_add_16(sum, v256_dup_16(8));
610     res = v256_shr_n_s16(res, 4);
611     res = v256_add_16(row, res);
612     if (clipping_required) {
613       res = v256_min_s16(v256_max_s16(res, min), max);
614     }
615 
616     if (is_lowbd) {
617       const v128 res_128 = v256_low_v128(v256_pack_s16_u8(res, res));
618       v64_store_aligned(&dst8[i * dstride], v128_high_v64(res_128));
619       v64_store_aligned(&dst8[(i + 1) * dstride], v128_low_v64(res_128));
620     } else {
621       v128_store_unaligned(&dst16[i * dstride], v256_high_v128(res));
622       v128_store_unaligned(&dst16[(i + 1) * dstride], v256_low_v128(res));
623     }
624   }
625 }
626 
627 #if defined(_MSC_VER) && !defined(__clang__)
628 #pragma optimize("", on)
629 #endif
630 
copy_block_4xh(const int is_lowbd,void * dest,int dstride,const uint16_t * in,int height)631 SIMD_INLINE void copy_block_4xh(const int is_lowbd, void *dest, int dstride,
632                                 const uint16_t *in, int height) {
633   uint8_t *dst8 = (uint8_t *)dest;
634   uint16_t *dst16 = (uint16_t *)dest;
635   int i;
636   for (i = 0; i < height; i += 4) {
637     const v128 row0 =
638         v128_from_v64(v64_load_aligned(&in[(i + 0) * CDEF_BSTRIDE]),
639                       v64_load_aligned(&in[(i + 1) * CDEF_BSTRIDE]));
640     const v128 row1 =
641         v128_from_v64(v64_load_aligned(&in[(i + 2) * CDEF_BSTRIDE]),
642                       v64_load_aligned(&in[(i + 3) * CDEF_BSTRIDE]));
643     if (is_lowbd) {
644       /* Note: v128_pack_s16_u8(). The parameter order is swapped internally */
645       const v128 res_128 = v128_pack_s16_u8(row1, row0);
646       u32_store_aligned(&dst8[(i + 0) * dstride],
647                         v64_high_u32(v128_low_v64(res_128)));
648       u32_store_aligned(&dst8[(i + 1) * dstride],
649                         v64_low_u32(v128_low_v64(res_128)));
650       u32_store_aligned(&dst8[(i + 2) * dstride],
651                         v64_high_u32(v128_high_v64(res_128)));
652       u32_store_aligned(&dst8[(i + 3) * dstride],
653                         v64_low_u32(v128_high_v64(res_128)));
654     } else {
655       v64_store_aligned(&dst16[(i + 0) * dstride], v128_high_v64(row0));
656       v64_store_aligned(&dst16[(i + 1) * dstride], v128_low_v64(row0));
657       v64_store_aligned(&dst16[(i + 2) * dstride], v128_high_v64(row1));
658       v64_store_aligned(&dst16[(i + 3) * dstride], v128_low_v64(row1));
659     }
660   }
661 }
662 
copy_block_8xh(const int is_lowbd,void * dest,int dstride,const uint16_t * in,int height)663 SIMD_INLINE void copy_block_8xh(const int is_lowbd, void *dest, int dstride,
664                                 const uint16_t *in, int height) {
665   uint8_t *dst8 = (uint8_t *)dest;
666   uint16_t *dst16 = (uint16_t *)dest;
667   int i;
668   for (i = 0; i < height; i += 2) {
669     const v128 row0 = v128_load_aligned(&in[i * CDEF_BSTRIDE]);
670     const v128 row1 = v128_load_aligned(&in[(i + 1) * CDEF_BSTRIDE]);
671     if (is_lowbd) {
672       /* Note: v128_pack_s16_u8(). The parameter order is swapped internally */
673       const v128 res_128 = v128_pack_s16_u8(row1, row0);
674       v64_store_aligned(&dst8[i * dstride], v128_low_v64(res_128));
675       v64_store_aligned(&dst8[(i + 1) * dstride], v128_high_v64(res_128));
676     } else {
677       v128_store_unaligned(&dst16[i * dstride], row0);
678       v128_store_unaligned(&dst16[(i + 1) * dstride], row1);
679     }
680   }
681 }
682 
SIMD_FUNC(cdef_filter_8_0)683 void SIMD_FUNC(cdef_filter_8_0)(void *dest, int dstride, const uint16_t *in,
684                                 int pri_strength, int sec_strength, int dir,
685                                 int pri_damping, int sec_damping,
686                                 int coeff_shift, int block_width,
687                                 int block_height) {
688   if (block_width == 8) {
689     filter_block_8x8(/*is_lowbd=*/1, dest, dstride, in, pri_strength,
690                      sec_strength, dir, pri_damping, sec_damping, coeff_shift,
691                      block_height, /*enable_primary=*/1,
692                      /*enable_secondary=*/1);
693   } else {
694     filter_block_4x4(/*is_lowbd=*/1, dest, dstride, in, pri_strength,
695                      sec_strength, dir, pri_damping, sec_damping, coeff_shift,
696                      block_height, /*enable_primary=*/1,
697                      /*enable_secondary=*/1);
698   }
699 }
700 
SIMD_FUNC(cdef_filter_8_1)701 void SIMD_FUNC(cdef_filter_8_1)(void *dest, int dstride, const uint16_t *in,
702                                 int pri_strength, int sec_strength, int dir,
703                                 int pri_damping, int sec_damping,
704                                 int coeff_shift, int block_width,
705                                 int block_height) {
706   if (block_width == 8) {
707     filter_block_8x8(/*is_lowbd=*/1, dest, dstride, in, pri_strength,
708                      sec_strength, dir, pri_damping, sec_damping, coeff_shift,
709                      block_height, /*enable_primary=*/1,
710                      /*enable_secondary=*/0);
711   } else {
712     filter_block_4x4(/*is_lowbd=*/1, dest, dstride, in, pri_strength,
713                      sec_strength, dir, pri_damping, sec_damping, coeff_shift,
714                      block_height, /*enable_primary=*/1,
715                      /*enable_secondary=*/0);
716   }
717 }
SIMD_FUNC(cdef_filter_8_2)718 void SIMD_FUNC(cdef_filter_8_2)(void *dest, int dstride, const uint16_t *in,
719                                 int pri_strength, int sec_strength, int dir,
720                                 int pri_damping, int sec_damping,
721                                 int coeff_shift, int block_width,
722                                 int block_height) {
723   if (block_width == 8) {
724     filter_block_8x8(/*is_lowbd=*/1, dest, dstride, in, pri_strength,
725                      sec_strength, dir, pri_damping, sec_damping, coeff_shift,
726                      block_height, /*enable_primary=*/0,
727                      /*enable_secondary=*/1);
728   } else {
729     filter_block_4x4(/*is_lowbd=*/1, dest, dstride, in, pri_strength,
730                      sec_strength, dir, pri_damping, sec_damping, coeff_shift,
731                      block_height, /*enable_primary=*/0,
732                      /*enable_secondary=*/1);
733   }
734 }
735 
SIMD_FUNC(cdef_filter_8_3)736 void SIMD_FUNC(cdef_filter_8_3)(void *dest, int dstride, const uint16_t *in,
737                                 int pri_strength, int sec_strength, int dir,
738                                 int pri_damping, int sec_damping,
739                                 int coeff_shift, int block_width,
740                                 int block_height) {
741   (void)pri_strength;
742   (void)sec_strength;
743   (void)dir;
744   (void)pri_damping;
745   (void)sec_damping;
746   (void)coeff_shift;
747   (void)block_width;
748 
749   if (block_width == 8) {
750     copy_block_8xh(/*is_lowbd=*/1, dest, dstride, in, block_height);
751   } else {
752     copy_block_4xh(/*is_lowbd=*/1, dest, dstride, in, block_height);
753   }
754 }
755 
SIMD_FUNC(cdef_filter_16_0)756 void SIMD_FUNC(cdef_filter_16_0)(void *dest, int dstride, const uint16_t *in,
757                                  int pri_strength, int sec_strength, int dir,
758                                  int pri_damping, int sec_damping,
759                                  int coeff_shift, int block_width,
760                                  int block_height) {
761   if (block_width == 8) {
762     filter_block_8x8(/*is_lowbd=*/0, dest, dstride, in, pri_strength,
763                      sec_strength, dir, pri_damping, sec_damping, coeff_shift,
764                      block_height, /*enable_primary=*/1,
765                      /*enable_secondary=*/1);
766   } else {
767     filter_block_4x4(/*is_lowbd=*/0, dest, dstride, in, pri_strength,
768                      sec_strength, dir, pri_damping, sec_damping, coeff_shift,
769                      block_height, /*enable_primary=*/1,
770                      /*enable_secondary=*/1);
771   }
772 }
773 
SIMD_FUNC(cdef_filter_16_1)774 void SIMD_FUNC(cdef_filter_16_1)(void *dest, int dstride, const uint16_t *in,
775                                  int pri_strength, int sec_strength, int dir,
776                                  int pri_damping, int sec_damping,
777                                  int coeff_shift, int block_width,
778                                  int block_height) {
779   if (block_width == 8) {
780     filter_block_8x8(/*is_lowbd=*/0, dest, dstride, in, pri_strength,
781                      sec_strength, dir, pri_damping, sec_damping, coeff_shift,
782                      block_height, /*enable_primary=*/1,
783                      /*enable_secondary=*/0);
784   } else {
785     filter_block_4x4(/*is_lowbd=*/0, dest, dstride, in, pri_strength,
786                      sec_strength, dir, pri_damping, sec_damping, coeff_shift,
787                      block_height, /*enable_primary=*/1,
788                      /*enable_secondary=*/0);
789   }
790 }
SIMD_FUNC(cdef_filter_16_2)791 void SIMD_FUNC(cdef_filter_16_2)(void *dest, int dstride, const uint16_t *in,
792                                  int pri_strength, int sec_strength, int dir,
793                                  int pri_damping, int sec_damping,
794                                  int coeff_shift, int block_width,
795                                  int block_height) {
796   if (block_width == 8) {
797     filter_block_8x8(/*is_lowbd=*/0, dest, dstride, in, pri_strength,
798                      sec_strength, dir, pri_damping, sec_damping, coeff_shift,
799                      block_height, /*enable_primary=*/0,
800                      /*enable_secondary=*/1);
801   } else {
802     filter_block_4x4(/*is_lowbd=*/0, dest, dstride, in, pri_strength,
803                      sec_strength, dir, pri_damping, sec_damping, coeff_shift,
804                      block_height, /*enable_primary=*/0,
805                      /*enable_secondary=*/1);
806   }
807 }
808 
SIMD_FUNC(cdef_filter_16_3)809 void SIMD_FUNC(cdef_filter_16_3)(void *dest, int dstride, const uint16_t *in,
810                                  int pri_strength, int sec_strength, int dir,
811                                  int pri_damping, int sec_damping,
812                                  int coeff_shift, int block_width,
813                                  int block_height) {
814   (void)pri_strength;
815   (void)sec_strength;
816   (void)dir;
817   (void)pri_damping;
818   (void)sec_damping;
819   (void)coeff_shift;
820   (void)block_width;
821   if (block_width == 8) {
822     copy_block_8xh(/*is_lowbd=*/0, dest, dstride, in, block_height);
823   } else {
824     copy_block_4xh(/*is_lowbd=*/0, dest, dstride, in, block_height);
825   }
826 }
827 
828 #if CONFIG_AV1_HIGHBITDEPTH
SIMD_FUNC(cdef_copy_rect8_16bit_to_16bit)829 void SIMD_FUNC(cdef_copy_rect8_16bit_to_16bit)(uint16_t *dst, int dstride,
830                                                const uint16_t *src, int sstride,
831                                                int width, int height) {
832   int i, j;
833   for (i = 0; i < height; i++) {
834     for (j = 0; j < (width & ~0x7); j += 8) {
835       v128 row = v128_load_unaligned(&src[i * sstride + j]);
836       v128_store_unaligned(&dst[i * dstride + j], row);
837     }
838     for (; j < width; j++) {
839       dst[i * dstride + j] = src[i * sstride + j];
840     }
841   }
842 }
843 #endif  // CONFIG_AV1_HIGHBITDEPTH
844 
845 #undef CDEF_INLINE
846 
847 #endif  // AOM_AV1_COMMON_CDEF_BLOCK_SIMD_H_
848