xref: /aosp_15_r20/external/libaom/av1/decoder/decodeframe.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <assert.h>
13 #include <stdbool.h>
14 #include <stddef.h>
15 
16 #include "config/aom_config.h"
17 #include "config/aom_scale_rtcd.h"
18 
19 #include "aom/aom_codec.h"
20 #include "aom/aom_image.h"
21 #include "aom/internal/aom_codec_internal.h"
22 #include "aom_dsp/aom_dsp_common.h"
23 #include "aom_dsp/binary_codes_reader.h"
24 #include "aom_dsp/bitreader.h"
25 #include "aom_dsp/bitreader_buffer.h"
26 #include "aom_dsp/txfm_common.h"
27 #include "aom_mem/aom_mem.h"
28 #include "aom_ports/aom_timer.h"
29 #include "aom_ports/mem.h"
30 #include "aom_ports/mem_ops.h"
31 #include "aom_scale/yv12config.h"
32 #include "aom_util/aom_pthread.h"
33 #include "aom_util/aom_thread.h"
34 
35 #if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
36 #include "aom_util/debug_util.h"
37 #endif  // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
38 
39 #include "av1/common/alloccommon.h"
40 #include "av1/common/av1_common_int.h"
41 #include "av1/common/blockd.h"
42 #include "av1/common/cdef.h"
43 #include "av1/common/cfl.h"
44 #include "av1/common/common_data.h"
45 #include "av1/common/common.h"
46 #include "av1/common/entropy.h"
47 #include "av1/common/entropymode.h"
48 #include "av1/common/entropymv.h"
49 #include "av1/common/enums.h"
50 #include "av1/common/frame_buffers.h"
51 #include "av1/common/idct.h"
52 #include "av1/common/mv.h"
53 #include "av1/common/mvref_common.h"
54 #include "av1/common/obmc.h"
55 #include "av1/common/pred_common.h"
56 #include "av1/common/quant_common.h"
57 #include "av1/common/reconinter.h"
58 #include "av1/common/reconintra.h"
59 #include "av1/common/resize.h"
60 #include "av1/common/restoration.h"
61 #include "av1/common/scale.h"
62 #include "av1/common/seg_common.h"
63 #include "av1/common/thread_common.h"
64 #include "av1/common/tile_common.h"
65 #include "av1/common/warped_motion.h"
66 
67 #include "av1/decoder/decodeframe.h"
68 #include "av1/decoder/decodemv.h"
69 #include "av1/decoder/decoder.h"
70 #include "av1/decoder/decodetxb.h"
71 #include "av1/decoder/detokenize.h"
72 #if CONFIG_INSPECTION
73 #include "av1/decoder/inspection.h"
74 #endif
75 
76 #define ACCT_STR __func__
77 
78 #define AOM_MIN_THREADS_PER_TILE 1
79 #define AOM_MAX_THREADS_PER_TILE 2
80 
81 // This is needed by ext_tile related unit tests.
82 #define EXT_TILE_DEBUG 1
83 #define MC_TEMP_BUF_PELS                       \
84   (((MAX_SB_SIZE)*2 + (AOM_INTERP_EXTEND)*2) * \
85    ((MAX_SB_SIZE)*2 + (AOM_INTERP_EXTEND)*2))
86 
87 // Checks that the remaining bits start with a 1 and ends with 0s.
88 // It consumes an additional byte, if already byte aligned before the check.
av1_check_trailing_bits(AV1Decoder * pbi,struct aom_read_bit_buffer * rb)89 int av1_check_trailing_bits(AV1Decoder *pbi, struct aom_read_bit_buffer *rb) {
90   // bit_offset is set to 0 (mod 8) when the reader is already byte aligned
91   int bits_before_alignment = 8 - rb->bit_offset % 8;
92   int trailing = aom_rb_read_literal(rb, bits_before_alignment);
93   if (trailing != (1 << (bits_before_alignment - 1))) {
94     pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME;
95     return -1;
96   }
97   return 0;
98 }
99 
100 // Use only_chroma = 1 to only set the chroma planes
set_planes_to_neutral_grey(const SequenceHeader * const seq_params,const YV12_BUFFER_CONFIG * const buf,int only_chroma)101 static inline void set_planes_to_neutral_grey(
102     const SequenceHeader *const seq_params, const YV12_BUFFER_CONFIG *const buf,
103     int only_chroma) {
104   if (seq_params->use_highbitdepth) {
105     const int val = 1 << (seq_params->bit_depth - 1);
106     for (int plane = only_chroma; plane < MAX_MB_PLANE; plane++) {
107       const int is_uv = plane > 0;
108       uint16_t *const base = CONVERT_TO_SHORTPTR(buf->buffers[plane]);
109       // Set the first row to neutral grey. Then copy the first row to all
110       // subsequent rows.
111       if (buf->crop_heights[is_uv] > 0) {
112         aom_memset16(base, val, buf->crop_widths[is_uv]);
113         for (int row_idx = 1; row_idx < buf->crop_heights[is_uv]; row_idx++) {
114           memcpy(&base[row_idx * buf->strides[is_uv]], base,
115                  sizeof(*base) * buf->crop_widths[is_uv]);
116         }
117       }
118     }
119   } else {
120     for (int plane = only_chroma; plane < MAX_MB_PLANE; plane++) {
121       const int is_uv = plane > 0;
122       for (int row_idx = 0; row_idx < buf->crop_heights[is_uv]; row_idx++) {
123         memset(&buf->buffers[plane][row_idx * buf->strides[is_uv]], 1 << 7,
124                buf->crop_widths[is_uv]);
125       }
126     }
127   }
128 }
129 
130 static inline void loop_restoration_read_sb_coeffs(const AV1_COMMON *const cm,
131                                                    MACROBLOCKD *xd,
132                                                    aom_reader *const r,
133                                                    int plane, int runit_idx);
134 
read_is_valid(const uint8_t * start,size_t len,const uint8_t * end)135 static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) {
136   return len != 0 && len <= (size_t)(end - start);
137 }
138 
read_tx_mode(struct aom_read_bit_buffer * rb,int coded_lossless)139 static TX_MODE read_tx_mode(struct aom_read_bit_buffer *rb,
140                             int coded_lossless) {
141   if (coded_lossless) return ONLY_4X4;
142   return aom_rb_read_bit(rb) ? TX_MODE_SELECT : TX_MODE_LARGEST;
143 }
144 
read_frame_reference_mode(const AV1_COMMON * cm,struct aom_read_bit_buffer * rb)145 static REFERENCE_MODE read_frame_reference_mode(
146     const AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
147   if (frame_is_intra_only(cm)) {
148     return SINGLE_REFERENCE;
149   } else {
150     return aom_rb_read_bit(rb) ? REFERENCE_MODE_SELECT : SINGLE_REFERENCE;
151   }
152 }
153 
inverse_transform_block(DecoderCodingBlock * dcb,int plane,const TX_TYPE tx_type,const TX_SIZE tx_size,uint8_t * dst,int stride,int reduced_tx_set)154 static inline void inverse_transform_block(DecoderCodingBlock *dcb, int plane,
155                                            const TX_TYPE tx_type,
156                                            const TX_SIZE tx_size, uint8_t *dst,
157                                            int stride, int reduced_tx_set) {
158   tran_low_t *const dqcoeff = dcb->dqcoeff_block[plane] + dcb->cb_offset[plane];
159   eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane];
160   uint16_t scan_line = eob_data->max_scan_line;
161   uint16_t eob = eob_data->eob;
162   av1_inverse_transform_block(&dcb->xd, dqcoeff, plane, tx_type, tx_size, dst,
163                               stride, eob, reduced_tx_set);
164   memset(dqcoeff, 0, (scan_line + 1) * sizeof(dqcoeff[0]));
165 }
166 
read_coeffs_tx_intra_block(const AV1_COMMON * const cm,DecoderCodingBlock * dcb,aom_reader * const r,const int plane,const int row,const int col,const TX_SIZE tx_size)167 static inline void read_coeffs_tx_intra_block(
168     const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r,
169     const int plane, const int row, const int col, const TX_SIZE tx_size) {
170   MB_MODE_INFO *mbmi = dcb->xd.mi[0];
171   if (!mbmi->skip_txfm) {
172 #if TXCOEFF_TIMER
173     struct aom_usec_timer timer;
174     aom_usec_timer_start(&timer);
175 #endif
176     av1_read_coeffs_txb(cm, dcb, r, plane, row, col, tx_size);
177 #if TXCOEFF_TIMER
178     aom_usec_timer_mark(&timer);
179     const int64_t elapsed_time = aom_usec_timer_elapsed(&timer);
180     cm->txcoeff_timer += elapsed_time;
181     ++cm->txb_count;
182 #endif
183   }
184 }
185 
decode_block_void(const AV1_COMMON * const cm,DecoderCodingBlock * dcb,aom_reader * const r,const int plane,const int row,const int col,const TX_SIZE tx_size)186 static inline void decode_block_void(const AV1_COMMON *const cm,
187                                      DecoderCodingBlock *dcb,
188                                      aom_reader *const r, const int plane,
189                                      const int row, const int col,
190                                      const TX_SIZE tx_size) {
191   (void)cm;
192   (void)dcb;
193   (void)r;
194   (void)plane;
195   (void)row;
196   (void)col;
197   (void)tx_size;
198 }
199 
predict_inter_block_void(AV1_COMMON * const cm,DecoderCodingBlock * dcb,BLOCK_SIZE bsize)200 static inline void predict_inter_block_void(AV1_COMMON *const cm,
201                                             DecoderCodingBlock *dcb,
202                                             BLOCK_SIZE bsize) {
203   (void)cm;
204   (void)dcb;
205   (void)bsize;
206 }
207 
cfl_store_inter_block_void(AV1_COMMON * const cm,MACROBLOCKD * const xd)208 static inline void cfl_store_inter_block_void(AV1_COMMON *const cm,
209                                               MACROBLOCKD *const xd) {
210   (void)cm;
211   (void)xd;
212 }
213 
predict_and_reconstruct_intra_block(const AV1_COMMON * const cm,DecoderCodingBlock * dcb,aom_reader * const r,const int plane,const int row,const int col,const TX_SIZE tx_size)214 static inline void predict_and_reconstruct_intra_block(
215     const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r,
216     const int plane, const int row, const int col, const TX_SIZE tx_size) {
217   (void)r;
218   MACROBLOCKD *const xd = &dcb->xd;
219   MB_MODE_INFO *mbmi = xd->mi[0];
220   PLANE_TYPE plane_type = get_plane_type(plane);
221 
222   av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size);
223 
224   if (!mbmi->skip_txfm) {
225     eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane];
226     if (eob_data->eob) {
227       const bool reduced_tx_set_used = cm->features.reduced_tx_set_used;
228       // tx_type was read out in av1_read_coeffs_txb.
229       const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, row, col, tx_size,
230                                               reduced_tx_set_used);
231       struct macroblockd_plane *const pd = &xd->plane[plane];
232       uint8_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << MI_SIZE_LOG2];
233       inverse_transform_block(dcb, plane, tx_type, tx_size, dst, pd->dst.stride,
234                               reduced_tx_set_used);
235     }
236   }
237   if (plane == AOM_PLANE_Y && store_cfl_required(cm, xd)) {
238     cfl_store_tx(xd, row, col, tx_size, mbmi->bsize);
239   }
240 }
241 
inverse_transform_inter_block(const AV1_COMMON * const cm,DecoderCodingBlock * dcb,aom_reader * const r,const int plane,const int blk_row,const int blk_col,const TX_SIZE tx_size)242 static inline void inverse_transform_inter_block(
243     const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r,
244     const int plane, const int blk_row, const int blk_col,
245     const TX_SIZE tx_size) {
246   (void)r;
247   MACROBLOCKD *const xd = &dcb->xd;
248   PLANE_TYPE plane_type = get_plane_type(plane);
249   const struct macroblockd_plane *const pd = &xd->plane[plane];
250   const bool reduced_tx_set_used = cm->features.reduced_tx_set_used;
251   // tx_type was read out in av1_read_coeffs_txb.
252   const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col,
253                                           tx_size, reduced_tx_set_used);
254 
255   uint8_t *dst =
256       &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2];
257   inverse_transform_block(dcb, plane, tx_type, tx_size, dst, pd->dst.stride,
258                           reduced_tx_set_used);
259 #if CONFIG_MISMATCH_DEBUG
260   int pixel_c, pixel_r;
261   BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
262   int blk_w = block_size_wide[bsize];
263   int blk_h = block_size_high[bsize];
264   const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2);
265   const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2);
266   mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, blk_col, blk_row,
267                   pd->subsampling_x, pd->subsampling_y);
268   mismatch_check_block_tx(dst, pd->dst.stride, cm->current_frame.order_hint,
269                           plane, pixel_c, pixel_r, blk_w, blk_h,
270                           xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
271 #endif
272 }
273 
set_cb_buffer_offsets(DecoderCodingBlock * dcb,TX_SIZE tx_size,int plane)274 static inline void set_cb_buffer_offsets(DecoderCodingBlock *dcb,
275                                          TX_SIZE tx_size, int plane) {
276   dcb->cb_offset[plane] += tx_size_wide[tx_size] * tx_size_high[tx_size];
277   dcb->txb_offset[plane] =
278       dcb->cb_offset[plane] / (TX_SIZE_W_MIN * TX_SIZE_H_MIN);
279 }
280 
decode_reconstruct_tx(AV1_COMMON * cm,ThreadData * const td,aom_reader * r,MB_MODE_INFO * const mbmi,int plane,BLOCK_SIZE plane_bsize,int blk_row,int blk_col,int block,TX_SIZE tx_size,int * eob_total)281 static inline void decode_reconstruct_tx(AV1_COMMON *cm, ThreadData *const td,
282                                          aom_reader *r,
283                                          MB_MODE_INFO *const mbmi, int plane,
284                                          BLOCK_SIZE plane_bsize, int blk_row,
285                                          int blk_col, int block,
286                                          TX_SIZE tx_size, int *eob_total) {
287   DecoderCodingBlock *const dcb = &td->dcb;
288   MACROBLOCKD *const xd = &dcb->xd;
289   const struct macroblockd_plane *const pd = &xd->plane[plane];
290   const TX_SIZE plane_tx_size =
291       plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
292                                     pd->subsampling_y)
293             : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
294                                                          blk_col)];
295   // Scale to match transform block unit.
296   const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
297   const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
298 
299   if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
300 
301   if (tx_size == plane_tx_size || plane) {
302     td->read_coeffs_tx_inter_block_visit(cm, dcb, r, plane, blk_row, blk_col,
303                                          tx_size);
304 
305     td->inverse_tx_inter_block_visit(cm, dcb, r, plane, blk_row, blk_col,
306                                      tx_size);
307     eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane];
308     *eob_total += eob_data->eob;
309     set_cb_buffer_offsets(dcb, tx_size, plane);
310   } else {
311     const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
312     assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size));
313     assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size));
314     const int bsw = tx_size_wide_unit[sub_txs];
315     const int bsh = tx_size_high_unit[sub_txs];
316     const int sub_step = bsw * bsh;
317     const int row_end =
318         AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
319     const int col_end =
320         AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
321 
322     assert(bsw > 0 && bsh > 0);
323 
324     for (int row = 0; row < row_end; row += bsh) {
325       const int offsetr = blk_row + row;
326       for (int col = 0; col < col_end; col += bsw) {
327         const int offsetc = blk_col + col;
328 
329         decode_reconstruct_tx(cm, td, r, mbmi, plane, plane_bsize, offsetr,
330                               offsetc, block, sub_txs, eob_total);
331         block += sub_step;
332       }
333     }
334   }
335 }
336 
set_offsets(AV1_COMMON * const cm,MACROBLOCKD * const xd,BLOCK_SIZE bsize,int mi_row,int mi_col,int bw,int bh,int x_mis,int y_mis)337 static inline void set_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd,
338                                BLOCK_SIZE bsize, int mi_row, int mi_col, int bw,
339                                int bh, int x_mis, int y_mis) {
340   const int num_planes = av1_num_planes(cm);
341   const CommonModeInfoParams *const mi_params = &cm->mi_params;
342   const TileInfo *const tile = &xd->tile;
343 
344   set_mi_offsets(mi_params, xd, mi_row, mi_col);
345   xd->mi[0]->bsize = bsize;
346 #if CONFIG_RD_DEBUG
347   xd->mi[0]->mi_row = mi_row;
348   xd->mi[0]->mi_col = mi_col;
349 #endif
350 
351   assert(x_mis && y_mis);
352   for (int x = 1; x < x_mis; ++x) xd->mi[x] = xd->mi[0];
353   int idx = mi_params->mi_stride;
354   for (int y = 1; y < y_mis; ++y) {
355     memcpy(&xd->mi[idx], &xd->mi[0], x_mis * sizeof(xd->mi[0]));
356     idx += mi_params->mi_stride;
357   }
358 
359   set_plane_n4(xd, bw, bh, num_planes);
360   set_entropy_context(xd, mi_row, mi_col, num_planes);
361 
362   // Distance of Mb to the various image edges. These are specified to 8th pel
363   // as they are always compared to values that are in 1/8th pel units
364   set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
365                  mi_params->mi_cols);
366 
367   av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0,
368                        num_planes);
369 }
370 
decode_mbmi_block(AV1Decoder * const pbi,DecoderCodingBlock * dcb,int mi_row,int mi_col,aom_reader * r,PARTITION_TYPE partition,BLOCK_SIZE bsize)371 static inline void decode_mbmi_block(AV1Decoder *const pbi,
372                                      DecoderCodingBlock *dcb, int mi_row,
373                                      int mi_col, aom_reader *r,
374                                      PARTITION_TYPE partition,
375                                      BLOCK_SIZE bsize) {
376   AV1_COMMON *const cm = &pbi->common;
377   const SequenceHeader *const seq_params = cm->seq_params;
378   const int bw = mi_size_wide[bsize];
379   const int bh = mi_size_high[bsize];
380   const int x_mis = AOMMIN(bw, cm->mi_params.mi_cols - mi_col);
381   const int y_mis = AOMMIN(bh, cm->mi_params.mi_rows - mi_row);
382   MACROBLOCKD *const xd = &dcb->xd;
383 
384 #if CONFIG_ACCOUNTING
385   aom_accounting_set_context(&pbi->accounting, mi_col, mi_row);
386 #endif
387   set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis);
388   xd->mi[0]->partition = partition;
389   av1_read_mode_info(pbi, dcb, r, x_mis, y_mis);
390   if (bsize >= BLOCK_8X8 &&
391       (seq_params->subsampling_x || seq_params->subsampling_y)) {
392     const BLOCK_SIZE uv_subsize =
393         av1_ss_size_lookup[bsize][seq_params->subsampling_x]
394                           [seq_params->subsampling_y];
395     if (uv_subsize == BLOCK_INVALID)
396       aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
397                          "Invalid block size.");
398   }
399 }
400 
401 typedef struct PadBlock {
402   int x0;
403   int x1;
404   int y0;
405   int y1;
406 } PadBlock;
407 
408 #if CONFIG_AV1_HIGHBITDEPTH
highbd_build_mc_border(const uint8_t * src8,int src_stride,uint8_t * dst8,int dst_stride,int x,int y,int b_w,int b_h,int w,int h)409 static inline void highbd_build_mc_border(const uint8_t *src8, int src_stride,
410                                           uint8_t *dst8, int dst_stride, int x,
411                                           int y, int b_w, int b_h, int w,
412                                           int h) {
413   // Get a pointer to the start of the real data for this row.
414   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
415   uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
416   const uint16_t *ref_row = src - x - y * src_stride;
417 
418   if (y >= h)
419     ref_row += (h - 1) * src_stride;
420   else if (y > 0)
421     ref_row += y * src_stride;
422 
423   do {
424     int right = 0, copy;
425     int left = x < 0 ? -x : 0;
426 
427     if (left > b_w) left = b_w;
428 
429     if (x + b_w > w) right = x + b_w - w;
430 
431     if (right > b_w) right = b_w;
432 
433     copy = b_w - left - right;
434 
435     if (left) aom_memset16(dst, ref_row[0], left);
436 
437     if (copy) memcpy(dst + left, ref_row + x + left, copy * sizeof(uint16_t));
438 
439     if (right) aom_memset16(dst + left + copy, ref_row[w - 1], right);
440 
441     dst += dst_stride;
442     ++y;
443 
444     if (y > 0 && y < h) ref_row += src_stride;
445   } while (--b_h);
446 }
447 #endif  // CONFIG_AV1_HIGHBITDEPTH
448 
build_mc_border(const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,int x,int y,int b_w,int b_h,int w,int h)449 static inline void build_mc_border(const uint8_t *src, int src_stride,
450                                    uint8_t *dst, int dst_stride, int x, int y,
451                                    int b_w, int b_h, int w, int h) {
452   // Get a pointer to the start of the real data for this row.
453   const uint8_t *ref_row = src - x - y * src_stride;
454 
455   if (y >= h)
456     ref_row += (h - 1) * src_stride;
457   else if (y > 0)
458     ref_row += y * src_stride;
459 
460   do {
461     int right = 0, copy;
462     int left = x < 0 ? -x : 0;
463 
464     if (left > b_w) left = b_w;
465 
466     if (x + b_w > w) right = x + b_w - w;
467 
468     if (right > b_w) right = b_w;
469 
470     copy = b_w - left - right;
471 
472     if (left) memset(dst, ref_row[0], left);
473 
474     if (copy) memcpy(dst + left, ref_row + x + left, copy);
475 
476     if (right) memset(dst + left + copy, ref_row[w - 1], right);
477 
478     dst += dst_stride;
479     ++y;
480 
481     if (y > 0 && y < h) ref_row += src_stride;
482   } while (--b_h);
483 }
484 
update_extend_mc_border_params(const struct scale_factors * const sf,struct buf_2d * const pre_buf,MV32 scaled_mv,PadBlock * block,int subpel_x_mv,int subpel_y_mv,int do_warp,int is_intrabc,int * x_pad,int * y_pad)485 static inline int update_extend_mc_border_params(
486     const struct scale_factors *const sf, struct buf_2d *const pre_buf,
487     MV32 scaled_mv, PadBlock *block, int subpel_x_mv, int subpel_y_mv,
488     int do_warp, int is_intrabc, int *x_pad, int *y_pad) {
489   const int is_scaled = av1_is_scaled(sf);
490   // Get reference width and height.
491   int frame_width = pre_buf->width;
492   int frame_height = pre_buf->height;
493 
494   // Do border extension if there is motion or
495   // width/height is not a multiple of 8 pixels.
496   if ((!is_intrabc) && (!do_warp) &&
497       (is_scaled || scaled_mv.col || scaled_mv.row || (frame_width & 0x7) ||
498        (frame_height & 0x7))) {
499     if (subpel_x_mv || (sf->x_step_q4 != SUBPEL_SHIFTS)) {
500       block->x0 -= AOM_INTERP_EXTEND - 1;
501       block->x1 += AOM_INTERP_EXTEND;
502       *x_pad = 1;
503     }
504 
505     if (subpel_y_mv || (sf->y_step_q4 != SUBPEL_SHIFTS)) {
506       block->y0 -= AOM_INTERP_EXTEND - 1;
507       block->y1 += AOM_INTERP_EXTEND;
508       *y_pad = 1;
509     }
510 
511     // Skip border extension if block is inside the frame.
512     if (block->x0 < 0 || block->x1 > frame_width - 1 || block->y0 < 0 ||
513         block->y1 > frame_height - 1) {
514       return 1;
515     }
516   }
517   return 0;
518 }
519 
extend_mc_border(const struct scale_factors * const sf,struct buf_2d * const pre_buf,MV32 scaled_mv,PadBlock block,int subpel_x_mv,int subpel_y_mv,int do_warp,int is_intrabc,int highbd,uint8_t * mc_buf,uint8_t ** pre,int * src_stride)520 static inline void extend_mc_border(const struct scale_factors *const sf,
521                                     struct buf_2d *const pre_buf,
522                                     MV32 scaled_mv, PadBlock block,
523                                     int subpel_x_mv, int subpel_y_mv,
524                                     int do_warp, int is_intrabc, int highbd,
525                                     uint8_t *mc_buf, uint8_t **pre,
526                                     int *src_stride) {
527   int x_pad = 0, y_pad = 0;
528   if (update_extend_mc_border_params(sf, pre_buf, scaled_mv, &block,
529                                      subpel_x_mv, subpel_y_mv, do_warp,
530                                      is_intrabc, &x_pad, &y_pad)) {
531     // Get reference block pointer.
532     const uint8_t *const buf_ptr =
533         pre_buf->buf0 + block.y0 * pre_buf->stride + block.x0;
534     int buf_stride = pre_buf->stride;
535     const int b_w = block.x1 - block.x0;
536     const int b_h = block.y1 - block.y0;
537 
538 #if CONFIG_AV1_HIGHBITDEPTH
539     // Extend the border.
540     if (highbd) {
541       highbd_build_mc_border(buf_ptr, buf_stride, mc_buf, b_w, block.x0,
542                              block.y0, b_w, b_h, pre_buf->width,
543                              pre_buf->height);
544     } else {
545       build_mc_border(buf_ptr, buf_stride, mc_buf, b_w, block.x0, block.y0, b_w,
546                       b_h, pre_buf->width, pre_buf->height);
547     }
548 #else
549     (void)highbd;
550     build_mc_border(buf_ptr, buf_stride, mc_buf, b_w, block.x0, block.y0, b_w,
551                     b_h, pre_buf->width, pre_buf->height);
552 #endif
553     *src_stride = b_w;
554     *pre = mc_buf + y_pad * (AOM_INTERP_EXTEND - 1) * b_w +
555            x_pad * (AOM_INTERP_EXTEND - 1);
556   }
557 }
558 
dec_calc_subpel_params(const MV * const src_mv,InterPredParams * const inter_pred_params,const MACROBLOCKD * const xd,int mi_x,int mi_y,uint8_t ** pre,SubpelParams * subpel_params,int * src_stride,PadBlock * block,MV32 * scaled_mv,int * subpel_x_mv,int * subpel_y_mv)559 static inline void dec_calc_subpel_params(
560     const MV *const src_mv, InterPredParams *const inter_pred_params,
561     const MACROBLOCKD *const xd, int mi_x, int mi_y, uint8_t **pre,
562     SubpelParams *subpel_params, int *src_stride, PadBlock *block,
563     MV32 *scaled_mv, int *subpel_x_mv, int *subpel_y_mv) {
564   const struct scale_factors *sf = inter_pred_params->scale_factors;
565   struct buf_2d *pre_buf = &inter_pred_params->ref_frame_buf;
566   const int bw = inter_pred_params->block_width;
567   const int bh = inter_pred_params->block_height;
568   const int is_scaled = av1_is_scaled(sf);
569   if (is_scaled) {
570     int ssx = inter_pred_params->subsampling_x;
571     int ssy = inter_pred_params->subsampling_y;
572     int orig_pos_y = inter_pred_params->pix_row << SUBPEL_BITS;
573     orig_pos_y += src_mv->row * (1 << (1 - ssy));
574     int orig_pos_x = inter_pred_params->pix_col << SUBPEL_BITS;
575     orig_pos_x += src_mv->col * (1 << (1 - ssx));
576     int pos_y = av1_scaled_y(orig_pos_y, sf);
577     int pos_x = av1_scaled_x(orig_pos_x, sf);
578     pos_x += SCALE_EXTRA_OFF;
579     pos_y += SCALE_EXTRA_OFF;
580 
581     const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy);
582     const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx);
583     const int bottom = (pre_buf->height + AOM_INTERP_EXTEND)
584                        << SCALE_SUBPEL_BITS;
585     const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS;
586     pos_y = clamp(pos_y, top, bottom);
587     pos_x = clamp(pos_x, left, right);
588 
589     subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK;
590     subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK;
591     subpel_params->xs = sf->x_step_q4;
592     subpel_params->ys = sf->y_step_q4;
593 
594     // Get reference block top left coordinate.
595     block->x0 = pos_x >> SCALE_SUBPEL_BITS;
596     block->y0 = pos_y >> SCALE_SUBPEL_BITS;
597 
598     // Get reference block bottom right coordinate.
599     block->x1 =
600         ((pos_x + (bw - 1) * subpel_params->xs) >> SCALE_SUBPEL_BITS) + 1;
601     block->y1 =
602         ((pos_y + (bh - 1) * subpel_params->ys) >> SCALE_SUBPEL_BITS) + 1;
603 
604     MV temp_mv;
605     temp_mv = clamp_mv_to_umv_border_sb(xd, src_mv, bw, bh,
606                                         inter_pred_params->subsampling_x,
607                                         inter_pred_params->subsampling_y);
608     *scaled_mv = av1_scale_mv(&temp_mv, mi_x, mi_y, sf);
609     scaled_mv->row += SCALE_EXTRA_OFF;
610     scaled_mv->col += SCALE_EXTRA_OFF;
611 
612     *subpel_x_mv = scaled_mv->col & SCALE_SUBPEL_MASK;
613     *subpel_y_mv = scaled_mv->row & SCALE_SUBPEL_MASK;
614   } else {
615     // Get block position in current frame.
616     int pos_x = inter_pred_params->pix_col << SUBPEL_BITS;
617     int pos_y = inter_pred_params->pix_row << SUBPEL_BITS;
618 
619     const MV mv_q4 = clamp_mv_to_umv_border_sb(
620         xd, src_mv, bw, bh, inter_pred_params->subsampling_x,
621         inter_pred_params->subsampling_y);
622     subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS;
623     subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS;
624     subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS;
625 
626     // Get reference block top left coordinate.
627     pos_x += mv_q4.col;
628     pos_y += mv_q4.row;
629     block->x0 = pos_x >> SUBPEL_BITS;
630     block->y0 = pos_y >> SUBPEL_BITS;
631 
632     // Get reference block bottom right coordinate.
633     block->x1 = (pos_x >> SUBPEL_BITS) + (bw - 1) + 1;
634     block->y1 = (pos_y >> SUBPEL_BITS) + (bh - 1) + 1;
635 
636     scaled_mv->row = mv_q4.row;
637     scaled_mv->col = mv_q4.col;
638     *subpel_x_mv = scaled_mv->col & SUBPEL_MASK;
639     *subpel_y_mv = scaled_mv->row & SUBPEL_MASK;
640   }
641   *pre = pre_buf->buf0 + block->y0 * pre_buf->stride + block->x0;
642   *src_stride = pre_buf->stride;
643 }
644 
dec_calc_subpel_params_and_extend(const MV * const src_mv,InterPredParams * const inter_pred_params,MACROBLOCKD * const xd,int mi_x,int mi_y,int ref,uint8_t ** mc_buf,uint8_t ** pre,SubpelParams * subpel_params,int * src_stride)645 static inline void dec_calc_subpel_params_and_extend(
646     const MV *const src_mv, InterPredParams *const inter_pred_params,
647     MACROBLOCKD *const xd, int mi_x, int mi_y, int ref, uint8_t **mc_buf,
648     uint8_t **pre, SubpelParams *subpel_params, int *src_stride) {
649   PadBlock block;
650   MV32 scaled_mv;
651   int subpel_x_mv, subpel_y_mv;
652   dec_calc_subpel_params(src_mv, inter_pred_params, xd, mi_x, mi_y, pre,
653                          subpel_params, src_stride, &block, &scaled_mv,
654                          &subpel_x_mv, &subpel_y_mv);
655   extend_mc_border(
656       inter_pred_params->scale_factors, &inter_pred_params->ref_frame_buf,
657       scaled_mv, block, subpel_x_mv, subpel_y_mv,
658       inter_pred_params->mode == WARP_PRED, inter_pred_params->is_intrabc,
659       inter_pred_params->use_hbd_buf, mc_buf[ref], pre, src_stride);
660 }
661 
662 #define IS_DEC 1
663 #include "av1/common/reconinter_template.inc"
664 #undef IS_DEC
665 
dec_build_inter_predictors(const AV1_COMMON * cm,DecoderCodingBlock * dcb,int plane,const MB_MODE_INFO * mi,int build_for_obmc,int bw,int bh,int mi_x,int mi_y)666 static void dec_build_inter_predictors(const AV1_COMMON *cm,
667                                        DecoderCodingBlock *dcb, int plane,
668                                        const MB_MODE_INFO *mi,
669                                        int build_for_obmc, int bw, int bh,
670                                        int mi_x, int mi_y) {
671   build_inter_predictors(cm, &dcb->xd, plane, mi, build_for_obmc, bw, bh, mi_x,
672                          mi_y, dcb->mc_buf);
673 }
674 
dec_build_inter_predictor(const AV1_COMMON * cm,DecoderCodingBlock * dcb,int mi_row,int mi_col,BLOCK_SIZE bsize)675 static inline void dec_build_inter_predictor(const AV1_COMMON *cm,
676                                              DecoderCodingBlock *dcb,
677                                              int mi_row, int mi_col,
678                                              BLOCK_SIZE bsize) {
679   MACROBLOCKD *const xd = &dcb->xd;
680   const int num_planes = av1_num_planes(cm);
681   for (int plane = 0; plane < num_planes; ++plane) {
682     if (plane && !xd->is_chroma_ref) break;
683     const int mi_x = mi_col * MI_SIZE;
684     const int mi_y = mi_row * MI_SIZE;
685     dec_build_inter_predictors(cm, dcb, plane, xd->mi[0], 0,
686                                xd->plane[plane].width, xd->plane[plane].height,
687                                mi_x, mi_y);
688     if (is_interintra_pred(xd->mi[0])) {
689       BUFFER_SET ctx = { { xd->plane[0].dst.buf, xd->plane[1].dst.buf,
690                            xd->plane[2].dst.buf },
691                          { xd->plane[0].dst.stride, xd->plane[1].dst.stride,
692                            xd->plane[2].dst.stride } };
693       av1_build_interintra_predictor(cm, xd, xd->plane[plane].dst.buf,
694                                      xd->plane[plane].dst.stride, &ctx, plane,
695                                      bsize);
696     }
697   }
698 }
699 
dec_build_prediction_by_above_pred(MACROBLOCKD * const xd,int rel_mi_row,int rel_mi_col,uint8_t op_mi_size,int dir,MB_MODE_INFO * above_mbmi,void * fun_ctxt,const int num_planes)700 static inline void dec_build_prediction_by_above_pred(
701     MACROBLOCKD *const xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
702     int dir, MB_MODE_INFO *above_mbmi, void *fun_ctxt, const int num_planes) {
703   struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt;
704   const int above_mi_col = xd->mi_col + rel_mi_col;
705   int mi_x, mi_y;
706   MB_MODE_INFO backup_mbmi = *above_mbmi;
707 
708   (void)rel_mi_row;
709   (void)dir;
710 
711   av1_setup_build_prediction_by_above_pred(xd, rel_mi_col, op_mi_size,
712                                            &backup_mbmi, ctxt, num_planes);
713   mi_x = above_mi_col << MI_SIZE_LOG2;
714   mi_y = xd->mi_row << MI_SIZE_LOG2;
715 
716   const BLOCK_SIZE bsize = xd->mi[0]->bsize;
717 
718   for (int j = 0; j < num_planes; ++j) {
719     const struct macroblockd_plane *pd = &xd->plane[j];
720     int bw = (op_mi_size * MI_SIZE) >> pd->subsampling_x;
721     int bh = clamp(block_size_high[bsize] >> (pd->subsampling_y + 1), 4,
722                    block_size_high[BLOCK_64X64] >> (pd->subsampling_y + 1));
723 
724     if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue;
725     dec_build_inter_predictors(ctxt->cm, (DecoderCodingBlock *)ctxt->dcb, j,
726                                &backup_mbmi, 1, bw, bh, mi_x, mi_y);
727   }
728 }
729 
dec_build_prediction_by_above_preds(const AV1_COMMON * cm,DecoderCodingBlock * dcb,uint8_t * tmp_buf[MAX_MB_PLANE],int tmp_width[MAX_MB_PLANE],int tmp_height[MAX_MB_PLANE],int tmp_stride[MAX_MB_PLANE])730 static inline void dec_build_prediction_by_above_preds(
731     const AV1_COMMON *cm, DecoderCodingBlock *dcb,
732     uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE],
733     int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) {
734   MACROBLOCKD *const xd = &dcb->xd;
735   if (!xd->up_available) return;
736 
737   // Adjust mb_to_bottom_edge to have the correct value for the OBMC
738   // prediction block. This is half the height of the original block,
739   // except for 128-wide blocks, where we only use a height of 32.
740   const int this_height = xd->height * MI_SIZE;
741   const int pred_height = AOMMIN(this_height / 2, 32);
742   xd->mb_to_bottom_edge += GET_MV_SUBPEL(this_height - pred_height);
743   struct build_prediction_ctxt ctxt = {
744     cm, tmp_buf, tmp_width, tmp_height, tmp_stride, xd->mb_to_right_edge, dcb
745   };
746   const BLOCK_SIZE bsize = xd->mi[0]->bsize;
747   foreach_overlappable_nb_above(cm, xd,
748                                 max_neighbor_obmc[mi_size_wide_log2[bsize]],
749                                 dec_build_prediction_by_above_pred, &ctxt);
750 
751   xd->mb_to_left_edge = -GET_MV_SUBPEL(xd->mi_col * MI_SIZE);
752   xd->mb_to_right_edge = ctxt.mb_to_far_edge;
753   xd->mb_to_bottom_edge -= GET_MV_SUBPEL(this_height - pred_height);
754 }
755 
dec_build_prediction_by_left_pred(MACROBLOCKD * const xd,int rel_mi_row,int rel_mi_col,uint8_t op_mi_size,int dir,MB_MODE_INFO * left_mbmi,void * fun_ctxt,const int num_planes)756 static inline void dec_build_prediction_by_left_pred(
757     MACROBLOCKD *const xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
758     int dir, MB_MODE_INFO *left_mbmi, void *fun_ctxt, const int num_planes) {
759   struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt;
760   const int left_mi_row = xd->mi_row + rel_mi_row;
761   int mi_x, mi_y;
762   MB_MODE_INFO backup_mbmi = *left_mbmi;
763 
764   (void)rel_mi_col;
765   (void)dir;
766 
767   av1_setup_build_prediction_by_left_pred(xd, rel_mi_row, op_mi_size,
768                                           &backup_mbmi, ctxt, num_planes);
769   mi_x = xd->mi_col << MI_SIZE_LOG2;
770   mi_y = left_mi_row << MI_SIZE_LOG2;
771   const BLOCK_SIZE bsize = xd->mi[0]->bsize;
772 
773   for (int j = 0; j < num_planes; ++j) {
774     const struct macroblockd_plane *pd = &xd->plane[j];
775     int bw = clamp(block_size_wide[bsize] >> (pd->subsampling_x + 1), 4,
776                    block_size_wide[BLOCK_64X64] >> (pd->subsampling_x + 1));
777     int bh = (op_mi_size << MI_SIZE_LOG2) >> pd->subsampling_y;
778 
779     if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue;
780     dec_build_inter_predictors(ctxt->cm, (DecoderCodingBlock *)ctxt->dcb, j,
781                                &backup_mbmi, 1, bw, bh, mi_x, mi_y);
782   }
783 }
784 
dec_build_prediction_by_left_preds(const AV1_COMMON * cm,DecoderCodingBlock * dcb,uint8_t * tmp_buf[MAX_MB_PLANE],int tmp_width[MAX_MB_PLANE],int tmp_height[MAX_MB_PLANE],int tmp_stride[MAX_MB_PLANE])785 static inline void dec_build_prediction_by_left_preds(
786     const AV1_COMMON *cm, DecoderCodingBlock *dcb,
787     uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE],
788     int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) {
789   MACROBLOCKD *const xd = &dcb->xd;
790   if (!xd->left_available) return;
791 
792   // Adjust mb_to_right_edge to have the correct value for the OBMC
793   // prediction block. This is half the width of the original block,
794   // except for 128-wide blocks, where we only use a width of 32.
795   const int this_width = xd->width * MI_SIZE;
796   const int pred_width = AOMMIN(this_width / 2, 32);
797   xd->mb_to_right_edge += GET_MV_SUBPEL(this_width - pred_width);
798 
799   struct build_prediction_ctxt ctxt = {
800     cm, tmp_buf, tmp_width, tmp_height, tmp_stride, xd->mb_to_bottom_edge, dcb
801   };
802   const BLOCK_SIZE bsize = xd->mi[0]->bsize;
803   foreach_overlappable_nb_left(cm, xd,
804                                max_neighbor_obmc[mi_size_high_log2[bsize]],
805                                dec_build_prediction_by_left_pred, &ctxt);
806 
807   xd->mb_to_top_edge = -GET_MV_SUBPEL(xd->mi_row * MI_SIZE);
808   xd->mb_to_right_edge -= GET_MV_SUBPEL(this_width - pred_width);
809   xd->mb_to_bottom_edge = ctxt.mb_to_far_edge;
810 }
811 
dec_build_obmc_inter_predictors_sb(const AV1_COMMON * cm,DecoderCodingBlock * dcb)812 static inline void dec_build_obmc_inter_predictors_sb(const AV1_COMMON *cm,
813                                                       DecoderCodingBlock *dcb) {
814   const int num_planes = av1_num_planes(cm);
815   uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE];
816   int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
817   int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
818   int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
819   int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
820   int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
821   int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
822 
823   MACROBLOCKD *const xd = &dcb->xd;
824   av1_setup_obmc_dst_bufs(xd, dst_buf1, dst_buf2);
825 
826   dec_build_prediction_by_above_preds(cm, dcb, dst_buf1, dst_width1,
827                                       dst_height1, dst_stride1);
828   dec_build_prediction_by_left_preds(cm, dcb, dst_buf2, dst_width2, dst_height2,
829                                      dst_stride2);
830   const int mi_row = xd->mi_row;
831   const int mi_col = xd->mi_col;
832   av1_setup_dst_planes(xd->plane, xd->mi[0]->bsize, &cm->cur_frame->buf, mi_row,
833                        mi_col, 0, num_planes);
834   av1_build_obmc_inter_prediction(cm, xd, dst_buf1, dst_stride1, dst_buf2,
835                                   dst_stride2);
836 }
837 
cfl_store_inter_block(AV1_COMMON * const cm,MACROBLOCKD * const xd)838 static inline void cfl_store_inter_block(AV1_COMMON *const cm,
839                                          MACROBLOCKD *const xd) {
840   MB_MODE_INFO *mbmi = xd->mi[0];
841   if (store_cfl_required(cm, xd)) {
842     cfl_store_block(xd, mbmi->bsize, mbmi->tx_size);
843   }
844 }
845 
predict_inter_block(AV1_COMMON * const cm,DecoderCodingBlock * dcb,BLOCK_SIZE bsize)846 static inline void predict_inter_block(AV1_COMMON *const cm,
847                                        DecoderCodingBlock *dcb,
848                                        BLOCK_SIZE bsize) {
849   MACROBLOCKD *const xd = &dcb->xd;
850   MB_MODE_INFO *mbmi = xd->mi[0];
851   const int num_planes = av1_num_planes(cm);
852   const int mi_row = xd->mi_row;
853   const int mi_col = xd->mi_col;
854   for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
855     const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
856     if (frame < LAST_FRAME) {
857       assert(is_intrabc_block(mbmi));
858       assert(frame == INTRA_FRAME);
859       assert(ref == 0);
860     } else {
861       const RefCntBuffer *ref_buf = get_ref_frame_buf(cm, frame);
862       const struct scale_factors *ref_scale_factors =
863           get_ref_scale_factors_const(cm, frame);
864 
865       xd->block_ref_scale_factors[ref] = ref_scale_factors;
866       av1_setup_pre_planes(xd, ref, &ref_buf->buf, mi_row, mi_col,
867                            ref_scale_factors, num_planes);
868     }
869   }
870 
871   dec_build_inter_predictor(cm, dcb, mi_row, mi_col, bsize);
872   if (mbmi->motion_mode == OBMC_CAUSAL) {
873     dec_build_obmc_inter_predictors_sb(cm, dcb);
874   }
875 #if CONFIG_MISMATCH_DEBUG
876   for (int plane = 0; plane < num_planes; ++plane) {
877     const struct macroblockd_plane *pd = &xd->plane[plane];
878     int pixel_c, pixel_r;
879     mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0, pd->subsampling_x,
880                     pd->subsampling_y);
881     if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
882                              pd->subsampling_y))
883       continue;
884     mismatch_check_block_pre(pd->dst.buf, pd->dst.stride,
885                              cm->current_frame.order_hint, plane, pixel_c,
886                              pixel_r, pd->width, pd->height,
887                              xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
888   }
889 #endif
890 }
891 
set_color_index_map_offset(MACROBLOCKD * const xd,int plane,aom_reader * r)892 static inline void set_color_index_map_offset(MACROBLOCKD *const xd, int plane,
893                                               aom_reader *r) {
894   (void)r;
895   Av1ColorMapParam params;
896   const MB_MODE_INFO *const mbmi = xd->mi[0];
897   av1_get_block_dimensions(mbmi->bsize, plane, xd, &params.plane_width,
898                            &params.plane_height, NULL, NULL);
899   xd->color_index_map_offset[plane] += params.plane_width * params.plane_height;
900 }
901 
decode_token_recon_block(AV1Decoder * const pbi,ThreadData * const td,aom_reader * r,BLOCK_SIZE bsize)902 static inline void decode_token_recon_block(AV1Decoder *const pbi,
903                                             ThreadData *const td, aom_reader *r,
904                                             BLOCK_SIZE bsize) {
905   AV1_COMMON *const cm = &pbi->common;
906   DecoderCodingBlock *const dcb = &td->dcb;
907   MACROBLOCKD *const xd = &dcb->xd;
908   const int num_planes = av1_num_planes(cm);
909   MB_MODE_INFO *mbmi = xd->mi[0];
910 
911   if (!is_inter_block(mbmi)) {
912     int row, col;
913     assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x,
914                                          xd->plane[0].subsampling_y));
915     const int max_blocks_wide = max_block_wide(xd, bsize, 0);
916     const int max_blocks_high = max_block_high(xd, bsize, 0);
917     const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
918     int mu_blocks_wide = mi_size_wide[max_unit_bsize];
919     int mu_blocks_high = mi_size_high[max_unit_bsize];
920     mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide);
921     mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high);
922 
923     for (row = 0; row < max_blocks_high; row += mu_blocks_high) {
924       for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) {
925         for (int plane = 0; plane < num_planes; ++plane) {
926           if (plane && !xd->is_chroma_ref) break;
927           const struct macroblockd_plane *const pd = &xd->plane[plane];
928           const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
929           const int stepr = tx_size_high_unit[tx_size];
930           const int stepc = tx_size_wide_unit[tx_size];
931 
932           const int unit_height = ROUND_POWER_OF_TWO(
933               AOMMIN(mu_blocks_high + row, max_blocks_high), pd->subsampling_y);
934           const int unit_width = ROUND_POWER_OF_TWO(
935               AOMMIN(mu_blocks_wide + col, max_blocks_wide), pd->subsampling_x);
936 
937           for (int blk_row = row >> pd->subsampling_y; blk_row < unit_height;
938                blk_row += stepr) {
939             for (int blk_col = col >> pd->subsampling_x; blk_col < unit_width;
940                  blk_col += stepc) {
941               td->read_coeffs_tx_intra_block_visit(cm, dcb, r, plane, blk_row,
942                                                    blk_col, tx_size);
943               td->predict_and_recon_intra_block_visit(
944                   cm, dcb, r, plane, blk_row, blk_col, tx_size);
945               set_cb_buffer_offsets(dcb, tx_size, plane);
946             }
947           }
948         }
949       }
950     }
951   } else {
952     td->predict_inter_block_visit(cm, dcb, bsize);
953     // Reconstruction
954     if (!mbmi->skip_txfm) {
955       int eobtotal = 0;
956 
957       const int max_blocks_wide = max_block_wide(xd, bsize, 0);
958       const int max_blocks_high = max_block_high(xd, bsize, 0);
959       int row, col;
960 
961       const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
962       assert(max_unit_bsize ==
963              get_plane_block_size(BLOCK_64X64, xd->plane[0].subsampling_x,
964                                   xd->plane[0].subsampling_y));
965       int mu_blocks_wide = mi_size_wide[max_unit_bsize];
966       int mu_blocks_high = mi_size_high[max_unit_bsize];
967 
968       mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide);
969       mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high);
970 
971       for (row = 0; row < max_blocks_high; row += mu_blocks_high) {
972         for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) {
973           for (int plane = 0; plane < num_planes; ++plane) {
974             if (plane && !xd->is_chroma_ref) break;
975             const struct macroblockd_plane *const pd = &xd->plane[plane];
976             const int ss_x = pd->subsampling_x;
977             const int ss_y = pd->subsampling_y;
978             const BLOCK_SIZE plane_bsize =
979                 get_plane_block_size(bsize, ss_x, ss_y);
980             const TX_SIZE max_tx_size =
981                 get_vartx_max_txsize(xd, plane_bsize, plane);
982             const int bh_var_tx = tx_size_high_unit[max_tx_size];
983             const int bw_var_tx = tx_size_wide_unit[max_tx_size];
984             int block = 0;
985             int step =
986                 tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
987             int blk_row, blk_col;
988             const int unit_height = ROUND_POWER_OF_TWO(
989                 AOMMIN(mu_blocks_high + row, max_blocks_high), ss_y);
990             const int unit_width = ROUND_POWER_OF_TWO(
991                 AOMMIN(mu_blocks_wide + col, max_blocks_wide), ss_x);
992 
993             for (blk_row = row >> ss_y; blk_row < unit_height;
994                  blk_row += bh_var_tx) {
995               for (blk_col = col >> ss_x; blk_col < unit_width;
996                    blk_col += bw_var_tx) {
997                 decode_reconstruct_tx(cm, td, r, mbmi, plane, plane_bsize,
998                                       blk_row, blk_col, block, max_tx_size,
999                                       &eobtotal);
1000                 block += step;
1001               }
1002             }
1003           }
1004         }
1005       }
1006     }
1007     td->cfl_store_inter_block_visit(cm, xd);
1008   }
1009 
1010   av1_visit_palette(pbi, xd, r, set_color_index_map_offset);
1011 }
1012 
set_inter_tx_size(MB_MODE_INFO * mbmi,int stride_log2,int tx_w_log2,int tx_h_log2,int min_txs,int split_size,int txs,int blk_row,int blk_col)1013 static inline void set_inter_tx_size(MB_MODE_INFO *mbmi, int stride_log2,
1014                                      int tx_w_log2, int tx_h_log2, int min_txs,
1015                                      int split_size, int txs, int blk_row,
1016                                      int blk_col) {
1017   for (int idy = 0; idy < tx_size_high_unit[split_size];
1018        idy += tx_size_high_unit[min_txs]) {
1019     for (int idx = 0; idx < tx_size_wide_unit[split_size];
1020          idx += tx_size_wide_unit[min_txs]) {
1021       const int index = (((blk_row + idy) >> tx_h_log2) << stride_log2) +
1022                         ((blk_col + idx) >> tx_w_log2);
1023       mbmi->inter_tx_size[index] = txs;
1024     }
1025   }
1026 }
1027 
read_tx_size_vartx(MACROBLOCKD * xd,MB_MODE_INFO * mbmi,TX_SIZE tx_size,int depth,int blk_row,int blk_col,aom_reader * r)1028 static inline void read_tx_size_vartx(MACROBLOCKD *xd, MB_MODE_INFO *mbmi,
1029                                       TX_SIZE tx_size, int depth, int blk_row,
1030                                       int blk_col, aom_reader *r) {
1031   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1032   int is_split = 0;
1033   const BLOCK_SIZE bsize = mbmi->bsize;
1034   const int max_blocks_high = max_block_high(xd, bsize, 0);
1035   const int max_blocks_wide = max_block_wide(xd, bsize, 0);
1036   if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
1037   assert(tx_size > TX_4X4);
1038   TX_SIZE txs = max_txsize_rect_lookup[bsize];
1039   for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level)
1040     txs = sub_tx_size_map[txs];
1041   const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
1042   const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
1043   const int bw_log2 = mi_size_wide_log2[bsize];
1044   const int stride_log2 = bw_log2 - tx_w_log2;
1045 
1046   if (depth == MAX_VARTX_DEPTH) {
1047     set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size,
1048                       tx_size, blk_row, blk_col);
1049     mbmi->tx_size = tx_size;
1050     txfm_partition_update(xd->above_txfm_context + blk_col,
1051                           xd->left_txfm_context + blk_row, tx_size, tx_size);
1052     return;
1053   }
1054 
1055   const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
1056                                          xd->left_txfm_context + blk_row,
1057                                          mbmi->bsize, tx_size);
1058   is_split = aom_read_symbol(r, ec_ctx->txfm_partition_cdf[ctx], 2, ACCT_STR);
1059 
1060   if (is_split) {
1061     const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
1062     const int bsw = tx_size_wide_unit[sub_txs];
1063     const int bsh = tx_size_high_unit[sub_txs];
1064 
1065     if (sub_txs == TX_4X4) {
1066       set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size,
1067                         sub_txs, blk_row, blk_col);
1068       mbmi->tx_size = sub_txs;
1069       txfm_partition_update(xd->above_txfm_context + blk_col,
1070                             xd->left_txfm_context + blk_row, sub_txs, tx_size);
1071       return;
1072     }
1073 
1074     assert(bsw > 0 && bsh > 0);
1075     for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
1076       for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
1077         int offsetr = blk_row + row;
1078         int offsetc = blk_col + col;
1079         read_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, r);
1080       }
1081     }
1082   } else {
1083     set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size,
1084                       tx_size, blk_row, blk_col);
1085     mbmi->tx_size = tx_size;
1086     txfm_partition_update(xd->above_txfm_context + blk_col,
1087                           xd->left_txfm_context + blk_row, tx_size, tx_size);
1088   }
1089 }
1090 
read_selected_tx_size(const MACROBLOCKD * const xd,aom_reader * r)1091 static TX_SIZE read_selected_tx_size(const MACROBLOCKD *const xd,
1092                                      aom_reader *r) {
1093   // TODO(debargha): Clean up the logic here. This function should only
1094   // be called for intra.
1095   const BLOCK_SIZE bsize = xd->mi[0]->bsize;
1096   const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
1097   const int max_depths = bsize_to_max_depth(bsize);
1098   const int ctx = get_tx_size_context(xd);
1099   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1100   const int depth = aom_read_symbol(r, ec_ctx->tx_size_cdf[tx_size_cat][ctx],
1101                                     max_depths + 1, ACCT_STR);
1102   assert(depth >= 0 && depth <= max_depths);
1103   const TX_SIZE tx_size = depth_to_tx_size(depth, bsize);
1104   return tx_size;
1105 }
1106 
read_tx_size(const MACROBLOCKD * const xd,TX_MODE tx_mode,int is_inter,int allow_select_inter,aom_reader * r)1107 static TX_SIZE read_tx_size(const MACROBLOCKD *const xd, TX_MODE tx_mode,
1108                             int is_inter, int allow_select_inter,
1109                             aom_reader *r) {
1110   const BLOCK_SIZE bsize = xd->mi[0]->bsize;
1111   if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4;
1112 
1113   if (block_signals_txsize(bsize)) {
1114     if ((!is_inter || allow_select_inter) && tx_mode == TX_MODE_SELECT) {
1115       const TX_SIZE coded_tx_size = read_selected_tx_size(xd, r);
1116       return coded_tx_size;
1117     } else {
1118       return tx_size_from_tx_mode(bsize, tx_mode);
1119     }
1120   } else {
1121     assert(IMPLIES(tx_mode == ONLY_4X4, bsize == BLOCK_4X4));
1122     return max_txsize_rect_lookup[bsize];
1123   }
1124 }
1125 
parse_decode_block(AV1Decoder * const pbi,ThreadData * const td,int mi_row,int mi_col,aom_reader * r,PARTITION_TYPE partition,BLOCK_SIZE bsize)1126 static inline void parse_decode_block(AV1Decoder *const pbi,
1127                                       ThreadData *const td, int mi_row,
1128                                       int mi_col, aom_reader *r,
1129                                       PARTITION_TYPE partition,
1130                                       BLOCK_SIZE bsize) {
1131   DecoderCodingBlock *const dcb = &td->dcb;
1132   MACROBLOCKD *const xd = &dcb->xd;
1133   decode_mbmi_block(pbi, dcb, mi_row, mi_col, r, partition, bsize);
1134 
1135   av1_visit_palette(pbi, xd, r, av1_decode_palette_tokens);
1136 
1137   AV1_COMMON *cm = &pbi->common;
1138   const int num_planes = av1_num_planes(cm);
1139   MB_MODE_INFO *mbmi = xd->mi[0];
1140   int inter_block_tx = is_inter_block(mbmi) || is_intrabc_block(mbmi);
1141   if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) &&
1142       !mbmi->skip_txfm && inter_block_tx && !xd->lossless[mbmi->segment_id]) {
1143     const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
1144     const int bh = tx_size_high_unit[max_tx_size];
1145     const int bw = tx_size_wide_unit[max_tx_size];
1146     const int width = mi_size_wide[bsize];
1147     const int height = mi_size_high[bsize];
1148 
1149     for (int idy = 0; idy < height; idy += bh)
1150       for (int idx = 0; idx < width; idx += bw)
1151         read_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, r);
1152   } else {
1153     mbmi->tx_size = read_tx_size(xd, cm->features.tx_mode, inter_block_tx,
1154                                  !mbmi->skip_txfm, r);
1155     if (inter_block_tx)
1156       memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size));
1157     set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height,
1158                   mbmi->skip_txfm && is_inter_block(mbmi), xd);
1159   }
1160 
1161   if (cm->delta_q_info.delta_q_present_flag) {
1162     for (int i = 0; i < MAX_SEGMENTS; i++) {
1163       const int current_qindex =
1164           av1_get_qindex(&cm->seg, i, xd->current_base_qindex);
1165       const CommonQuantParams *const quant_params = &cm->quant_params;
1166       for (int j = 0; j < num_planes; ++j) {
1167         const int dc_delta_q = j == 0 ? quant_params->y_dc_delta_q
1168                                       : (j == 1 ? quant_params->u_dc_delta_q
1169                                                 : quant_params->v_dc_delta_q);
1170         const int ac_delta_q = j == 0 ? 0
1171                                       : (j == 1 ? quant_params->u_ac_delta_q
1172                                                 : quant_params->v_ac_delta_q);
1173         xd->plane[j].seg_dequant_QTX[i][0] = av1_dc_quant_QTX(
1174             current_qindex, dc_delta_q, cm->seq_params->bit_depth);
1175         xd->plane[j].seg_dequant_QTX[i][1] = av1_ac_quant_QTX(
1176             current_qindex, ac_delta_q, cm->seq_params->bit_depth);
1177       }
1178     }
1179   }
1180   if (mbmi->skip_txfm) av1_reset_entropy_context(xd, bsize, num_planes);
1181 
1182   decode_token_recon_block(pbi, td, r, bsize);
1183 }
1184 
set_offsets_for_pred_and_recon(AV1Decoder * const pbi,ThreadData * const td,int mi_row,int mi_col,BLOCK_SIZE bsize)1185 static inline void set_offsets_for_pred_and_recon(AV1Decoder *const pbi,
1186                                                   ThreadData *const td,
1187                                                   int mi_row, int mi_col,
1188                                                   BLOCK_SIZE bsize) {
1189   AV1_COMMON *const cm = &pbi->common;
1190   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1191   DecoderCodingBlock *const dcb = &td->dcb;
1192   MACROBLOCKD *const xd = &dcb->xd;
1193   const int bw = mi_size_wide[bsize];
1194   const int bh = mi_size_high[bsize];
1195   const int num_planes = av1_num_planes(cm);
1196 
1197   const int offset = mi_row * mi_params->mi_stride + mi_col;
1198   const TileInfo *const tile = &xd->tile;
1199 
1200   xd->mi = mi_params->mi_grid_base + offset;
1201   xd->tx_type_map =
1202       &mi_params->tx_type_map[mi_row * mi_params->mi_stride + mi_col];
1203   xd->tx_type_map_stride = mi_params->mi_stride;
1204 
1205   set_plane_n4(xd, bw, bh, num_planes);
1206 
1207   // Distance of Mb to the various image edges. These are specified to 8th pel
1208   // as they are always compared to values that are in 1/8th pel units
1209   set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
1210                  mi_params->mi_cols);
1211 
1212   av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0,
1213                        num_planes);
1214 }
1215 
decode_block(AV1Decoder * const pbi,ThreadData * const td,int mi_row,int mi_col,aom_reader * r,PARTITION_TYPE partition,BLOCK_SIZE bsize)1216 static inline void decode_block(AV1Decoder *const pbi, ThreadData *const td,
1217                                 int mi_row, int mi_col, aom_reader *r,
1218                                 PARTITION_TYPE partition, BLOCK_SIZE bsize) {
1219   (void)partition;
1220   set_offsets_for_pred_and_recon(pbi, td, mi_row, mi_col, bsize);
1221   decode_token_recon_block(pbi, td, r, bsize);
1222 }
1223 
read_partition(MACROBLOCKD * xd,int mi_row,int mi_col,aom_reader * r,int has_rows,int has_cols,BLOCK_SIZE bsize)1224 static PARTITION_TYPE read_partition(MACROBLOCKD *xd, int mi_row, int mi_col,
1225                                      aom_reader *r, int has_rows, int has_cols,
1226                                      BLOCK_SIZE bsize) {
1227   const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
1228   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1229 
1230   if (!has_rows && !has_cols) return PARTITION_SPLIT;
1231 
1232   assert(ctx >= 0);
1233   aom_cdf_prob *partition_cdf = ec_ctx->partition_cdf[ctx];
1234   if (has_rows && has_cols) {
1235     return (PARTITION_TYPE)aom_read_symbol(
1236         r, partition_cdf, partition_cdf_length(bsize), ACCT_STR);
1237   } else if (!has_rows && has_cols) {
1238     assert(bsize > BLOCK_8X8);
1239     aom_cdf_prob cdf[2];
1240     partition_gather_vert_alike(cdf, partition_cdf, bsize);
1241     assert(cdf[1] == AOM_ICDF(CDF_PROB_TOP));
1242     return aom_read_cdf(r, cdf, 2, ACCT_STR) ? PARTITION_SPLIT : PARTITION_HORZ;
1243   } else {
1244     assert(has_rows && !has_cols);
1245     assert(bsize > BLOCK_8X8);
1246     aom_cdf_prob cdf[2];
1247     partition_gather_horz_alike(cdf, partition_cdf, bsize);
1248     assert(cdf[1] == AOM_ICDF(CDF_PROB_TOP));
1249     return aom_read_cdf(r, cdf, 2, ACCT_STR) ? PARTITION_SPLIT : PARTITION_VERT;
1250   }
1251 }
1252 
1253 // TODO(slavarnway): eliminate bsize and subsize in future commits
decode_partition(AV1Decoder * const pbi,ThreadData * const td,int mi_row,int mi_col,aom_reader * reader,BLOCK_SIZE bsize,int parse_decode_flag)1254 static inline void decode_partition(AV1Decoder *const pbi, ThreadData *const td,
1255                                     int mi_row, int mi_col, aom_reader *reader,
1256                                     BLOCK_SIZE bsize, int parse_decode_flag) {
1257   assert(bsize < BLOCK_SIZES_ALL);
1258   AV1_COMMON *const cm = &pbi->common;
1259   DecoderCodingBlock *const dcb = &td->dcb;
1260   MACROBLOCKD *const xd = &dcb->xd;
1261   const int bw = mi_size_wide[bsize];
1262   const int hbs = bw >> 1;
1263   PARTITION_TYPE partition;
1264   BLOCK_SIZE subsize;
1265   const int quarter_step = bw / 4;
1266   BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
1267   const int has_rows = (mi_row + hbs) < cm->mi_params.mi_rows;
1268   const int has_cols = (mi_col + hbs) < cm->mi_params.mi_cols;
1269 
1270   if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols)
1271     return;
1272 
1273   // parse_decode_flag takes the following values :
1274   // 01 - do parse only
1275   // 10 - do decode only
1276   // 11 - do parse and decode
1277   static const block_visitor_fn_t block_visit[4] = { NULL, parse_decode_block,
1278                                                      decode_block,
1279                                                      parse_decode_block };
1280 
1281   if (parse_decode_flag & 1) {
1282     const int num_planes = av1_num_planes(cm);
1283     for (int plane = 0; plane < num_planes; ++plane) {
1284       int rcol0, rcol1, rrow0, rrow1;
1285 
1286       // Skip some unnecessary work if loop restoration is disabled
1287       if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
1288 
1289       if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize,
1290                                              &rcol0, &rcol1, &rrow0, &rrow1)) {
1291         const int rstride = cm->rst_info[plane].horz_units;
1292         for (int rrow = rrow0; rrow < rrow1; ++rrow) {
1293           for (int rcol = rcol0; rcol < rcol1; ++rcol) {
1294             const int runit_idx = rcol + rrow * rstride;
1295             loop_restoration_read_sb_coeffs(cm, xd, reader, plane, runit_idx);
1296           }
1297         }
1298       }
1299     }
1300 
1301     partition = (bsize < BLOCK_8X8) ? PARTITION_NONE
1302                                     : read_partition(xd, mi_row, mi_col, reader,
1303                                                      has_rows, has_cols, bsize);
1304   } else {
1305     partition = get_partition(cm, mi_row, mi_col, bsize);
1306   }
1307   subsize = get_partition_subsize(bsize, partition);
1308   if (subsize == BLOCK_INVALID) {
1309     // When an internal error occurs ensure that xd->mi_row is set appropriately
1310     // w.r.t. current tile, which is used to signal processing of current row is
1311     // done.
1312     xd->mi_row = mi_row;
1313     aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
1314                        "Partition is invalid for block size %dx%d",
1315                        block_size_wide[bsize], block_size_high[bsize]);
1316   }
1317   // Check the bitstream is conformant: if there is subsampling on the
1318   // chroma planes, subsize must subsample to a valid block size.
1319   const struct macroblockd_plane *const pd_u = &xd->plane[1];
1320   if (get_plane_block_size(subsize, pd_u->subsampling_x, pd_u->subsampling_y) ==
1321       BLOCK_INVALID) {
1322     // When an internal error occurs ensure that xd->mi_row is set appropriately
1323     // w.r.t. current tile, which is used to signal processing of current row is
1324     // done.
1325     xd->mi_row = mi_row;
1326     aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
1327                        "Block size %dx%d invalid with this subsampling mode",
1328                        block_size_wide[subsize], block_size_high[subsize]);
1329   }
1330 
1331 #define DEC_BLOCK_STX_ARG
1332 #define DEC_BLOCK_EPT_ARG partition,
1333 #define DEC_BLOCK(db_r, db_c, db_subsize)                                  \
1334   block_visit[parse_decode_flag](pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), \
1335                                  reader, DEC_BLOCK_EPT_ARG(db_subsize))
1336 #define DEC_PARTITION(db_r, db_c, db_subsize)                        \
1337   decode_partition(pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), reader, \
1338                    (db_subsize), parse_decode_flag)
1339 
1340   switch (partition) {
1341     case PARTITION_NONE: DEC_BLOCK(mi_row, mi_col, subsize); break;
1342     case PARTITION_HORZ:
1343       DEC_BLOCK(mi_row, mi_col, subsize);
1344       if (has_rows) DEC_BLOCK(mi_row + hbs, mi_col, subsize);
1345       break;
1346     case PARTITION_VERT:
1347       DEC_BLOCK(mi_row, mi_col, subsize);
1348       if (has_cols) DEC_BLOCK(mi_row, mi_col + hbs, subsize);
1349       break;
1350     case PARTITION_SPLIT:
1351       DEC_PARTITION(mi_row, mi_col, subsize);
1352       DEC_PARTITION(mi_row, mi_col + hbs, subsize);
1353       DEC_PARTITION(mi_row + hbs, mi_col, subsize);
1354       DEC_PARTITION(mi_row + hbs, mi_col + hbs, subsize);
1355       break;
1356     case PARTITION_HORZ_A:
1357       DEC_BLOCK(mi_row, mi_col, bsize2);
1358       DEC_BLOCK(mi_row, mi_col + hbs, bsize2);
1359       DEC_BLOCK(mi_row + hbs, mi_col, subsize);
1360       break;
1361     case PARTITION_HORZ_B:
1362       DEC_BLOCK(mi_row, mi_col, subsize);
1363       DEC_BLOCK(mi_row + hbs, mi_col, bsize2);
1364       DEC_BLOCK(mi_row + hbs, mi_col + hbs, bsize2);
1365       break;
1366     case PARTITION_VERT_A:
1367       DEC_BLOCK(mi_row, mi_col, bsize2);
1368       DEC_BLOCK(mi_row + hbs, mi_col, bsize2);
1369       DEC_BLOCK(mi_row, mi_col + hbs, subsize);
1370       break;
1371     case PARTITION_VERT_B:
1372       DEC_BLOCK(mi_row, mi_col, subsize);
1373       DEC_BLOCK(mi_row, mi_col + hbs, bsize2);
1374       DEC_BLOCK(mi_row + hbs, mi_col + hbs, bsize2);
1375       break;
1376     case PARTITION_HORZ_4:
1377       for (int i = 0; i < 4; ++i) {
1378         int this_mi_row = mi_row + i * quarter_step;
1379         if (i > 0 && this_mi_row >= cm->mi_params.mi_rows) break;
1380         DEC_BLOCK(this_mi_row, mi_col, subsize);
1381       }
1382       break;
1383     case PARTITION_VERT_4:
1384       for (int i = 0; i < 4; ++i) {
1385         int this_mi_col = mi_col + i * quarter_step;
1386         if (i > 0 && this_mi_col >= cm->mi_params.mi_cols) break;
1387         DEC_BLOCK(mi_row, this_mi_col, subsize);
1388       }
1389       break;
1390     default: assert(0 && "Invalid partition type");
1391   }
1392 
1393 #undef DEC_PARTITION
1394 #undef DEC_BLOCK
1395 #undef DEC_BLOCK_EPT_ARG
1396 #undef DEC_BLOCK_STX_ARG
1397 
1398   if (parse_decode_flag & 1)
1399     update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
1400 }
1401 
setup_bool_decoder(MACROBLOCKD * const xd,const uint8_t * data,const uint8_t * data_end,const size_t read_size,struct aom_internal_error_info * error_info,aom_reader * r,uint8_t allow_update_cdf)1402 static inline void setup_bool_decoder(
1403     MACROBLOCKD *const xd, const uint8_t *data, const uint8_t *data_end,
1404     const size_t read_size, struct aom_internal_error_info *error_info,
1405     aom_reader *r, uint8_t allow_update_cdf) {
1406   // Validate the calculated partition length. If the buffer
1407   // described by the partition can't be fully read, then restrict
1408   // it to the portion that can be (for EC mode) or throw an error.
1409   if (!read_is_valid(data, read_size, data_end)) {
1410     // When internal error occurs ensure that xd->mi_row is set appropriately
1411     // w.r.t. current tile, which is used to signal processing of current row is
1412     // done in row-mt decoding.
1413     xd->mi_row = xd->tile.mi_row_start;
1414 
1415     aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
1416                        "Truncated packet or corrupt tile length");
1417   }
1418   if (aom_reader_init(r, data, read_size)) {
1419     // When internal error occurs ensure that xd->mi_row is set appropriately
1420     // w.r.t. current tile, which is used to signal processing of current row is
1421     // done in row-mt decoding.
1422     xd->mi_row = xd->tile.mi_row_start;
1423 
1424     aom_internal_error(error_info, AOM_CODEC_MEM_ERROR,
1425                        "Failed to allocate bool decoder %d", 1);
1426   }
1427 
1428   r->allow_update_cdf = allow_update_cdf;
1429 }
1430 
setup_segmentation(AV1_COMMON * const cm,struct aom_read_bit_buffer * rb)1431 static inline void setup_segmentation(AV1_COMMON *const cm,
1432                                       struct aom_read_bit_buffer *rb) {
1433   struct segmentation *const seg = &cm->seg;
1434 
1435   seg->update_map = 0;
1436   seg->update_data = 0;
1437   seg->temporal_update = 0;
1438 
1439   seg->enabled = aom_rb_read_bit(rb);
1440   if (!seg->enabled) {
1441     if (cm->cur_frame->seg_map) {
1442       memset(cm->cur_frame->seg_map, 0,
1443              (cm->cur_frame->mi_rows * cm->cur_frame->mi_cols));
1444     }
1445 
1446     memset(seg, 0, sizeof(*seg));
1447     segfeatures_copy(&cm->cur_frame->seg, seg);
1448     return;
1449   }
1450   if (cm->seg.enabled && cm->prev_frame &&
1451       (cm->mi_params.mi_rows == cm->prev_frame->mi_rows) &&
1452       (cm->mi_params.mi_cols == cm->prev_frame->mi_cols)) {
1453     cm->last_frame_seg_map = cm->prev_frame->seg_map;
1454   } else {
1455     cm->last_frame_seg_map = NULL;
1456   }
1457   // Read update flags
1458   if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) {
1459     // These frames can't use previous frames, so must signal map + features
1460     seg->update_map = 1;
1461     seg->temporal_update = 0;
1462     seg->update_data = 1;
1463   } else {
1464     seg->update_map = aom_rb_read_bit(rb);
1465     if (seg->update_map) {
1466       seg->temporal_update = aom_rb_read_bit(rb);
1467     } else {
1468       seg->temporal_update = 0;
1469     }
1470     seg->update_data = aom_rb_read_bit(rb);
1471   }
1472 
1473   // Segmentation data update
1474   if (seg->update_data) {
1475     av1_clearall_segfeatures(seg);
1476 
1477     for (int i = 0; i < MAX_SEGMENTS; i++) {
1478       for (int j = 0; j < SEG_LVL_MAX; j++) {
1479         int data = 0;
1480         const int feature_enabled = aom_rb_read_bit(rb);
1481         if (feature_enabled) {
1482           av1_enable_segfeature(seg, i, j);
1483 
1484           const int data_max = av1_seg_feature_data_max(j);
1485           const int data_min = -data_max;
1486           const int ubits = get_unsigned_bits(data_max);
1487 
1488           if (av1_is_segfeature_signed(j)) {
1489             data = aom_rb_read_inv_signed_literal(rb, ubits);
1490           } else {
1491             data = aom_rb_read_literal(rb, ubits);
1492           }
1493 
1494           data = clamp(data, data_min, data_max);
1495         }
1496         av1_set_segdata(seg, i, j, data);
1497       }
1498     }
1499     av1_calculate_segdata(seg);
1500   } else if (cm->prev_frame) {
1501     segfeatures_copy(seg, &cm->prev_frame->seg);
1502   }
1503   segfeatures_copy(&cm->cur_frame->seg, seg);
1504 }
1505 
decode_restoration_mode(AV1_COMMON * cm,struct aom_read_bit_buffer * rb)1506 static inline void decode_restoration_mode(AV1_COMMON *cm,
1507                                            struct aom_read_bit_buffer *rb) {
1508   assert(!cm->features.all_lossless);
1509   const int num_planes = av1_num_planes(cm);
1510   if (cm->features.allow_intrabc) return;
1511   int all_none = 1, chroma_none = 1;
1512   for (int p = 0; p < num_planes; ++p) {
1513     RestorationInfo *rsi = &cm->rst_info[p];
1514     if (aom_rb_read_bit(rb)) {
1515       rsi->frame_restoration_type =
1516           aom_rb_read_bit(rb) ? RESTORE_SGRPROJ : RESTORE_WIENER;
1517     } else {
1518       rsi->frame_restoration_type =
1519           aom_rb_read_bit(rb) ? RESTORE_SWITCHABLE : RESTORE_NONE;
1520     }
1521     if (rsi->frame_restoration_type != RESTORE_NONE) {
1522       all_none = 0;
1523       chroma_none &= p == 0;
1524     }
1525   }
1526   if (!all_none) {
1527     assert(cm->seq_params->sb_size == BLOCK_64X64 ||
1528            cm->seq_params->sb_size == BLOCK_128X128);
1529     const int sb_size = cm->seq_params->sb_size == BLOCK_128X128 ? 128 : 64;
1530 
1531     for (int p = 0; p < num_planes; ++p)
1532       cm->rst_info[p].restoration_unit_size = sb_size;
1533 
1534     RestorationInfo *rsi = &cm->rst_info[0];
1535 
1536     if (sb_size == 64) {
1537       rsi->restoration_unit_size <<= aom_rb_read_bit(rb);
1538     }
1539     if (rsi->restoration_unit_size > 64) {
1540       rsi->restoration_unit_size <<= aom_rb_read_bit(rb);
1541     }
1542   } else {
1543     const int size = RESTORATION_UNITSIZE_MAX;
1544     for (int p = 0; p < num_planes; ++p)
1545       cm->rst_info[p].restoration_unit_size = size;
1546   }
1547 
1548   if (num_planes > 1) {
1549     int s =
1550         AOMMIN(cm->seq_params->subsampling_x, cm->seq_params->subsampling_y);
1551     if (s && !chroma_none) {
1552       cm->rst_info[1].restoration_unit_size =
1553           cm->rst_info[0].restoration_unit_size >> (aom_rb_read_bit(rb) * s);
1554     } else {
1555       cm->rst_info[1].restoration_unit_size =
1556           cm->rst_info[0].restoration_unit_size;
1557     }
1558     cm->rst_info[2].restoration_unit_size =
1559         cm->rst_info[1].restoration_unit_size;
1560   }
1561 }
1562 
read_wiener_filter(int wiener_win,WienerInfo * wiener_info,WienerInfo * ref_wiener_info,aom_reader * rb)1563 static inline void read_wiener_filter(int wiener_win, WienerInfo *wiener_info,
1564                                       WienerInfo *ref_wiener_info,
1565                                       aom_reader *rb) {
1566   memset(wiener_info->vfilter, 0, sizeof(wiener_info->vfilter));
1567   memset(wiener_info->hfilter, 0, sizeof(wiener_info->hfilter));
1568 
1569   if (wiener_win == WIENER_WIN)
1570     wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] =
1571         aom_read_primitive_refsubexpfin(
1572             rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
1573             WIENER_FILT_TAP0_SUBEXP_K,
1574             ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, ACCT_STR) +
1575         WIENER_FILT_TAP0_MINV;
1576   else
1577     wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] = 0;
1578   wiener_info->vfilter[1] = wiener_info->vfilter[WIENER_WIN - 2] =
1579       aom_read_primitive_refsubexpfin(
1580           rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
1581           WIENER_FILT_TAP1_SUBEXP_K,
1582           ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, ACCT_STR) +
1583       WIENER_FILT_TAP1_MINV;
1584   wiener_info->vfilter[2] = wiener_info->vfilter[WIENER_WIN - 3] =
1585       aom_read_primitive_refsubexpfin(
1586           rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
1587           WIENER_FILT_TAP2_SUBEXP_K,
1588           ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, ACCT_STR) +
1589       WIENER_FILT_TAP2_MINV;
1590   // The central element has an implicit +WIENER_FILT_STEP
1591   wiener_info->vfilter[WIENER_HALFWIN] =
1592       -2 * (wiener_info->vfilter[0] + wiener_info->vfilter[1] +
1593             wiener_info->vfilter[2]);
1594 
1595   if (wiener_win == WIENER_WIN)
1596     wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] =
1597         aom_read_primitive_refsubexpfin(
1598             rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
1599             WIENER_FILT_TAP0_SUBEXP_K,
1600             ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, ACCT_STR) +
1601         WIENER_FILT_TAP0_MINV;
1602   else
1603     wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] = 0;
1604   wiener_info->hfilter[1] = wiener_info->hfilter[WIENER_WIN - 2] =
1605       aom_read_primitive_refsubexpfin(
1606           rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
1607           WIENER_FILT_TAP1_SUBEXP_K,
1608           ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, ACCT_STR) +
1609       WIENER_FILT_TAP1_MINV;
1610   wiener_info->hfilter[2] = wiener_info->hfilter[WIENER_WIN - 3] =
1611       aom_read_primitive_refsubexpfin(
1612           rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
1613           WIENER_FILT_TAP2_SUBEXP_K,
1614           ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, ACCT_STR) +
1615       WIENER_FILT_TAP2_MINV;
1616   // The central element has an implicit +WIENER_FILT_STEP
1617   wiener_info->hfilter[WIENER_HALFWIN] =
1618       -2 * (wiener_info->hfilter[0] + wiener_info->hfilter[1] +
1619             wiener_info->hfilter[2]);
1620   memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info));
1621 }
1622 
read_sgrproj_filter(SgrprojInfo * sgrproj_info,SgrprojInfo * ref_sgrproj_info,aom_reader * rb)1623 static inline void read_sgrproj_filter(SgrprojInfo *sgrproj_info,
1624                                        SgrprojInfo *ref_sgrproj_info,
1625                                        aom_reader *rb) {
1626   sgrproj_info->ep = aom_read_literal(rb, SGRPROJ_PARAMS_BITS, ACCT_STR);
1627   const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep];
1628 
1629   if (params->r[0] == 0) {
1630     sgrproj_info->xqd[0] = 0;
1631     sgrproj_info->xqd[1] =
1632         aom_read_primitive_refsubexpfin(
1633             rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
1634             ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_STR) +
1635         SGRPROJ_PRJ_MIN1;
1636   } else if (params->r[1] == 0) {
1637     sgrproj_info->xqd[0] =
1638         aom_read_primitive_refsubexpfin(
1639             rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
1640             ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_STR) +
1641         SGRPROJ_PRJ_MIN0;
1642     sgrproj_info->xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - sgrproj_info->xqd[0],
1643                                  SGRPROJ_PRJ_MIN1, SGRPROJ_PRJ_MAX1);
1644   } else {
1645     sgrproj_info->xqd[0] =
1646         aom_read_primitive_refsubexpfin(
1647             rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
1648             ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_STR) +
1649         SGRPROJ_PRJ_MIN0;
1650     sgrproj_info->xqd[1] =
1651         aom_read_primitive_refsubexpfin(
1652             rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
1653             ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_STR) +
1654         SGRPROJ_PRJ_MIN1;
1655   }
1656 
1657   memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info));
1658 }
1659 
loop_restoration_read_sb_coeffs(const AV1_COMMON * const cm,MACROBLOCKD * xd,aom_reader * const r,int plane,int runit_idx)1660 static inline void loop_restoration_read_sb_coeffs(const AV1_COMMON *const cm,
1661                                                    MACROBLOCKD *xd,
1662                                                    aom_reader *const r,
1663                                                    int plane, int runit_idx) {
1664   const RestorationInfo *rsi = &cm->rst_info[plane];
1665   RestorationUnitInfo *rui = &rsi->unit_info[runit_idx];
1666   assert(rsi->frame_restoration_type != RESTORE_NONE);
1667 
1668   assert(!cm->features.all_lossless);
1669 
1670   const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN;
1671   WienerInfo *wiener_info = xd->wiener_info + plane;
1672   SgrprojInfo *sgrproj_info = xd->sgrproj_info + plane;
1673 
1674   if (rsi->frame_restoration_type == RESTORE_SWITCHABLE) {
1675     rui->restoration_type =
1676         aom_read_symbol(r, xd->tile_ctx->switchable_restore_cdf,
1677                         RESTORE_SWITCHABLE_TYPES, ACCT_STR);
1678     switch (rui->restoration_type) {
1679       case RESTORE_WIENER:
1680         read_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, r);
1681         break;
1682       case RESTORE_SGRPROJ:
1683         read_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, r);
1684         break;
1685       default: assert(rui->restoration_type == RESTORE_NONE); break;
1686     }
1687   } else if (rsi->frame_restoration_type == RESTORE_WIENER) {
1688     if (aom_read_symbol(r, xd->tile_ctx->wiener_restore_cdf, 2, ACCT_STR)) {
1689       rui->restoration_type = RESTORE_WIENER;
1690       read_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, r);
1691     } else {
1692       rui->restoration_type = RESTORE_NONE;
1693     }
1694   } else if (rsi->frame_restoration_type == RESTORE_SGRPROJ) {
1695     if (aom_read_symbol(r, xd->tile_ctx->sgrproj_restore_cdf, 2, ACCT_STR)) {
1696       rui->restoration_type = RESTORE_SGRPROJ;
1697       read_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, r);
1698     } else {
1699       rui->restoration_type = RESTORE_NONE;
1700     }
1701   }
1702 }
1703 
setup_loopfilter(AV1_COMMON * cm,struct aom_read_bit_buffer * rb)1704 static inline void setup_loopfilter(AV1_COMMON *cm,
1705                                     struct aom_read_bit_buffer *rb) {
1706   const int num_planes = av1_num_planes(cm);
1707   struct loopfilter *lf = &cm->lf;
1708 
1709   if (cm->features.allow_intrabc || cm->features.coded_lossless) {
1710     // write default deltas to frame buffer
1711     av1_set_default_ref_deltas(cm->cur_frame->ref_deltas);
1712     av1_set_default_mode_deltas(cm->cur_frame->mode_deltas);
1713     return;
1714   }
1715   assert(!cm->features.coded_lossless);
1716   if (cm->prev_frame) {
1717     // write deltas to frame buffer
1718     memcpy(lf->ref_deltas, cm->prev_frame->ref_deltas, REF_FRAMES);
1719     memcpy(lf->mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS);
1720   } else {
1721     av1_set_default_ref_deltas(lf->ref_deltas);
1722     av1_set_default_mode_deltas(lf->mode_deltas);
1723   }
1724   lf->filter_level[0] = aom_rb_read_literal(rb, 6);
1725   lf->filter_level[1] = aom_rb_read_literal(rb, 6);
1726   if (num_planes > 1) {
1727     if (lf->filter_level[0] || lf->filter_level[1]) {
1728       lf->filter_level_u = aom_rb_read_literal(rb, 6);
1729       lf->filter_level_v = aom_rb_read_literal(rb, 6);
1730     }
1731   }
1732   lf->sharpness_level = aom_rb_read_literal(rb, 3);
1733 
1734   // Read in loop filter deltas applied at the MB level based on mode or ref
1735   // frame.
1736   lf->mode_ref_delta_update = 0;
1737 
1738   lf->mode_ref_delta_enabled = aom_rb_read_bit(rb);
1739   if (lf->mode_ref_delta_enabled) {
1740     lf->mode_ref_delta_update = aom_rb_read_bit(rb);
1741     if (lf->mode_ref_delta_update) {
1742       for (int i = 0; i < REF_FRAMES; i++)
1743         if (aom_rb_read_bit(rb))
1744           lf->ref_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6);
1745 
1746       for (int i = 0; i < MAX_MODE_LF_DELTAS; i++)
1747         if (aom_rb_read_bit(rb))
1748           lf->mode_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6);
1749     }
1750   }
1751 
1752   // write deltas to frame buffer
1753   memcpy(cm->cur_frame->ref_deltas, lf->ref_deltas, REF_FRAMES);
1754   memcpy(cm->cur_frame->mode_deltas, lf->mode_deltas, MAX_MODE_LF_DELTAS);
1755 }
1756 
setup_cdef(AV1_COMMON * cm,struct aom_read_bit_buffer * rb)1757 static inline void setup_cdef(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
1758   const int num_planes = av1_num_planes(cm);
1759   CdefInfo *const cdef_info = &cm->cdef_info;
1760 
1761   if (cm->features.allow_intrabc) return;
1762   cdef_info->cdef_damping = aom_rb_read_literal(rb, 2) + 3;
1763   cdef_info->cdef_bits = aom_rb_read_literal(rb, 2);
1764   cdef_info->nb_cdef_strengths = 1 << cdef_info->cdef_bits;
1765   for (int i = 0; i < cdef_info->nb_cdef_strengths; i++) {
1766     cdef_info->cdef_strengths[i] = aom_rb_read_literal(rb, CDEF_STRENGTH_BITS);
1767     cdef_info->cdef_uv_strengths[i] =
1768         num_planes > 1 ? aom_rb_read_literal(rb, CDEF_STRENGTH_BITS) : 0;
1769   }
1770 }
1771 
read_delta_q(struct aom_read_bit_buffer * rb)1772 static inline int read_delta_q(struct aom_read_bit_buffer *rb) {
1773   return aom_rb_read_bit(rb) ? aom_rb_read_inv_signed_literal(rb, 6) : 0;
1774 }
1775 
setup_quantization(CommonQuantParams * quant_params,int num_planes,bool separate_uv_delta_q,struct aom_read_bit_buffer * rb)1776 static inline void setup_quantization(CommonQuantParams *quant_params,
1777                                       int num_planes, bool separate_uv_delta_q,
1778                                       struct aom_read_bit_buffer *rb) {
1779   quant_params->base_qindex = aom_rb_read_literal(rb, QINDEX_BITS);
1780   quant_params->y_dc_delta_q = read_delta_q(rb);
1781   if (num_planes > 1) {
1782     int diff_uv_delta = 0;
1783     if (separate_uv_delta_q) diff_uv_delta = aom_rb_read_bit(rb);
1784     quant_params->u_dc_delta_q = read_delta_q(rb);
1785     quant_params->u_ac_delta_q = read_delta_q(rb);
1786     if (diff_uv_delta) {
1787       quant_params->v_dc_delta_q = read_delta_q(rb);
1788       quant_params->v_ac_delta_q = read_delta_q(rb);
1789     } else {
1790       quant_params->v_dc_delta_q = quant_params->u_dc_delta_q;
1791       quant_params->v_ac_delta_q = quant_params->u_ac_delta_q;
1792     }
1793   } else {
1794     quant_params->u_dc_delta_q = 0;
1795     quant_params->u_ac_delta_q = 0;
1796     quant_params->v_dc_delta_q = 0;
1797     quant_params->v_ac_delta_q = 0;
1798   }
1799   quant_params->using_qmatrix = aom_rb_read_bit(rb);
1800   if (quant_params->using_qmatrix) {
1801     quant_params->qmatrix_level_y = aom_rb_read_literal(rb, QM_LEVEL_BITS);
1802     quant_params->qmatrix_level_u = aom_rb_read_literal(rb, QM_LEVEL_BITS);
1803     if (!separate_uv_delta_q)
1804       quant_params->qmatrix_level_v = quant_params->qmatrix_level_u;
1805     else
1806       quant_params->qmatrix_level_v = aom_rb_read_literal(rb, QM_LEVEL_BITS);
1807   } else {
1808     quant_params->qmatrix_level_y = 0;
1809     quant_params->qmatrix_level_u = 0;
1810     quant_params->qmatrix_level_v = 0;
1811   }
1812 }
1813 
1814 // Get global dequant matrix.
get_iqmatrix(const CommonQuantParams * quant_params,int qmlevel,int plane,TX_SIZE tx_size)1815 static const qm_val_t *get_iqmatrix(const CommonQuantParams *quant_params,
1816                                     int qmlevel, int plane, TX_SIZE tx_size) {
1817   assert(quant_params->giqmatrix[qmlevel][plane][tx_size] != NULL ||
1818          qmlevel == NUM_QM_LEVELS - 1);
1819   return quant_params->giqmatrix[qmlevel][plane][tx_size];
1820 }
1821 
1822 // Build y/uv dequant values based on segmentation.
setup_segmentation_dequant(AV1_COMMON * const cm,MACROBLOCKD * const xd)1823 static inline void setup_segmentation_dequant(AV1_COMMON *const cm,
1824                                               MACROBLOCKD *const xd) {
1825   const int bit_depth = cm->seq_params->bit_depth;
1826   // When segmentation is disabled, only the first value is used.  The
1827   // remaining are don't cares.
1828   const int max_segments = cm->seg.enabled ? MAX_SEGMENTS : 1;
1829   CommonQuantParams *const quant_params = &cm->quant_params;
1830   for (int i = 0; i < max_segments; ++i) {
1831     const int qindex = xd->qindex[i];
1832     quant_params->y_dequant_QTX[i][0] =
1833         av1_dc_quant_QTX(qindex, quant_params->y_dc_delta_q, bit_depth);
1834     quant_params->y_dequant_QTX[i][1] = av1_ac_quant_QTX(qindex, 0, bit_depth);
1835     quant_params->u_dequant_QTX[i][0] =
1836         av1_dc_quant_QTX(qindex, quant_params->u_dc_delta_q, bit_depth);
1837     quant_params->u_dequant_QTX[i][1] =
1838         av1_ac_quant_QTX(qindex, quant_params->u_ac_delta_q, bit_depth);
1839     quant_params->v_dequant_QTX[i][0] =
1840         av1_dc_quant_QTX(qindex, quant_params->v_dc_delta_q, bit_depth);
1841     quant_params->v_dequant_QTX[i][1] =
1842         av1_ac_quant_QTX(qindex, quant_params->v_ac_delta_q, bit_depth);
1843     const int use_qmatrix = av1_use_qmatrix(quant_params, xd, i);
1844     // NB: depends on base index so there is only 1 set per frame
1845     // No quant weighting when lossless or signalled not using QM
1846     const int qmlevel_y =
1847         use_qmatrix ? quant_params->qmatrix_level_y : NUM_QM_LEVELS - 1;
1848     for (int j = 0; j < TX_SIZES_ALL; ++j) {
1849       quant_params->y_iqmatrix[i][j] =
1850           get_iqmatrix(quant_params, qmlevel_y, AOM_PLANE_Y, j);
1851     }
1852     const int qmlevel_u =
1853         use_qmatrix ? quant_params->qmatrix_level_u : NUM_QM_LEVELS - 1;
1854     for (int j = 0; j < TX_SIZES_ALL; ++j) {
1855       quant_params->u_iqmatrix[i][j] =
1856           get_iqmatrix(quant_params, qmlevel_u, AOM_PLANE_U, j);
1857     }
1858     const int qmlevel_v =
1859         use_qmatrix ? quant_params->qmatrix_level_v : NUM_QM_LEVELS - 1;
1860     for (int j = 0; j < TX_SIZES_ALL; ++j) {
1861       quant_params->v_iqmatrix[i][j] =
1862           get_iqmatrix(quant_params, qmlevel_v, AOM_PLANE_V, j);
1863     }
1864   }
1865 }
1866 
read_frame_interp_filter(struct aom_read_bit_buffer * rb)1867 static InterpFilter read_frame_interp_filter(struct aom_read_bit_buffer *rb) {
1868   return aom_rb_read_bit(rb) ? SWITCHABLE
1869                              : aom_rb_read_literal(rb, LOG_SWITCHABLE_FILTERS);
1870 }
1871 
read_frame_size(struct aom_read_bit_buffer * rb,int num_bits_width,int num_bits_height,int * width,int * height)1872 static void read_frame_size(struct aom_read_bit_buffer *rb, int num_bits_width,
1873                             int num_bits_height, int *width, int *height) {
1874   *width = aom_rb_read_literal(rb, num_bits_width) + 1;
1875   *height = aom_rb_read_literal(rb, num_bits_height) + 1;
1876 }
1877 
setup_render_size(AV1_COMMON * cm,struct aom_read_bit_buffer * rb)1878 static inline void setup_render_size(AV1_COMMON *cm,
1879                                      struct aom_read_bit_buffer *rb) {
1880   cm->render_width = cm->superres_upscaled_width;
1881   cm->render_height = cm->superres_upscaled_height;
1882   if (aom_rb_read_bit(rb))
1883     read_frame_size(rb, 16, 16, &cm->render_width, &cm->render_height);
1884 }
1885 
1886 // TODO(afergs): make "struct aom_read_bit_buffer *const rb"?
setup_superres(AV1_COMMON * const cm,struct aom_read_bit_buffer * rb,int * width,int * height)1887 static inline void setup_superres(AV1_COMMON *const cm,
1888                                   struct aom_read_bit_buffer *rb, int *width,
1889                                   int *height) {
1890   cm->superres_upscaled_width = *width;
1891   cm->superres_upscaled_height = *height;
1892 
1893   const SequenceHeader *const seq_params = cm->seq_params;
1894   if (!seq_params->enable_superres) return;
1895 
1896   if (aom_rb_read_bit(rb)) {
1897     cm->superres_scale_denominator =
1898         (uint8_t)aom_rb_read_literal(rb, SUPERRES_SCALE_BITS);
1899     cm->superres_scale_denominator += SUPERRES_SCALE_DENOMINATOR_MIN;
1900     // Don't edit cm->width or cm->height directly, or the buffers won't get
1901     // resized correctly
1902     av1_calculate_scaled_superres_size(width, height,
1903                                        cm->superres_scale_denominator);
1904   } else {
1905     // 1:1 scaling - ie. no scaling, scale not provided
1906     cm->superres_scale_denominator = SCALE_NUMERATOR;
1907   }
1908 }
1909 
resize_context_buffers(AV1_COMMON * cm,int width,int height)1910 static inline void resize_context_buffers(AV1_COMMON *cm, int width,
1911                                           int height) {
1912 #if CONFIG_SIZE_LIMIT
1913   if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT)
1914     aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME,
1915                        "Dimensions of %dx%d beyond allowed size of %dx%d.",
1916                        width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT);
1917 #endif
1918   if (cm->width != width || cm->height != height) {
1919     const int new_mi_rows = CEIL_POWER_OF_TWO(height, MI_SIZE_LOG2);
1920     const int new_mi_cols = CEIL_POWER_OF_TWO(width, MI_SIZE_LOG2);
1921 
1922     // Allocations in av1_alloc_context_buffers() depend on individual
1923     // dimensions as well as the overall size.
1924     if (new_mi_cols > cm->mi_params.mi_cols ||
1925         new_mi_rows > cm->mi_params.mi_rows) {
1926       if (av1_alloc_context_buffers(cm, width, height, BLOCK_4X4)) {
1927         // The cm->mi_* values have been cleared and any existing context
1928         // buffers have been freed. Clear cm->width and cm->height to be
1929         // consistent and to force a realloc next time.
1930         cm->width = 0;
1931         cm->height = 0;
1932         aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
1933                            "Failed to allocate context buffers");
1934       }
1935     } else {
1936       cm->mi_params.set_mb_mi(&cm->mi_params, width, height, BLOCK_4X4);
1937     }
1938     av1_init_mi_buffers(&cm->mi_params);
1939     cm->width = width;
1940     cm->height = height;
1941   }
1942 
1943   ensure_mv_buffer(cm->cur_frame, cm);
1944   cm->cur_frame->width = cm->width;
1945   cm->cur_frame->height = cm->height;
1946 }
1947 
setup_buffer_pool(AV1_COMMON * cm)1948 static inline void setup_buffer_pool(AV1_COMMON *cm) {
1949   BufferPool *const pool = cm->buffer_pool;
1950   const SequenceHeader *const seq_params = cm->seq_params;
1951 
1952   lock_buffer_pool(pool);
1953   if (aom_realloc_frame_buffer(
1954           &cm->cur_frame->buf, cm->width, cm->height, seq_params->subsampling_x,
1955           seq_params->subsampling_y, seq_params->use_highbitdepth,
1956           AOM_DEC_BORDER_IN_PIXELS, cm->features.byte_alignment,
1957           &cm->cur_frame->raw_frame_buffer, pool->get_fb_cb, pool->cb_priv,
1958           false, 0)) {
1959     unlock_buffer_pool(pool);
1960     aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
1961                        "Failed to allocate frame buffer");
1962   }
1963   unlock_buffer_pool(pool);
1964 
1965   cm->cur_frame->buf.bit_depth = (unsigned int)seq_params->bit_depth;
1966   cm->cur_frame->buf.color_primaries = seq_params->color_primaries;
1967   cm->cur_frame->buf.transfer_characteristics =
1968       seq_params->transfer_characteristics;
1969   cm->cur_frame->buf.matrix_coefficients = seq_params->matrix_coefficients;
1970   cm->cur_frame->buf.monochrome = seq_params->monochrome;
1971   cm->cur_frame->buf.chroma_sample_position =
1972       seq_params->chroma_sample_position;
1973   cm->cur_frame->buf.color_range = seq_params->color_range;
1974   cm->cur_frame->buf.render_width = cm->render_width;
1975   cm->cur_frame->buf.render_height = cm->render_height;
1976 }
1977 
setup_frame_size(AV1_COMMON * cm,int frame_size_override_flag,struct aom_read_bit_buffer * rb)1978 static inline void setup_frame_size(AV1_COMMON *cm,
1979                                     int frame_size_override_flag,
1980                                     struct aom_read_bit_buffer *rb) {
1981   const SequenceHeader *const seq_params = cm->seq_params;
1982   int width, height;
1983 
1984   if (frame_size_override_flag) {
1985     int num_bits_width = seq_params->num_bits_width;
1986     int num_bits_height = seq_params->num_bits_height;
1987     read_frame_size(rb, num_bits_width, num_bits_height, &width, &height);
1988     if (width > seq_params->max_frame_width ||
1989         height > seq_params->max_frame_height) {
1990       aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME,
1991                          "Frame dimensions are larger than the maximum values");
1992     }
1993   } else {
1994     width = seq_params->max_frame_width;
1995     height = seq_params->max_frame_height;
1996   }
1997 
1998   setup_superres(cm, rb, &width, &height);
1999   resize_context_buffers(cm, width, height);
2000   setup_render_size(cm, rb);
2001   setup_buffer_pool(cm);
2002 }
2003 
setup_sb_size(SequenceHeader * seq_params,struct aom_read_bit_buffer * rb)2004 static inline void setup_sb_size(SequenceHeader *seq_params,
2005                                  struct aom_read_bit_buffer *rb) {
2006   set_sb_size(seq_params, aom_rb_read_bit(rb) ? BLOCK_128X128 : BLOCK_64X64);
2007 }
2008 
valid_ref_frame_img_fmt(aom_bit_depth_t ref_bit_depth,int ref_xss,int ref_yss,aom_bit_depth_t this_bit_depth,int this_xss,int this_yss)2009 static inline int valid_ref_frame_img_fmt(aom_bit_depth_t ref_bit_depth,
2010                                           int ref_xss, int ref_yss,
2011                                           aom_bit_depth_t this_bit_depth,
2012                                           int this_xss, int this_yss) {
2013   return ref_bit_depth == this_bit_depth && ref_xss == this_xss &&
2014          ref_yss == this_yss;
2015 }
2016 
setup_frame_size_with_refs(AV1_COMMON * cm,struct aom_read_bit_buffer * rb)2017 static inline void setup_frame_size_with_refs(AV1_COMMON *cm,
2018                                               struct aom_read_bit_buffer *rb) {
2019   int width, height;
2020   int found = 0;
2021   int has_valid_ref_frame = 0;
2022   for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
2023     if (aom_rb_read_bit(rb)) {
2024       const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, i);
2025       // This will never be NULL in a normal stream, as streams are required to
2026       // have a shown keyframe before any inter frames, which would refresh all
2027       // the reference buffers. However, it might be null if we're starting in
2028       // the middle of a stream, and static analysis will error if we don't do
2029       // a null check here.
2030       if (ref_buf == NULL) {
2031         aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME,
2032                            "Invalid condition: invalid reference buffer");
2033       } else {
2034         const YV12_BUFFER_CONFIG *const buf = &ref_buf->buf;
2035         width = buf->y_crop_width;
2036         height = buf->y_crop_height;
2037         cm->render_width = buf->render_width;
2038         cm->render_height = buf->render_height;
2039         setup_superres(cm, rb, &width, &height);
2040         resize_context_buffers(cm, width, height);
2041         found = 1;
2042         break;
2043       }
2044     }
2045   }
2046 
2047   const SequenceHeader *const seq_params = cm->seq_params;
2048   if (!found) {
2049     int num_bits_width = seq_params->num_bits_width;
2050     int num_bits_height = seq_params->num_bits_height;
2051 
2052     read_frame_size(rb, num_bits_width, num_bits_height, &width, &height);
2053     setup_superres(cm, rb, &width, &height);
2054     resize_context_buffers(cm, width, height);
2055     setup_render_size(cm, rb);
2056   }
2057 
2058   if (width <= 0 || height <= 0)
2059     aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME,
2060                        "Invalid frame size");
2061 
2062   // Check to make sure at least one of frames that this frame references
2063   // has valid dimensions.
2064   for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
2065     const RefCntBuffer *const ref_frame = get_ref_frame_buf(cm, i);
2066     has_valid_ref_frame |=
2067         valid_ref_frame_size(ref_frame->buf.y_crop_width,
2068                              ref_frame->buf.y_crop_height, width, height);
2069   }
2070   if (!has_valid_ref_frame)
2071     aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME,
2072                        "Referenced frame has invalid size");
2073   for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
2074     const RefCntBuffer *const ref_frame = get_ref_frame_buf(cm, i);
2075     if (!valid_ref_frame_img_fmt(
2076             ref_frame->buf.bit_depth, ref_frame->buf.subsampling_x,
2077             ref_frame->buf.subsampling_y, seq_params->bit_depth,
2078             seq_params->subsampling_x, seq_params->subsampling_y))
2079       aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME,
2080                          "Referenced frame has incompatible color format");
2081   }
2082   setup_buffer_pool(cm);
2083 }
2084 
2085 // Same function as av1_read_uniform but reading from uncompresses header wb
rb_read_uniform(struct aom_read_bit_buffer * const rb,int n)2086 static int rb_read_uniform(struct aom_read_bit_buffer *const rb, int n) {
2087   const int l = get_unsigned_bits(n);
2088   const int m = (1 << l) - n;
2089   const int v = aom_rb_read_literal(rb, l - 1);
2090   assert(l != 0);
2091   if (v < m)
2092     return v;
2093   else
2094     return (v << 1) - m + aom_rb_read_bit(rb);
2095 }
2096 
read_tile_info_max_tile(AV1_COMMON * const cm,struct aom_read_bit_buffer * const rb)2097 static inline void read_tile_info_max_tile(
2098     AV1_COMMON *const cm, struct aom_read_bit_buffer *const rb) {
2099   const SequenceHeader *const seq_params = cm->seq_params;
2100   CommonTileParams *const tiles = &cm->tiles;
2101   int width_sb =
2102       CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, seq_params->mib_size_log2);
2103   int height_sb =
2104       CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, seq_params->mib_size_log2);
2105 
2106   av1_get_tile_limits(cm);
2107   tiles->uniform_spacing = aom_rb_read_bit(rb);
2108 
2109   // Read tile columns
2110   if (tiles->uniform_spacing) {
2111     tiles->log2_cols = tiles->min_log2_cols;
2112     while (tiles->log2_cols < tiles->max_log2_cols) {
2113       if (!aom_rb_read_bit(rb)) {
2114         break;
2115       }
2116       tiles->log2_cols++;
2117     }
2118   } else {
2119     int i;
2120     int start_sb;
2121     for (i = 0, start_sb = 0; width_sb > 0 && i < MAX_TILE_COLS; i++) {
2122       const int size_sb =
2123           1 + rb_read_uniform(rb, AOMMIN(width_sb, tiles->max_width_sb));
2124       tiles->col_start_sb[i] = start_sb;
2125       start_sb += size_sb;
2126       width_sb -= size_sb;
2127     }
2128     tiles->cols = i;
2129     tiles->col_start_sb[i] = start_sb + width_sb;
2130   }
2131   av1_calculate_tile_cols(seq_params, cm->mi_params.mi_rows,
2132                           cm->mi_params.mi_cols, tiles);
2133 
2134   // Read tile rows
2135   if (tiles->uniform_spacing) {
2136     tiles->log2_rows = tiles->min_log2_rows;
2137     while (tiles->log2_rows < tiles->max_log2_rows) {
2138       if (!aom_rb_read_bit(rb)) {
2139         break;
2140       }
2141       tiles->log2_rows++;
2142     }
2143   } else {
2144     int i;
2145     int start_sb;
2146     for (i = 0, start_sb = 0; height_sb > 0 && i < MAX_TILE_ROWS; i++) {
2147       const int size_sb =
2148           1 + rb_read_uniform(rb, AOMMIN(height_sb, tiles->max_height_sb));
2149       tiles->row_start_sb[i] = start_sb;
2150       start_sb += size_sb;
2151       height_sb -= size_sb;
2152     }
2153     tiles->rows = i;
2154     tiles->row_start_sb[i] = start_sb + height_sb;
2155   }
2156   av1_calculate_tile_rows(seq_params, cm->mi_params.mi_rows, tiles);
2157 }
2158 
av1_set_single_tile_decoding_mode(AV1_COMMON * const cm)2159 void av1_set_single_tile_decoding_mode(AV1_COMMON *const cm) {
2160   cm->tiles.single_tile_decoding = 0;
2161   if (cm->tiles.large_scale) {
2162     struct loopfilter *lf = &cm->lf;
2163     RestorationInfo *const rst_info = cm->rst_info;
2164     const CdefInfo *const cdef_info = &cm->cdef_info;
2165 
2166     // Figure out single_tile_decoding by loopfilter_level.
2167     const int no_loopfilter = !(lf->filter_level[0] || lf->filter_level[1]);
2168     const int no_cdef = cdef_info->cdef_bits == 0 &&
2169                         cdef_info->cdef_strengths[0] == 0 &&
2170                         cdef_info->cdef_uv_strengths[0] == 0;
2171     const int no_restoration =
2172         rst_info[0].frame_restoration_type == RESTORE_NONE &&
2173         rst_info[1].frame_restoration_type == RESTORE_NONE &&
2174         rst_info[2].frame_restoration_type == RESTORE_NONE;
2175     assert(IMPLIES(cm->features.coded_lossless, no_loopfilter && no_cdef));
2176     assert(IMPLIES(cm->features.all_lossless, no_restoration));
2177     cm->tiles.single_tile_decoding = no_loopfilter && no_cdef && no_restoration;
2178   }
2179 }
2180 
read_tile_info(AV1Decoder * const pbi,struct aom_read_bit_buffer * const rb)2181 static inline void read_tile_info(AV1Decoder *const pbi,
2182                                   struct aom_read_bit_buffer *const rb) {
2183   AV1_COMMON *const cm = &pbi->common;
2184 
2185   read_tile_info_max_tile(cm, rb);
2186 
2187   pbi->context_update_tile_id = 0;
2188   if (cm->tiles.rows * cm->tiles.cols > 1) {
2189     // tile to use for cdf update
2190     pbi->context_update_tile_id =
2191         aom_rb_read_literal(rb, cm->tiles.log2_rows + cm->tiles.log2_cols);
2192     if (pbi->context_update_tile_id >= cm->tiles.rows * cm->tiles.cols) {
2193       aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
2194                          "Invalid context_update_tile_id");
2195     }
2196     // tile size magnitude
2197     pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1;
2198   }
2199 }
2200 
2201 #if EXT_TILE_DEBUG
read_ext_tile_info(AV1Decoder * const pbi,struct aom_read_bit_buffer * const rb)2202 static inline void read_ext_tile_info(AV1Decoder *const pbi,
2203                                       struct aom_read_bit_buffer *const rb) {
2204   AV1_COMMON *const cm = &pbi->common;
2205 
2206   // This information is stored as a separate byte.
2207   int mod = rb->bit_offset % CHAR_BIT;
2208   if (mod > 0) aom_rb_read_literal(rb, CHAR_BIT - mod);
2209   assert(rb->bit_offset % CHAR_BIT == 0);
2210 
2211   if (cm->tiles.cols * cm->tiles.rows > 1) {
2212     // Read the number of bytes used to store tile size
2213     pbi->tile_col_size_bytes = aom_rb_read_literal(rb, 2) + 1;
2214     pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1;
2215   }
2216 }
2217 #endif  // EXT_TILE_DEBUG
2218 
mem_get_varsize(const uint8_t * src,int sz)2219 static size_t mem_get_varsize(const uint8_t *src, int sz) {
2220   switch (sz) {
2221     case 1: return src[0];
2222     case 2: return mem_get_le16(src);
2223     case 3: return mem_get_le24(src);
2224     case 4: return mem_get_le32(src);
2225     default: assert(0 && "Invalid size"); return -1;
2226   }
2227 }
2228 
2229 #if EXT_TILE_DEBUG
2230 // Reads the next tile returning its size and adjusting '*data' accordingly
2231 // based on 'is_last'. On return, '*data' is updated to point to the end of the
2232 // raw tile buffer in the bit stream.
get_ls_tile_buffer(const uint8_t * const data_end,struct aom_internal_error_info * error_info,const uint8_t ** data,TileBufferDec (* const tile_buffers)[MAX_TILE_COLS],int tile_size_bytes,int col,int row,int tile_copy_mode)2233 static inline void get_ls_tile_buffer(
2234     const uint8_t *const data_end, struct aom_internal_error_info *error_info,
2235     const uint8_t **data, TileBufferDec (*const tile_buffers)[MAX_TILE_COLS],
2236     int tile_size_bytes, int col, int row, int tile_copy_mode) {
2237   size_t size;
2238 
2239   size_t copy_size = 0;
2240   const uint8_t *copy_data = NULL;
2241 
2242   if (!read_is_valid(*data, tile_size_bytes, data_end))
2243     aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
2244                        "Truncated packet or corrupt tile length");
2245   size = mem_get_varsize(*data, tile_size_bytes);
2246 
2247   // If tile_copy_mode = 1, then the top bit of the tile header indicates copy
2248   // mode.
2249   if (tile_copy_mode && (size >> (tile_size_bytes * 8 - 1)) == 1) {
2250     // The remaining bits in the top byte signal the row offset
2251     int offset = (size >> (tile_size_bytes - 1) * 8) & 0x7f;
2252     if (offset > row) {
2253       aom_internal_error(
2254           error_info, AOM_CODEC_CORRUPT_FRAME,
2255           "Invalid row offset in tile copy mode: row=%d offset=%d", row,
2256           offset);
2257     }
2258 
2259     // Currently, only use tiles in same column as reference tiles.
2260     copy_data = tile_buffers[row - offset][col].data;
2261     copy_size = tile_buffers[row - offset][col].size;
2262     size = 0;
2263   } else {
2264     size += AV1_MIN_TILE_SIZE_BYTES;
2265   }
2266 
2267   *data += tile_size_bytes;
2268 
2269   if (size > (size_t)(data_end - *data))
2270     aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
2271                        "Truncated packet or corrupt tile size");
2272 
2273   if (size > 0) {
2274     tile_buffers[row][col].data = *data;
2275     tile_buffers[row][col].size = size;
2276   } else {
2277     tile_buffers[row][col].data = copy_data;
2278     tile_buffers[row][col].size = copy_size;
2279   }
2280 
2281   *data += size;
2282 }
2283 
2284 // Returns the end of the last tile buffer
2285 // (tile_buffers[cm->tiles.rows - 1][cm->tiles.cols - 1]).
get_ls_tile_buffers(AV1Decoder * pbi,const uint8_t * data,const uint8_t * data_end,TileBufferDec (* const tile_buffers)[MAX_TILE_COLS])2286 static const uint8_t *get_ls_tile_buffers(
2287     AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end,
2288     TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) {
2289   AV1_COMMON *const cm = &pbi->common;
2290   const int tile_cols = cm->tiles.cols;
2291   const int tile_rows = cm->tiles.rows;
2292   const int have_tiles = tile_cols * tile_rows > 1;
2293   const uint8_t *raw_data_end;  // The end of the last tile buffer
2294 
2295   if (!have_tiles) {
2296     const size_t tile_size = data_end - data;
2297     tile_buffers[0][0].data = data;
2298     tile_buffers[0][0].size = tile_size;
2299     raw_data_end = NULL;
2300   } else {
2301     // We locate only the tile buffers that are required, which are the ones
2302     // specified by pbi->dec_tile_col and pbi->dec_tile_row. Also, we always
2303     // need the last (bottom right) tile buffer, as we need to know where the
2304     // end of the compressed frame buffer is for proper superframe decoding.
2305 
2306     const uint8_t *tile_col_data_end[MAX_TILE_COLS] = { NULL };
2307     const uint8_t *const data_start = data;
2308 
2309     const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
2310     const int single_row = pbi->dec_tile_row >= 0;
2311     const int tile_rows_start = single_row ? dec_tile_row : 0;
2312     const int tile_rows_end = single_row ? tile_rows_start + 1 : tile_rows;
2313     const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
2314     const int single_col = pbi->dec_tile_col >= 0;
2315     const int tile_cols_start = single_col ? dec_tile_col : 0;
2316     const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
2317 
2318     const int tile_col_size_bytes = pbi->tile_col_size_bytes;
2319     const int tile_size_bytes = pbi->tile_size_bytes;
2320     int tile_width, tile_height;
2321     if (!av1_get_uniform_tile_size(cm, &tile_width, &tile_height)) {
2322       aom_internal_error(
2323           &pbi->error, AOM_CODEC_CORRUPT_FRAME,
2324           "Not all the tiles in the tile list have the same size.");
2325     }
2326     const int tile_copy_mode =
2327         ((AOMMAX(tile_width, tile_height) << MI_SIZE_LOG2) <= 256) ? 1 : 0;
2328     // Read tile column sizes for all columns (we need the last tile buffer)
2329     for (int c = 0; c < tile_cols; ++c) {
2330       const int is_last = c == tile_cols - 1;
2331       size_t tile_col_size;
2332 
2333       if (!is_last) {
2334         if (tile_col_size_bytes > data_end - data) {
2335           aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
2336                              "Not enough data to read tile_col_size");
2337         }
2338         tile_col_size = mem_get_varsize(data, tile_col_size_bytes);
2339         data += tile_col_size_bytes;
2340         if (tile_col_size > (size_t)(data_end - data)) {
2341           aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
2342                              "tile_col_data_end[%d] is out of bound", c);
2343         }
2344         tile_col_data_end[c] = data + tile_col_size;
2345       } else {
2346         tile_col_size = data_end - data;
2347         tile_col_data_end[c] = data_end;
2348       }
2349       data += tile_col_size;
2350     }
2351 
2352     data = data_start;
2353 
2354     // Read the required tile sizes.
2355     for (int c = tile_cols_start; c < tile_cols_end; ++c) {
2356       const int is_last = c == tile_cols - 1;
2357 
2358       if (c > 0) data = tile_col_data_end[c - 1];
2359 
2360       if (!is_last) data += tile_col_size_bytes;
2361 
2362       // Get the whole of the last column, otherwise stop at the required tile.
2363       for (int r = 0; r < (is_last ? tile_rows : tile_rows_end); ++r) {
2364         get_ls_tile_buffer(tile_col_data_end[c], &pbi->error, &data,
2365                            tile_buffers, tile_size_bytes, c, r, tile_copy_mode);
2366       }
2367     }
2368 
2369     // If we have not read the last column, then read it to get the last tile.
2370     if (tile_cols_end != tile_cols) {
2371       const int c = tile_cols - 1;
2372 
2373       data = tile_col_data_end[c - 1];
2374 
2375       for (int r = 0; r < tile_rows; ++r) {
2376         get_ls_tile_buffer(tile_col_data_end[c], &pbi->error, &data,
2377                            tile_buffers, tile_size_bytes, c, r, tile_copy_mode);
2378       }
2379     }
2380     raw_data_end = data;
2381   }
2382   return raw_data_end;
2383 }
2384 #endif  // EXT_TILE_DEBUG
2385 
get_ls_single_tile_buffer(AV1Decoder * pbi,const uint8_t * data,TileBufferDec (* const tile_buffers)[MAX_TILE_COLS])2386 static const uint8_t *get_ls_single_tile_buffer(
2387     AV1Decoder *pbi, const uint8_t *data,
2388     TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) {
2389   assert(pbi->dec_tile_row >= 0 && pbi->dec_tile_col >= 0);
2390   tile_buffers[pbi->dec_tile_row][pbi->dec_tile_col].data = data;
2391   tile_buffers[pbi->dec_tile_row][pbi->dec_tile_col].size =
2392       (size_t)pbi->coded_tile_data_size;
2393   return data + pbi->coded_tile_data_size;
2394 }
2395 
2396 // Reads the next tile returning its size and adjusting '*data' accordingly
2397 // based on 'is_last'.
get_tile_buffer(const uint8_t * const data_end,const int tile_size_bytes,int is_last,struct aom_internal_error_info * error_info,const uint8_t ** data,TileBufferDec * const buf)2398 static inline void get_tile_buffer(const uint8_t *const data_end,
2399                                    const int tile_size_bytes, int is_last,
2400                                    struct aom_internal_error_info *error_info,
2401                                    const uint8_t **data,
2402                                    TileBufferDec *const buf) {
2403   size_t size;
2404 
2405   if (!is_last) {
2406     if (!read_is_valid(*data, tile_size_bytes, data_end))
2407       aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
2408                          "Not enough data to read tile size");
2409 
2410     size = mem_get_varsize(*data, tile_size_bytes) + AV1_MIN_TILE_SIZE_BYTES;
2411     *data += tile_size_bytes;
2412 
2413     if (size > (size_t)(data_end - *data))
2414       aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
2415                          "Truncated packet or corrupt tile size");
2416   } else {
2417     size = data_end - *data;
2418   }
2419 
2420   buf->data = *data;
2421   buf->size = size;
2422 
2423   *data += size;
2424 }
2425 
get_tile_buffers(AV1Decoder * pbi,const uint8_t * data,const uint8_t * data_end,TileBufferDec (* const tile_buffers)[MAX_TILE_COLS],int start_tile,int end_tile)2426 static inline void get_tile_buffers(
2427     AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end,
2428     TileBufferDec (*const tile_buffers)[MAX_TILE_COLS], int start_tile,
2429     int end_tile) {
2430   AV1_COMMON *const cm = &pbi->common;
2431   const int tile_cols = cm->tiles.cols;
2432   const int tile_rows = cm->tiles.rows;
2433   int tc = 0;
2434 
2435   for (int r = 0; r < tile_rows; ++r) {
2436     for (int c = 0; c < tile_cols; ++c, ++tc) {
2437       TileBufferDec *const buf = &tile_buffers[r][c];
2438 
2439       const int is_last = (tc == end_tile);
2440       const size_t hdr_offset = 0;
2441 
2442       if (tc < start_tile || tc > end_tile) continue;
2443 
2444       if (data + hdr_offset >= data_end)
2445         aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
2446                            "Data ended before all tiles were read.");
2447       data += hdr_offset;
2448       get_tile_buffer(data_end, pbi->tile_size_bytes, is_last, &pbi->error,
2449                       &data, buf);
2450     }
2451   }
2452 }
2453 
set_cb_buffer(AV1Decoder * pbi,DecoderCodingBlock * dcb,CB_BUFFER * cb_buffer_base,const int num_planes,int mi_row,int mi_col)2454 static inline void set_cb_buffer(AV1Decoder *pbi, DecoderCodingBlock *dcb,
2455                                  CB_BUFFER *cb_buffer_base,
2456                                  const int num_planes, int mi_row, int mi_col) {
2457   AV1_COMMON *const cm = &pbi->common;
2458   int mib_size_log2 = cm->seq_params->mib_size_log2;
2459   int stride = (cm->mi_params.mi_cols >> mib_size_log2) + 1;
2460   int offset = (mi_row >> mib_size_log2) * stride + (mi_col >> mib_size_log2);
2461   CB_BUFFER *cb_buffer = cb_buffer_base + offset;
2462 
2463   for (int plane = 0; plane < num_planes; ++plane) {
2464     dcb->dqcoeff_block[plane] = cb_buffer->dqcoeff[plane];
2465     dcb->eob_data[plane] = cb_buffer->eob_data[plane];
2466     dcb->cb_offset[plane] = 0;
2467     dcb->txb_offset[plane] = 0;
2468   }
2469   MACROBLOCKD *const xd = &dcb->xd;
2470   xd->plane[0].color_index_map = cb_buffer->color_index_map[0];
2471   xd->plane[1].color_index_map = cb_buffer->color_index_map[1];
2472   xd->color_index_map_offset[0] = 0;
2473   xd->color_index_map_offset[1] = 0;
2474 }
2475 
decoder_alloc_tile_data(AV1Decoder * pbi,const int n_tiles)2476 static inline void decoder_alloc_tile_data(AV1Decoder *pbi, const int n_tiles) {
2477   AV1_COMMON *const cm = &pbi->common;
2478   aom_free(pbi->tile_data);
2479   pbi->allocated_tiles = 0;
2480   CHECK_MEM_ERROR(cm, pbi->tile_data,
2481                   aom_memalign(32, n_tiles * sizeof(*pbi->tile_data)));
2482   pbi->allocated_tiles = n_tiles;
2483   for (int i = 0; i < n_tiles; i++) {
2484     TileDataDec *const tile_data = pbi->tile_data + i;
2485     av1_zero(tile_data->dec_row_mt_sync);
2486   }
2487   pbi->allocated_row_mt_sync_rows = 0;
2488 }
2489 
2490 // Set up nsync by width.
get_sync_range(int width)2491 static inline int get_sync_range(int width) {
2492 // nsync numbers are picked by testing.
2493 #if 0
2494   if (width < 640)
2495     return 1;
2496   else if (width <= 1280)
2497     return 2;
2498   else if (width <= 4096)
2499     return 4;
2500   else
2501     return 8;
2502 #else
2503   (void)width;
2504 #endif
2505   return 1;
2506 }
2507 
2508 // Allocate memory for decoder row synchronization
dec_row_mt_alloc(AV1DecRowMTSync * dec_row_mt_sync,AV1_COMMON * cm,int rows)2509 static inline void dec_row_mt_alloc(AV1DecRowMTSync *dec_row_mt_sync,
2510                                     AV1_COMMON *cm, int rows) {
2511   dec_row_mt_sync->allocated_sb_rows = rows;
2512 #if CONFIG_MULTITHREAD
2513   {
2514     int i;
2515 
2516     CHECK_MEM_ERROR(cm, dec_row_mt_sync->mutex_,
2517                     aom_malloc(sizeof(*(dec_row_mt_sync->mutex_)) * rows));
2518     if (dec_row_mt_sync->mutex_) {
2519       for (i = 0; i < rows; ++i) {
2520         pthread_mutex_init(&dec_row_mt_sync->mutex_[i], NULL);
2521       }
2522     }
2523 
2524     CHECK_MEM_ERROR(cm, dec_row_mt_sync->cond_,
2525                     aom_malloc(sizeof(*(dec_row_mt_sync->cond_)) * rows));
2526     if (dec_row_mt_sync->cond_) {
2527       for (i = 0; i < rows; ++i) {
2528         pthread_cond_init(&dec_row_mt_sync->cond_[i], NULL);
2529       }
2530     }
2531   }
2532 #endif  // CONFIG_MULTITHREAD
2533 
2534   CHECK_MEM_ERROR(cm, dec_row_mt_sync->cur_sb_col,
2535                   aom_malloc(sizeof(*(dec_row_mt_sync->cur_sb_col)) * rows));
2536 
2537   // Set up nsync.
2538   dec_row_mt_sync->sync_range = get_sync_range(cm->width);
2539 }
2540 
2541 // Deallocate decoder row synchronization related mutex and data
av1_dec_row_mt_dealloc(AV1DecRowMTSync * dec_row_mt_sync)2542 void av1_dec_row_mt_dealloc(AV1DecRowMTSync *dec_row_mt_sync) {
2543   if (dec_row_mt_sync != NULL) {
2544 #if CONFIG_MULTITHREAD
2545     int i;
2546     if (dec_row_mt_sync->mutex_ != NULL) {
2547       for (i = 0; i < dec_row_mt_sync->allocated_sb_rows; ++i) {
2548         pthread_mutex_destroy(&dec_row_mt_sync->mutex_[i]);
2549       }
2550       aom_free(dec_row_mt_sync->mutex_);
2551     }
2552     if (dec_row_mt_sync->cond_ != NULL) {
2553       for (i = 0; i < dec_row_mt_sync->allocated_sb_rows; ++i) {
2554         pthread_cond_destroy(&dec_row_mt_sync->cond_[i]);
2555       }
2556       aom_free(dec_row_mt_sync->cond_);
2557     }
2558 #endif  // CONFIG_MULTITHREAD
2559     aom_free(dec_row_mt_sync->cur_sb_col);
2560 
2561     // clear the structure as the source of this call may be a resize in which
2562     // case this call will be followed by an _alloc() which may fail.
2563     av1_zero(*dec_row_mt_sync);
2564   }
2565 }
2566 
sync_read(AV1DecRowMTSync * const dec_row_mt_sync,int r,int c)2567 static inline void sync_read(AV1DecRowMTSync *const dec_row_mt_sync, int r,
2568                              int c) {
2569 #if CONFIG_MULTITHREAD
2570   const int nsync = dec_row_mt_sync->sync_range;
2571 
2572   if (r && !(c & (nsync - 1))) {
2573     pthread_mutex_t *const mutex = &dec_row_mt_sync->mutex_[r - 1];
2574     pthread_mutex_lock(mutex);
2575 
2576     while (c > dec_row_mt_sync->cur_sb_col[r - 1] - nsync -
2577                    dec_row_mt_sync->intrabc_extra_top_right_sb_delay) {
2578       pthread_cond_wait(&dec_row_mt_sync->cond_[r - 1], mutex);
2579     }
2580     pthread_mutex_unlock(mutex);
2581   }
2582 #else
2583   (void)dec_row_mt_sync;
2584   (void)r;
2585   (void)c;
2586 #endif  // CONFIG_MULTITHREAD
2587 }
2588 
sync_write(AV1DecRowMTSync * const dec_row_mt_sync,int r,int c,const int sb_cols)2589 static inline void sync_write(AV1DecRowMTSync *const dec_row_mt_sync, int r,
2590                               int c, const int sb_cols) {
2591 #if CONFIG_MULTITHREAD
2592   const int nsync = dec_row_mt_sync->sync_range;
2593   int cur;
2594   int sig = 1;
2595 
2596   if (c < sb_cols - 1) {
2597     cur = c;
2598     if (c % nsync) sig = 0;
2599   } else {
2600     cur = sb_cols + nsync + dec_row_mt_sync->intrabc_extra_top_right_sb_delay;
2601   }
2602 
2603   if (sig) {
2604     pthread_mutex_lock(&dec_row_mt_sync->mutex_[r]);
2605 
2606     dec_row_mt_sync->cur_sb_col[r] = cur;
2607 
2608     pthread_cond_signal(&dec_row_mt_sync->cond_[r]);
2609     pthread_mutex_unlock(&dec_row_mt_sync->mutex_[r]);
2610   }
2611 #else
2612   (void)dec_row_mt_sync;
2613   (void)r;
2614   (void)c;
2615   (void)sb_cols;
2616 #endif  // CONFIG_MULTITHREAD
2617 }
2618 
signal_decoding_done_for_erroneous_row(AV1Decoder * const pbi,const MACROBLOCKD * const xd)2619 static inline void signal_decoding_done_for_erroneous_row(
2620     AV1Decoder *const pbi, const MACROBLOCKD *const xd) {
2621   AV1_COMMON *const cm = &pbi->common;
2622   const TileInfo *const tile = &xd->tile;
2623   const int sb_row_in_tile =
2624       ((xd->mi_row - tile->mi_row_start) >> cm->seq_params->mib_size_log2);
2625   const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile);
2626   TileDataDec *const tile_data =
2627       pbi->tile_data + tile->tile_row * cm->tiles.cols + tile->tile_col;
2628   AV1DecRowMTSync *dec_row_mt_sync = &tile_data->dec_row_mt_sync;
2629 
2630   sync_write(dec_row_mt_sync, sb_row_in_tile, sb_cols_in_tile - 1,
2631              sb_cols_in_tile);
2632 }
2633 
decode_tile_sb_row(AV1Decoder * pbi,ThreadData * const td,const TileInfo * tile_info,const int mi_row)2634 static inline void decode_tile_sb_row(AV1Decoder *pbi, ThreadData *const td,
2635                                       const TileInfo *tile_info,
2636                                       const int mi_row) {
2637   AV1_COMMON *const cm = &pbi->common;
2638   const int num_planes = av1_num_planes(cm);
2639   TileDataDec *const tile_data = pbi->tile_data +
2640                                  tile_info->tile_row * cm->tiles.cols +
2641                                  tile_info->tile_col;
2642   const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info);
2643   const int sb_row_in_tile =
2644       (mi_row - tile_info->mi_row_start) >> cm->seq_params->mib_size_log2;
2645   int sb_col_in_tile = 0;
2646   int row_mt_exit = 0;
2647 
2648   for (int mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end;
2649        mi_col += cm->seq_params->mib_size, sb_col_in_tile++) {
2650     set_cb_buffer(pbi, &td->dcb, pbi->cb_buffer_base, num_planes, mi_row,
2651                   mi_col);
2652 
2653     sync_read(&tile_data->dec_row_mt_sync, sb_row_in_tile, sb_col_in_tile);
2654 
2655 #if CONFIG_MULTITHREAD
2656     pthread_mutex_lock(pbi->row_mt_mutex_);
2657 #endif
2658     row_mt_exit = pbi->frame_row_mt_info.row_mt_exit;
2659 #if CONFIG_MULTITHREAD
2660     pthread_mutex_unlock(pbi->row_mt_mutex_);
2661 #endif
2662 
2663     if (!row_mt_exit) {
2664       // Decoding of the super-block
2665       decode_partition(pbi, td, mi_row, mi_col, td->bit_reader,
2666                        cm->seq_params->sb_size, 0x2);
2667     }
2668 
2669     sync_write(&tile_data->dec_row_mt_sync, sb_row_in_tile, sb_col_in_tile,
2670                sb_cols_in_tile);
2671   }
2672 }
2673 
check_trailing_bits_after_symbol_coder(aom_reader * r)2674 static int check_trailing_bits_after_symbol_coder(aom_reader *r) {
2675   if (aom_reader_has_overflowed(r)) return -1;
2676 
2677   uint32_t nb_bits = aom_reader_tell(r);
2678   uint32_t nb_bytes = (nb_bits + 7) >> 3;
2679   const uint8_t *p = aom_reader_find_begin(r) + nb_bytes;
2680 
2681   // aom_reader_tell() returns 1 for a newly initialized decoder, and the
2682   // return value only increases as values are decoded. So nb_bits > 0, and
2683   // thus p > p_begin. Therefore accessing p[-1] is safe.
2684   uint8_t last_byte = p[-1];
2685   uint8_t pattern = 128 >> ((nb_bits - 1) & 7);
2686   if ((last_byte & (2 * pattern - 1)) != pattern) return -1;
2687 
2688   // Make sure that all padding bytes are zero as required by the spec.
2689   const uint8_t *p_end = aom_reader_find_end(r);
2690   while (p < p_end) {
2691     if (*p != 0) return -1;
2692     p++;
2693   }
2694   return 0;
2695 }
2696 
set_decode_func_pointers(ThreadData * td,int parse_decode_flag)2697 static inline void set_decode_func_pointers(ThreadData *td,
2698                                             int parse_decode_flag) {
2699   td->read_coeffs_tx_intra_block_visit = decode_block_void;
2700   td->predict_and_recon_intra_block_visit = decode_block_void;
2701   td->read_coeffs_tx_inter_block_visit = decode_block_void;
2702   td->inverse_tx_inter_block_visit = decode_block_void;
2703   td->predict_inter_block_visit = predict_inter_block_void;
2704   td->cfl_store_inter_block_visit = cfl_store_inter_block_void;
2705 
2706   if (parse_decode_flag & 0x1) {
2707     td->read_coeffs_tx_intra_block_visit = read_coeffs_tx_intra_block;
2708     td->read_coeffs_tx_inter_block_visit = av1_read_coeffs_txb;
2709   }
2710   if (parse_decode_flag & 0x2) {
2711     td->predict_and_recon_intra_block_visit =
2712         predict_and_reconstruct_intra_block;
2713     td->inverse_tx_inter_block_visit = inverse_transform_inter_block;
2714     td->predict_inter_block_visit = predict_inter_block;
2715     td->cfl_store_inter_block_visit = cfl_store_inter_block;
2716   }
2717 }
2718 
decode_tile(AV1Decoder * pbi,ThreadData * const td,int tile_row,int tile_col)2719 static inline void decode_tile(AV1Decoder *pbi, ThreadData *const td,
2720                                int tile_row, int tile_col) {
2721   TileInfo tile_info;
2722 
2723   AV1_COMMON *const cm = &pbi->common;
2724   const int num_planes = av1_num_planes(cm);
2725 
2726   av1_tile_set_row(&tile_info, cm, tile_row);
2727   av1_tile_set_col(&tile_info, cm, tile_col);
2728   DecoderCodingBlock *const dcb = &td->dcb;
2729   MACROBLOCKD *const xd = &dcb->xd;
2730 
2731   av1_zero_above_context(cm, xd, tile_info.mi_col_start, tile_info.mi_col_end,
2732                          tile_row);
2733   av1_reset_loop_filter_delta(xd, num_planes);
2734   av1_reset_loop_restoration(xd, num_planes);
2735 
2736   for (int mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end;
2737        mi_row += cm->seq_params->mib_size) {
2738     av1_zero_left_context(xd);
2739 
2740     for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end;
2741          mi_col += cm->seq_params->mib_size) {
2742       set_cb_buffer(pbi, dcb, &td->cb_buffer_base, num_planes, 0, 0);
2743 
2744       // Bit-stream parsing and decoding of the superblock
2745       decode_partition(pbi, td, mi_row, mi_col, td->bit_reader,
2746                        cm->seq_params->sb_size, 0x3);
2747 
2748       if (aom_reader_has_overflowed(td->bit_reader)) {
2749         aom_merge_corrupted_flag(&dcb->corrupted, 1);
2750         return;
2751       }
2752     }
2753   }
2754 
2755   int corrupted =
2756       (check_trailing_bits_after_symbol_coder(td->bit_reader)) ? 1 : 0;
2757   aom_merge_corrupted_flag(&dcb->corrupted, corrupted);
2758 }
2759 
decode_tiles(AV1Decoder * pbi,const uint8_t * data,const uint8_t * data_end,int start_tile,int end_tile)2760 static const uint8_t *decode_tiles(AV1Decoder *pbi, const uint8_t *data,
2761                                    const uint8_t *data_end, int start_tile,
2762                                    int end_tile) {
2763   AV1_COMMON *const cm = &pbi->common;
2764   ThreadData *const td = &pbi->td;
2765   CommonTileParams *const tiles = &cm->tiles;
2766   const int tile_cols = tiles->cols;
2767   const int tile_rows = tiles->rows;
2768   const int n_tiles = tile_cols * tile_rows;
2769   TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers;
2770   const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
2771   const int single_row = pbi->dec_tile_row >= 0;
2772   const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
2773   const int single_col = pbi->dec_tile_col >= 0;
2774   int tile_rows_start;
2775   int tile_rows_end;
2776   int tile_cols_start;
2777   int tile_cols_end;
2778   int inv_col_order;
2779   int inv_row_order;
2780   int tile_row, tile_col;
2781   uint8_t allow_update_cdf;
2782   const uint8_t *raw_data_end = NULL;
2783 
2784   if (tiles->large_scale) {
2785     tile_rows_start = single_row ? dec_tile_row : 0;
2786     tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows;
2787     tile_cols_start = single_col ? dec_tile_col : 0;
2788     tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
2789     inv_col_order = pbi->inv_tile_order && !single_col;
2790     inv_row_order = pbi->inv_tile_order && !single_row;
2791     allow_update_cdf = 0;
2792   } else {
2793     tile_rows_start = 0;
2794     tile_rows_end = tile_rows;
2795     tile_cols_start = 0;
2796     tile_cols_end = tile_cols;
2797     inv_col_order = pbi->inv_tile_order;
2798     inv_row_order = pbi->inv_tile_order;
2799     allow_update_cdf = 1;
2800   }
2801 
2802   // No tiles to decode.
2803   if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start ||
2804       // First tile is larger than end_tile.
2805       tile_rows_start * tiles->cols + tile_cols_start > end_tile ||
2806       // Last tile is smaller than start_tile.
2807       (tile_rows_end - 1) * tiles->cols + tile_cols_end - 1 < start_tile)
2808     return data;
2809 
2810   allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update;
2811 
2812   assert(tile_rows <= MAX_TILE_ROWS);
2813   assert(tile_cols <= MAX_TILE_COLS);
2814 
2815 #if EXT_TILE_DEBUG
2816   if (tiles->large_scale && !pbi->ext_tile_debug)
2817     raw_data_end = get_ls_single_tile_buffer(pbi, data, tile_buffers);
2818   else if (tiles->large_scale && pbi->ext_tile_debug)
2819     raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers);
2820   else
2821 #endif  // EXT_TILE_DEBUG
2822     get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile);
2823 
2824   if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) {
2825     decoder_alloc_tile_data(pbi, n_tiles);
2826   }
2827   if (pbi->dcb.xd.seg_mask == NULL)
2828     CHECK_MEM_ERROR(cm, pbi->dcb.xd.seg_mask,
2829                     (uint8_t *)aom_memalign(
2830                         16, 2 * MAX_SB_SQUARE * sizeof(*pbi->dcb.xd.seg_mask)));
2831 #if CONFIG_ACCOUNTING
2832   if (pbi->acct_enabled) {
2833     aom_accounting_reset(&pbi->accounting);
2834   }
2835 #endif
2836 
2837   set_decode_func_pointers(&pbi->td, 0x3);
2838 
2839   // Load all tile information into thread_data.
2840   td->dcb = pbi->dcb;
2841 
2842   td->dcb.corrupted = 0;
2843   td->dcb.mc_buf[0] = td->mc_buf[0];
2844   td->dcb.mc_buf[1] = td->mc_buf[1];
2845   td->dcb.xd.tmp_conv_dst = td->tmp_conv_dst;
2846   for (int j = 0; j < 2; ++j) {
2847     td->dcb.xd.tmp_obmc_bufs[j] = td->tmp_obmc_bufs[j];
2848   }
2849 
2850   for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) {
2851     const int row = inv_row_order ? tile_rows - 1 - tile_row : tile_row;
2852 
2853     for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) {
2854       const int col = inv_col_order ? tile_cols - 1 - tile_col : tile_col;
2855       TileDataDec *const tile_data = pbi->tile_data + row * tiles->cols + col;
2856       const TileBufferDec *const tile_bs_buf = &tile_buffers[row][col];
2857 
2858       if (row * tiles->cols + col < start_tile ||
2859           row * tiles->cols + col > end_tile)
2860         continue;
2861 
2862       td->bit_reader = &tile_data->bit_reader;
2863       av1_zero(td->cb_buffer_base.dqcoeff);
2864       av1_tile_init(&td->dcb.xd.tile, cm, row, col);
2865       td->dcb.xd.current_base_qindex = cm->quant_params.base_qindex;
2866       setup_bool_decoder(&td->dcb.xd, tile_bs_buf->data, data_end,
2867                          tile_bs_buf->size, &pbi->error, td->bit_reader,
2868                          allow_update_cdf);
2869 #if CONFIG_ACCOUNTING
2870       if (pbi->acct_enabled) {
2871         td->bit_reader->accounting = &pbi->accounting;
2872         td->bit_reader->accounting->last_tell_frac =
2873             aom_reader_tell_frac(td->bit_reader);
2874       } else {
2875         td->bit_reader->accounting = NULL;
2876       }
2877 #endif
2878       av1_init_macroblockd(cm, &td->dcb.xd);
2879       av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), row,
2880                              &td->dcb.xd);
2881 
2882       // Initialise the tile context from the frame context
2883       tile_data->tctx = *cm->fc;
2884       td->dcb.xd.tile_ctx = &tile_data->tctx;
2885 
2886       // decode tile
2887       decode_tile(pbi, td, row, col);
2888       aom_merge_corrupted_flag(&pbi->dcb.corrupted, td->dcb.corrupted);
2889       if (pbi->dcb.corrupted)
2890         aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
2891                            "Failed to decode tile data");
2892     }
2893   }
2894 
2895   if (tiles->large_scale) {
2896     if (n_tiles == 1) {
2897       // Find the end of the single tile buffer
2898       return aom_reader_find_end(&pbi->tile_data->bit_reader);
2899     }
2900     // Return the end of the last tile buffer
2901     return raw_data_end;
2902   }
2903   TileDataDec *const tile_data = pbi->tile_data + end_tile;
2904 
2905   return aom_reader_find_end(&tile_data->bit_reader);
2906 }
2907 
get_dec_job_info(AV1DecTileMT * tile_mt_info)2908 static TileJobsDec *get_dec_job_info(AV1DecTileMT *tile_mt_info) {
2909   TileJobsDec *cur_job_info = NULL;
2910 #if CONFIG_MULTITHREAD
2911   pthread_mutex_lock(tile_mt_info->job_mutex);
2912 
2913   if (tile_mt_info->jobs_dequeued < tile_mt_info->jobs_enqueued) {
2914     cur_job_info = tile_mt_info->job_queue + tile_mt_info->jobs_dequeued;
2915     tile_mt_info->jobs_dequeued++;
2916   }
2917 
2918   pthread_mutex_unlock(tile_mt_info->job_mutex);
2919 #else
2920   (void)tile_mt_info;
2921 #endif
2922   return cur_job_info;
2923 }
2924 
tile_worker_hook_init(AV1Decoder * const pbi,DecWorkerData * const thread_data,const TileBufferDec * const tile_buffer,TileDataDec * const tile_data,uint8_t allow_update_cdf)2925 static inline void tile_worker_hook_init(AV1Decoder *const pbi,
2926                                          DecWorkerData *const thread_data,
2927                                          const TileBufferDec *const tile_buffer,
2928                                          TileDataDec *const tile_data,
2929                                          uint8_t allow_update_cdf) {
2930   AV1_COMMON *cm = &pbi->common;
2931   ThreadData *const td = thread_data->td;
2932   int tile_row = tile_data->tile_info.tile_row;
2933   int tile_col = tile_data->tile_info.tile_col;
2934 
2935   td->bit_reader = &tile_data->bit_reader;
2936   av1_zero(td->cb_buffer_base.dqcoeff);
2937 
2938   MACROBLOCKD *const xd = &td->dcb.xd;
2939   av1_tile_init(&xd->tile, cm, tile_row, tile_col);
2940   xd->current_base_qindex = cm->quant_params.base_qindex;
2941 
2942   setup_bool_decoder(xd, tile_buffer->data, thread_data->data_end,
2943                      tile_buffer->size, &thread_data->error_info,
2944                      td->bit_reader, allow_update_cdf);
2945 #if CONFIG_ACCOUNTING
2946   if (pbi->acct_enabled) {
2947     td->bit_reader->accounting = &pbi->accounting;
2948     td->bit_reader->accounting->last_tell_frac =
2949         aom_reader_tell_frac(td->bit_reader);
2950   } else {
2951     td->bit_reader->accounting = NULL;
2952   }
2953 #endif
2954   av1_init_macroblockd(cm, xd);
2955   xd->error_info = &thread_data->error_info;
2956   av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row, xd);
2957 
2958   // Initialise the tile context from the frame context
2959   tile_data->tctx = *cm->fc;
2960   xd->tile_ctx = &tile_data->tctx;
2961 #if CONFIG_ACCOUNTING
2962   if (pbi->acct_enabled) {
2963     tile_data->bit_reader.accounting->last_tell_frac =
2964         aom_reader_tell_frac(&tile_data->bit_reader);
2965   }
2966 #endif
2967 }
2968 
tile_worker_hook(void * arg1,void * arg2)2969 static int tile_worker_hook(void *arg1, void *arg2) {
2970   DecWorkerData *const thread_data = (DecWorkerData *)arg1;
2971   AV1Decoder *const pbi = (AV1Decoder *)arg2;
2972   AV1_COMMON *cm = &pbi->common;
2973   ThreadData *const td = thread_data->td;
2974   uint8_t allow_update_cdf;
2975 
2976   // The jmp_buf is valid only for the duration of the function that calls
2977   // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
2978   // before it returns.
2979   if (setjmp(thread_data->error_info.jmp)) {
2980     thread_data->error_info.setjmp = 0;
2981     thread_data->td->dcb.corrupted = 1;
2982     return 0;
2983   }
2984   thread_data->error_info.setjmp = 1;
2985 
2986   allow_update_cdf = cm->tiles.large_scale ? 0 : 1;
2987   allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update;
2988 
2989   set_decode_func_pointers(td, 0x3);
2990 
2991   assert(cm->tiles.cols > 0);
2992   while (!td->dcb.corrupted) {
2993     TileJobsDec *cur_job_info = get_dec_job_info(&pbi->tile_mt_info);
2994 
2995     if (cur_job_info != NULL) {
2996       const TileBufferDec *const tile_buffer = cur_job_info->tile_buffer;
2997       TileDataDec *const tile_data = cur_job_info->tile_data;
2998       tile_worker_hook_init(pbi, thread_data, tile_buffer, tile_data,
2999                             allow_update_cdf);
3000       // decode tile
3001       int tile_row = tile_data->tile_info.tile_row;
3002       int tile_col = tile_data->tile_info.tile_col;
3003       decode_tile(pbi, td, tile_row, tile_col);
3004     } else {
3005       break;
3006     }
3007   }
3008   thread_data->error_info.setjmp = 0;
3009   return !td->dcb.corrupted;
3010 }
3011 
get_max_row_mt_workers_per_tile(AV1_COMMON * cm,const TileInfo * tile)3012 static inline int get_max_row_mt_workers_per_tile(AV1_COMMON *cm,
3013                                                   const TileInfo *tile) {
3014   // NOTE: Currently value of max workers is calculated based
3015   // on the parse and decode time. As per the theoretical estimate
3016   // when percentage of parse time is equal to percentage of decode
3017   // time, number of workers needed to parse + decode a tile can not
3018   // exceed more than 2.
3019   // TODO(any): Modify this value if parsing is optimized in future.
3020   int sb_rows = av1_get_sb_rows_in_tile(cm, tile);
3021   int max_workers =
3022       sb_rows == 1 ? AOM_MIN_THREADS_PER_TILE : AOM_MAX_THREADS_PER_TILE;
3023   return max_workers;
3024 }
3025 
3026 // The caller must hold pbi->row_mt_mutex_ when calling this function.
3027 // Returns 1 if either the next job is stored in *next_job_info or 1 is stored
3028 // in *end_of_frame.
3029 // NOTE: The caller waits on pbi->row_mt_cond_ if this function returns 0.
3030 // The return value of this function depends on the following variables:
3031 // - frame_row_mt_info->mi_rows_parse_done
3032 // - frame_row_mt_info->mi_rows_decode_started
3033 // - frame_row_mt_info->row_mt_exit
3034 // Therefore we may need to signal or broadcast pbi->row_mt_cond_ if any of
3035 // these variables is modified.
get_next_job_info(AV1Decoder * const pbi,AV1DecRowMTJobInfo * next_job_info,int * end_of_frame)3036 static int get_next_job_info(AV1Decoder *const pbi,
3037                              AV1DecRowMTJobInfo *next_job_info,
3038                              int *end_of_frame) {
3039   AV1_COMMON *cm = &pbi->common;
3040   TileDataDec *tile_data;
3041   AV1DecRowMTSync *dec_row_mt_sync;
3042   AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info;
3043   const int tile_rows_start = frame_row_mt_info->tile_rows_start;
3044   const int tile_rows_end = frame_row_mt_info->tile_rows_end;
3045   const int tile_cols_start = frame_row_mt_info->tile_cols_start;
3046   const int tile_cols_end = frame_row_mt_info->tile_cols_end;
3047   const int start_tile = frame_row_mt_info->start_tile;
3048   const int end_tile = frame_row_mt_info->end_tile;
3049   const int sb_mi_size = mi_size_wide[cm->seq_params->sb_size];
3050   int num_mis_to_decode, num_threads_working;
3051   int num_mis_waiting_for_decode;
3052   int min_threads_working = INT_MAX;
3053   int max_mis_to_decode = 0;
3054   int tile_row_idx, tile_col_idx;
3055   int tile_row = -1;
3056   int tile_col = -1;
3057 
3058   memset(next_job_info, 0, sizeof(*next_job_info));
3059 
3060   // Frame decode is completed or error is encountered.
3061   *end_of_frame = (frame_row_mt_info->mi_rows_decode_started ==
3062                    frame_row_mt_info->mi_rows_to_decode) ||
3063                   (frame_row_mt_info->row_mt_exit == 1);
3064   if (*end_of_frame) {
3065     return 1;
3066   }
3067 
3068   // Decoding cannot start as bit-stream parsing is not complete.
3069   assert(frame_row_mt_info->mi_rows_parse_done >=
3070          frame_row_mt_info->mi_rows_decode_started);
3071   if (frame_row_mt_info->mi_rows_parse_done ==
3072       frame_row_mt_info->mi_rows_decode_started)
3073     return 0;
3074 
3075   // Choose the tile to decode.
3076   for (tile_row_idx = tile_rows_start; tile_row_idx < tile_rows_end;
3077        ++tile_row_idx) {
3078     for (tile_col_idx = tile_cols_start; tile_col_idx < tile_cols_end;
3079          ++tile_col_idx) {
3080       if (tile_row_idx * cm->tiles.cols + tile_col_idx < start_tile ||
3081           tile_row_idx * cm->tiles.cols + tile_col_idx > end_tile)
3082         continue;
3083 
3084       tile_data = pbi->tile_data + tile_row_idx * cm->tiles.cols + tile_col_idx;
3085       dec_row_mt_sync = &tile_data->dec_row_mt_sync;
3086 
3087       num_threads_working = dec_row_mt_sync->num_threads_working;
3088       num_mis_waiting_for_decode = (dec_row_mt_sync->mi_rows_parse_done -
3089                                     dec_row_mt_sync->mi_rows_decode_started) *
3090                                    dec_row_mt_sync->mi_cols;
3091       num_mis_to_decode =
3092           (dec_row_mt_sync->mi_rows - dec_row_mt_sync->mi_rows_decode_started) *
3093           dec_row_mt_sync->mi_cols;
3094 
3095       assert(num_mis_to_decode >= num_mis_waiting_for_decode);
3096 
3097       // Pick the tile which has minimum number of threads working on it.
3098       if (num_mis_waiting_for_decode > 0) {
3099         if (num_threads_working < min_threads_working) {
3100           min_threads_working = num_threads_working;
3101           max_mis_to_decode = 0;
3102         }
3103         if (num_threads_working == min_threads_working &&
3104             num_mis_to_decode > max_mis_to_decode &&
3105             num_threads_working <
3106                 get_max_row_mt_workers_per_tile(cm, &tile_data->tile_info)) {
3107           max_mis_to_decode = num_mis_to_decode;
3108           tile_row = tile_row_idx;
3109           tile_col = tile_col_idx;
3110         }
3111       }
3112     }
3113   }
3114   // No job found to process
3115   if (tile_row == -1 || tile_col == -1) return 0;
3116 
3117   tile_data = pbi->tile_data + tile_row * cm->tiles.cols + tile_col;
3118   dec_row_mt_sync = &tile_data->dec_row_mt_sync;
3119 
3120   next_job_info->tile_row = tile_row;
3121   next_job_info->tile_col = tile_col;
3122   next_job_info->mi_row = dec_row_mt_sync->mi_rows_decode_started +
3123                           tile_data->tile_info.mi_row_start;
3124 
3125   dec_row_mt_sync->num_threads_working++;
3126   dec_row_mt_sync->mi_rows_decode_started += sb_mi_size;
3127   frame_row_mt_info->mi_rows_decode_started += sb_mi_size;
3128   assert(frame_row_mt_info->mi_rows_parse_done >=
3129          frame_row_mt_info->mi_rows_decode_started);
3130 #if CONFIG_MULTITHREAD
3131   if (frame_row_mt_info->mi_rows_decode_started ==
3132       frame_row_mt_info->mi_rows_to_decode) {
3133     pthread_cond_broadcast(pbi->row_mt_cond_);
3134   }
3135 #endif
3136 
3137   return 1;
3138 }
3139 
signal_parse_sb_row_done(AV1Decoder * const pbi,TileDataDec * const tile_data,const int sb_mi_size)3140 static inline void signal_parse_sb_row_done(AV1Decoder *const pbi,
3141                                             TileDataDec *const tile_data,
3142                                             const int sb_mi_size) {
3143   AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info;
3144 #if CONFIG_MULTITHREAD
3145   pthread_mutex_lock(pbi->row_mt_mutex_);
3146 #endif
3147   assert(frame_row_mt_info->mi_rows_parse_done >=
3148          frame_row_mt_info->mi_rows_decode_started);
3149   tile_data->dec_row_mt_sync.mi_rows_parse_done += sb_mi_size;
3150   frame_row_mt_info->mi_rows_parse_done += sb_mi_size;
3151 #if CONFIG_MULTITHREAD
3152   // A new decode job is available. Wake up one worker thread to handle the
3153   // new decode job.
3154   // NOTE: This assumes we bump mi_rows_parse_done and mi_rows_decode_started
3155   // by the same increment (sb_mi_size).
3156   pthread_cond_signal(pbi->row_mt_cond_);
3157   pthread_mutex_unlock(pbi->row_mt_mutex_);
3158 #endif
3159 }
3160 
3161 // This function is very similar to decode_tile(). It would be good to figure
3162 // out how to share code.
parse_tile_row_mt(AV1Decoder * pbi,ThreadData * const td,TileDataDec * const tile_data)3163 static inline void parse_tile_row_mt(AV1Decoder *pbi, ThreadData *const td,
3164                                      TileDataDec *const tile_data) {
3165   AV1_COMMON *const cm = &pbi->common;
3166   const int sb_mi_size = mi_size_wide[cm->seq_params->sb_size];
3167   const int num_planes = av1_num_planes(cm);
3168   const TileInfo *const tile_info = &tile_data->tile_info;
3169   int tile_row = tile_info->tile_row;
3170   DecoderCodingBlock *const dcb = &td->dcb;
3171   MACROBLOCKD *const xd = &dcb->xd;
3172 
3173   av1_zero_above_context(cm, xd, tile_info->mi_col_start, tile_info->mi_col_end,
3174                          tile_row);
3175   av1_reset_loop_filter_delta(xd, num_planes);
3176   av1_reset_loop_restoration(xd, num_planes);
3177 
3178   for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
3179        mi_row += cm->seq_params->mib_size) {
3180     av1_zero_left_context(xd);
3181 
3182     for (int mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end;
3183          mi_col += cm->seq_params->mib_size) {
3184       set_cb_buffer(pbi, dcb, pbi->cb_buffer_base, num_planes, mi_row, mi_col);
3185 
3186       // Bit-stream parsing of the superblock
3187       decode_partition(pbi, td, mi_row, mi_col, td->bit_reader,
3188                        cm->seq_params->sb_size, 0x1);
3189 
3190       if (aom_reader_has_overflowed(td->bit_reader)) {
3191         aom_merge_corrupted_flag(&dcb->corrupted, 1);
3192         return;
3193       }
3194     }
3195     signal_parse_sb_row_done(pbi, tile_data, sb_mi_size);
3196   }
3197 
3198   int corrupted =
3199       (check_trailing_bits_after_symbol_coder(td->bit_reader)) ? 1 : 0;
3200   aom_merge_corrupted_flag(&dcb->corrupted, corrupted);
3201 }
3202 
row_mt_worker_hook(void * arg1,void * arg2)3203 static int row_mt_worker_hook(void *arg1, void *arg2) {
3204   DecWorkerData *const thread_data = (DecWorkerData *)arg1;
3205   AV1Decoder *const pbi = (AV1Decoder *)arg2;
3206   ThreadData *const td = thread_data->td;
3207   uint8_t allow_update_cdf;
3208   AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info;
3209   td->dcb.corrupted = 0;
3210 
3211   // The jmp_buf is valid only for the duration of the function that calls
3212   // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
3213   // before it returns.
3214   if (setjmp(thread_data->error_info.jmp)) {
3215     thread_data->error_info.setjmp = 0;
3216     thread_data->td->dcb.corrupted = 1;
3217 #if CONFIG_MULTITHREAD
3218     pthread_mutex_lock(pbi->row_mt_mutex_);
3219 #endif
3220     frame_row_mt_info->row_mt_exit = 1;
3221 #if CONFIG_MULTITHREAD
3222     pthread_cond_broadcast(pbi->row_mt_cond_);
3223     pthread_mutex_unlock(pbi->row_mt_mutex_);
3224 #endif
3225     // If any SB row (erroneous row) processed by a thread encounters an
3226     // internal error, there is a need to indicate other threads that decoding
3227     // of the erroneous row is complete. This ensures that other threads which
3228     // wait upon the completion of SB's present in erroneous row are not waiting
3229     // indefinitely.
3230     signal_decoding_done_for_erroneous_row(pbi, &thread_data->td->dcb.xd);
3231     return 0;
3232   }
3233   thread_data->error_info.setjmp = 1;
3234 
3235   AV1_COMMON *cm = &pbi->common;
3236   allow_update_cdf = cm->tiles.large_scale ? 0 : 1;
3237   allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update;
3238 
3239   set_decode_func_pointers(td, 0x1);
3240 
3241   assert(cm->tiles.cols > 0);
3242   while (!td->dcb.corrupted) {
3243     TileJobsDec *cur_job_info = get_dec_job_info(&pbi->tile_mt_info);
3244 
3245     if (cur_job_info != NULL) {
3246       const TileBufferDec *const tile_buffer = cur_job_info->tile_buffer;
3247       TileDataDec *const tile_data = cur_job_info->tile_data;
3248       tile_worker_hook_init(pbi, thread_data, tile_buffer, tile_data,
3249                             allow_update_cdf);
3250 #if CONFIG_MULTITHREAD
3251       pthread_mutex_lock(pbi->row_mt_mutex_);
3252 #endif
3253       tile_data->dec_row_mt_sync.num_threads_working++;
3254 #if CONFIG_MULTITHREAD
3255       pthread_mutex_unlock(pbi->row_mt_mutex_);
3256 #endif
3257       // decode tile
3258       parse_tile_row_mt(pbi, td, tile_data);
3259 #if CONFIG_MULTITHREAD
3260       pthread_mutex_lock(pbi->row_mt_mutex_);
3261 #endif
3262       tile_data->dec_row_mt_sync.num_threads_working--;
3263 #if CONFIG_MULTITHREAD
3264       pthread_mutex_unlock(pbi->row_mt_mutex_);
3265 #endif
3266     } else {
3267       break;
3268     }
3269   }
3270 
3271   if (td->dcb.corrupted) {
3272     thread_data->error_info.setjmp = 0;
3273 #if CONFIG_MULTITHREAD
3274     pthread_mutex_lock(pbi->row_mt_mutex_);
3275 #endif
3276     frame_row_mt_info->row_mt_exit = 1;
3277 #if CONFIG_MULTITHREAD
3278     pthread_cond_broadcast(pbi->row_mt_cond_);
3279     pthread_mutex_unlock(pbi->row_mt_mutex_);
3280 #endif
3281     return 0;
3282   }
3283 
3284   set_decode_func_pointers(td, 0x2);
3285 
3286   while (1) {
3287     AV1DecRowMTJobInfo next_job_info;
3288     int end_of_frame = 0;
3289 
3290 #if CONFIG_MULTITHREAD
3291     pthread_mutex_lock(pbi->row_mt_mutex_);
3292 #endif
3293     while (!get_next_job_info(pbi, &next_job_info, &end_of_frame)) {
3294 #if CONFIG_MULTITHREAD
3295       pthread_cond_wait(pbi->row_mt_cond_, pbi->row_mt_mutex_);
3296 #endif
3297     }
3298 #if CONFIG_MULTITHREAD
3299     pthread_mutex_unlock(pbi->row_mt_mutex_);
3300 #endif
3301 
3302     if (end_of_frame) break;
3303 
3304     int tile_row = next_job_info.tile_row;
3305     int tile_col = next_job_info.tile_col;
3306     int mi_row = next_job_info.mi_row;
3307 
3308     TileDataDec *tile_data =
3309         pbi->tile_data + tile_row * cm->tiles.cols + tile_col;
3310     AV1DecRowMTSync *dec_row_mt_sync = &tile_data->dec_row_mt_sync;
3311 
3312     av1_tile_init(&td->dcb.xd.tile, cm, tile_row, tile_col);
3313     av1_init_macroblockd(cm, &td->dcb.xd);
3314     td->dcb.xd.error_info = &thread_data->error_info;
3315 
3316     decode_tile_sb_row(pbi, td, &tile_data->tile_info, mi_row);
3317 
3318 #if CONFIG_MULTITHREAD
3319     pthread_mutex_lock(pbi->row_mt_mutex_);
3320 #endif
3321     dec_row_mt_sync->num_threads_working--;
3322 #if CONFIG_MULTITHREAD
3323     pthread_mutex_unlock(pbi->row_mt_mutex_);
3324 #endif
3325   }
3326   thread_data->error_info.setjmp = 0;
3327   return !td->dcb.corrupted;
3328 }
3329 
3330 // sorts in descending order
compare_tile_buffers(const void * a,const void * b)3331 static int compare_tile_buffers(const void *a, const void *b) {
3332   const TileJobsDec *const buf1 = (const TileJobsDec *)a;
3333   const TileJobsDec *const buf2 = (const TileJobsDec *)b;
3334   return (((int)buf2->tile_buffer->size) - ((int)buf1->tile_buffer->size));
3335 }
3336 
enqueue_tile_jobs(AV1Decoder * pbi,AV1_COMMON * cm,int tile_rows_start,int tile_rows_end,int tile_cols_start,int tile_cols_end,int start_tile,int end_tile)3337 static inline void enqueue_tile_jobs(AV1Decoder *pbi, AV1_COMMON *cm,
3338                                      int tile_rows_start, int tile_rows_end,
3339                                      int tile_cols_start, int tile_cols_end,
3340                                      int start_tile, int end_tile) {
3341   AV1DecTileMT *tile_mt_info = &pbi->tile_mt_info;
3342   TileJobsDec *tile_job_queue = tile_mt_info->job_queue;
3343   tile_mt_info->jobs_enqueued = 0;
3344   tile_mt_info->jobs_dequeued = 0;
3345 
3346   for (int row = tile_rows_start; row < tile_rows_end; row++) {
3347     for (int col = tile_cols_start; col < tile_cols_end; col++) {
3348       if (row * cm->tiles.cols + col < start_tile ||
3349           row * cm->tiles.cols + col > end_tile)
3350         continue;
3351       tile_job_queue->tile_buffer = &pbi->tile_buffers[row][col];
3352       tile_job_queue->tile_data = pbi->tile_data + row * cm->tiles.cols + col;
3353       tile_job_queue++;
3354       tile_mt_info->jobs_enqueued++;
3355     }
3356   }
3357 }
3358 
alloc_dec_jobs(AV1DecTileMT * tile_mt_info,AV1_COMMON * cm,int tile_rows,int tile_cols)3359 static inline void alloc_dec_jobs(AV1DecTileMT *tile_mt_info, AV1_COMMON *cm,
3360                                   int tile_rows, int tile_cols) {
3361   tile_mt_info->alloc_tile_rows = tile_rows;
3362   tile_mt_info->alloc_tile_cols = tile_cols;
3363   int num_tiles = tile_rows * tile_cols;
3364 #if CONFIG_MULTITHREAD
3365   {
3366     CHECK_MEM_ERROR(cm, tile_mt_info->job_mutex,
3367                     aom_malloc(sizeof(*tile_mt_info->job_mutex) * num_tiles));
3368 
3369     for (int i = 0; i < num_tiles; i++) {
3370       pthread_mutex_init(&tile_mt_info->job_mutex[i], NULL);
3371     }
3372   }
3373 #endif
3374   CHECK_MEM_ERROR(cm, tile_mt_info->job_queue,
3375                   aom_malloc(sizeof(*tile_mt_info->job_queue) * num_tiles));
3376 }
3377 
av1_free_mc_tmp_buf(ThreadData * thread_data)3378 void av1_free_mc_tmp_buf(ThreadData *thread_data) {
3379   int ref;
3380   for (ref = 0; ref < 2; ref++) {
3381     if (thread_data->mc_buf_use_highbd)
3382       aom_free(CONVERT_TO_SHORTPTR(thread_data->mc_buf[ref]));
3383     else
3384       aom_free(thread_data->mc_buf[ref]);
3385     thread_data->mc_buf[ref] = NULL;
3386   }
3387   thread_data->mc_buf_size = 0;
3388   thread_data->mc_buf_use_highbd = 0;
3389 
3390   aom_free(thread_data->tmp_conv_dst);
3391   thread_data->tmp_conv_dst = NULL;
3392   aom_free(thread_data->seg_mask);
3393   thread_data->seg_mask = NULL;
3394   for (int i = 0; i < 2; ++i) {
3395     aom_free(thread_data->tmp_obmc_bufs[i]);
3396     thread_data->tmp_obmc_bufs[i] = NULL;
3397   }
3398 }
3399 
allocate_mc_tmp_buf(AV1_COMMON * const cm,ThreadData * thread_data,int buf_size,int use_highbd)3400 static inline void allocate_mc_tmp_buf(AV1_COMMON *const cm,
3401                                        ThreadData *thread_data, int buf_size,
3402                                        int use_highbd) {
3403   for (int ref = 0; ref < 2; ref++) {
3404     // The mc_buf/hbd_mc_buf must be zeroed to fix a intermittent valgrind error
3405     // 'Conditional jump or move depends on uninitialised value' from the loop
3406     // filter. Uninitialized reads in convolve function (e.g. horiz_4tap path in
3407     // av1_convolve_2d_sr_avx2()) from mc_buf/hbd_mc_buf are seen to be the
3408     // potential reason for this issue.
3409     if (use_highbd) {
3410       uint16_t *hbd_mc_buf;
3411       CHECK_MEM_ERROR(cm, hbd_mc_buf, (uint16_t *)aom_memalign(16, buf_size));
3412       memset(hbd_mc_buf, 0, buf_size);
3413       thread_data->mc_buf[ref] = CONVERT_TO_BYTEPTR(hbd_mc_buf);
3414     } else {
3415       CHECK_MEM_ERROR(cm, thread_data->mc_buf[ref],
3416                       (uint8_t *)aom_memalign(16, buf_size));
3417       memset(thread_data->mc_buf[ref], 0, buf_size);
3418     }
3419   }
3420   thread_data->mc_buf_size = buf_size;
3421   thread_data->mc_buf_use_highbd = use_highbd;
3422 
3423   CHECK_MEM_ERROR(cm, thread_data->tmp_conv_dst,
3424                   aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE *
3425                                        sizeof(*thread_data->tmp_conv_dst)));
3426   CHECK_MEM_ERROR(cm, thread_data->seg_mask,
3427                   (uint8_t *)aom_memalign(
3428                       16, 2 * MAX_SB_SQUARE * sizeof(*thread_data->seg_mask)));
3429 
3430   for (int i = 0; i < 2; ++i) {
3431     CHECK_MEM_ERROR(
3432         cm, thread_data->tmp_obmc_bufs[i],
3433         aom_memalign(16, 2 * MAX_MB_PLANE * MAX_SB_SQUARE *
3434                              sizeof(*thread_data->tmp_obmc_bufs[i])));
3435   }
3436 }
3437 
reset_dec_workers(AV1Decoder * pbi,AVxWorkerHook worker_hook,int num_workers)3438 static inline void reset_dec_workers(AV1Decoder *pbi, AVxWorkerHook worker_hook,
3439                                      int num_workers) {
3440   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
3441 
3442   // Reset tile decoding hook
3443   for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) {
3444     AVxWorker *const worker = &pbi->tile_workers[worker_idx];
3445     DecWorkerData *const thread_data = pbi->thread_data + worker_idx;
3446     thread_data->td->dcb = pbi->dcb;
3447     thread_data->td->dcb.corrupted = 0;
3448     thread_data->td->dcb.mc_buf[0] = thread_data->td->mc_buf[0];
3449     thread_data->td->dcb.mc_buf[1] = thread_data->td->mc_buf[1];
3450     thread_data->td->dcb.xd.tmp_conv_dst = thread_data->td->tmp_conv_dst;
3451     if (worker_idx)
3452       thread_data->td->dcb.xd.seg_mask = thread_data->td->seg_mask;
3453     for (int j = 0; j < 2; ++j) {
3454       thread_data->td->dcb.xd.tmp_obmc_bufs[j] =
3455           thread_data->td->tmp_obmc_bufs[j];
3456     }
3457     winterface->sync(worker);
3458 
3459     worker->hook = worker_hook;
3460     worker->data1 = thread_data;
3461     worker->data2 = pbi;
3462   }
3463 #if CONFIG_ACCOUNTING
3464   if (pbi->acct_enabled) {
3465     aom_accounting_reset(&pbi->accounting);
3466   }
3467 #endif
3468 }
3469 
launch_dec_workers(AV1Decoder * pbi,const uint8_t * data_end,int num_workers)3470 static inline void launch_dec_workers(AV1Decoder *pbi, const uint8_t *data_end,
3471                                       int num_workers) {
3472   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
3473 
3474   for (int worker_idx = num_workers - 1; worker_idx >= 0; --worker_idx) {
3475     AVxWorker *const worker = &pbi->tile_workers[worker_idx];
3476     DecWorkerData *const thread_data = (DecWorkerData *)worker->data1;
3477 
3478     thread_data->data_end = data_end;
3479 
3480     worker->had_error = 0;
3481     if (worker_idx == 0) {
3482       winterface->execute(worker);
3483     } else {
3484       winterface->launch(worker);
3485     }
3486   }
3487 }
3488 
sync_dec_workers(AV1Decoder * pbi,int num_workers)3489 static inline void sync_dec_workers(AV1Decoder *pbi, int num_workers) {
3490   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
3491   int corrupted = 0;
3492 
3493   for (int worker_idx = num_workers; worker_idx > 0; --worker_idx) {
3494     AVxWorker *const worker = &pbi->tile_workers[worker_idx - 1];
3495     aom_merge_corrupted_flag(&corrupted, !winterface->sync(worker));
3496   }
3497 
3498   pbi->dcb.corrupted = corrupted;
3499 }
3500 
decode_mt_init(AV1Decoder * pbi)3501 static inline void decode_mt_init(AV1Decoder *pbi) {
3502   AV1_COMMON *const cm = &pbi->common;
3503   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
3504   int worker_idx;
3505 
3506   // Create workers and thread_data
3507   if (pbi->num_workers == 0) {
3508     const int num_threads = pbi->max_threads;
3509     CHECK_MEM_ERROR(cm, pbi->tile_workers,
3510                     aom_malloc(num_threads * sizeof(*pbi->tile_workers)));
3511     CHECK_MEM_ERROR(cm, pbi->thread_data,
3512                     aom_calloc(num_threads, sizeof(*pbi->thread_data)));
3513 
3514     for (worker_idx = 0; worker_idx < num_threads; ++worker_idx) {
3515       AVxWorker *const worker = &pbi->tile_workers[worker_idx];
3516       DecWorkerData *const thread_data = pbi->thread_data + worker_idx;
3517 
3518       winterface->init(worker);
3519       worker->thread_name = "aom tile worker";
3520       if (worker_idx != 0 && !winterface->reset(worker)) {
3521         aom_internal_error(&pbi->error, AOM_CODEC_ERROR,
3522                            "Tile decoder thread creation failed");
3523       }
3524       ++pbi->num_workers;
3525 
3526       if (worker_idx != 0) {
3527         // Allocate thread data.
3528         CHECK_MEM_ERROR(cm, thread_data->td,
3529                         aom_memalign(32, sizeof(*thread_data->td)));
3530         av1_zero(*thread_data->td);
3531       } else {
3532         // Main thread acts as a worker and uses the thread data in pbi
3533         thread_data->td = &pbi->td;
3534       }
3535       thread_data->error_info.error_code = AOM_CODEC_OK;
3536       thread_data->error_info.setjmp = 0;
3537     }
3538   }
3539   const int use_highbd = cm->seq_params->use_highbitdepth;
3540   const int buf_size = MC_TEMP_BUF_PELS << use_highbd;
3541   for (worker_idx = 1; worker_idx < pbi->max_threads; ++worker_idx) {
3542     DecWorkerData *const thread_data = pbi->thread_data + worker_idx;
3543     if (thread_data->td->mc_buf_size != buf_size) {
3544       av1_free_mc_tmp_buf(thread_data->td);
3545       allocate_mc_tmp_buf(cm, thread_data->td, buf_size, use_highbd);
3546     }
3547   }
3548 }
3549 
tile_mt_queue(AV1Decoder * pbi,int tile_cols,int tile_rows,int tile_rows_start,int tile_rows_end,int tile_cols_start,int tile_cols_end,int start_tile,int end_tile)3550 static inline void tile_mt_queue(AV1Decoder *pbi, int tile_cols, int tile_rows,
3551                                  int tile_rows_start, int tile_rows_end,
3552                                  int tile_cols_start, int tile_cols_end,
3553                                  int start_tile, int end_tile) {
3554   AV1_COMMON *const cm = &pbi->common;
3555   if (pbi->tile_mt_info.alloc_tile_cols != tile_cols ||
3556       pbi->tile_mt_info.alloc_tile_rows != tile_rows) {
3557     av1_dealloc_dec_jobs(&pbi->tile_mt_info);
3558     alloc_dec_jobs(&pbi->tile_mt_info, cm, tile_rows, tile_cols);
3559   }
3560   enqueue_tile_jobs(pbi, cm, tile_rows_start, tile_rows_end, tile_cols_start,
3561                     tile_cols_end, start_tile, end_tile);
3562   qsort(pbi->tile_mt_info.job_queue, pbi->tile_mt_info.jobs_enqueued,
3563         sizeof(pbi->tile_mt_info.job_queue[0]), compare_tile_buffers);
3564 }
3565 
decode_tiles_mt(AV1Decoder * pbi,const uint8_t * data,const uint8_t * data_end,int start_tile,int end_tile)3566 static const uint8_t *decode_tiles_mt(AV1Decoder *pbi, const uint8_t *data,
3567                                       const uint8_t *data_end, int start_tile,
3568                                       int end_tile) {
3569   AV1_COMMON *const cm = &pbi->common;
3570   CommonTileParams *const tiles = &cm->tiles;
3571   const int tile_cols = tiles->cols;
3572   const int tile_rows = tiles->rows;
3573   const int n_tiles = tile_cols * tile_rows;
3574   TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers;
3575   const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
3576   const int single_row = pbi->dec_tile_row >= 0;
3577   const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
3578   const int single_col = pbi->dec_tile_col >= 0;
3579   int tile_rows_start;
3580   int tile_rows_end;
3581   int tile_cols_start;
3582   int tile_cols_end;
3583   int tile_count_tg;
3584   int num_workers;
3585   const uint8_t *raw_data_end = NULL;
3586 
3587   if (tiles->large_scale) {
3588     tile_rows_start = single_row ? dec_tile_row : 0;
3589     tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows;
3590     tile_cols_start = single_col ? dec_tile_col : 0;
3591     tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
3592   } else {
3593     tile_rows_start = 0;
3594     tile_rows_end = tile_rows;
3595     tile_cols_start = 0;
3596     tile_cols_end = tile_cols;
3597   }
3598   tile_count_tg = end_tile - start_tile + 1;
3599   num_workers = AOMMIN(pbi->max_threads, tile_count_tg);
3600 
3601   // No tiles to decode.
3602   if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start ||
3603       // First tile is larger than end_tile.
3604       tile_rows_start * tile_cols + tile_cols_start > end_tile ||
3605       // Last tile is smaller than start_tile.
3606       (tile_rows_end - 1) * tile_cols + tile_cols_end - 1 < start_tile)
3607     return data;
3608 
3609   assert(tile_rows <= MAX_TILE_ROWS);
3610   assert(tile_cols <= MAX_TILE_COLS);
3611   assert(tile_count_tg > 0);
3612   assert(num_workers > 0);
3613   assert(start_tile <= end_tile);
3614   assert(start_tile >= 0 && end_tile < n_tiles);
3615 
3616   decode_mt_init(pbi);
3617 
3618   // get tile size in tile group
3619 #if EXT_TILE_DEBUG
3620   if (tiles->large_scale) assert(pbi->ext_tile_debug == 1);
3621   if (tiles->large_scale)
3622     raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers);
3623   else
3624 #endif  // EXT_TILE_DEBUG
3625     get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile);
3626 
3627   if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) {
3628     decoder_alloc_tile_data(pbi, n_tiles);
3629   }
3630   if (pbi->dcb.xd.seg_mask == NULL)
3631     CHECK_MEM_ERROR(cm, pbi->dcb.xd.seg_mask,
3632                     (uint8_t *)aom_memalign(
3633                         16, 2 * MAX_SB_SQUARE * sizeof(*pbi->dcb.xd.seg_mask)));
3634 
3635   for (int row = 0; row < tile_rows; row++) {
3636     for (int col = 0; col < tile_cols; col++) {
3637       TileDataDec *tile_data = pbi->tile_data + row * tiles->cols + col;
3638       av1_tile_init(&tile_data->tile_info, cm, row, col);
3639     }
3640   }
3641 
3642   tile_mt_queue(pbi, tile_cols, tile_rows, tile_rows_start, tile_rows_end,
3643                 tile_cols_start, tile_cols_end, start_tile, end_tile);
3644 
3645   reset_dec_workers(pbi, tile_worker_hook, num_workers);
3646   launch_dec_workers(pbi, data_end, num_workers);
3647   sync_dec_workers(pbi, num_workers);
3648 
3649   if (pbi->dcb.corrupted)
3650     aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
3651                        "Failed to decode tile data");
3652 
3653   if (tiles->large_scale) {
3654     if (n_tiles == 1) {
3655       // Find the end of the single tile buffer
3656       return aom_reader_find_end(&pbi->tile_data->bit_reader);
3657     }
3658     // Return the end of the last tile buffer
3659     return raw_data_end;
3660   }
3661   TileDataDec *const tile_data = pbi->tile_data + end_tile;
3662 
3663   return aom_reader_find_end(&tile_data->bit_reader);
3664 }
3665 
dec_alloc_cb_buf(AV1Decoder * pbi)3666 static inline void dec_alloc_cb_buf(AV1Decoder *pbi) {
3667   AV1_COMMON *const cm = &pbi->common;
3668   int size = ((cm->mi_params.mi_rows >> cm->seq_params->mib_size_log2) + 1) *
3669              ((cm->mi_params.mi_cols >> cm->seq_params->mib_size_log2) + 1);
3670 
3671   if (pbi->cb_buffer_alloc_size < size) {
3672     av1_dec_free_cb_buf(pbi);
3673     CHECK_MEM_ERROR(cm, pbi->cb_buffer_base,
3674                     aom_memalign(32, sizeof(*pbi->cb_buffer_base) * size));
3675     memset(pbi->cb_buffer_base, 0, sizeof(*pbi->cb_buffer_base) * size);
3676     pbi->cb_buffer_alloc_size = size;
3677   }
3678 }
3679 
row_mt_frame_init(AV1Decoder * pbi,int tile_rows_start,int tile_rows_end,int tile_cols_start,int tile_cols_end,int start_tile,int end_tile,int max_sb_rows)3680 static inline void row_mt_frame_init(AV1Decoder *pbi, int tile_rows_start,
3681                                      int tile_rows_end, int tile_cols_start,
3682                                      int tile_cols_end, int start_tile,
3683                                      int end_tile, int max_sb_rows) {
3684   AV1_COMMON *const cm = &pbi->common;
3685   AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info;
3686 
3687   frame_row_mt_info->tile_rows_start = tile_rows_start;
3688   frame_row_mt_info->tile_rows_end = tile_rows_end;
3689   frame_row_mt_info->tile_cols_start = tile_cols_start;
3690   frame_row_mt_info->tile_cols_end = tile_cols_end;
3691   frame_row_mt_info->start_tile = start_tile;
3692   frame_row_mt_info->end_tile = end_tile;
3693   frame_row_mt_info->mi_rows_to_decode = 0;
3694   frame_row_mt_info->mi_rows_parse_done = 0;
3695   frame_row_mt_info->mi_rows_decode_started = 0;
3696   frame_row_mt_info->row_mt_exit = 0;
3697 
3698   for (int tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) {
3699     for (int tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) {
3700       if (tile_row * cm->tiles.cols + tile_col < start_tile ||
3701           tile_row * cm->tiles.cols + tile_col > end_tile)
3702         continue;
3703 
3704       TileDataDec *const tile_data =
3705           pbi->tile_data + tile_row * cm->tiles.cols + tile_col;
3706       const TileInfo *const tile_info = &tile_data->tile_info;
3707 
3708       tile_data->dec_row_mt_sync.mi_rows_parse_done = 0;
3709       tile_data->dec_row_mt_sync.mi_rows_decode_started = 0;
3710       tile_data->dec_row_mt_sync.num_threads_working = 0;
3711       tile_data->dec_row_mt_sync.mi_rows =
3712           ALIGN_POWER_OF_TWO(tile_info->mi_row_end - tile_info->mi_row_start,
3713                              cm->seq_params->mib_size_log2);
3714       tile_data->dec_row_mt_sync.mi_cols =
3715           ALIGN_POWER_OF_TWO(tile_info->mi_col_end - tile_info->mi_col_start,
3716                              cm->seq_params->mib_size_log2);
3717       tile_data->dec_row_mt_sync.intrabc_extra_top_right_sb_delay =
3718           av1_get_intrabc_extra_top_right_sb_delay(cm);
3719 
3720       frame_row_mt_info->mi_rows_to_decode +=
3721           tile_data->dec_row_mt_sync.mi_rows;
3722 
3723       // Initialize cur_sb_col to -1 for all SB rows.
3724       memset(tile_data->dec_row_mt_sync.cur_sb_col, -1,
3725              sizeof(*tile_data->dec_row_mt_sync.cur_sb_col) * max_sb_rows);
3726     }
3727   }
3728 
3729 #if CONFIG_MULTITHREAD
3730   if (pbi->row_mt_mutex_ == NULL) {
3731     CHECK_MEM_ERROR(cm, pbi->row_mt_mutex_,
3732                     aom_malloc(sizeof(*(pbi->row_mt_mutex_))));
3733     if (pbi->row_mt_mutex_) {
3734       pthread_mutex_init(pbi->row_mt_mutex_, NULL);
3735     }
3736   }
3737 
3738   if (pbi->row_mt_cond_ == NULL) {
3739     CHECK_MEM_ERROR(cm, pbi->row_mt_cond_,
3740                     aom_malloc(sizeof(*(pbi->row_mt_cond_))));
3741     if (pbi->row_mt_cond_) {
3742       pthread_cond_init(pbi->row_mt_cond_, NULL);
3743     }
3744   }
3745 #endif
3746 }
3747 
decode_tiles_row_mt(AV1Decoder * pbi,const uint8_t * data,const uint8_t * data_end,int start_tile,int end_tile)3748 static const uint8_t *decode_tiles_row_mt(AV1Decoder *pbi, const uint8_t *data,
3749                                           const uint8_t *data_end,
3750                                           int start_tile, int end_tile) {
3751   AV1_COMMON *const cm = &pbi->common;
3752   CommonTileParams *const tiles = &cm->tiles;
3753   const int tile_cols = tiles->cols;
3754   const int tile_rows = tiles->rows;
3755   const int n_tiles = tile_cols * tile_rows;
3756   TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers;
3757   const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
3758   const int single_row = pbi->dec_tile_row >= 0;
3759   const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
3760   const int single_col = pbi->dec_tile_col >= 0;
3761   int tile_rows_start;
3762   int tile_rows_end;
3763   int tile_cols_start;
3764   int tile_cols_end;
3765   int tile_count_tg;
3766   int num_workers = 0;
3767   int max_threads;
3768   const uint8_t *raw_data_end = NULL;
3769   int max_sb_rows = 0;
3770 
3771   if (tiles->large_scale) {
3772     tile_rows_start = single_row ? dec_tile_row : 0;
3773     tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows;
3774     tile_cols_start = single_col ? dec_tile_col : 0;
3775     tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
3776   } else {
3777     tile_rows_start = 0;
3778     tile_rows_end = tile_rows;
3779     tile_cols_start = 0;
3780     tile_cols_end = tile_cols;
3781   }
3782   tile_count_tg = end_tile - start_tile + 1;
3783   max_threads = pbi->max_threads;
3784 
3785   // No tiles to decode.
3786   if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start ||
3787       // First tile is larger than end_tile.
3788       tile_rows_start * tile_cols + tile_cols_start > end_tile ||
3789       // Last tile is smaller than start_tile.
3790       (tile_rows_end - 1) * tile_cols + tile_cols_end - 1 < start_tile)
3791     return data;
3792 
3793   assert(tile_rows <= MAX_TILE_ROWS);
3794   assert(tile_cols <= MAX_TILE_COLS);
3795   assert(tile_count_tg > 0);
3796   assert(max_threads > 0);
3797   assert(start_tile <= end_tile);
3798   assert(start_tile >= 0 && end_tile < n_tiles);
3799 
3800   (void)tile_count_tg;
3801 
3802   decode_mt_init(pbi);
3803 
3804   // get tile size in tile group
3805 #if EXT_TILE_DEBUG
3806   if (tiles->large_scale) assert(pbi->ext_tile_debug == 1);
3807   if (tiles->large_scale)
3808     raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers);
3809   else
3810 #endif  // EXT_TILE_DEBUG
3811     get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile);
3812 
3813   if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) {
3814     if (pbi->tile_data != NULL) {
3815       for (int i = 0; i < pbi->allocated_tiles; i++) {
3816         TileDataDec *const tile_data = pbi->tile_data + i;
3817         av1_dec_row_mt_dealloc(&tile_data->dec_row_mt_sync);
3818       }
3819     }
3820     decoder_alloc_tile_data(pbi, n_tiles);
3821   }
3822   if (pbi->dcb.xd.seg_mask == NULL)
3823     CHECK_MEM_ERROR(cm, pbi->dcb.xd.seg_mask,
3824                     (uint8_t *)aom_memalign(
3825                         16, 2 * MAX_SB_SQUARE * sizeof(*pbi->dcb.xd.seg_mask)));
3826 
3827   for (int row = 0; row < tile_rows; row++) {
3828     for (int col = 0; col < tile_cols; col++) {
3829       TileDataDec *tile_data = pbi->tile_data + row * tiles->cols + col;
3830       av1_tile_init(&tile_data->tile_info, cm, row, col);
3831 
3832       max_sb_rows = AOMMAX(max_sb_rows,
3833                            av1_get_sb_rows_in_tile(cm, &tile_data->tile_info));
3834       num_workers += get_max_row_mt_workers_per_tile(cm, &tile_data->tile_info);
3835     }
3836   }
3837   num_workers = AOMMIN(num_workers, max_threads);
3838 
3839   if (pbi->allocated_row_mt_sync_rows != max_sb_rows) {
3840     for (int i = 0; i < n_tiles; ++i) {
3841       TileDataDec *const tile_data = pbi->tile_data + i;
3842       av1_dec_row_mt_dealloc(&tile_data->dec_row_mt_sync);
3843       dec_row_mt_alloc(&tile_data->dec_row_mt_sync, cm, max_sb_rows);
3844     }
3845     pbi->allocated_row_mt_sync_rows = max_sb_rows;
3846   }
3847 
3848   tile_mt_queue(pbi, tile_cols, tile_rows, tile_rows_start, tile_rows_end,
3849                 tile_cols_start, tile_cols_end, start_tile, end_tile);
3850 
3851   dec_alloc_cb_buf(pbi);
3852 
3853   row_mt_frame_init(pbi, tile_rows_start, tile_rows_end, tile_cols_start,
3854                     tile_cols_end, start_tile, end_tile, max_sb_rows);
3855 
3856   reset_dec_workers(pbi, row_mt_worker_hook, num_workers);
3857   launch_dec_workers(pbi, data_end, num_workers);
3858   sync_dec_workers(pbi, num_workers);
3859 
3860   if (pbi->dcb.corrupted)
3861     aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
3862                        "Failed to decode tile data");
3863 
3864   if (tiles->large_scale) {
3865     if (n_tiles == 1) {
3866       // Find the end of the single tile buffer
3867       return aom_reader_find_end(&pbi->tile_data->bit_reader);
3868     }
3869     // Return the end of the last tile buffer
3870     return raw_data_end;
3871   }
3872   TileDataDec *const tile_data = pbi->tile_data + end_tile;
3873 
3874   return aom_reader_find_end(&tile_data->bit_reader);
3875 }
3876 
error_handler(void * data)3877 static inline void error_handler(void *data) {
3878   AV1_COMMON *const cm = (AV1_COMMON *)data;
3879   aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME, "Truncated packet");
3880 }
3881 
3882 // Reads the high_bitdepth and twelve_bit fields in color_config() and sets
3883 // seq_params->bit_depth based on the values of those fields and
3884 // seq_params->profile. Reports errors by calling rb->error_handler() or
3885 // aom_internal_error().
read_bitdepth(struct aom_read_bit_buffer * rb,SequenceHeader * seq_params,struct aom_internal_error_info * error_info)3886 static inline void read_bitdepth(struct aom_read_bit_buffer *rb,
3887                                  SequenceHeader *seq_params,
3888                                  struct aom_internal_error_info *error_info) {
3889   const int high_bitdepth = aom_rb_read_bit(rb);
3890   if (seq_params->profile == PROFILE_2 && high_bitdepth) {
3891     const int twelve_bit = aom_rb_read_bit(rb);
3892     seq_params->bit_depth = twelve_bit ? AOM_BITS_12 : AOM_BITS_10;
3893   } else if (seq_params->profile <= PROFILE_2) {
3894     seq_params->bit_depth = high_bitdepth ? AOM_BITS_10 : AOM_BITS_8;
3895   } else {
3896     aom_internal_error(error_info, AOM_CODEC_UNSUP_BITSTREAM,
3897                        "Unsupported profile/bit-depth combination");
3898   }
3899 #if !CONFIG_AV1_HIGHBITDEPTH
3900   if (seq_params->bit_depth > AOM_BITS_8) {
3901     aom_internal_error(error_info, AOM_CODEC_UNSUP_BITSTREAM,
3902                        "Bit-depth %d not supported", seq_params->bit_depth);
3903   }
3904 #endif
3905 }
3906 
read_film_grain_params(AV1_COMMON * cm,struct aom_read_bit_buffer * rb)3907 static void read_film_grain_params(AV1_COMMON *cm,
3908                                    struct aom_read_bit_buffer *rb) {
3909   aom_film_grain_t *pars = &cm->film_grain_params;
3910   const SequenceHeader *const seq_params = cm->seq_params;
3911 
3912   pars->apply_grain = aom_rb_read_bit(rb);
3913   if (!pars->apply_grain) {
3914     memset(pars, 0, sizeof(*pars));
3915     return;
3916   }
3917 
3918   pars->random_seed = aom_rb_read_literal(rb, 16);
3919   if (cm->current_frame.frame_type == INTER_FRAME)
3920     pars->update_parameters = aom_rb_read_bit(rb);
3921   else
3922     pars->update_parameters = 1;
3923 
3924   pars->bit_depth = seq_params->bit_depth;
3925 
3926   if (!pars->update_parameters) {
3927     // inherit parameters from a previous reference frame
3928     int film_grain_params_ref_idx = aom_rb_read_literal(rb, 3);
3929     // Section 6.8.20: It is a requirement of bitstream conformance that
3930     // film_grain_params_ref_idx is equal to ref_frame_idx[ j ] for some value
3931     // of j in the range 0 to REFS_PER_FRAME - 1.
3932     int found = 0;
3933     for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
3934       if (film_grain_params_ref_idx == cm->remapped_ref_idx[i]) {
3935         found = 1;
3936         break;
3937       }
3938     }
3939     if (!found) {
3940       aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
3941                          "Invalid film grain reference idx %d. ref_frame_idx = "
3942                          "{%d, %d, %d, %d, %d, %d, %d}",
3943                          film_grain_params_ref_idx, cm->remapped_ref_idx[0],
3944                          cm->remapped_ref_idx[1], cm->remapped_ref_idx[2],
3945                          cm->remapped_ref_idx[3], cm->remapped_ref_idx[4],
3946                          cm->remapped_ref_idx[5], cm->remapped_ref_idx[6]);
3947     }
3948     RefCntBuffer *const buf = cm->ref_frame_map[film_grain_params_ref_idx];
3949     if (buf == NULL) {
3950       aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
3951                          "Invalid Film grain reference idx");
3952     }
3953     if (!buf->film_grain_params_present) {
3954       aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
3955                          "Film grain reference parameters not available");
3956     }
3957     uint16_t random_seed = pars->random_seed;
3958     *pars = buf->film_grain_params;   // inherit paramaters
3959     pars->random_seed = random_seed;  // with new random seed
3960     return;
3961   }
3962 
3963   // Scaling functions parameters
3964   pars->num_y_points = aom_rb_read_literal(rb, 4);  // max 14
3965   if (pars->num_y_points > 14)
3966     aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
3967                        "Number of points for film grain luma scaling function "
3968                        "exceeds the maximum value.");
3969   for (int i = 0; i < pars->num_y_points; i++) {
3970     pars->scaling_points_y[i][0] = aom_rb_read_literal(rb, 8);
3971     if (i && pars->scaling_points_y[i - 1][0] >= pars->scaling_points_y[i][0])
3972       aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
3973                          "First coordinate of the scaling function points "
3974                          "shall be increasing.");
3975     pars->scaling_points_y[i][1] = aom_rb_read_literal(rb, 8);
3976   }
3977 
3978   if (!seq_params->monochrome)
3979     pars->chroma_scaling_from_luma = aom_rb_read_bit(rb);
3980   else
3981     pars->chroma_scaling_from_luma = 0;
3982 
3983   if (seq_params->monochrome || pars->chroma_scaling_from_luma ||
3984       ((seq_params->subsampling_x == 1) && (seq_params->subsampling_y == 1) &&
3985        (pars->num_y_points == 0))) {
3986     pars->num_cb_points = 0;
3987     pars->num_cr_points = 0;
3988   } else {
3989     pars->num_cb_points = aom_rb_read_literal(rb, 4);  // max 10
3990     if (pars->num_cb_points > 10)
3991       aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
3992                          "Number of points for film grain cb scaling function "
3993                          "exceeds the maximum value.");
3994     for (int i = 0; i < pars->num_cb_points; i++) {
3995       pars->scaling_points_cb[i][0] = aom_rb_read_literal(rb, 8);
3996       if (i &&
3997           pars->scaling_points_cb[i - 1][0] >= pars->scaling_points_cb[i][0])
3998         aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
3999                            "First coordinate of the scaling function points "
4000                            "shall be increasing.");
4001       pars->scaling_points_cb[i][1] = aom_rb_read_literal(rb, 8);
4002     }
4003 
4004     pars->num_cr_points = aom_rb_read_literal(rb, 4);  // max 10
4005     if (pars->num_cr_points > 10)
4006       aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
4007                          "Number of points for film grain cr scaling function "
4008                          "exceeds the maximum value.");
4009     for (int i = 0; i < pars->num_cr_points; i++) {
4010       pars->scaling_points_cr[i][0] = aom_rb_read_literal(rb, 8);
4011       if (i &&
4012           pars->scaling_points_cr[i - 1][0] >= pars->scaling_points_cr[i][0])
4013         aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
4014                            "First coordinate of the scaling function points "
4015                            "shall be increasing.");
4016       pars->scaling_points_cr[i][1] = aom_rb_read_literal(rb, 8);
4017     }
4018 
4019     if ((seq_params->subsampling_x == 1) && (seq_params->subsampling_y == 1) &&
4020         (((pars->num_cb_points == 0) && (pars->num_cr_points != 0)) ||
4021          ((pars->num_cb_points != 0) && (pars->num_cr_points == 0))))
4022       aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
4023                          "In YCbCr 4:2:0, film grain shall be applied "
4024                          "to both chroma components or neither.");
4025   }
4026 
4027   pars->scaling_shift = aom_rb_read_literal(rb, 2) + 8;  // 8 + value
4028 
4029   // AR coefficients
4030   // Only sent if the corresponsing scaling function has
4031   // more than 0 points
4032 
4033   pars->ar_coeff_lag = aom_rb_read_literal(rb, 2);
4034 
4035   int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1);
4036   int num_pos_chroma = num_pos_luma;
4037   if (pars->num_y_points > 0) ++num_pos_chroma;
4038 
4039   if (pars->num_y_points)
4040     for (int i = 0; i < num_pos_luma; i++)
4041       pars->ar_coeffs_y[i] = aom_rb_read_literal(rb, 8) - 128;
4042 
4043   if (pars->num_cb_points || pars->chroma_scaling_from_luma)
4044     for (int i = 0; i < num_pos_chroma; i++)
4045       pars->ar_coeffs_cb[i] = aom_rb_read_literal(rb, 8) - 128;
4046 
4047   if (pars->num_cr_points || pars->chroma_scaling_from_luma)
4048     for (int i = 0; i < num_pos_chroma; i++)
4049       pars->ar_coeffs_cr[i] = aom_rb_read_literal(rb, 8) - 128;
4050 
4051   pars->ar_coeff_shift = aom_rb_read_literal(rb, 2) + 6;  // 6 + value
4052 
4053   pars->grain_scale_shift = aom_rb_read_literal(rb, 2);
4054 
4055   if (pars->num_cb_points) {
4056     pars->cb_mult = aom_rb_read_literal(rb, 8);
4057     pars->cb_luma_mult = aom_rb_read_literal(rb, 8);
4058     pars->cb_offset = aom_rb_read_literal(rb, 9);
4059   }
4060 
4061   if (pars->num_cr_points) {
4062     pars->cr_mult = aom_rb_read_literal(rb, 8);
4063     pars->cr_luma_mult = aom_rb_read_literal(rb, 8);
4064     pars->cr_offset = aom_rb_read_literal(rb, 9);
4065   }
4066 
4067   pars->overlap_flag = aom_rb_read_bit(rb);
4068 
4069   pars->clip_to_restricted_range = aom_rb_read_bit(rb);
4070 }
4071 
read_film_grain(AV1_COMMON * cm,struct aom_read_bit_buffer * rb)4072 static inline void read_film_grain(AV1_COMMON *cm,
4073                                    struct aom_read_bit_buffer *rb) {
4074   if (cm->seq_params->film_grain_params_present &&
4075       (cm->show_frame || cm->showable_frame)) {
4076     read_film_grain_params(cm, rb);
4077   } else {
4078     memset(&cm->film_grain_params, 0, sizeof(cm->film_grain_params));
4079   }
4080   cm->film_grain_params.bit_depth = cm->seq_params->bit_depth;
4081   memcpy(&cm->cur_frame->film_grain_params, &cm->film_grain_params,
4082          sizeof(aom_film_grain_t));
4083 }
4084 
av1_read_color_config(struct aom_read_bit_buffer * rb,int allow_lowbitdepth,SequenceHeader * seq_params,struct aom_internal_error_info * error_info)4085 void av1_read_color_config(struct aom_read_bit_buffer *rb,
4086                            int allow_lowbitdepth, SequenceHeader *seq_params,
4087                            struct aom_internal_error_info *error_info) {
4088   read_bitdepth(rb, seq_params, error_info);
4089 
4090   seq_params->use_highbitdepth =
4091       seq_params->bit_depth > AOM_BITS_8 || !allow_lowbitdepth;
4092   // monochrome bit (not needed for PROFILE_1)
4093   const int is_monochrome =
4094       seq_params->profile != PROFILE_1 ? aom_rb_read_bit(rb) : 0;
4095   seq_params->monochrome = is_monochrome;
4096   int color_description_present_flag = aom_rb_read_bit(rb);
4097   if (color_description_present_flag) {
4098     seq_params->color_primaries = aom_rb_read_literal(rb, 8);
4099     seq_params->transfer_characteristics = aom_rb_read_literal(rb, 8);
4100     seq_params->matrix_coefficients = aom_rb_read_literal(rb, 8);
4101   } else {
4102     seq_params->color_primaries = AOM_CICP_CP_UNSPECIFIED;
4103     seq_params->transfer_characteristics = AOM_CICP_TC_UNSPECIFIED;
4104     seq_params->matrix_coefficients = AOM_CICP_MC_UNSPECIFIED;
4105   }
4106   if (is_monochrome) {
4107     // [16,235] (including xvycc) vs [0,255] range
4108     seq_params->color_range = aom_rb_read_bit(rb);
4109     seq_params->subsampling_y = seq_params->subsampling_x = 1;
4110     seq_params->chroma_sample_position = AOM_CSP_UNKNOWN;
4111     seq_params->separate_uv_delta_q = 0;
4112     return;
4113   }
4114   if (seq_params->color_primaries == AOM_CICP_CP_BT_709 &&
4115       seq_params->transfer_characteristics == AOM_CICP_TC_SRGB &&
4116       seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
4117     seq_params->subsampling_y = seq_params->subsampling_x = 0;
4118     seq_params->color_range = 1;  // assume full color-range
4119     if (!(seq_params->profile == PROFILE_1 ||
4120           (seq_params->profile == PROFILE_2 &&
4121            seq_params->bit_depth == AOM_BITS_12))) {
4122       aom_internal_error(
4123           error_info, AOM_CODEC_UNSUP_BITSTREAM,
4124           "sRGB colorspace not compatible with specified profile");
4125     }
4126   } else {
4127     // [16,235] (including xvycc) vs [0,255] range
4128     seq_params->color_range = aom_rb_read_bit(rb);
4129     if (seq_params->profile == PROFILE_0) {
4130       // 420 only
4131       seq_params->subsampling_x = seq_params->subsampling_y = 1;
4132     } else if (seq_params->profile == PROFILE_1) {
4133       // 444 only
4134       seq_params->subsampling_x = seq_params->subsampling_y = 0;
4135     } else {
4136       assert(seq_params->profile == PROFILE_2);
4137       if (seq_params->bit_depth == AOM_BITS_12) {
4138         seq_params->subsampling_x = aom_rb_read_bit(rb);
4139         if (seq_params->subsampling_x)
4140           seq_params->subsampling_y = aom_rb_read_bit(rb);  // 422 or 420
4141         else
4142           seq_params->subsampling_y = 0;  // 444
4143       } else {
4144         // 422
4145         seq_params->subsampling_x = 1;
4146         seq_params->subsampling_y = 0;
4147       }
4148     }
4149     if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY &&
4150         (seq_params->subsampling_x || seq_params->subsampling_y)) {
4151       aom_internal_error(
4152           error_info, AOM_CODEC_UNSUP_BITSTREAM,
4153           "Identity CICP Matrix incompatible with non 4:4:4 color sampling");
4154     }
4155     if (seq_params->subsampling_x && seq_params->subsampling_y) {
4156       seq_params->chroma_sample_position = aom_rb_read_literal(rb, 2);
4157     }
4158   }
4159   seq_params->separate_uv_delta_q = aom_rb_read_bit(rb);
4160 }
4161 
av1_read_timing_info_header(aom_timing_info_t * timing_info,struct aom_internal_error_info * error,struct aom_read_bit_buffer * rb)4162 void av1_read_timing_info_header(aom_timing_info_t *timing_info,
4163                                  struct aom_internal_error_info *error,
4164                                  struct aom_read_bit_buffer *rb) {
4165   timing_info->num_units_in_display_tick =
4166       aom_rb_read_unsigned_literal(rb,
4167                                    32);  // Number of units in a display tick
4168   timing_info->time_scale = aom_rb_read_unsigned_literal(rb, 32);  // Time scale
4169   if (timing_info->num_units_in_display_tick == 0 ||
4170       timing_info->time_scale == 0) {
4171     aom_internal_error(
4172         error, AOM_CODEC_UNSUP_BITSTREAM,
4173         "num_units_in_display_tick and time_scale must be greater than 0.");
4174   }
4175   timing_info->equal_picture_interval =
4176       aom_rb_read_bit(rb);  // Equal picture interval bit
4177   if (timing_info->equal_picture_interval) {
4178     const uint32_t num_ticks_per_picture_minus_1 = aom_rb_read_uvlc(rb);
4179     if (num_ticks_per_picture_minus_1 == UINT32_MAX) {
4180       aom_internal_error(
4181           error, AOM_CODEC_UNSUP_BITSTREAM,
4182           "num_ticks_per_picture_minus_1 cannot be (1 << 32) - 1.");
4183     }
4184     timing_info->num_ticks_per_picture = num_ticks_per_picture_minus_1 + 1;
4185   }
4186 }
4187 
av1_read_decoder_model_info(aom_dec_model_info_t * decoder_model_info,struct aom_read_bit_buffer * rb)4188 void av1_read_decoder_model_info(aom_dec_model_info_t *decoder_model_info,
4189                                  struct aom_read_bit_buffer *rb) {
4190   decoder_model_info->encoder_decoder_buffer_delay_length =
4191       aom_rb_read_literal(rb, 5) + 1;
4192   decoder_model_info->num_units_in_decoding_tick =
4193       aom_rb_read_unsigned_literal(rb,
4194                                    32);  // Number of units in a decoding tick
4195   decoder_model_info->buffer_removal_time_length =
4196       aom_rb_read_literal(rb, 5) + 1;
4197   decoder_model_info->frame_presentation_time_length =
4198       aom_rb_read_literal(rb, 5) + 1;
4199 }
4200 
av1_read_op_parameters_info(aom_dec_model_op_parameters_t * op_params,int buffer_delay_length,struct aom_read_bit_buffer * rb)4201 void av1_read_op_parameters_info(aom_dec_model_op_parameters_t *op_params,
4202                                  int buffer_delay_length,
4203                                  struct aom_read_bit_buffer *rb) {
4204   op_params->decoder_buffer_delay =
4205       aom_rb_read_unsigned_literal(rb, buffer_delay_length);
4206   op_params->encoder_buffer_delay =
4207       aom_rb_read_unsigned_literal(rb, buffer_delay_length);
4208   op_params->low_delay_mode_flag = aom_rb_read_bit(rb);
4209 }
4210 
read_temporal_point_info(AV1_COMMON * const cm,struct aom_read_bit_buffer * rb)4211 static inline void read_temporal_point_info(AV1_COMMON *const cm,
4212                                             struct aom_read_bit_buffer *rb) {
4213   cm->frame_presentation_time = aom_rb_read_unsigned_literal(
4214       rb, cm->seq_params->decoder_model_info.frame_presentation_time_length);
4215 }
4216 
av1_read_sequence_header(AV1_COMMON * cm,struct aom_read_bit_buffer * rb,SequenceHeader * seq_params)4217 void av1_read_sequence_header(AV1_COMMON *cm, struct aom_read_bit_buffer *rb,
4218                               SequenceHeader *seq_params) {
4219   const int num_bits_width = aom_rb_read_literal(rb, 4) + 1;
4220   const int num_bits_height = aom_rb_read_literal(rb, 4) + 1;
4221   const int max_frame_width = aom_rb_read_literal(rb, num_bits_width) + 1;
4222   const int max_frame_height = aom_rb_read_literal(rb, num_bits_height) + 1;
4223 
4224   seq_params->num_bits_width = num_bits_width;
4225   seq_params->num_bits_height = num_bits_height;
4226   seq_params->max_frame_width = max_frame_width;
4227   seq_params->max_frame_height = max_frame_height;
4228 
4229   if (seq_params->reduced_still_picture_hdr) {
4230     seq_params->frame_id_numbers_present_flag = 0;
4231   } else {
4232     seq_params->frame_id_numbers_present_flag = aom_rb_read_bit(rb);
4233   }
4234   if (seq_params->frame_id_numbers_present_flag) {
4235     // We must always have delta_frame_id_length < frame_id_length,
4236     // in order for a frame to be referenced with a unique delta.
4237     // Avoid wasting bits by using a coding that enforces this restriction.
4238     seq_params->delta_frame_id_length = aom_rb_read_literal(rb, 4) + 2;
4239     seq_params->frame_id_length =
4240         aom_rb_read_literal(rb, 3) + seq_params->delta_frame_id_length + 1;
4241     if (seq_params->frame_id_length > 16)
4242       aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME,
4243                          "Invalid frame_id_length");
4244   }
4245 
4246   setup_sb_size(seq_params, rb);
4247 
4248   seq_params->enable_filter_intra = aom_rb_read_bit(rb);
4249   seq_params->enable_intra_edge_filter = aom_rb_read_bit(rb);
4250 
4251   if (seq_params->reduced_still_picture_hdr) {
4252     seq_params->enable_interintra_compound = 0;
4253     seq_params->enable_masked_compound = 0;
4254     seq_params->enable_warped_motion = 0;
4255     seq_params->enable_dual_filter = 0;
4256     seq_params->order_hint_info.enable_order_hint = 0;
4257     seq_params->order_hint_info.enable_dist_wtd_comp = 0;
4258     seq_params->order_hint_info.enable_ref_frame_mvs = 0;
4259     seq_params->force_screen_content_tools = 2;  // SELECT_SCREEN_CONTENT_TOOLS
4260     seq_params->force_integer_mv = 2;            // SELECT_INTEGER_MV
4261     seq_params->order_hint_info.order_hint_bits_minus_1 = -1;
4262   } else {
4263     seq_params->enable_interintra_compound = aom_rb_read_bit(rb);
4264     seq_params->enable_masked_compound = aom_rb_read_bit(rb);
4265     seq_params->enable_warped_motion = aom_rb_read_bit(rb);
4266     seq_params->enable_dual_filter = aom_rb_read_bit(rb);
4267 
4268     seq_params->order_hint_info.enable_order_hint = aom_rb_read_bit(rb);
4269     seq_params->order_hint_info.enable_dist_wtd_comp =
4270         seq_params->order_hint_info.enable_order_hint ? aom_rb_read_bit(rb) : 0;
4271     seq_params->order_hint_info.enable_ref_frame_mvs =
4272         seq_params->order_hint_info.enable_order_hint ? aom_rb_read_bit(rb) : 0;
4273 
4274     if (aom_rb_read_bit(rb)) {
4275       seq_params->force_screen_content_tools =
4276           2;  // SELECT_SCREEN_CONTENT_TOOLS
4277     } else {
4278       seq_params->force_screen_content_tools = aom_rb_read_bit(rb);
4279     }
4280 
4281     if (seq_params->force_screen_content_tools > 0) {
4282       if (aom_rb_read_bit(rb)) {
4283         seq_params->force_integer_mv = 2;  // SELECT_INTEGER_MV
4284       } else {
4285         seq_params->force_integer_mv = aom_rb_read_bit(rb);
4286       }
4287     } else {
4288       seq_params->force_integer_mv = 2;  // SELECT_INTEGER_MV
4289     }
4290     seq_params->order_hint_info.order_hint_bits_minus_1 =
4291         seq_params->order_hint_info.enable_order_hint
4292             ? aom_rb_read_literal(rb, 3)
4293             : -1;
4294   }
4295 
4296   seq_params->enable_superres = aom_rb_read_bit(rb);
4297   seq_params->enable_cdef = aom_rb_read_bit(rb);
4298   seq_params->enable_restoration = aom_rb_read_bit(rb);
4299 }
4300 
read_global_motion_params(WarpedMotionParams * params,const WarpedMotionParams * ref_params,struct aom_read_bit_buffer * rb,int allow_hp)4301 static int read_global_motion_params(WarpedMotionParams *params,
4302                                      const WarpedMotionParams *ref_params,
4303                                      struct aom_read_bit_buffer *rb,
4304                                      int allow_hp) {
4305   TransformationType type = aom_rb_read_bit(rb);
4306   if (type != IDENTITY) {
4307     if (aom_rb_read_bit(rb))
4308       type = ROTZOOM;
4309     else
4310       type = aom_rb_read_bit(rb) ? TRANSLATION : AFFINE;
4311   }
4312 
4313   *params = default_warp_params;
4314   params->wmtype = type;
4315 
4316   if (type >= ROTZOOM) {
4317     params->wmmat[2] = aom_rb_read_signed_primitive_refsubexpfin(
4318                            rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
4319                            (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) -
4320                                (1 << GM_ALPHA_PREC_BITS)) *
4321                            GM_ALPHA_DECODE_FACTOR +
4322                        (1 << WARPEDMODEL_PREC_BITS);
4323     params->wmmat[3] = aom_rb_read_signed_primitive_refsubexpfin(
4324                            rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
4325                            (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF)) *
4326                        GM_ALPHA_DECODE_FACTOR;
4327   }
4328 
4329   if (type >= AFFINE) {
4330     params->wmmat[4] = aom_rb_read_signed_primitive_refsubexpfin(
4331                            rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
4332                            (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF)) *
4333                        GM_ALPHA_DECODE_FACTOR;
4334     params->wmmat[5] = aom_rb_read_signed_primitive_refsubexpfin(
4335                            rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
4336                            (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
4337                                (1 << GM_ALPHA_PREC_BITS)) *
4338                            GM_ALPHA_DECODE_FACTOR +
4339                        (1 << WARPEDMODEL_PREC_BITS);
4340   } else {
4341     params->wmmat[4] = -params->wmmat[3];
4342     params->wmmat[5] = params->wmmat[2];
4343   }
4344 
4345   if (type >= TRANSLATION) {
4346     const int trans_bits = (type == TRANSLATION)
4347                                ? GM_ABS_TRANS_ONLY_BITS - !allow_hp
4348                                : GM_ABS_TRANS_BITS;
4349     const int trans_dec_factor =
4350         (type == TRANSLATION) ? GM_TRANS_ONLY_DECODE_FACTOR * (1 << !allow_hp)
4351                               : GM_TRANS_DECODE_FACTOR;
4352     const int trans_prec_diff = (type == TRANSLATION)
4353                                     ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
4354                                     : GM_TRANS_PREC_DIFF;
4355     params->wmmat[0] = aom_rb_read_signed_primitive_refsubexpfin(
4356                            rb, (1 << trans_bits) + 1, SUBEXPFIN_K,
4357                            (ref_params->wmmat[0] >> trans_prec_diff)) *
4358                        trans_dec_factor;
4359     params->wmmat[1] = aom_rb_read_signed_primitive_refsubexpfin(
4360                            rb, (1 << trans_bits) + 1, SUBEXPFIN_K,
4361                            (ref_params->wmmat[1] >> trans_prec_diff)) *
4362                        trans_dec_factor;
4363   }
4364 
4365   int good_shear_params = av1_get_shear_params(params);
4366   if (!good_shear_params) return 0;
4367 
4368   return 1;
4369 }
4370 
read_global_motion(AV1_COMMON * cm,struct aom_read_bit_buffer * rb)4371 static inline void read_global_motion(AV1_COMMON *cm,
4372                                       struct aom_read_bit_buffer *rb) {
4373   for (int frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
4374     const WarpedMotionParams *ref_params =
4375         cm->prev_frame ? &cm->prev_frame->global_motion[frame]
4376                        : &default_warp_params;
4377     int good_params =
4378         read_global_motion_params(&cm->global_motion[frame], ref_params, rb,
4379                                   cm->features.allow_high_precision_mv);
4380     if (!good_params) {
4381 #if WARPED_MOTION_DEBUG
4382       printf("Warning: unexpected global motion shear params from aomenc\n");
4383 #endif
4384       cm->global_motion[frame].invalid = 1;
4385     }
4386 
4387     // TODO(sarahparker, debargha): The logic in the commented out code below
4388     // does not work currently and causes mismatches when resize is on. Fix it
4389     // before turning the optimization back on.
4390     /*
4391     YV12_BUFFER_CONFIG *ref_buf = get_ref_frame(cm, frame);
4392     if (cm->width == ref_buf->y_crop_width &&
4393         cm->height == ref_buf->y_crop_height) {
4394       read_global_motion_params(&cm->global_motion[frame],
4395                                 &cm->prev_frame->global_motion[frame], rb,
4396                                 cm->features.allow_high_precision_mv);
4397     } else {
4398       cm->global_motion[frame] = default_warp_params;
4399     }
4400     */
4401     /*
4402     printf("Dec Ref %d [%d/%d]: %d %d %d %d\n",
4403            frame, cm->current_frame.frame_number, cm->show_frame,
4404            cm->global_motion[frame].wmmat[0],
4405            cm->global_motion[frame].wmmat[1],
4406            cm->global_motion[frame].wmmat[2],
4407            cm->global_motion[frame].wmmat[3]);
4408            */
4409   }
4410   memcpy(cm->cur_frame->global_motion, cm->global_motion,
4411          REF_FRAMES * sizeof(WarpedMotionParams));
4412 }
4413 
4414 // Release the references to the frame buffers in cm->ref_frame_map and reset
4415 // all elements of cm->ref_frame_map to NULL.
reset_ref_frame_map(AV1_COMMON * const cm)4416 static inline void reset_ref_frame_map(AV1_COMMON *const cm) {
4417   BufferPool *const pool = cm->buffer_pool;
4418 
4419   for (int i = 0; i < REF_FRAMES; i++) {
4420     decrease_ref_count(cm->ref_frame_map[i], pool);
4421     cm->ref_frame_map[i] = NULL;
4422   }
4423 }
4424 
4425 // If the refresh_frame_flags bitmask is set, update reference frame id values
4426 // and mark frames as valid for reference.
update_ref_frame_id(AV1Decoder * const pbi)4427 static inline void update_ref_frame_id(AV1Decoder *const pbi) {
4428   AV1_COMMON *const cm = &pbi->common;
4429   int refresh_frame_flags = cm->current_frame.refresh_frame_flags;
4430   for (int i = 0; i < REF_FRAMES; i++) {
4431     if ((refresh_frame_flags >> i) & 1) {
4432       cm->ref_frame_id[i] = cm->current_frame_id;
4433       pbi->valid_for_referencing[i] = 1;
4434     }
4435   }
4436 }
4437 
show_existing_frame_reset(AV1Decoder * const pbi,int existing_frame_idx)4438 static inline void show_existing_frame_reset(AV1Decoder *const pbi,
4439                                              int existing_frame_idx) {
4440   AV1_COMMON *const cm = &pbi->common;
4441 
4442   assert(cm->show_existing_frame);
4443 
4444   cm->current_frame.frame_type = KEY_FRAME;
4445 
4446   cm->current_frame.refresh_frame_flags = (1 << REF_FRAMES) - 1;
4447 
4448   for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
4449     cm->remapped_ref_idx[i] = INVALID_IDX;
4450   }
4451 
4452   if (pbi->need_resync) {
4453     reset_ref_frame_map(cm);
4454     pbi->need_resync = 0;
4455   }
4456 
4457   // Note that the displayed frame must be valid for referencing in order to
4458   // have been selected.
4459   cm->current_frame_id = cm->ref_frame_id[existing_frame_idx];
4460   update_ref_frame_id(pbi);
4461 
4462   cm->features.refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED;
4463 }
4464 
reset_frame_buffers(AV1_COMMON * cm)4465 static inline void reset_frame_buffers(AV1_COMMON *cm) {
4466   RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
4467   int i;
4468 
4469   lock_buffer_pool(cm->buffer_pool);
4470   reset_ref_frame_map(cm);
4471   assert(cm->cur_frame->ref_count == 1);
4472   for (i = 0; i < cm->buffer_pool->num_frame_bufs; ++i) {
4473     // Reset all unreferenced frame buffers. We can also reset cm->cur_frame
4474     // because we are the sole owner of cm->cur_frame.
4475     if (frame_bufs[i].ref_count > 0 && &frame_bufs[i] != cm->cur_frame) {
4476       continue;
4477     }
4478     frame_bufs[i].order_hint = 0;
4479     av1_zero(frame_bufs[i].ref_order_hints);
4480   }
4481   av1_zero_unused_internal_frame_buffers(&cm->buffer_pool->int_frame_buffers);
4482   unlock_buffer_pool(cm->buffer_pool);
4483 }
4484 
4485 // On success, returns 0. On failure, calls aom_internal_error and does not
4486 // return.
read_uncompressed_header(AV1Decoder * pbi,struct aom_read_bit_buffer * rb)4487 static int read_uncompressed_header(AV1Decoder *pbi,
4488                                     struct aom_read_bit_buffer *rb) {
4489   AV1_COMMON *const cm = &pbi->common;
4490   const SequenceHeader *const seq_params = cm->seq_params;
4491   CurrentFrame *const current_frame = &cm->current_frame;
4492   FeatureFlags *const features = &cm->features;
4493   MACROBLOCKD *const xd = &pbi->dcb.xd;
4494   BufferPool *const pool = cm->buffer_pool;
4495   RefCntBuffer *const frame_bufs = pool->frame_bufs;
4496   aom_s_frame_info *sframe_info = &pbi->sframe_info;
4497   sframe_info->is_s_frame = 0;
4498   sframe_info->is_s_frame_at_altref = 0;
4499 
4500   if (!pbi->sequence_header_ready) {
4501     aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
4502                        "No sequence header");
4503   }
4504 
4505   if (seq_params->reduced_still_picture_hdr) {
4506     cm->show_existing_frame = 0;
4507     cm->show_frame = 1;
4508     current_frame->frame_type = KEY_FRAME;
4509     if (pbi->sequence_header_changed) {
4510       // This is the start of a new coded video sequence.
4511       pbi->sequence_header_changed = 0;
4512       pbi->decoding_first_frame = 1;
4513       reset_frame_buffers(cm);
4514     }
4515     features->error_resilient_mode = 1;
4516   } else {
4517     cm->show_existing_frame = aom_rb_read_bit(rb);
4518     pbi->reset_decoder_state = 0;
4519 
4520     if (cm->show_existing_frame) {
4521       if (pbi->sequence_header_changed) {
4522         aom_internal_error(
4523             &pbi->error, AOM_CODEC_CORRUPT_FRAME,
4524             "New sequence header starts with a show_existing_frame.");
4525       }
4526       // Show an existing frame directly.
4527       const int existing_frame_idx = aom_rb_read_literal(rb, 3);
4528       RefCntBuffer *const frame_to_show = cm->ref_frame_map[existing_frame_idx];
4529       if (frame_to_show == NULL) {
4530         aom_internal_error(&pbi->error, AOM_CODEC_UNSUP_BITSTREAM,
4531                            "Buffer does not contain a decoded frame");
4532       }
4533       if (seq_params->decoder_model_info_present_flag &&
4534           seq_params->timing_info.equal_picture_interval == 0) {
4535         read_temporal_point_info(cm, rb);
4536       }
4537       if (seq_params->frame_id_numbers_present_flag) {
4538         int frame_id_length = seq_params->frame_id_length;
4539         int display_frame_id = aom_rb_read_literal(rb, frame_id_length);
4540         /* Compare display_frame_id with ref_frame_id and check valid for
4541          * referencing */
4542         if (display_frame_id != cm->ref_frame_id[existing_frame_idx] ||
4543             pbi->valid_for_referencing[existing_frame_idx] == 0)
4544           aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
4545                              "Reference buffer frame ID mismatch");
4546       }
4547       lock_buffer_pool(pool);
4548       assert(frame_to_show->ref_count > 0);
4549       // cm->cur_frame should be the buffer referenced by the return value
4550       // of the get_free_fb() call in assign_cur_frame_new_fb() (called by
4551       // av1_receive_compressed_data()), so the ref_count should be 1.
4552       assert(cm->cur_frame->ref_count == 1);
4553       // assign_frame_buffer_p() decrements ref_count directly rather than
4554       // call decrease_ref_count(). If cm->cur_frame->raw_frame_buffer has
4555       // already been allocated, it will not be released by
4556       // assign_frame_buffer_p()!
4557       assert(!cm->cur_frame->raw_frame_buffer.data);
4558       assign_frame_buffer_p(&cm->cur_frame, frame_to_show);
4559       pbi->reset_decoder_state = frame_to_show->frame_type == KEY_FRAME;
4560       unlock_buffer_pool(pool);
4561 
4562       cm->lf.filter_level[0] = 0;
4563       cm->lf.filter_level[1] = 0;
4564       cm->show_frame = 1;
4565       current_frame->order_hint = frame_to_show->order_hint;
4566 
4567       // Section 6.8.2: It is a requirement of bitstream conformance that when
4568       // show_existing_frame is used to show a previous frame, that the value
4569       // of showable_frame for the previous frame was equal to 1.
4570       if (!frame_to_show->showable_frame) {
4571         aom_internal_error(&pbi->error, AOM_CODEC_UNSUP_BITSTREAM,
4572                            "Buffer does not contain a showable frame");
4573       }
4574       // Section 6.8.2: It is a requirement of bitstream conformance that when
4575       // show_existing_frame is used to show a previous frame with
4576       // RefFrameType[ frame_to_show_map_idx ] equal to KEY_FRAME, that the
4577       // frame is output via the show_existing_frame mechanism at most once.
4578       if (pbi->reset_decoder_state) frame_to_show->showable_frame = 0;
4579 
4580       cm->film_grain_params = frame_to_show->film_grain_params;
4581 
4582       if (pbi->reset_decoder_state) {
4583         show_existing_frame_reset(pbi, existing_frame_idx);
4584       } else {
4585         current_frame->refresh_frame_flags = 0;
4586       }
4587 
4588       return 0;
4589     }
4590 
4591     current_frame->frame_type = (FRAME_TYPE)aom_rb_read_literal(rb, 2);
4592     if (pbi->sequence_header_changed) {
4593       if (current_frame->frame_type == KEY_FRAME) {
4594         // This is the start of a new coded video sequence.
4595         pbi->sequence_header_changed = 0;
4596         pbi->decoding_first_frame = 1;
4597         reset_frame_buffers(cm);
4598       } else {
4599         aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
4600                            "Sequence header has changed without a keyframe.");
4601       }
4602     }
4603 
4604     cm->show_frame = aom_rb_read_bit(rb);
4605     if (cm->show_frame == 0) pbi->is_arf_frame_present = 1;
4606     if (cm->show_frame == 0 && cm->current_frame.frame_type == KEY_FRAME)
4607       pbi->is_fwd_kf_present = 1;
4608     if (cm->current_frame.frame_type == S_FRAME) {
4609       sframe_info->is_s_frame = 1;
4610       sframe_info->is_s_frame_at_altref = cm->show_frame ? 0 : 1;
4611     }
4612     if (seq_params->still_picture &&
4613         (current_frame->frame_type != KEY_FRAME || !cm->show_frame)) {
4614       aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
4615                          "Still pictures must be coded as shown keyframes");
4616     }
4617     cm->showable_frame = current_frame->frame_type != KEY_FRAME;
4618     if (cm->show_frame) {
4619       if (seq_params->decoder_model_info_present_flag &&
4620           seq_params->timing_info.equal_picture_interval == 0)
4621         read_temporal_point_info(cm, rb);
4622     } else {
4623       // See if this frame can be used as show_existing_frame in future
4624       cm->showable_frame = aom_rb_read_bit(rb);
4625     }
4626     cm->cur_frame->showable_frame = cm->showable_frame;
4627     features->error_resilient_mode =
4628         frame_is_sframe(cm) ||
4629                 (current_frame->frame_type == KEY_FRAME && cm->show_frame)
4630             ? 1
4631             : aom_rb_read_bit(rb);
4632   }
4633 
4634   if (current_frame->frame_type == KEY_FRAME && cm->show_frame) {
4635     /* All frames need to be marked as not valid for referencing */
4636     for (int i = 0; i < REF_FRAMES; i++) {
4637       pbi->valid_for_referencing[i] = 0;
4638     }
4639   }
4640   features->disable_cdf_update = aom_rb_read_bit(rb);
4641   if (seq_params->force_screen_content_tools == 2) {
4642     features->allow_screen_content_tools = aom_rb_read_bit(rb);
4643   } else {
4644     features->allow_screen_content_tools =
4645         seq_params->force_screen_content_tools;
4646   }
4647 
4648   if (features->allow_screen_content_tools) {
4649     if (seq_params->force_integer_mv == 2) {
4650       features->cur_frame_force_integer_mv = aom_rb_read_bit(rb);
4651     } else {
4652       features->cur_frame_force_integer_mv = seq_params->force_integer_mv;
4653     }
4654   } else {
4655     features->cur_frame_force_integer_mv = 0;
4656   }
4657 
4658   int frame_size_override_flag = 0;
4659   features->allow_intrabc = 0;
4660   features->primary_ref_frame = PRIMARY_REF_NONE;
4661 
4662   if (!seq_params->reduced_still_picture_hdr) {
4663     if (seq_params->frame_id_numbers_present_flag) {
4664       int frame_id_length = seq_params->frame_id_length;
4665       int diff_len = seq_params->delta_frame_id_length;
4666       int prev_frame_id = 0;
4667       int have_prev_frame_id =
4668           !pbi->decoding_first_frame &&
4669           !(current_frame->frame_type == KEY_FRAME && cm->show_frame);
4670       if (have_prev_frame_id) {
4671         prev_frame_id = cm->current_frame_id;
4672       }
4673       cm->current_frame_id = aom_rb_read_literal(rb, frame_id_length);
4674 
4675       if (have_prev_frame_id) {
4676         int diff_frame_id;
4677         if (cm->current_frame_id > prev_frame_id) {
4678           diff_frame_id = cm->current_frame_id - prev_frame_id;
4679         } else {
4680           diff_frame_id =
4681               (1 << frame_id_length) + cm->current_frame_id - prev_frame_id;
4682         }
4683         /* Check current_frame_id for conformance */
4684         if (prev_frame_id == cm->current_frame_id ||
4685             diff_frame_id >= (1 << (frame_id_length - 1))) {
4686           aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
4687                              "Invalid value of current_frame_id");
4688         }
4689       }
4690       /* Check if some frames need to be marked as not valid for referencing */
4691       for (int i = 0; i < REF_FRAMES; i++) {
4692         if (cm->current_frame_id - (1 << diff_len) > 0) {
4693           if (cm->ref_frame_id[i] > cm->current_frame_id ||
4694               cm->ref_frame_id[i] < cm->current_frame_id - (1 << diff_len))
4695             pbi->valid_for_referencing[i] = 0;
4696         } else {
4697           if (cm->ref_frame_id[i] > cm->current_frame_id &&
4698               cm->ref_frame_id[i] < (1 << frame_id_length) +
4699                                         cm->current_frame_id - (1 << diff_len))
4700             pbi->valid_for_referencing[i] = 0;
4701         }
4702       }
4703     }
4704 
4705     frame_size_override_flag = frame_is_sframe(cm) ? 1 : aom_rb_read_bit(rb);
4706 
4707     current_frame->order_hint = aom_rb_read_literal(
4708         rb, seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
4709 
4710     if (seq_params->order_hint_info.enable_order_hint)
4711       current_frame->frame_number = current_frame->order_hint;
4712 
4713     if (!features->error_resilient_mode && !frame_is_intra_only(cm)) {
4714       features->primary_ref_frame = aom_rb_read_literal(rb, PRIMARY_REF_BITS);
4715     }
4716   }
4717 
4718   if (seq_params->decoder_model_info_present_flag) {
4719     pbi->buffer_removal_time_present = aom_rb_read_bit(rb);
4720     if (pbi->buffer_removal_time_present) {
4721       for (int op_num = 0;
4722            op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) {
4723         if (seq_params->op_params[op_num].decoder_model_param_present_flag) {
4724           if (seq_params->operating_point_idc[op_num] == 0 ||
4725               (((seq_params->operating_point_idc[op_num] >>
4726                  cm->temporal_layer_id) &
4727                 0x1) &&
4728                ((seq_params->operating_point_idc[op_num] >>
4729                  (cm->spatial_layer_id + 8)) &
4730                 0x1))) {
4731             cm->buffer_removal_times[op_num] = aom_rb_read_unsigned_literal(
4732                 rb, seq_params->decoder_model_info.buffer_removal_time_length);
4733           } else {
4734             cm->buffer_removal_times[op_num] = 0;
4735           }
4736         } else {
4737           cm->buffer_removal_times[op_num] = 0;
4738         }
4739       }
4740     }
4741   }
4742   if (current_frame->frame_type == KEY_FRAME) {
4743     if (!cm->show_frame) {  // unshown keyframe (forward keyframe)
4744       current_frame->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES);
4745     } else {  // shown keyframe
4746       current_frame->refresh_frame_flags = (1 << REF_FRAMES) - 1;
4747     }
4748 
4749     for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
4750       cm->remapped_ref_idx[i] = INVALID_IDX;
4751     }
4752     if (pbi->need_resync) {
4753       reset_ref_frame_map(cm);
4754       pbi->need_resync = 0;
4755     }
4756   } else {
4757     if (current_frame->frame_type == INTRA_ONLY_FRAME) {
4758       current_frame->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES);
4759       if (current_frame->refresh_frame_flags == 0xFF) {
4760         aom_internal_error(&pbi->error, AOM_CODEC_UNSUP_BITSTREAM,
4761                            "Intra only frames cannot have refresh flags 0xFF");
4762       }
4763       if (pbi->need_resync) {
4764         reset_ref_frame_map(cm);
4765         pbi->need_resync = 0;
4766       }
4767     } else if (pbi->need_resync != 1) { /* Skip if need resync */
4768       current_frame->refresh_frame_flags =
4769           frame_is_sframe(cm) ? 0xFF : aom_rb_read_literal(rb, REF_FRAMES);
4770     }
4771   }
4772 
4773   if (!frame_is_intra_only(cm) || current_frame->refresh_frame_flags != 0xFF) {
4774     // Read all ref frame order hints if error_resilient_mode == 1
4775     if (features->error_resilient_mode &&
4776         seq_params->order_hint_info.enable_order_hint) {
4777       for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) {
4778         // Read order hint from bit stream
4779         unsigned int order_hint = aom_rb_read_literal(
4780             rb, seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
4781         // Get buffer
4782         RefCntBuffer *buf = cm->ref_frame_map[ref_idx];
4783         if (buf == NULL || order_hint != buf->order_hint) {
4784           if (buf != NULL) {
4785             lock_buffer_pool(pool);
4786             decrease_ref_count(buf, pool);
4787             unlock_buffer_pool(pool);
4788             cm->ref_frame_map[ref_idx] = NULL;
4789           }
4790           // If no corresponding buffer exists, allocate a new buffer with all
4791           // pixels set to neutral grey.
4792           int buf_idx = get_free_fb(cm);
4793           if (buf_idx == INVALID_IDX) {
4794             aom_internal_error(&pbi->error, AOM_CODEC_MEM_ERROR,
4795                                "Unable to find free frame buffer");
4796           }
4797           buf = &frame_bufs[buf_idx];
4798           lock_buffer_pool(pool);
4799           if (aom_realloc_frame_buffer(
4800                   &buf->buf, seq_params->max_frame_width,
4801                   seq_params->max_frame_height, seq_params->subsampling_x,
4802                   seq_params->subsampling_y, seq_params->use_highbitdepth,
4803                   AOM_BORDER_IN_PIXELS, features->byte_alignment,
4804                   &buf->raw_frame_buffer, pool->get_fb_cb, pool->cb_priv, false,
4805                   0)) {
4806             decrease_ref_count(buf, pool);
4807             unlock_buffer_pool(pool);
4808             aom_internal_error(&pbi->error, AOM_CODEC_MEM_ERROR,
4809                                "Failed to allocate frame buffer");
4810           }
4811           unlock_buffer_pool(pool);
4812           // According to the specification, valid bitstreams are required to
4813           // never use missing reference frames so the filling process for
4814           // missing frames is not normatively defined and RefValid for missing
4815           // frames is set to 0.
4816 
4817           // To make libaom more robust when the bitstream has been corrupted
4818           // by the loss of some frames of data, this code adds a neutral grey
4819           // buffer in place of missing frames, i.e.
4820           //
4821           set_planes_to_neutral_grey(seq_params, &buf->buf, 0);
4822           //
4823           // and allows the frames to be used for referencing, i.e.
4824           //
4825           pbi->valid_for_referencing[ref_idx] = 1;
4826           //
4827           // Please note such behavior is not normative and other decoders may
4828           // use a different approach.
4829           cm->ref_frame_map[ref_idx] = buf;
4830           buf->order_hint = order_hint;
4831         }
4832       }
4833     }
4834   }
4835 
4836   if (current_frame->frame_type == KEY_FRAME) {
4837     setup_frame_size(cm, frame_size_override_flag, rb);
4838 
4839     if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
4840       features->allow_intrabc = aom_rb_read_bit(rb);
4841     features->allow_ref_frame_mvs = 0;
4842     cm->prev_frame = NULL;
4843   } else {
4844     features->allow_ref_frame_mvs = 0;
4845 
4846     if (current_frame->frame_type == INTRA_ONLY_FRAME) {
4847       cm->cur_frame->film_grain_params_present =
4848           seq_params->film_grain_params_present;
4849       setup_frame_size(cm, frame_size_override_flag, rb);
4850       if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
4851         features->allow_intrabc = aom_rb_read_bit(rb);
4852 
4853     } else if (pbi->need_resync != 1) { /* Skip if need resync */
4854       int frame_refs_short_signaling = 0;
4855       // Frame refs short signaling is off when error resilient mode is on.
4856       if (seq_params->order_hint_info.enable_order_hint)
4857         frame_refs_short_signaling = aom_rb_read_bit(rb);
4858 
4859       if (frame_refs_short_signaling) {
4860         // == LAST_FRAME ==
4861         const int lst_ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2);
4862         const RefCntBuffer *const lst_buf = cm->ref_frame_map[lst_ref];
4863 
4864         // == GOLDEN_FRAME ==
4865         const int gld_ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2);
4866         const RefCntBuffer *const gld_buf = cm->ref_frame_map[gld_ref];
4867 
4868         // Most of the time, streams start with a keyframe. In that case,
4869         // ref_frame_map will have been filled in at that point and will not
4870         // contain any NULLs. However, streams are explicitly allowed to start
4871         // with an intra-only frame, so long as they don't then signal a
4872         // reference to a slot that hasn't been set yet. That's what we are
4873         // checking here.
4874         if (lst_buf == NULL)
4875           aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
4876                              "Inter frame requests nonexistent reference");
4877         if (gld_buf == NULL)
4878           aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
4879                              "Inter frame requests nonexistent reference");
4880 
4881         av1_set_frame_refs(cm, cm->remapped_ref_idx, lst_ref, gld_ref);
4882       }
4883 
4884       for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
4885         int ref = 0;
4886         if (!frame_refs_short_signaling) {
4887           ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2);
4888 
4889           // Most of the time, streams start with a keyframe. In that case,
4890           // ref_frame_map will have been filled in at that point and will not
4891           // contain any NULLs. However, streams are explicitly allowed to start
4892           // with an intra-only frame, so long as they don't then signal a
4893           // reference to a slot that hasn't been set yet. That's what we are
4894           // checking here.
4895           if (cm->ref_frame_map[ref] == NULL)
4896             aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
4897                                "Inter frame requests nonexistent reference");
4898           cm->remapped_ref_idx[i] = ref;
4899         } else {
4900           ref = cm->remapped_ref_idx[i];
4901         }
4902         // Check valid for referencing
4903         if (pbi->valid_for_referencing[ref] == 0)
4904           aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
4905                              "Reference frame not valid for referencing");
4906 
4907         cm->ref_frame_sign_bias[LAST_FRAME + i] = 0;
4908 
4909         if (seq_params->frame_id_numbers_present_flag) {
4910           int frame_id_length = seq_params->frame_id_length;
4911           int diff_len = seq_params->delta_frame_id_length;
4912           int delta_frame_id_minus_1 = aom_rb_read_literal(rb, diff_len);
4913           int ref_frame_id =
4914               ((cm->current_frame_id - (delta_frame_id_minus_1 + 1) +
4915                 (1 << frame_id_length)) %
4916                (1 << frame_id_length));
4917           // Compare values derived from delta_frame_id_minus_1 and
4918           // refresh_frame_flags.
4919           if (ref_frame_id != cm->ref_frame_id[ref])
4920             aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
4921                                "Reference buffer frame ID mismatch");
4922         }
4923       }
4924 
4925       if (!features->error_resilient_mode && frame_size_override_flag) {
4926         setup_frame_size_with_refs(cm, rb);
4927       } else {
4928         setup_frame_size(cm, frame_size_override_flag, rb);
4929       }
4930 
4931       if (features->cur_frame_force_integer_mv) {
4932         features->allow_high_precision_mv = 0;
4933       } else {
4934         features->allow_high_precision_mv = aom_rb_read_bit(rb);
4935       }
4936       features->interp_filter = read_frame_interp_filter(rb);
4937       features->switchable_motion_mode = aom_rb_read_bit(rb);
4938     }
4939 
4940     cm->prev_frame = get_primary_ref_frame_buf(cm);
4941     if (features->primary_ref_frame != PRIMARY_REF_NONE &&
4942         get_primary_ref_frame_buf(cm) == NULL) {
4943       aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
4944                          "Reference frame containing this frame's initial "
4945                          "frame context is unavailable.");
4946     }
4947 
4948     if (!(current_frame->frame_type == INTRA_ONLY_FRAME) &&
4949         pbi->need_resync != 1) {
4950       if (frame_might_allow_ref_frame_mvs(cm))
4951         features->allow_ref_frame_mvs = aom_rb_read_bit(rb);
4952       else
4953         features->allow_ref_frame_mvs = 0;
4954 
4955       for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
4956         const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, i);
4957         struct scale_factors *const ref_scale_factors =
4958             get_ref_scale_factors(cm, i);
4959         av1_setup_scale_factors_for_frame(
4960             ref_scale_factors, ref_buf->buf.y_crop_width,
4961             ref_buf->buf.y_crop_height, cm->width, cm->height);
4962         if ((!av1_is_valid_scale(ref_scale_factors)))
4963           aom_internal_error(&pbi->error, AOM_CODEC_UNSUP_BITSTREAM,
4964                              "Reference frame has invalid dimensions");
4965       }
4966     }
4967   }
4968 
4969   av1_setup_frame_buf_refs(cm);
4970 
4971   av1_setup_frame_sign_bias(cm);
4972 
4973   cm->cur_frame->frame_type = current_frame->frame_type;
4974 
4975   update_ref_frame_id(pbi);
4976 
4977   const int might_bwd_adapt = !(seq_params->reduced_still_picture_hdr) &&
4978                               !(features->disable_cdf_update);
4979   if (might_bwd_adapt) {
4980     features->refresh_frame_context = aom_rb_read_bit(rb)
4981                                           ? REFRESH_FRAME_CONTEXT_DISABLED
4982                                           : REFRESH_FRAME_CONTEXT_BACKWARD;
4983   } else {
4984     features->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED;
4985   }
4986 
4987   cm->cur_frame->buf.bit_depth = seq_params->bit_depth;
4988   cm->cur_frame->buf.color_primaries = seq_params->color_primaries;
4989   cm->cur_frame->buf.transfer_characteristics =
4990       seq_params->transfer_characteristics;
4991   cm->cur_frame->buf.matrix_coefficients = seq_params->matrix_coefficients;
4992   cm->cur_frame->buf.monochrome = seq_params->monochrome;
4993   cm->cur_frame->buf.chroma_sample_position =
4994       seq_params->chroma_sample_position;
4995   cm->cur_frame->buf.color_range = seq_params->color_range;
4996   cm->cur_frame->buf.render_width = cm->render_width;
4997   cm->cur_frame->buf.render_height = cm->render_height;
4998 
4999   if (pbi->need_resync) {
5000     aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
5001                        "Keyframe / intra-only frame required to reset decoder"
5002                        " state");
5003   }
5004 
5005   if (features->allow_intrabc) {
5006     // Set parameters corresponding to no filtering.
5007     struct loopfilter *lf = &cm->lf;
5008     lf->filter_level[0] = 0;
5009     lf->filter_level[1] = 0;
5010     cm->cdef_info.cdef_bits = 0;
5011     cm->cdef_info.cdef_strengths[0] = 0;
5012     cm->cdef_info.nb_cdef_strengths = 1;
5013     cm->cdef_info.cdef_uv_strengths[0] = 0;
5014     cm->rst_info[0].frame_restoration_type = RESTORE_NONE;
5015     cm->rst_info[1].frame_restoration_type = RESTORE_NONE;
5016     cm->rst_info[2].frame_restoration_type = RESTORE_NONE;
5017   }
5018 
5019   read_tile_info(pbi, rb);
5020   if (!av1_is_min_tile_width_satisfied(cm)) {
5021     aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
5022                        "Minimum tile width requirement not satisfied");
5023   }
5024 
5025   CommonQuantParams *const quant_params = &cm->quant_params;
5026   setup_quantization(quant_params, av1_num_planes(cm),
5027                      cm->seq_params->separate_uv_delta_q, rb);
5028   xd->bd = (int)seq_params->bit_depth;
5029 
5030   CommonContexts *const above_contexts = &cm->above_contexts;
5031   if (above_contexts->num_planes < av1_num_planes(cm) ||
5032       above_contexts->num_mi_cols < cm->mi_params.mi_cols ||
5033       above_contexts->num_tile_rows < cm->tiles.rows) {
5034     av1_free_above_context_buffers(above_contexts);
5035     if (av1_alloc_above_context_buffers(above_contexts, cm->tiles.rows,
5036                                         cm->mi_params.mi_cols,
5037                                         av1_num_planes(cm))) {
5038       aom_internal_error(&pbi->error, AOM_CODEC_MEM_ERROR,
5039                          "Failed to allocate context buffers");
5040     }
5041   }
5042 
5043   if (features->primary_ref_frame == PRIMARY_REF_NONE) {
5044     av1_setup_past_independence(cm);
5045   }
5046 
5047   setup_segmentation(cm, rb);
5048 
5049   cm->delta_q_info.delta_q_res = 1;
5050   cm->delta_q_info.delta_lf_res = 1;
5051   cm->delta_q_info.delta_lf_present_flag = 0;
5052   cm->delta_q_info.delta_lf_multi = 0;
5053   cm->delta_q_info.delta_q_present_flag =
5054       quant_params->base_qindex > 0 ? aom_rb_read_bit(rb) : 0;
5055   if (cm->delta_q_info.delta_q_present_flag) {
5056     xd->current_base_qindex = quant_params->base_qindex;
5057     cm->delta_q_info.delta_q_res = 1 << aom_rb_read_literal(rb, 2);
5058     if (!features->allow_intrabc)
5059       cm->delta_q_info.delta_lf_present_flag = aom_rb_read_bit(rb);
5060     if (cm->delta_q_info.delta_lf_present_flag) {
5061       cm->delta_q_info.delta_lf_res = 1 << aom_rb_read_literal(rb, 2);
5062       cm->delta_q_info.delta_lf_multi = aom_rb_read_bit(rb);
5063       av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
5064     }
5065   }
5066 
5067   xd->cur_frame_force_integer_mv = features->cur_frame_force_integer_mv;
5068 
5069   for (int i = 0; i < MAX_SEGMENTS; ++i) {
5070     const int qindex = av1_get_qindex(&cm->seg, i, quant_params->base_qindex);
5071     xd->lossless[i] =
5072         qindex == 0 && quant_params->y_dc_delta_q == 0 &&
5073         quant_params->u_dc_delta_q == 0 && quant_params->u_ac_delta_q == 0 &&
5074         quant_params->v_dc_delta_q == 0 && quant_params->v_ac_delta_q == 0;
5075     xd->qindex[i] = qindex;
5076   }
5077   features->coded_lossless = is_coded_lossless(cm, xd);
5078   features->all_lossless = features->coded_lossless && !av1_superres_scaled(cm);
5079   setup_segmentation_dequant(cm, xd);
5080   if (features->coded_lossless) {
5081     cm->lf.filter_level[0] = 0;
5082     cm->lf.filter_level[1] = 0;
5083   }
5084   if (features->coded_lossless || !seq_params->enable_cdef) {
5085     cm->cdef_info.cdef_bits = 0;
5086     cm->cdef_info.cdef_strengths[0] = 0;
5087     cm->cdef_info.cdef_uv_strengths[0] = 0;
5088   }
5089   if (features->all_lossless || !seq_params->enable_restoration) {
5090     cm->rst_info[0].frame_restoration_type = RESTORE_NONE;
5091     cm->rst_info[1].frame_restoration_type = RESTORE_NONE;
5092     cm->rst_info[2].frame_restoration_type = RESTORE_NONE;
5093   }
5094   setup_loopfilter(cm, rb);
5095 
5096   if (!features->coded_lossless && seq_params->enable_cdef) {
5097     setup_cdef(cm, rb);
5098   }
5099   if (!features->all_lossless && seq_params->enable_restoration) {
5100     decode_restoration_mode(cm, rb);
5101   }
5102 
5103   features->tx_mode = read_tx_mode(rb, features->coded_lossless);
5104   current_frame->reference_mode = read_frame_reference_mode(cm, rb);
5105 
5106   av1_setup_skip_mode_allowed(cm);
5107   current_frame->skip_mode_info.skip_mode_flag =
5108       current_frame->skip_mode_info.skip_mode_allowed ? aom_rb_read_bit(rb) : 0;
5109 
5110   if (frame_might_allow_warped_motion(cm))
5111     features->allow_warped_motion = aom_rb_read_bit(rb);
5112   else
5113     features->allow_warped_motion = 0;
5114 
5115   features->reduced_tx_set_used = aom_rb_read_bit(rb);
5116 
5117   if (features->allow_ref_frame_mvs && !frame_might_allow_ref_frame_mvs(cm)) {
5118     aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
5119                        "Frame wrongly requests reference frame MVs");
5120   }
5121 
5122   if (!frame_is_intra_only(cm)) read_global_motion(cm, rb);
5123 
5124   cm->cur_frame->film_grain_params_present =
5125       seq_params->film_grain_params_present;
5126   read_film_grain(cm, rb);
5127 
5128 #if EXT_TILE_DEBUG
5129   if (pbi->ext_tile_debug && cm->tiles.large_scale) {
5130     read_ext_tile_info(pbi, rb);
5131     av1_set_single_tile_decoding_mode(cm);
5132   }
5133 #endif  // EXT_TILE_DEBUG
5134   return 0;
5135 }
5136 
av1_init_read_bit_buffer(AV1Decoder * pbi,struct aom_read_bit_buffer * rb,const uint8_t * data,const uint8_t * data_end)5137 struct aom_read_bit_buffer *av1_init_read_bit_buffer(
5138     AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data,
5139     const uint8_t *data_end) {
5140   rb->bit_offset = 0;
5141   rb->error_handler = error_handler;
5142   rb->error_handler_data = &pbi->common;
5143   rb->bit_buffer = data;
5144   rb->bit_buffer_end = data_end;
5145   return rb;
5146 }
5147 
av1_read_profile(struct aom_read_bit_buffer * rb)5148 BITSTREAM_PROFILE av1_read_profile(struct aom_read_bit_buffer *rb) {
5149   int profile = aom_rb_read_literal(rb, PROFILE_BITS);
5150   return (BITSTREAM_PROFILE)profile;
5151 }
5152 
superres_post_decode(AV1Decoder * pbi)5153 static inline void superres_post_decode(AV1Decoder *pbi) {
5154   AV1_COMMON *const cm = &pbi->common;
5155   BufferPool *const pool = cm->buffer_pool;
5156 
5157   if (!av1_superres_scaled(cm)) return;
5158   assert(!cm->features.all_lossless);
5159 
5160   av1_superres_upscale(cm, pool, 0);
5161 }
5162 
av1_decode_frame_headers_and_setup(AV1Decoder * pbi,struct aom_read_bit_buffer * rb,int trailing_bits_present)5163 uint32_t av1_decode_frame_headers_and_setup(AV1Decoder *pbi,
5164                                             struct aom_read_bit_buffer *rb,
5165                                             int trailing_bits_present) {
5166   AV1_COMMON *const cm = &pbi->common;
5167   const int num_planes = av1_num_planes(cm);
5168   MACROBLOCKD *const xd = &pbi->dcb.xd;
5169 
5170 #if CONFIG_BITSTREAM_DEBUG
5171   if (cm->seq_params->order_hint_info.enable_order_hint) {
5172     aom_bitstream_queue_set_frame_read(cm->current_frame.order_hint * 2 +
5173                                        cm->show_frame);
5174   } else {
5175     // This is currently used in RTC encoding. cm->show_frame is always 1.
5176     assert(cm->show_frame);
5177     aom_bitstream_queue_set_frame_read(cm->current_frame.frame_number);
5178   }
5179 #endif
5180 #if CONFIG_MISMATCH_DEBUG
5181   mismatch_move_frame_idx_r();
5182 #endif
5183 
5184   for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
5185     cm->global_motion[i] = default_warp_params;
5186     cm->cur_frame->global_motion[i] = default_warp_params;
5187   }
5188   xd->global_motion = cm->global_motion;
5189 
5190   read_uncompressed_header(pbi, rb);
5191 
5192   if (trailing_bits_present) av1_check_trailing_bits(pbi, rb);
5193 
5194   if (!cm->tiles.single_tile_decoding &&
5195       (pbi->dec_tile_row >= 0 || pbi->dec_tile_col >= 0)) {
5196     pbi->dec_tile_row = -1;
5197     pbi->dec_tile_col = -1;
5198   }
5199 
5200   const uint32_t uncomp_hdr_size =
5201       (uint32_t)aom_rb_bytes_read(rb);  // Size of the uncompressed header
5202   YV12_BUFFER_CONFIG *new_fb = &cm->cur_frame->buf;
5203   xd->cur_buf = new_fb;
5204   if (av1_allow_intrabc(cm)) {
5205     av1_setup_scale_factors_for_frame(
5206         &cm->sf_identity, xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height,
5207         xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height);
5208   }
5209 
5210   // Showing a frame directly.
5211   if (cm->show_existing_frame) {
5212     if (pbi->reset_decoder_state) {
5213       // Use the default frame context values.
5214       *cm->fc = *cm->default_frame_context;
5215       if (!cm->fc->initialized)
5216         aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
5217                            "Uninitialized entropy context.");
5218     }
5219     return uncomp_hdr_size;
5220   }
5221 
5222   cm->mi_params.setup_mi(&cm->mi_params);
5223 
5224   av1_calculate_ref_frame_side(cm);
5225   if (cm->features.allow_ref_frame_mvs) av1_setup_motion_field(cm);
5226 
5227   av1_setup_block_planes(xd, cm->seq_params->subsampling_x,
5228                          cm->seq_params->subsampling_y, num_planes);
5229   if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) {
5230     // use the default frame context values
5231     *cm->fc = *cm->default_frame_context;
5232   } else {
5233     *cm->fc = get_primary_ref_frame_buf(cm)->frame_context;
5234   }
5235   if (!cm->fc->initialized)
5236     aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
5237                        "Uninitialized entropy context.");
5238 
5239   pbi->dcb.corrupted = 0;
5240   return uncomp_hdr_size;
5241 }
5242 
5243 // Once-per-frame initialization
setup_frame_info(AV1Decoder * pbi)5244 static inline void setup_frame_info(AV1Decoder *pbi) {
5245   AV1_COMMON *const cm = &pbi->common;
5246 
5247   if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE ||
5248       cm->rst_info[1].frame_restoration_type != RESTORE_NONE ||
5249       cm->rst_info[2].frame_restoration_type != RESTORE_NONE) {
5250     av1_alloc_restoration_buffers(cm, /*is_sgr_enabled =*/true);
5251     for (int p = 0; p < av1_num_planes(cm); p++) {
5252       av1_alloc_restoration_struct(cm, &cm->rst_info[p], p > 0);
5253     }
5254   }
5255 
5256   const int use_highbd = cm->seq_params->use_highbitdepth;
5257   const int buf_size = MC_TEMP_BUF_PELS << use_highbd;
5258   if (pbi->td.mc_buf_size != buf_size) {
5259     av1_free_mc_tmp_buf(&pbi->td);
5260     allocate_mc_tmp_buf(cm, &pbi->td, buf_size, use_highbd);
5261   }
5262 }
5263 
av1_decode_tg_tiles_and_wrapup(AV1Decoder * pbi,const uint8_t * data,const uint8_t * data_end,const uint8_t ** p_data_end,int start_tile,int end_tile,int initialize_flag)5264 void av1_decode_tg_tiles_and_wrapup(AV1Decoder *pbi, const uint8_t *data,
5265                                     const uint8_t *data_end,
5266                                     const uint8_t **p_data_end, int start_tile,
5267                                     int end_tile, int initialize_flag) {
5268   AV1_COMMON *const cm = &pbi->common;
5269   CommonTileParams *const tiles = &cm->tiles;
5270   MACROBLOCKD *const xd = &pbi->dcb.xd;
5271   const int tile_count_tg = end_tile - start_tile + 1;
5272 
5273   xd->error_info = cm->error;
5274   if (initialize_flag) setup_frame_info(pbi);
5275   const int num_planes = av1_num_planes(cm);
5276 
5277   if (pbi->max_threads > 1 && !(tiles->large_scale && !pbi->ext_tile_debug) &&
5278       pbi->row_mt)
5279     *p_data_end =
5280         decode_tiles_row_mt(pbi, data, data_end, start_tile, end_tile);
5281   else if (pbi->max_threads > 1 && tile_count_tg > 1 &&
5282            !(tiles->large_scale && !pbi->ext_tile_debug))
5283     *p_data_end = decode_tiles_mt(pbi, data, data_end, start_tile, end_tile);
5284   else
5285     *p_data_end = decode_tiles(pbi, data, data_end, start_tile, end_tile);
5286 
5287   // If the bit stream is monochrome, set the U and V buffers to a constant.
5288   if (num_planes < 3) {
5289     set_planes_to_neutral_grey(cm->seq_params, xd->cur_buf, 1);
5290   }
5291 
5292   if (end_tile != tiles->rows * tiles->cols - 1) {
5293     return;
5294   }
5295 
5296   av1_alloc_cdef_buffers(cm, &pbi->cdef_worker, &pbi->cdef_sync,
5297                          pbi->num_workers, 1);
5298   av1_alloc_cdef_sync(cm, &pbi->cdef_sync, pbi->num_workers);
5299 
5300   if (!cm->features.allow_intrabc && !tiles->single_tile_decoding) {
5301     if (cm->lf.filter_level[0] || cm->lf.filter_level[1]) {
5302       av1_loop_filter_frame_mt(&cm->cur_frame->buf, cm, &pbi->dcb.xd, 0,
5303                                num_planes, 0, pbi->tile_workers,
5304                                pbi->num_workers, &pbi->lf_row_sync, 0);
5305     }
5306 
5307     const int do_cdef =
5308         !pbi->skip_loop_filter && !cm->features.coded_lossless &&
5309         (cm->cdef_info.cdef_bits || cm->cdef_info.cdef_strengths[0] ||
5310          cm->cdef_info.cdef_uv_strengths[0]);
5311     const int do_superres = av1_superres_scaled(cm);
5312     const int optimized_loop_restoration = !do_cdef && !do_superres;
5313     const int do_loop_restoration =
5314         cm->rst_info[0].frame_restoration_type != RESTORE_NONE ||
5315         cm->rst_info[1].frame_restoration_type != RESTORE_NONE ||
5316         cm->rst_info[2].frame_restoration_type != RESTORE_NONE;
5317     // Frame border extension is not required in the decoder
5318     // as it happens in extend_mc_border().
5319     int do_extend_border_mt = 0;
5320     if (!optimized_loop_restoration) {
5321       if (do_loop_restoration)
5322         av1_loop_restoration_save_boundary_lines(&pbi->common.cur_frame->buf,
5323                                                  cm, 0);
5324 
5325       if (do_cdef) {
5326         if (pbi->num_workers > 1) {
5327           av1_cdef_frame_mt(cm, &pbi->dcb.xd, pbi->cdef_worker,
5328                             pbi->tile_workers, &pbi->cdef_sync,
5329                             pbi->num_workers, av1_cdef_init_fb_row_mt,
5330                             do_extend_border_mt);
5331         } else {
5332           av1_cdef_frame(&pbi->common.cur_frame->buf, cm, &pbi->dcb.xd,
5333                          av1_cdef_init_fb_row);
5334         }
5335       }
5336 
5337       superres_post_decode(pbi);
5338 
5339       if (do_loop_restoration) {
5340         av1_loop_restoration_save_boundary_lines(&pbi->common.cur_frame->buf,
5341                                                  cm, 1);
5342         if (pbi->num_workers > 1) {
5343           av1_loop_restoration_filter_frame_mt(
5344               (YV12_BUFFER_CONFIG *)xd->cur_buf, cm, optimized_loop_restoration,
5345               pbi->tile_workers, pbi->num_workers, &pbi->lr_row_sync,
5346               &pbi->lr_ctxt, do_extend_border_mt);
5347         } else {
5348           av1_loop_restoration_filter_frame((YV12_BUFFER_CONFIG *)xd->cur_buf,
5349                                             cm, optimized_loop_restoration,
5350                                             &pbi->lr_ctxt);
5351         }
5352       }
5353     } else {
5354       // In no cdef and no superres case. Provide an optimized version of
5355       // loop_restoration_filter.
5356       if (do_loop_restoration) {
5357         if (pbi->num_workers > 1) {
5358           av1_loop_restoration_filter_frame_mt(
5359               (YV12_BUFFER_CONFIG *)xd->cur_buf, cm, optimized_loop_restoration,
5360               pbi->tile_workers, pbi->num_workers, &pbi->lr_row_sync,
5361               &pbi->lr_ctxt, do_extend_border_mt);
5362         } else {
5363           av1_loop_restoration_filter_frame((YV12_BUFFER_CONFIG *)xd->cur_buf,
5364                                             cm, optimized_loop_restoration,
5365                                             &pbi->lr_ctxt);
5366         }
5367       }
5368     }
5369   }
5370 
5371   if (!pbi->dcb.corrupted) {
5372     if (cm->features.refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
5373       assert(pbi->context_update_tile_id < pbi->allocated_tiles);
5374       *cm->fc = pbi->tile_data[pbi->context_update_tile_id].tctx;
5375       av1_reset_cdf_symbol_counters(cm->fc);
5376     }
5377   } else {
5378     aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
5379                        "Decode failed. Frame data is corrupted.");
5380   }
5381 
5382 #if CONFIG_INSPECTION
5383   if (pbi->inspect_cb != NULL) {
5384     (*pbi->inspect_cb)(pbi, pbi->inspect_ctx);
5385   }
5386 #endif
5387 
5388   // Non frame parallel update frame context here.
5389   if (!tiles->large_scale) {
5390     cm->cur_frame->frame_context = *cm->fc;
5391   }
5392 
5393   if (cm->show_frame && !cm->seq_params->order_hint_info.enable_order_hint) {
5394     ++cm->current_frame.frame_number;
5395   }
5396 }
5397