1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <assert.h>
13 #include <stdbool.h>
14 #include <stddef.h>
15
16 #include "config/aom_config.h"
17 #include "config/aom_scale_rtcd.h"
18
19 #include "aom/aom_codec.h"
20 #include "aom/aom_image.h"
21 #include "aom/internal/aom_codec_internal.h"
22 #include "aom_dsp/aom_dsp_common.h"
23 #include "aom_dsp/binary_codes_reader.h"
24 #include "aom_dsp/bitreader.h"
25 #include "aom_dsp/bitreader_buffer.h"
26 #include "aom_dsp/txfm_common.h"
27 #include "aom_mem/aom_mem.h"
28 #include "aom_ports/aom_timer.h"
29 #include "aom_ports/mem.h"
30 #include "aom_ports/mem_ops.h"
31 #include "aom_scale/yv12config.h"
32 #include "aom_util/aom_pthread.h"
33 #include "aom_util/aom_thread.h"
34
35 #if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
36 #include "aom_util/debug_util.h"
37 #endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
38
39 #include "av1/common/alloccommon.h"
40 #include "av1/common/av1_common_int.h"
41 #include "av1/common/blockd.h"
42 #include "av1/common/cdef.h"
43 #include "av1/common/cfl.h"
44 #include "av1/common/common_data.h"
45 #include "av1/common/common.h"
46 #include "av1/common/entropy.h"
47 #include "av1/common/entropymode.h"
48 #include "av1/common/entropymv.h"
49 #include "av1/common/enums.h"
50 #include "av1/common/frame_buffers.h"
51 #include "av1/common/idct.h"
52 #include "av1/common/mv.h"
53 #include "av1/common/mvref_common.h"
54 #include "av1/common/obmc.h"
55 #include "av1/common/pred_common.h"
56 #include "av1/common/quant_common.h"
57 #include "av1/common/reconinter.h"
58 #include "av1/common/reconintra.h"
59 #include "av1/common/resize.h"
60 #include "av1/common/restoration.h"
61 #include "av1/common/scale.h"
62 #include "av1/common/seg_common.h"
63 #include "av1/common/thread_common.h"
64 #include "av1/common/tile_common.h"
65 #include "av1/common/warped_motion.h"
66
67 #include "av1/decoder/decodeframe.h"
68 #include "av1/decoder/decodemv.h"
69 #include "av1/decoder/decoder.h"
70 #include "av1/decoder/decodetxb.h"
71 #include "av1/decoder/detokenize.h"
72 #if CONFIG_INSPECTION
73 #include "av1/decoder/inspection.h"
74 #endif
75
76 #define ACCT_STR __func__
77
78 #define AOM_MIN_THREADS_PER_TILE 1
79 #define AOM_MAX_THREADS_PER_TILE 2
80
81 // This is needed by ext_tile related unit tests.
82 #define EXT_TILE_DEBUG 1
83 #define MC_TEMP_BUF_PELS \
84 (((MAX_SB_SIZE)*2 + (AOM_INTERP_EXTEND)*2) * \
85 ((MAX_SB_SIZE)*2 + (AOM_INTERP_EXTEND)*2))
86
87 // Checks that the remaining bits start with a 1 and ends with 0s.
88 // It consumes an additional byte, if already byte aligned before the check.
av1_check_trailing_bits(AV1Decoder * pbi,struct aom_read_bit_buffer * rb)89 int av1_check_trailing_bits(AV1Decoder *pbi, struct aom_read_bit_buffer *rb) {
90 // bit_offset is set to 0 (mod 8) when the reader is already byte aligned
91 int bits_before_alignment = 8 - rb->bit_offset % 8;
92 int trailing = aom_rb_read_literal(rb, bits_before_alignment);
93 if (trailing != (1 << (bits_before_alignment - 1))) {
94 pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME;
95 return -1;
96 }
97 return 0;
98 }
99
100 // Use only_chroma = 1 to only set the chroma planes
set_planes_to_neutral_grey(const SequenceHeader * const seq_params,const YV12_BUFFER_CONFIG * const buf,int only_chroma)101 static inline void set_planes_to_neutral_grey(
102 const SequenceHeader *const seq_params, const YV12_BUFFER_CONFIG *const buf,
103 int only_chroma) {
104 if (seq_params->use_highbitdepth) {
105 const int val = 1 << (seq_params->bit_depth - 1);
106 for (int plane = only_chroma; plane < MAX_MB_PLANE; plane++) {
107 const int is_uv = plane > 0;
108 uint16_t *const base = CONVERT_TO_SHORTPTR(buf->buffers[plane]);
109 // Set the first row to neutral grey. Then copy the first row to all
110 // subsequent rows.
111 if (buf->crop_heights[is_uv] > 0) {
112 aom_memset16(base, val, buf->crop_widths[is_uv]);
113 for (int row_idx = 1; row_idx < buf->crop_heights[is_uv]; row_idx++) {
114 memcpy(&base[row_idx * buf->strides[is_uv]], base,
115 sizeof(*base) * buf->crop_widths[is_uv]);
116 }
117 }
118 }
119 } else {
120 for (int plane = only_chroma; plane < MAX_MB_PLANE; plane++) {
121 const int is_uv = plane > 0;
122 for (int row_idx = 0; row_idx < buf->crop_heights[is_uv]; row_idx++) {
123 memset(&buf->buffers[plane][row_idx * buf->strides[is_uv]], 1 << 7,
124 buf->crop_widths[is_uv]);
125 }
126 }
127 }
128 }
129
130 static inline void loop_restoration_read_sb_coeffs(const AV1_COMMON *const cm,
131 MACROBLOCKD *xd,
132 aom_reader *const r,
133 int plane, int runit_idx);
134
read_is_valid(const uint8_t * start,size_t len,const uint8_t * end)135 static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) {
136 return len != 0 && len <= (size_t)(end - start);
137 }
138
read_tx_mode(struct aom_read_bit_buffer * rb,int coded_lossless)139 static TX_MODE read_tx_mode(struct aom_read_bit_buffer *rb,
140 int coded_lossless) {
141 if (coded_lossless) return ONLY_4X4;
142 return aom_rb_read_bit(rb) ? TX_MODE_SELECT : TX_MODE_LARGEST;
143 }
144
read_frame_reference_mode(const AV1_COMMON * cm,struct aom_read_bit_buffer * rb)145 static REFERENCE_MODE read_frame_reference_mode(
146 const AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
147 if (frame_is_intra_only(cm)) {
148 return SINGLE_REFERENCE;
149 } else {
150 return aom_rb_read_bit(rb) ? REFERENCE_MODE_SELECT : SINGLE_REFERENCE;
151 }
152 }
153
inverse_transform_block(DecoderCodingBlock * dcb,int plane,const TX_TYPE tx_type,const TX_SIZE tx_size,uint8_t * dst,int stride,int reduced_tx_set)154 static inline void inverse_transform_block(DecoderCodingBlock *dcb, int plane,
155 const TX_TYPE tx_type,
156 const TX_SIZE tx_size, uint8_t *dst,
157 int stride, int reduced_tx_set) {
158 tran_low_t *const dqcoeff = dcb->dqcoeff_block[plane] + dcb->cb_offset[plane];
159 eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane];
160 uint16_t scan_line = eob_data->max_scan_line;
161 uint16_t eob = eob_data->eob;
162 av1_inverse_transform_block(&dcb->xd, dqcoeff, plane, tx_type, tx_size, dst,
163 stride, eob, reduced_tx_set);
164 memset(dqcoeff, 0, (scan_line + 1) * sizeof(dqcoeff[0]));
165 }
166
read_coeffs_tx_intra_block(const AV1_COMMON * const cm,DecoderCodingBlock * dcb,aom_reader * const r,const int plane,const int row,const int col,const TX_SIZE tx_size)167 static inline void read_coeffs_tx_intra_block(
168 const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r,
169 const int plane, const int row, const int col, const TX_SIZE tx_size) {
170 MB_MODE_INFO *mbmi = dcb->xd.mi[0];
171 if (!mbmi->skip_txfm) {
172 #if TXCOEFF_TIMER
173 struct aom_usec_timer timer;
174 aom_usec_timer_start(&timer);
175 #endif
176 av1_read_coeffs_txb(cm, dcb, r, plane, row, col, tx_size);
177 #if TXCOEFF_TIMER
178 aom_usec_timer_mark(&timer);
179 const int64_t elapsed_time = aom_usec_timer_elapsed(&timer);
180 cm->txcoeff_timer += elapsed_time;
181 ++cm->txb_count;
182 #endif
183 }
184 }
185
decode_block_void(const AV1_COMMON * const cm,DecoderCodingBlock * dcb,aom_reader * const r,const int plane,const int row,const int col,const TX_SIZE tx_size)186 static inline void decode_block_void(const AV1_COMMON *const cm,
187 DecoderCodingBlock *dcb,
188 aom_reader *const r, const int plane,
189 const int row, const int col,
190 const TX_SIZE tx_size) {
191 (void)cm;
192 (void)dcb;
193 (void)r;
194 (void)plane;
195 (void)row;
196 (void)col;
197 (void)tx_size;
198 }
199
predict_inter_block_void(AV1_COMMON * const cm,DecoderCodingBlock * dcb,BLOCK_SIZE bsize)200 static inline void predict_inter_block_void(AV1_COMMON *const cm,
201 DecoderCodingBlock *dcb,
202 BLOCK_SIZE bsize) {
203 (void)cm;
204 (void)dcb;
205 (void)bsize;
206 }
207
cfl_store_inter_block_void(AV1_COMMON * const cm,MACROBLOCKD * const xd)208 static inline void cfl_store_inter_block_void(AV1_COMMON *const cm,
209 MACROBLOCKD *const xd) {
210 (void)cm;
211 (void)xd;
212 }
213
predict_and_reconstruct_intra_block(const AV1_COMMON * const cm,DecoderCodingBlock * dcb,aom_reader * const r,const int plane,const int row,const int col,const TX_SIZE tx_size)214 static inline void predict_and_reconstruct_intra_block(
215 const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r,
216 const int plane, const int row, const int col, const TX_SIZE tx_size) {
217 (void)r;
218 MACROBLOCKD *const xd = &dcb->xd;
219 MB_MODE_INFO *mbmi = xd->mi[0];
220 PLANE_TYPE plane_type = get_plane_type(plane);
221
222 av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size);
223
224 if (!mbmi->skip_txfm) {
225 eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane];
226 if (eob_data->eob) {
227 const bool reduced_tx_set_used = cm->features.reduced_tx_set_used;
228 // tx_type was read out in av1_read_coeffs_txb.
229 const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, row, col, tx_size,
230 reduced_tx_set_used);
231 struct macroblockd_plane *const pd = &xd->plane[plane];
232 uint8_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << MI_SIZE_LOG2];
233 inverse_transform_block(dcb, plane, tx_type, tx_size, dst, pd->dst.stride,
234 reduced_tx_set_used);
235 }
236 }
237 if (plane == AOM_PLANE_Y && store_cfl_required(cm, xd)) {
238 cfl_store_tx(xd, row, col, tx_size, mbmi->bsize);
239 }
240 }
241
inverse_transform_inter_block(const AV1_COMMON * const cm,DecoderCodingBlock * dcb,aom_reader * const r,const int plane,const int blk_row,const int blk_col,const TX_SIZE tx_size)242 static inline void inverse_transform_inter_block(
243 const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r,
244 const int plane, const int blk_row, const int blk_col,
245 const TX_SIZE tx_size) {
246 (void)r;
247 MACROBLOCKD *const xd = &dcb->xd;
248 PLANE_TYPE plane_type = get_plane_type(plane);
249 const struct macroblockd_plane *const pd = &xd->plane[plane];
250 const bool reduced_tx_set_used = cm->features.reduced_tx_set_used;
251 // tx_type was read out in av1_read_coeffs_txb.
252 const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col,
253 tx_size, reduced_tx_set_used);
254
255 uint8_t *dst =
256 &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2];
257 inverse_transform_block(dcb, plane, tx_type, tx_size, dst, pd->dst.stride,
258 reduced_tx_set_used);
259 #if CONFIG_MISMATCH_DEBUG
260 int pixel_c, pixel_r;
261 BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
262 int blk_w = block_size_wide[bsize];
263 int blk_h = block_size_high[bsize];
264 const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2);
265 const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2);
266 mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, blk_col, blk_row,
267 pd->subsampling_x, pd->subsampling_y);
268 mismatch_check_block_tx(dst, pd->dst.stride, cm->current_frame.order_hint,
269 plane, pixel_c, pixel_r, blk_w, blk_h,
270 xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
271 #endif
272 }
273
set_cb_buffer_offsets(DecoderCodingBlock * dcb,TX_SIZE tx_size,int plane)274 static inline void set_cb_buffer_offsets(DecoderCodingBlock *dcb,
275 TX_SIZE tx_size, int plane) {
276 dcb->cb_offset[plane] += tx_size_wide[tx_size] * tx_size_high[tx_size];
277 dcb->txb_offset[plane] =
278 dcb->cb_offset[plane] / (TX_SIZE_W_MIN * TX_SIZE_H_MIN);
279 }
280
decode_reconstruct_tx(AV1_COMMON * cm,ThreadData * const td,aom_reader * r,MB_MODE_INFO * const mbmi,int plane,BLOCK_SIZE plane_bsize,int blk_row,int blk_col,int block,TX_SIZE tx_size,int * eob_total)281 static inline void decode_reconstruct_tx(AV1_COMMON *cm, ThreadData *const td,
282 aom_reader *r,
283 MB_MODE_INFO *const mbmi, int plane,
284 BLOCK_SIZE plane_bsize, int blk_row,
285 int blk_col, int block,
286 TX_SIZE tx_size, int *eob_total) {
287 DecoderCodingBlock *const dcb = &td->dcb;
288 MACROBLOCKD *const xd = &dcb->xd;
289 const struct macroblockd_plane *const pd = &xd->plane[plane];
290 const TX_SIZE plane_tx_size =
291 plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
292 pd->subsampling_y)
293 : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
294 blk_col)];
295 // Scale to match transform block unit.
296 const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
297 const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
298
299 if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
300
301 if (tx_size == plane_tx_size || plane) {
302 td->read_coeffs_tx_inter_block_visit(cm, dcb, r, plane, blk_row, blk_col,
303 tx_size);
304
305 td->inverse_tx_inter_block_visit(cm, dcb, r, plane, blk_row, blk_col,
306 tx_size);
307 eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane];
308 *eob_total += eob_data->eob;
309 set_cb_buffer_offsets(dcb, tx_size, plane);
310 } else {
311 const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
312 assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size));
313 assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size));
314 const int bsw = tx_size_wide_unit[sub_txs];
315 const int bsh = tx_size_high_unit[sub_txs];
316 const int sub_step = bsw * bsh;
317 const int row_end =
318 AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
319 const int col_end =
320 AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
321
322 assert(bsw > 0 && bsh > 0);
323
324 for (int row = 0; row < row_end; row += bsh) {
325 const int offsetr = blk_row + row;
326 for (int col = 0; col < col_end; col += bsw) {
327 const int offsetc = blk_col + col;
328
329 decode_reconstruct_tx(cm, td, r, mbmi, plane, plane_bsize, offsetr,
330 offsetc, block, sub_txs, eob_total);
331 block += sub_step;
332 }
333 }
334 }
335 }
336
set_offsets(AV1_COMMON * const cm,MACROBLOCKD * const xd,BLOCK_SIZE bsize,int mi_row,int mi_col,int bw,int bh,int x_mis,int y_mis)337 static inline void set_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd,
338 BLOCK_SIZE bsize, int mi_row, int mi_col, int bw,
339 int bh, int x_mis, int y_mis) {
340 const int num_planes = av1_num_planes(cm);
341 const CommonModeInfoParams *const mi_params = &cm->mi_params;
342 const TileInfo *const tile = &xd->tile;
343
344 set_mi_offsets(mi_params, xd, mi_row, mi_col);
345 xd->mi[0]->bsize = bsize;
346 #if CONFIG_RD_DEBUG
347 xd->mi[0]->mi_row = mi_row;
348 xd->mi[0]->mi_col = mi_col;
349 #endif
350
351 assert(x_mis && y_mis);
352 for (int x = 1; x < x_mis; ++x) xd->mi[x] = xd->mi[0];
353 int idx = mi_params->mi_stride;
354 for (int y = 1; y < y_mis; ++y) {
355 memcpy(&xd->mi[idx], &xd->mi[0], x_mis * sizeof(xd->mi[0]));
356 idx += mi_params->mi_stride;
357 }
358
359 set_plane_n4(xd, bw, bh, num_planes);
360 set_entropy_context(xd, mi_row, mi_col, num_planes);
361
362 // Distance of Mb to the various image edges. These are specified to 8th pel
363 // as they are always compared to values that are in 1/8th pel units
364 set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
365 mi_params->mi_cols);
366
367 av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0,
368 num_planes);
369 }
370
decode_mbmi_block(AV1Decoder * const pbi,DecoderCodingBlock * dcb,int mi_row,int mi_col,aom_reader * r,PARTITION_TYPE partition,BLOCK_SIZE bsize)371 static inline void decode_mbmi_block(AV1Decoder *const pbi,
372 DecoderCodingBlock *dcb, int mi_row,
373 int mi_col, aom_reader *r,
374 PARTITION_TYPE partition,
375 BLOCK_SIZE bsize) {
376 AV1_COMMON *const cm = &pbi->common;
377 const SequenceHeader *const seq_params = cm->seq_params;
378 const int bw = mi_size_wide[bsize];
379 const int bh = mi_size_high[bsize];
380 const int x_mis = AOMMIN(bw, cm->mi_params.mi_cols - mi_col);
381 const int y_mis = AOMMIN(bh, cm->mi_params.mi_rows - mi_row);
382 MACROBLOCKD *const xd = &dcb->xd;
383
384 #if CONFIG_ACCOUNTING
385 aom_accounting_set_context(&pbi->accounting, mi_col, mi_row);
386 #endif
387 set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis);
388 xd->mi[0]->partition = partition;
389 av1_read_mode_info(pbi, dcb, r, x_mis, y_mis);
390 if (bsize >= BLOCK_8X8 &&
391 (seq_params->subsampling_x || seq_params->subsampling_y)) {
392 const BLOCK_SIZE uv_subsize =
393 av1_ss_size_lookup[bsize][seq_params->subsampling_x]
394 [seq_params->subsampling_y];
395 if (uv_subsize == BLOCK_INVALID)
396 aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
397 "Invalid block size.");
398 }
399 }
400
401 typedef struct PadBlock {
402 int x0;
403 int x1;
404 int y0;
405 int y1;
406 } PadBlock;
407
408 #if CONFIG_AV1_HIGHBITDEPTH
highbd_build_mc_border(const uint8_t * src8,int src_stride,uint8_t * dst8,int dst_stride,int x,int y,int b_w,int b_h,int w,int h)409 static inline void highbd_build_mc_border(const uint8_t *src8, int src_stride,
410 uint8_t *dst8, int dst_stride, int x,
411 int y, int b_w, int b_h, int w,
412 int h) {
413 // Get a pointer to the start of the real data for this row.
414 const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
415 uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
416 const uint16_t *ref_row = src - x - y * src_stride;
417
418 if (y >= h)
419 ref_row += (h - 1) * src_stride;
420 else if (y > 0)
421 ref_row += y * src_stride;
422
423 do {
424 int right = 0, copy;
425 int left = x < 0 ? -x : 0;
426
427 if (left > b_w) left = b_w;
428
429 if (x + b_w > w) right = x + b_w - w;
430
431 if (right > b_w) right = b_w;
432
433 copy = b_w - left - right;
434
435 if (left) aom_memset16(dst, ref_row[0], left);
436
437 if (copy) memcpy(dst + left, ref_row + x + left, copy * sizeof(uint16_t));
438
439 if (right) aom_memset16(dst + left + copy, ref_row[w - 1], right);
440
441 dst += dst_stride;
442 ++y;
443
444 if (y > 0 && y < h) ref_row += src_stride;
445 } while (--b_h);
446 }
447 #endif // CONFIG_AV1_HIGHBITDEPTH
448
build_mc_border(const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,int x,int y,int b_w,int b_h,int w,int h)449 static inline void build_mc_border(const uint8_t *src, int src_stride,
450 uint8_t *dst, int dst_stride, int x, int y,
451 int b_w, int b_h, int w, int h) {
452 // Get a pointer to the start of the real data for this row.
453 const uint8_t *ref_row = src - x - y * src_stride;
454
455 if (y >= h)
456 ref_row += (h - 1) * src_stride;
457 else if (y > 0)
458 ref_row += y * src_stride;
459
460 do {
461 int right = 0, copy;
462 int left = x < 0 ? -x : 0;
463
464 if (left > b_w) left = b_w;
465
466 if (x + b_w > w) right = x + b_w - w;
467
468 if (right > b_w) right = b_w;
469
470 copy = b_w - left - right;
471
472 if (left) memset(dst, ref_row[0], left);
473
474 if (copy) memcpy(dst + left, ref_row + x + left, copy);
475
476 if (right) memset(dst + left + copy, ref_row[w - 1], right);
477
478 dst += dst_stride;
479 ++y;
480
481 if (y > 0 && y < h) ref_row += src_stride;
482 } while (--b_h);
483 }
484
update_extend_mc_border_params(const struct scale_factors * const sf,struct buf_2d * const pre_buf,MV32 scaled_mv,PadBlock * block,int subpel_x_mv,int subpel_y_mv,int do_warp,int is_intrabc,int * x_pad,int * y_pad)485 static inline int update_extend_mc_border_params(
486 const struct scale_factors *const sf, struct buf_2d *const pre_buf,
487 MV32 scaled_mv, PadBlock *block, int subpel_x_mv, int subpel_y_mv,
488 int do_warp, int is_intrabc, int *x_pad, int *y_pad) {
489 const int is_scaled = av1_is_scaled(sf);
490 // Get reference width and height.
491 int frame_width = pre_buf->width;
492 int frame_height = pre_buf->height;
493
494 // Do border extension if there is motion or
495 // width/height is not a multiple of 8 pixels.
496 if ((!is_intrabc) && (!do_warp) &&
497 (is_scaled || scaled_mv.col || scaled_mv.row || (frame_width & 0x7) ||
498 (frame_height & 0x7))) {
499 if (subpel_x_mv || (sf->x_step_q4 != SUBPEL_SHIFTS)) {
500 block->x0 -= AOM_INTERP_EXTEND - 1;
501 block->x1 += AOM_INTERP_EXTEND;
502 *x_pad = 1;
503 }
504
505 if (subpel_y_mv || (sf->y_step_q4 != SUBPEL_SHIFTS)) {
506 block->y0 -= AOM_INTERP_EXTEND - 1;
507 block->y1 += AOM_INTERP_EXTEND;
508 *y_pad = 1;
509 }
510
511 // Skip border extension if block is inside the frame.
512 if (block->x0 < 0 || block->x1 > frame_width - 1 || block->y0 < 0 ||
513 block->y1 > frame_height - 1) {
514 return 1;
515 }
516 }
517 return 0;
518 }
519
extend_mc_border(const struct scale_factors * const sf,struct buf_2d * const pre_buf,MV32 scaled_mv,PadBlock block,int subpel_x_mv,int subpel_y_mv,int do_warp,int is_intrabc,int highbd,uint8_t * mc_buf,uint8_t ** pre,int * src_stride)520 static inline void extend_mc_border(const struct scale_factors *const sf,
521 struct buf_2d *const pre_buf,
522 MV32 scaled_mv, PadBlock block,
523 int subpel_x_mv, int subpel_y_mv,
524 int do_warp, int is_intrabc, int highbd,
525 uint8_t *mc_buf, uint8_t **pre,
526 int *src_stride) {
527 int x_pad = 0, y_pad = 0;
528 if (update_extend_mc_border_params(sf, pre_buf, scaled_mv, &block,
529 subpel_x_mv, subpel_y_mv, do_warp,
530 is_intrabc, &x_pad, &y_pad)) {
531 // Get reference block pointer.
532 const uint8_t *const buf_ptr =
533 pre_buf->buf0 + block.y0 * pre_buf->stride + block.x0;
534 int buf_stride = pre_buf->stride;
535 const int b_w = block.x1 - block.x0;
536 const int b_h = block.y1 - block.y0;
537
538 #if CONFIG_AV1_HIGHBITDEPTH
539 // Extend the border.
540 if (highbd) {
541 highbd_build_mc_border(buf_ptr, buf_stride, mc_buf, b_w, block.x0,
542 block.y0, b_w, b_h, pre_buf->width,
543 pre_buf->height);
544 } else {
545 build_mc_border(buf_ptr, buf_stride, mc_buf, b_w, block.x0, block.y0, b_w,
546 b_h, pre_buf->width, pre_buf->height);
547 }
548 #else
549 (void)highbd;
550 build_mc_border(buf_ptr, buf_stride, mc_buf, b_w, block.x0, block.y0, b_w,
551 b_h, pre_buf->width, pre_buf->height);
552 #endif
553 *src_stride = b_w;
554 *pre = mc_buf + y_pad * (AOM_INTERP_EXTEND - 1) * b_w +
555 x_pad * (AOM_INTERP_EXTEND - 1);
556 }
557 }
558
dec_calc_subpel_params(const MV * const src_mv,InterPredParams * const inter_pred_params,const MACROBLOCKD * const xd,int mi_x,int mi_y,uint8_t ** pre,SubpelParams * subpel_params,int * src_stride,PadBlock * block,MV32 * scaled_mv,int * subpel_x_mv,int * subpel_y_mv)559 static inline void dec_calc_subpel_params(
560 const MV *const src_mv, InterPredParams *const inter_pred_params,
561 const MACROBLOCKD *const xd, int mi_x, int mi_y, uint8_t **pre,
562 SubpelParams *subpel_params, int *src_stride, PadBlock *block,
563 MV32 *scaled_mv, int *subpel_x_mv, int *subpel_y_mv) {
564 const struct scale_factors *sf = inter_pred_params->scale_factors;
565 struct buf_2d *pre_buf = &inter_pred_params->ref_frame_buf;
566 const int bw = inter_pred_params->block_width;
567 const int bh = inter_pred_params->block_height;
568 const int is_scaled = av1_is_scaled(sf);
569 if (is_scaled) {
570 int ssx = inter_pred_params->subsampling_x;
571 int ssy = inter_pred_params->subsampling_y;
572 int orig_pos_y = inter_pred_params->pix_row << SUBPEL_BITS;
573 orig_pos_y += src_mv->row * (1 << (1 - ssy));
574 int orig_pos_x = inter_pred_params->pix_col << SUBPEL_BITS;
575 orig_pos_x += src_mv->col * (1 << (1 - ssx));
576 int pos_y = av1_scaled_y(orig_pos_y, sf);
577 int pos_x = av1_scaled_x(orig_pos_x, sf);
578 pos_x += SCALE_EXTRA_OFF;
579 pos_y += SCALE_EXTRA_OFF;
580
581 const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy);
582 const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx);
583 const int bottom = (pre_buf->height + AOM_INTERP_EXTEND)
584 << SCALE_SUBPEL_BITS;
585 const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS;
586 pos_y = clamp(pos_y, top, bottom);
587 pos_x = clamp(pos_x, left, right);
588
589 subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK;
590 subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK;
591 subpel_params->xs = sf->x_step_q4;
592 subpel_params->ys = sf->y_step_q4;
593
594 // Get reference block top left coordinate.
595 block->x0 = pos_x >> SCALE_SUBPEL_BITS;
596 block->y0 = pos_y >> SCALE_SUBPEL_BITS;
597
598 // Get reference block bottom right coordinate.
599 block->x1 =
600 ((pos_x + (bw - 1) * subpel_params->xs) >> SCALE_SUBPEL_BITS) + 1;
601 block->y1 =
602 ((pos_y + (bh - 1) * subpel_params->ys) >> SCALE_SUBPEL_BITS) + 1;
603
604 MV temp_mv;
605 temp_mv = clamp_mv_to_umv_border_sb(xd, src_mv, bw, bh,
606 inter_pred_params->subsampling_x,
607 inter_pred_params->subsampling_y);
608 *scaled_mv = av1_scale_mv(&temp_mv, mi_x, mi_y, sf);
609 scaled_mv->row += SCALE_EXTRA_OFF;
610 scaled_mv->col += SCALE_EXTRA_OFF;
611
612 *subpel_x_mv = scaled_mv->col & SCALE_SUBPEL_MASK;
613 *subpel_y_mv = scaled_mv->row & SCALE_SUBPEL_MASK;
614 } else {
615 // Get block position in current frame.
616 int pos_x = inter_pred_params->pix_col << SUBPEL_BITS;
617 int pos_y = inter_pred_params->pix_row << SUBPEL_BITS;
618
619 const MV mv_q4 = clamp_mv_to_umv_border_sb(
620 xd, src_mv, bw, bh, inter_pred_params->subsampling_x,
621 inter_pred_params->subsampling_y);
622 subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS;
623 subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS;
624 subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS;
625
626 // Get reference block top left coordinate.
627 pos_x += mv_q4.col;
628 pos_y += mv_q4.row;
629 block->x0 = pos_x >> SUBPEL_BITS;
630 block->y0 = pos_y >> SUBPEL_BITS;
631
632 // Get reference block bottom right coordinate.
633 block->x1 = (pos_x >> SUBPEL_BITS) + (bw - 1) + 1;
634 block->y1 = (pos_y >> SUBPEL_BITS) + (bh - 1) + 1;
635
636 scaled_mv->row = mv_q4.row;
637 scaled_mv->col = mv_q4.col;
638 *subpel_x_mv = scaled_mv->col & SUBPEL_MASK;
639 *subpel_y_mv = scaled_mv->row & SUBPEL_MASK;
640 }
641 *pre = pre_buf->buf0 + block->y0 * pre_buf->stride + block->x0;
642 *src_stride = pre_buf->stride;
643 }
644
dec_calc_subpel_params_and_extend(const MV * const src_mv,InterPredParams * const inter_pred_params,MACROBLOCKD * const xd,int mi_x,int mi_y,int ref,uint8_t ** mc_buf,uint8_t ** pre,SubpelParams * subpel_params,int * src_stride)645 static inline void dec_calc_subpel_params_and_extend(
646 const MV *const src_mv, InterPredParams *const inter_pred_params,
647 MACROBLOCKD *const xd, int mi_x, int mi_y, int ref, uint8_t **mc_buf,
648 uint8_t **pre, SubpelParams *subpel_params, int *src_stride) {
649 PadBlock block;
650 MV32 scaled_mv;
651 int subpel_x_mv, subpel_y_mv;
652 dec_calc_subpel_params(src_mv, inter_pred_params, xd, mi_x, mi_y, pre,
653 subpel_params, src_stride, &block, &scaled_mv,
654 &subpel_x_mv, &subpel_y_mv);
655 extend_mc_border(
656 inter_pred_params->scale_factors, &inter_pred_params->ref_frame_buf,
657 scaled_mv, block, subpel_x_mv, subpel_y_mv,
658 inter_pred_params->mode == WARP_PRED, inter_pred_params->is_intrabc,
659 inter_pred_params->use_hbd_buf, mc_buf[ref], pre, src_stride);
660 }
661
662 #define IS_DEC 1
663 #include "av1/common/reconinter_template.inc"
664 #undef IS_DEC
665
dec_build_inter_predictors(const AV1_COMMON * cm,DecoderCodingBlock * dcb,int plane,const MB_MODE_INFO * mi,int build_for_obmc,int bw,int bh,int mi_x,int mi_y)666 static void dec_build_inter_predictors(const AV1_COMMON *cm,
667 DecoderCodingBlock *dcb, int plane,
668 const MB_MODE_INFO *mi,
669 int build_for_obmc, int bw, int bh,
670 int mi_x, int mi_y) {
671 build_inter_predictors(cm, &dcb->xd, plane, mi, build_for_obmc, bw, bh, mi_x,
672 mi_y, dcb->mc_buf);
673 }
674
dec_build_inter_predictor(const AV1_COMMON * cm,DecoderCodingBlock * dcb,int mi_row,int mi_col,BLOCK_SIZE bsize)675 static inline void dec_build_inter_predictor(const AV1_COMMON *cm,
676 DecoderCodingBlock *dcb,
677 int mi_row, int mi_col,
678 BLOCK_SIZE bsize) {
679 MACROBLOCKD *const xd = &dcb->xd;
680 const int num_planes = av1_num_planes(cm);
681 for (int plane = 0; plane < num_planes; ++plane) {
682 if (plane && !xd->is_chroma_ref) break;
683 const int mi_x = mi_col * MI_SIZE;
684 const int mi_y = mi_row * MI_SIZE;
685 dec_build_inter_predictors(cm, dcb, plane, xd->mi[0], 0,
686 xd->plane[plane].width, xd->plane[plane].height,
687 mi_x, mi_y);
688 if (is_interintra_pred(xd->mi[0])) {
689 BUFFER_SET ctx = { { xd->plane[0].dst.buf, xd->plane[1].dst.buf,
690 xd->plane[2].dst.buf },
691 { xd->plane[0].dst.stride, xd->plane[1].dst.stride,
692 xd->plane[2].dst.stride } };
693 av1_build_interintra_predictor(cm, xd, xd->plane[plane].dst.buf,
694 xd->plane[plane].dst.stride, &ctx, plane,
695 bsize);
696 }
697 }
698 }
699
dec_build_prediction_by_above_pred(MACROBLOCKD * const xd,int rel_mi_row,int rel_mi_col,uint8_t op_mi_size,int dir,MB_MODE_INFO * above_mbmi,void * fun_ctxt,const int num_planes)700 static inline void dec_build_prediction_by_above_pred(
701 MACROBLOCKD *const xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
702 int dir, MB_MODE_INFO *above_mbmi, void *fun_ctxt, const int num_planes) {
703 struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt;
704 const int above_mi_col = xd->mi_col + rel_mi_col;
705 int mi_x, mi_y;
706 MB_MODE_INFO backup_mbmi = *above_mbmi;
707
708 (void)rel_mi_row;
709 (void)dir;
710
711 av1_setup_build_prediction_by_above_pred(xd, rel_mi_col, op_mi_size,
712 &backup_mbmi, ctxt, num_planes);
713 mi_x = above_mi_col << MI_SIZE_LOG2;
714 mi_y = xd->mi_row << MI_SIZE_LOG2;
715
716 const BLOCK_SIZE bsize = xd->mi[0]->bsize;
717
718 for (int j = 0; j < num_planes; ++j) {
719 const struct macroblockd_plane *pd = &xd->plane[j];
720 int bw = (op_mi_size * MI_SIZE) >> pd->subsampling_x;
721 int bh = clamp(block_size_high[bsize] >> (pd->subsampling_y + 1), 4,
722 block_size_high[BLOCK_64X64] >> (pd->subsampling_y + 1));
723
724 if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue;
725 dec_build_inter_predictors(ctxt->cm, (DecoderCodingBlock *)ctxt->dcb, j,
726 &backup_mbmi, 1, bw, bh, mi_x, mi_y);
727 }
728 }
729
dec_build_prediction_by_above_preds(const AV1_COMMON * cm,DecoderCodingBlock * dcb,uint8_t * tmp_buf[MAX_MB_PLANE],int tmp_width[MAX_MB_PLANE],int tmp_height[MAX_MB_PLANE],int tmp_stride[MAX_MB_PLANE])730 static inline void dec_build_prediction_by_above_preds(
731 const AV1_COMMON *cm, DecoderCodingBlock *dcb,
732 uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE],
733 int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) {
734 MACROBLOCKD *const xd = &dcb->xd;
735 if (!xd->up_available) return;
736
737 // Adjust mb_to_bottom_edge to have the correct value for the OBMC
738 // prediction block. This is half the height of the original block,
739 // except for 128-wide blocks, where we only use a height of 32.
740 const int this_height = xd->height * MI_SIZE;
741 const int pred_height = AOMMIN(this_height / 2, 32);
742 xd->mb_to_bottom_edge += GET_MV_SUBPEL(this_height - pred_height);
743 struct build_prediction_ctxt ctxt = {
744 cm, tmp_buf, tmp_width, tmp_height, tmp_stride, xd->mb_to_right_edge, dcb
745 };
746 const BLOCK_SIZE bsize = xd->mi[0]->bsize;
747 foreach_overlappable_nb_above(cm, xd,
748 max_neighbor_obmc[mi_size_wide_log2[bsize]],
749 dec_build_prediction_by_above_pred, &ctxt);
750
751 xd->mb_to_left_edge = -GET_MV_SUBPEL(xd->mi_col * MI_SIZE);
752 xd->mb_to_right_edge = ctxt.mb_to_far_edge;
753 xd->mb_to_bottom_edge -= GET_MV_SUBPEL(this_height - pred_height);
754 }
755
dec_build_prediction_by_left_pred(MACROBLOCKD * const xd,int rel_mi_row,int rel_mi_col,uint8_t op_mi_size,int dir,MB_MODE_INFO * left_mbmi,void * fun_ctxt,const int num_planes)756 static inline void dec_build_prediction_by_left_pred(
757 MACROBLOCKD *const xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
758 int dir, MB_MODE_INFO *left_mbmi, void *fun_ctxt, const int num_planes) {
759 struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt;
760 const int left_mi_row = xd->mi_row + rel_mi_row;
761 int mi_x, mi_y;
762 MB_MODE_INFO backup_mbmi = *left_mbmi;
763
764 (void)rel_mi_col;
765 (void)dir;
766
767 av1_setup_build_prediction_by_left_pred(xd, rel_mi_row, op_mi_size,
768 &backup_mbmi, ctxt, num_planes);
769 mi_x = xd->mi_col << MI_SIZE_LOG2;
770 mi_y = left_mi_row << MI_SIZE_LOG2;
771 const BLOCK_SIZE bsize = xd->mi[0]->bsize;
772
773 for (int j = 0; j < num_planes; ++j) {
774 const struct macroblockd_plane *pd = &xd->plane[j];
775 int bw = clamp(block_size_wide[bsize] >> (pd->subsampling_x + 1), 4,
776 block_size_wide[BLOCK_64X64] >> (pd->subsampling_x + 1));
777 int bh = (op_mi_size << MI_SIZE_LOG2) >> pd->subsampling_y;
778
779 if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue;
780 dec_build_inter_predictors(ctxt->cm, (DecoderCodingBlock *)ctxt->dcb, j,
781 &backup_mbmi, 1, bw, bh, mi_x, mi_y);
782 }
783 }
784
dec_build_prediction_by_left_preds(const AV1_COMMON * cm,DecoderCodingBlock * dcb,uint8_t * tmp_buf[MAX_MB_PLANE],int tmp_width[MAX_MB_PLANE],int tmp_height[MAX_MB_PLANE],int tmp_stride[MAX_MB_PLANE])785 static inline void dec_build_prediction_by_left_preds(
786 const AV1_COMMON *cm, DecoderCodingBlock *dcb,
787 uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE],
788 int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) {
789 MACROBLOCKD *const xd = &dcb->xd;
790 if (!xd->left_available) return;
791
792 // Adjust mb_to_right_edge to have the correct value for the OBMC
793 // prediction block. This is half the width of the original block,
794 // except for 128-wide blocks, where we only use a width of 32.
795 const int this_width = xd->width * MI_SIZE;
796 const int pred_width = AOMMIN(this_width / 2, 32);
797 xd->mb_to_right_edge += GET_MV_SUBPEL(this_width - pred_width);
798
799 struct build_prediction_ctxt ctxt = {
800 cm, tmp_buf, tmp_width, tmp_height, tmp_stride, xd->mb_to_bottom_edge, dcb
801 };
802 const BLOCK_SIZE bsize = xd->mi[0]->bsize;
803 foreach_overlappable_nb_left(cm, xd,
804 max_neighbor_obmc[mi_size_high_log2[bsize]],
805 dec_build_prediction_by_left_pred, &ctxt);
806
807 xd->mb_to_top_edge = -GET_MV_SUBPEL(xd->mi_row * MI_SIZE);
808 xd->mb_to_right_edge -= GET_MV_SUBPEL(this_width - pred_width);
809 xd->mb_to_bottom_edge = ctxt.mb_to_far_edge;
810 }
811
dec_build_obmc_inter_predictors_sb(const AV1_COMMON * cm,DecoderCodingBlock * dcb)812 static inline void dec_build_obmc_inter_predictors_sb(const AV1_COMMON *cm,
813 DecoderCodingBlock *dcb) {
814 const int num_planes = av1_num_planes(cm);
815 uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE];
816 int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
817 int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
818 int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
819 int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
820 int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
821 int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
822
823 MACROBLOCKD *const xd = &dcb->xd;
824 av1_setup_obmc_dst_bufs(xd, dst_buf1, dst_buf2);
825
826 dec_build_prediction_by_above_preds(cm, dcb, dst_buf1, dst_width1,
827 dst_height1, dst_stride1);
828 dec_build_prediction_by_left_preds(cm, dcb, dst_buf2, dst_width2, dst_height2,
829 dst_stride2);
830 const int mi_row = xd->mi_row;
831 const int mi_col = xd->mi_col;
832 av1_setup_dst_planes(xd->plane, xd->mi[0]->bsize, &cm->cur_frame->buf, mi_row,
833 mi_col, 0, num_planes);
834 av1_build_obmc_inter_prediction(cm, xd, dst_buf1, dst_stride1, dst_buf2,
835 dst_stride2);
836 }
837
cfl_store_inter_block(AV1_COMMON * const cm,MACROBLOCKD * const xd)838 static inline void cfl_store_inter_block(AV1_COMMON *const cm,
839 MACROBLOCKD *const xd) {
840 MB_MODE_INFO *mbmi = xd->mi[0];
841 if (store_cfl_required(cm, xd)) {
842 cfl_store_block(xd, mbmi->bsize, mbmi->tx_size);
843 }
844 }
845
predict_inter_block(AV1_COMMON * const cm,DecoderCodingBlock * dcb,BLOCK_SIZE bsize)846 static inline void predict_inter_block(AV1_COMMON *const cm,
847 DecoderCodingBlock *dcb,
848 BLOCK_SIZE bsize) {
849 MACROBLOCKD *const xd = &dcb->xd;
850 MB_MODE_INFO *mbmi = xd->mi[0];
851 const int num_planes = av1_num_planes(cm);
852 const int mi_row = xd->mi_row;
853 const int mi_col = xd->mi_col;
854 for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
855 const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
856 if (frame < LAST_FRAME) {
857 assert(is_intrabc_block(mbmi));
858 assert(frame == INTRA_FRAME);
859 assert(ref == 0);
860 } else {
861 const RefCntBuffer *ref_buf = get_ref_frame_buf(cm, frame);
862 const struct scale_factors *ref_scale_factors =
863 get_ref_scale_factors_const(cm, frame);
864
865 xd->block_ref_scale_factors[ref] = ref_scale_factors;
866 av1_setup_pre_planes(xd, ref, &ref_buf->buf, mi_row, mi_col,
867 ref_scale_factors, num_planes);
868 }
869 }
870
871 dec_build_inter_predictor(cm, dcb, mi_row, mi_col, bsize);
872 if (mbmi->motion_mode == OBMC_CAUSAL) {
873 dec_build_obmc_inter_predictors_sb(cm, dcb);
874 }
875 #if CONFIG_MISMATCH_DEBUG
876 for (int plane = 0; plane < num_planes; ++plane) {
877 const struct macroblockd_plane *pd = &xd->plane[plane];
878 int pixel_c, pixel_r;
879 mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0, pd->subsampling_x,
880 pd->subsampling_y);
881 if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
882 pd->subsampling_y))
883 continue;
884 mismatch_check_block_pre(pd->dst.buf, pd->dst.stride,
885 cm->current_frame.order_hint, plane, pixel_c,
886 pixel_r, pd->width, pd->height,
887 xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
888 }
889 #endif
890 }
891
set_color_index_map_offset(MACROBLOCKD * const xd,int plane,aom_reader * r)892 static inline void set_color_index_map_offset(MACROBLOCKD *const xd, int plane,
893 aom_reader *r) {
894 (void)r;
895 Av1ColorMapParam params;
896 const MB_MODE_INFO *const mbmi = xd->mi[0];
897 av1_get_block_dimensions(mbmi->bsize, plane, xd, ¶ms.plane_width,
898 ¶ms.plane_height, NULL, NULL);
899 xd->color_index_map_offset[plane] += params.plane_width * params.plane_height;
900 }
901
decode_token_recon_block(AV1Decoder * const pbi,ThreadData * const td,aom_reader * r,BLOCK_SIZE bsize)902 static inline void decode_token_recon_block(AV1Decoder *const pbi,
903 ThreadData *const td, aom_reader *r,
904 BLOCK_SIZE bsize) {
905 AV1_COMMON *const cm = &pbi->common;
906 DecoderCodingBlock *const dcb = &td->dcb;
907 MACROBLOCKD *const xd = &dcb->xd;
908 const int num_planes = av1_num_planes(cm);
909 MB_MODE_INFO *mbmi = xd->mi[0];
910
911 if (!is_inter_block(mbmi)) {
912 int row, col;
913 assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x,
914 xd->plane[0].subsampling_y));
915 const int max_blocks_wide = max_block_wide(xd, bsize, 0);
916 const int max_blocks_high = max_block_high(xd, bsize, 0);
917 const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
918 int mu_blocks_wide = mi_size_wide[max_unit_bsize];
919 int mu_blocks_high = mi_size_high[max_unit_bsize];
920 mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide);
921 mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high);
922
923 for (row = 0; row < max_blocks_high; row += mu_blocks_high) {
924 for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) {
925 for (int plane = 0; plane < num_planes; ++plane) {
926 if (plane && !xd->is_chroma_ref) break;
927 const struct macroblockd_plane *const pd = &xd->plane[plane];
928 const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
929 const int stepr = tx_size_high_unit[tx_size];
930 const int stepc = tx_size_wide_unit[tx_size];
931
932 const int unit_height = ROUND_POWER_OF_TWO(
933 AOMMIN(mu_blocks_high + row, max_blocks_high), pd->subsampling_y);
934 const int unit_width = ROUND_POWER_OF_TWO(
935 AOMMIN(mu_blocks_wide + col, max_blocks_wide), pd->subsampling_x);
936
937 for (int blk_row = row >> pd->subsampling_y; blk_row < unit_height;
938 blk_row += stepr) {
939 for (int blk_col = col >> pd->subsampling_x; blk_col < unit_width;
940 blk_col += stepc) {
941 td->read_coeffs_tx_intra_block_visit(cm, dcb, r, plane, blk_row,
942 blk_col, tx_size);
943 td->predict_and_recon_intra_block_visit(
944 cm, dcb, r, plane, blk_row, blk_col, tx_size);
945 set_cb_buffer_offsets(dcb, tx_size, plane);
946 }
947 }
948 }
949 }
950 }
951 } else {
952 td->predict_inter_block_visit(cm, dcb, bsize);
953 // Reconstruction
954 if (!mbmi->skip_txfm) {
955 int eobtotal = 0;
956
957 const int max_blocks_wide = max_block_wide(xd, bsize, 0);
958 const int max_blocks_high = max_block_high(xd, bsize, 0);
959 int row, col;
960
961 const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
962 assert(max_unit_bsize ==
963 get_plane_block_size(BLOCK_64X64, xd->plane[0].subsampling_x,
964 xd->plane[0].subsampling_y));
965 int mu_blocks_wide = mi_size_wide[max_unit_bsize];
966 int mu_blocks_high = mi_size_high[max_unit_bsize];
967
968 mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide);
969 mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high);
970
971 for (row = 0; row < max_blocks_high; row += mu_blocks_high) {
972 for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) {
973 for (int plane = 0; plane < num_planes; ++plane) {
974 if (plane && !xd->is_chroma_ref) break;
975 const struct macroblockd_plane *const pd = &xd->plane[plane];
976 const int ss_x = pd->subsampling_x;
977 const int ss_y = pd->subsampling_y;
978 const BLOCK_SIZE plane_bsize =
979 get_plane_block_size(bsize, ss_x, ss_y);
980 const TX_SIZE max_tx_size =
981 get_vartx_max_txsize(xd, plane_bsize, plane);
982 const int bh_var_tx = tx_size_high_unit[max_tx_size];
983 const int bw_var_tx = tx_size_wide_unit[max_tx_size];
984 int block = 0;
985 int step =
986 tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
987 int blk_row, blk_col;
988 const int unit_height = ROUND_POWER_OF_TWO(
989 AOMMIN(mu_blocks_high + row, max_blocks_high), ss_y);
990 const int unit_width = ROUND_POWER_OF_TWO(
991 AOMMIN(mu_blocks_wide + col, max_blocks_wide), ss_x);
992
993 for (blk_row = row >> ss_y; blk_row < unit_height;
994 blk_row += bh_var_tx) {
995 for (blk_col = col >> ss_x; blk_col < unit_width;
996 blk_col += bw_var_tx) {
997 decode_reconstruct_tx(cm, td, r, mbmi, plane, plane_bsize,
998 blk_row, blk_col, block, max_tx_size,
999 &eobtotal);
1000 block += step;
1001 }
1002 }
1003 }
1004 }
1005 }
1006 }
1007 td->cfl_store_inter_block_visit(cm, xd);
1008 }
1009
1010 av1_visit_palette(pbi, xd, r, set_color_index_map_offset);
1011 }
1012
set_inter_tx_size(MB_MODE_INFO * mbmi,int stride_log2,int tx_w_log2,int tx_h_log2,int min_txs,int split_size,int txs,int blk_row,int blk_col)1013 static inline void set_inter_tx_size(MB_MODE_INFO *mbmi, int stride_log2,
1014 int tx_w_log2, int tx_h_log2, int min_txs,
1015 int split_size, int txs, int blk_row,
1016 int blk_col) {
1017 for (int idy = 0; idy < tx_size_high_unit[split_size];
1018 idy += tx_size_high_unit[min_txs]) {
1019 for (int idx = 0; idx < tx_size_wide_unit[split_size];
1020 idx += tx_size_wide_unit[min_txs]) {
1021 const int index = (((blk_row + idy) >> tx_h_log2) << stride_log2) +
1022 ((blk_col + idx) >> tx_w_log2);
1023 mbmi->inter_tx_size[index] = txs;
1024 }
1025 }
1026 }
1027
read_tx_size_vartx(MACROBLOCKD * xd,MB_MODE_INFO * mbmi,TX_SIZE tx_size,int depth,int blk_row,int blk_col,aom_reader * r)1028 static inline void read_tx_size_vartx(MACROBLOCKD *xd, MB_MODE_INFO *mbmi,
1029 TX_SIZE tx_size, int depth, int blk_row,
1030 int blk_col, aom_reader *r) {
1031 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1032 int is_split = 0;
1033 const BLOCK_SIZE bsize = mbmi->bsize;
1034 const int max_blocks_high = max_block_high(xd, bsize, 0);
1035 const int max_blocks_wide = max_block_wide(xd, bsize, 0);
1036 if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
1037 assert(tx_size > TX_4X4);
1038 TX_SIZE txs = max_txsize_rect_lookup[bsize];
1039 for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level)
1040 txs = sub_tx_size_map[txs];
1041 const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
1042 const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
1043 const int bw_log2 = mi_size_wide_log2[bsize];
1044 const int stride_log2 = bw_log2 - tx_w_log2;
1045
1046 if (depth == MAX_VARTX_DEPTH) {
1047 set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size,
1048 tx_size, blk_row, blk_col);
1049 mbmi->tx_size = tx_size;
1050 txfm_partition_update(xd->above_txfm_context + blk_col,
1051 xd->left_txfm_context + blk_row, tx_size, tx_size);
1052 return;
1053 }
1054
1055 const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
1056 xd->left_txfm_context + blk_row,
1057 mbmi->bsize, tx_size);
1058 is_split = aom_read_symbol(r, ec_ctx->txfm_partition_cdf[ctx], 2, ACCT_STR);
1059
1060 if (is_split) {
1061 const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
1062 const int bsw = tx_size_wide_unit[sub_txs];
1063 const int bsh = tx_size_high_unit[sub_txs];
1064
1065 if (sub_txs == TX_4X4) {
1066 set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size,
1067 sub_txs, blk_row, blk_col);
1068 mbmi->tx_size = sub_txs;
1069 txfm_partition_update(xd->above_txfm_context + blk_col,
1070 xd->left_txfm_context + blk_row, sub_txs, tx_size);
1071 return;
1072 }
1073
1074 assert(bsw > 0 && bsh > 0);
1075 for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
1076 for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
1077 int offsetr = blk_row + row;
1078 int offsetc = blk_col + col;
1079 read_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, r);
1080 }
1081 }
1082 } else {
1083 set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size,
1084 tx_size, blk_row, blk_col);
1085 mbmi->tx_size = tx_size;
1086 txfm_partition_update(xd->above_txfm_context + blk_col,
1087 xd->left_txfm_context + blk_row, tx_size, tx_size);
1088 }
1089 }
1090
read_selected_tx_size(const MACROBLOCKD * const xd,aom_reader * r)1091 static TX_SIZE read_selected_tx_size(const MACROBLOCKD *const xd,
1092 aom_reader *r) {
1093 // TODO(debargha): Clean up the logic here. This function should only
1094 // be called for intra.
1095 const BLOCK_SIZE bsize = xd->mi[0]->bsize;
1096 const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
1097 const int max_depths = bsize_to_max_depth(bsize);
1098 const int ctx = get_tx_size_context(xd);
1099 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1100 const int depth = aom_read_symbol(r, ec_ctx->tx_size_cdf[tx_size_cat][ctx],
1101 max_depths + 1, ACCT_STR);
1102 assert(depth >= 0 && depth <= max_depths);
1103 const TX_SIZE tx_size = depth_to_tx_size(depth, bsize);
1104 return tx_size;
1105 }
1106
read_tx_size(const MACROBLOCKD * const xd,TX_MODE tx_mode,int is_inter,int allow_select_inter,aom_reader * r)1107 static TX_SIZE read_tx_size(const MACROBLOCKD *const xd, TX_MODE tx_mode,
1108 int is_inter, int allow_select_inter,
1109 aom_reader *r) {
1110 const BLOCK_SIZE bsize = xd->mi[0]->bsize;
1111 if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4;
1112
1113 if (block_signals_txsize(bsize)) {
1114 if ((!is_inter || allow_select_inter) && tx_mode == TX_MODE_SELECT) {
1115 const TX_SIZE coded_tx_size = read_selected_tx_size(xd, r);
1116 return coded_tx_size;
1117 } else {
1118 return tx_size_from_tx_mode(bsize, tx_mode);
1119 }
1120 } else {
1121 assert(IMPLIES(tx_mode == ONLY_4X4, bsize == BLOCK_4X4));
1122 return max_txsize_rect_lookup[bsize];
1123 }
1124 }
1125
parse_decode_block(AV1Decoder * const pbi,ThreadData * const td,int mi_row,int mi_col,aom_reader * r,PARTITION_TYPE partition,BLOCK_SIZE bsize)1126 static inline void parse_decode_block(AV1Decoder *const pbi,
1127 ThreadData *const td, int mi_row,
1128 int mi_col, aom_reader *r,
1129 PARTITION_TYPE partition,
1130 BLOCK_SIZE bsize) {
1131 DecoderCodingBlock *const dcb = &td->dcb;
1132 MACROBLOCKD *const xd = &dcb->xd;
1133 decode_mbmi_block(pbi, dcb, mi_row, mi_col, r, partition, bsize);
1134
1135 av1_visit_palette(pbi, xd, r, av1_decode_palette_tokens);
1136
1137 AV1_COMMON *cm = &pbi->common;
1138 const int num_planes = av1_num_planes(cm);
1139 MB_MODE_INFO *mbmi = xd->mi[0];
1140 int inter_block_tx = is_inter_block(mbmi) || is_intrabc_block(mbmi);
1141 if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) &&
1142 !mbmi->skip_txfm && inter_block_tx && !xd->lossless[mbmi->segment_id]) {
1143 const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
1144 const int bh = tx_size_high_unit[max_tx_size];
1145 const int bw = tx_size_wide_unit[max_tx_size];
1146 const int width = mi_size_wide[bsize];
1147 const int height = mi_size_high[bsize];
1148
1149 for (int idy = 0; idy < height; idy += bh)
1150 for (int idx = 0; idx < width; idx += bw)
1151 read_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, r);
1152 } else {
1153 mbmi->tx_size = read_tx_size(xd, cm->features.tx_mode, inter_block_tx,
1154 !mbmi->skip_txfm, r);
1155 if (inter_block_tx)
1156 memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size));
1157 set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height,
1158 mbmi->skip_txfm && is_inter_block(mbmi), xd);
1159 }
1160
1161 if (cm->delta_q_info.delta_q_present_flag) {
1162 for (int i = 0; i < MAX_SEGMENTS; i++) {
1163 const int current_qindex =
1164 av1_get_qindex(&cm->seg, i, xd->current_base_qindex);
1165 const CommonQuantParams *const quant_params = &cm->quant_params;
1166 for (int j = 0; j < num_planes; ++j) {
1167 const int dc_delta_q = j == 0 ? quant_params->y_dc_delta_q
1168 : (j == 1 ? quant_params->u_dc_delta_q
1169 : quant_params->v_dc_delta_q);
1170 const int ac_delta_q = j == 0 ? 0
1171 : (j == 1 ? quant_params->u_ac_delta_q
1172 : quant_params->v_ac_delta_q);
1173 xd->plane[j].seg_dequant_QTX[i][0] = av1_dc_quant_QTX(
1174 current_qindex, dc_delta_q, cm->seq_params->bit_depth);
1175 xd->plane[j].seg_dequant_QTX[i][1] = av1_ac_quant_QTX(
1176 current_qindex, ac_delta_q, cm->seq_params->bit_depth);
1177 }
1178 }
1179 }
1180 if (mbmi->skip_txfm) av1_reset_entropy_context(xd, bsize, num_planes);
1181
1182 decode_token_recon_block(pbi, td, r, bsize);
1183 }
1184
set_offsets_for_pred_and_recon(AV1Decoder * const pbi,ThreadData * const td,int mi_row,int mi_col,BLOCK_SIZE bsize)1185 static inline void set_offsets_for_pred_and_recon(AV1Decoder *const pbi,
1186 ThreadData *const td,
1187 int mi_row, int mi_col,
1188 BLOCK_SIZE bsize) {
1189 AV1_COMMON *const cm = &pbi->common;
1190 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1191 DecoderCodingBlock *const dcb = &td->dcb;
1192 MACROBLOCKD *const xd = &dcb->xd;
1193 const int bw = mi_size_wide[bsize];
1194 const int bh = mi_size_high[bsize];
1195 const int num_planes = av1_num_planes(cm);
1196
1197 const int offset = mi_row * mi_params->mi_stride + mi_col;
1198 const TileInfo *const tile = &xd->tile;
1199
1200 xd->mi = mi_params->mi_grid_base + offset;
1201 xd->tx_type_map =
1202 &mi_params->tx_type_map[mi_row * mi_params->mi_stride + mi_col];
1203 xd->tx_type_map_stride = mi_params->mi_stride;
1204
1205 set_plane_n4(xd, bw, bh, num_planes);
1206
1207 // Distance of Mb to the various image edges. These are specified to 8th pel
1208 // as they are always compared to values that are in 1/8th pel units
1209 set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
1210 mi_params->mi_cols);
1211
1212 av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0,
1213 num_planes);
1214 }
1215
decode_block(AV1Decoder * const pbi,ThreadData * const td,int mi_row,int mi_col,aom_reader * r,PARTITION_TYPE partition,BLOCK_SIZE bsize)1216 static inline void decode_block(AV1Decoder *const pbi, ThreadData *const td,
1217 int mi_row, int mi_col, aom_reader *r,
1218 PARTITION_TYPE partition, BLOCK_SIZE bsize) {
1219 (void)partition;
1220 set_offsets_for_pred_and_recon(pbi, td, mi_row, mi_col, bsize);
1221 decode_token_recon_block(pbi, td, r, bsize);
1222 }
1223
read_partition(MACROBLOCKD * xd,int mi_row,int mi_col,aom_reader * r,int has_rows,int has_cols,BLOCK_SIZE bsize)1224 static PARTITION_TYPE read_partition(MACROBLOCKD *xd, int mi_row, int mi_col,
1225 aom_reader *r, int has_rows, int has_cols,
1226 BLOCK_SIZE bsize) {
1227 const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
1228 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1229
1230 if (!has_rows && !has_cols) return PARTITION_SPLIT;
1231
1232 assert(ctx >= 0);
1233 aom_cdf_prob *partition_cdf = ec_ctx->partition_cdf[ctx];
1234 if (has_rows && has_cols) {
1235 return (PARTITION_TYPE)aom_read_symbol(
1236 r, partition_cdf, partition_cdf_length(bsize), ACCT_STR);
1237 } else if (!has_rows && has_cols) {
1238 assert(bsize > BLOCK_8X8);
1239 aom_cdf_prob cdf[2];
1240 partition_gather_vert_alike(cdf, partition_cdf, bsize);
1241 assert(cdf[1] == AOM_ICDF(CDF_PROB_TOP));
1242 return aom_read_cdf(r, cdf, 2, ACCT_STR) ? PARTITION_SPLIT : PARTITION_HORZ;
1243 } else {
1244 assert(has_rows && !has_cols);
1245 assert(bsize > BLOCK_8X8);
1246 aom_cdf_prob cdf[2];
1247 partition_gather_horz_alike(cdf, partition_cdf, bsize);
1248 assert(cdf[1] == AOM_ICDF(CDF_PROB_TOP));
1249 return aom_read_cdf(r, cdf, 2, ACCT_STR) ? PARTITION_SPLIT : PARTITION_VERT;
1250 }
1251 }
1252
1253 // TODO(slavarnway): eliminate bsize and subsize in future commits
decode_partition(AV1Decoder * const pbi,ThreadData * const td,int mi_row,int mi_col,aom_reader * reader,BLOCK_SIZE bsize,int parse_decode_flag)1254 static inline void decode_partition(AV1Decoder *const pbi, ThreadData *const td,
1255 int mi_row, int mi_col, aom_reader *reader,
1256 BLOCK_SIZE bsize, int parse_decode_flag) {
1257 assert(bsize < BLOCK_SIZES_ALL);
1258 AV1_COMMON *const cm = &pbi->common;
1259 DecoderCodingBlock *const dcb = &td->dcb;
1260 MACROBLOCKD *const xd = &dcb->xd;
1261 const int bw = mi_size_wide[bsize];
1262 const int hbs = bw >> 1;
1263 PARTITION_TYPE partition;
1264 BLOCK_SIZE subsize;
1265 const int quarter_step = bw / 4;
1266 BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
1267 const int has_rows = (mi_row + hbs) < cm->mi_params.mi_rows;
1268 const int has_cols = (mi_col + hbs) < cm->mi_params.mi_cols;
1269
1270 if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols)
1271 return;
1272
1273 // parse_decode_flag takes the following values :
1274 // 01 - do parse only
1275 // 10 - do decode only
1276 // 11 - do parse and decode
1277 static const block_visitor_fn_t block_visit[4] = { NULL, parse_decode_block,
1278 decode_block,
1279 parse_decode_block };
1280
1281 if (parse_decode_flag & 1) {
1282 const int num_planes = av1_num_planes(cm);
1283 for (int plane = 0; plane < num_planes; ++plane) {
1284 int rcol0, rcol1, rrow0, rrow1;
1285
1286 // Skip some unnecessary work if loop restoration is disabled
1287 if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
1288
1289 if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize,
1290 &rcol0, &rcol1, &rrow0, &rrow1)) {
1291 const int rstride = cm->rst_info[plane].horz_units;
1292 for (int rrow = rrow0; rrow < rrow1; ++rrow) {
1293 for (int rcol = rcol0; rcol < rcol1; ++rcol) {
1294 const int runit_idx = rcol + rrow * rstride;
1295 loop_restoration_read_sb_coeffs(cm, xd, reader, plane, runit_idx);
1296 }
1297 }
1298 }
1299 }
1300
1301 partition = (bsize < BLOCK_8X8) ? PARTITION_NONE
1302 : read_partition(xd, mi_row, mi_col, reader,
1303 has_rows, has_cols, bsize);
1304 } else {
1305 partition = get_partition(cm, mi_row, mi_col, bsize);
1306 }
1307 subsize = get_partition_subsize(bsize, partition);
1308 if (subsize == BLOCK_INVALID) {
1309 // When an internal error occurs ensure that xd->mi_row is set appropriately
1310 // w.r.t. current tile, which is used to signal processing of current row is
1311 // done.
1312 xd->mi_row = mi_row;
1313 aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
1314 "Partition is invalid for block size %dx%d",
1315 block_size_wide[bsize], block_size_high[bsize]);
1316 }
1317 // Check the bitstream is conformant: if there is subsampling on the
1318 // chroma planes, subsize must subsample to a valid block size.
1319 const struct macroblockd_plane *const pd_u = &xd->plane[1];
1320 if (get_plane_block_size(subsize, pd_u->subsampling_x, pd_u->subsampling_y) ==
1321 BLOCK_INVALID) {
1322 // When an internal error occurs ensure that xd->mi_row is set appropriately
1323 // w.r.t. current tile, which is used to signal processing of current row is
1324 // done.
1325 xd->mi_row = mi_row;
1326 aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
1327 "Block size %dx%d invalid with this subsampling mode",
1328 block_size_wide[subsize], block_size_high[subsize]);
1329 }
1330
1331 #define DEC_BLOCK_STX_ARG
1332 #define DEC_BLOCK_EPT_ARG partition,
1333 #define DEC_BLOCK(db_r, db_c, db_subsize) \
1334 block_visit[parse_decode_flag](pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), \
1335 reader, DEC_BLOCK_EPT_ARG(db_subsize))
1336 #define DEC_PARTITION(db_r, db_c, db_subsize) \
1337 decode_partition(pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), reader, \
1338 (db_subsize), parse_decode_flag)
1339
1340 switch (partition) {
1341 case PARTITION_NONE: DEC_BLOCK(mi_row, mi_col, subsize); break;
1342 case PARTITION_HORZ:
1343 DEC_BLOCK(mi_row, mi_col, subsize);
1344 if (has_rows) DEC_BLOCK(mi_row + hbs, mi_col, subsize);
1345 break;
1346 case PARTITION_VERT:
1347 DEC_BLOCK(mi_row, mi_col, subsize);
1348 if (has_cols) DEC_BLOCK(mi_row, mi_col + hbs, subsize);
1349 break;
1350 case PARTITION_SPLIT:
1351 DEC_PARTITION(mi_row, mi_col, subsize);
1352 DEC_PARTITION(mi_row, mi_col + hbs, subsize);
1353 DEC_PARTITION(mi_row + hbs, mi_col, subsize);
1354 DEC_PARTITION(mi_row + hbs, mi_col + hbs, subsize);
1355 break;
1356 case PARTITION_HORZ_A:
1357 DEC_BLOCK(mi_row, mi_col, bsize2);
1358 DEC_BLOCK(mi_row, mi_col + hbs, bsize2);
1359 DEC_BLOCK(mi_row + hbs, mi_col, subsize);
1360 break;
1361 case PARTITION_HORZ_B:
1362 DEC_BLOCK(mi_row, mi_col, subsize);
1363 DEC_BLOCK(mi_row + hbs, mi_col, bsize2);
1364 DEC_BLOCK(mi_row + hbs, mi_col + hbs, bsize2);
1365 break;
1366 case PARTITION_VERT_A:
1367 DEC_BLOCK(mi_row, mi_col, bsize2);
1368 DEC_BLOCK(mi_row + hbs, mi_col, bsize2);
1369 DEC_BLOCK(mi_row, mi_col + hbs, subsize);
1370 break;
1371 case PARTITION_VERT_B:
1372 DEC_BLOCK(mi_row, mi_col, subsize);
1373 DEC_BLOCK(mi_row, mi_col + hbs, bsize2);
1374 DEC_BLOCK(mi_row + hbs, mi_col + hbs, bsize2);
1375 break;
1376 case PARTITION_HORZ_4:
1377 for (int i = 0; i < 4; ++i) {
1378 int this_mi_row = mi_row + i * quarter_step;
1379 if (i > 0 && this_mi_row >= cm->mi_params.mi_rows) break;
1380 DEC_BLOCK(this_mi_row, mi_col, subsize);
1381 }
1382 break;
1383 case PARTITION_VERT_4:
1384 for (int i = 0; i < 4; ++i) {
1385 int this_mi_col = mi_col + i * quarter_step;
1386 if (i > 0 && this_mi_col >= cm->mi_params.mi_cols) break;
1387 DEC_BLOCK(mi_row, this_mi_col, subsize);
1388 }
1389 break;
1390 default: assert(0 && "Invalid partition type");
1391 }
1392
1393 #undef DEC_PARTITION
1394 #undef DEC_BLOCK
1395 #undef DEC_BLOCK_EPT_ARG
1396 #undef DEC_BLOCK_STX_ARG
1397
1398 if (parse_decode_flag & 1)
1399 update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
1400 }
1401
setup_bool_decoder(MACROBLOCKD * const xd,const uint8_t * data,const uint8_t * data_end,const size_t read_size,struct aom_internal_error_info * error_info,aom_reader * r,uint8_t allow_update_cdf)1402 static inline void setup_bool_decoder(
1403 MACROBLOCKD *const xd, const uint8_t *data, const uint8_t *data_end,
1404 const size_t read_size, struct aom_internal_error_info *error_info,
1405 aom_reader *r, uint8_t allow_update_cdf) {
1406 // Validate the calculated partition length. If the buffer
1407 // described by the partition can't be fully read, then restrict
1408 // it to the portion that can be (for EC mode) or throw an error.
1409 if (!read_is_valid(data, read_size, data_end)) {
1410 // When internal error occurs ensure that xd->mi_row is set appropriately
1411 // w.r.t. current tile, which is used to signal processing of current row is
1412 // done in row-mt decoding.
1413 xd->mi_row = xd->tile.mi_row_start;
1414
1415 aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
1416 "Truncated packet or corrupt tile length");
1417 }
1418 if (aom_reader_init(r, data, read_size)) {
1419 // When internal error occurs ensure that xd->mi_row is set appropriately
1420 // w.r.t. current tile, which is used to signal processing of current row is
1421 // done in row-mt decoding.
1422 xd->mi_row = xd->tile.mi_row_start;
1423
1424 aom_internal_error(error_info, AOM_CODEC_MEM_ERROR,
1425 "Failed to allocate bool decoder %d", 1);
1426 }
1427
1428 r->allow_update_cdf = allow_update_cdf;
1429 }
1430
setup_segmentation(AV1_COMMON * const cm,struct aom_read_bit_buffer * rb)1431 static inline void setup_segmentation(AV1_COMMON *const cm,
1432 struct aom_read_bit_buffer *rb) {
1433 struct segmentation *const seg = &cm->seg;
1434
1435 seg->update_map = 0;
1436 seg->update_data = 0;
1437 seg->temporal_update = 0;
1438
1439 seg->enabled = aom_rb_read_bit(rb);
1440 if (!seg->enabled) {
1441 if (cm->cur_frame->seg_map) {
1442 memset(cm->cur_frame->seg_map, 0,
1443 (cm->cur_frame->mi_rows * cm->cur_frame->mi_cols));
1444 }
1445
1446 memset(seg, 0, sizeof(*seg));
1447 segfeatures_copy(&cm->cur_frame->seg, seg);
1448 return;
1449 }
1450 if (cm->seg.enabled && cm->prev_frame &&
1451 (cm->mi_params.mi_rows == cm->prev_frame->mi_rows) &&
1452 (cm->mi_params.mi_cols == cm->prev_frame->mi_cols)) {
1453 cm->last_frame_seg_map = cm->prev_frame->seg_map;
1454 } else {
1455 cm->last_frame_seg_map = NULL;
1456 }
1457 // Read update flags
1458 if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) {
1459 // These frames can't use previous frames, so must signal map + features
1460 seg->update_map = 1;
1461 seg->temporal_update = 0;
1462 seg->update_data = 1;
1463 } else {
1464 seg->update_map = aom_rb_read_bit(rb);
1465 if (seg->update_map) {
1466 seg->temporal_update = aom_rb_read_bit(rb);
1467 } else {
1468 seg->temporal_update = 0;
1469 }
1470 seg->update_data = aom_rb_read_bit(rb);
1471 }
1472
1473 // Segmentation data update
1474 if (seg->update_data) {
1475 av1_clearall_segfeatures(seg);
1476
1477 for (int i = 0; i < MAX_SEGMENTS; i++) {
1478 for (int j = 0; j < SEG_LVL_MAX; j++) {
1479 int data = 0;
1480 const int feature_enabled = aom_rb_read_bit(rb);
1481 if (feature_enabled) {
1482 av1_enable_segfeature(seg, i, j);
1483
1484 const int data_max = av1_seg_feature_data_max(j);
1485 const int data_min = -data_max;
1486 const int ubits = get_unsigned_bits(data_max);
1487
1488 if (av1_is_segfeature_signed(j)) {
1489 data = aom_rb_read_inv_signed_literal(rb, ubits);
1490 } else {
1491 data = aom_rb_read_literal(rb, ubits);
1492 }
1493
1494 data = clamp(data, data_min, data_max);
1495 }
1496 av1_set_segdata(seg, i, j, data);
1497 }
1498 }
1499 av1_calculate_segdata(seg);
1500 } else if (cm->prev_frame) {
1501 segfeatures_copy(seg, &cm->prev_frame->seg);
1502 }
1503 segfeatures_copy(&cm->cur_frame->seg, seg);
1504 }
1505
decode_restoration_mode(AV1_COMMON * cm,struct aom_read_bit_buffer * rb)1506 static inline void decode_restoration_mode(AV1_COMMON *cm,
1507 struct aom_read_bit_buffer *rb) {
1508 assert(!cm->features.all_lossless);
1509 const int num_planes = av1_num_planes(cm);
1510 if (cm->features.allow_intrabc) return;
1511 int all_none = 1, chroma_none = 1;
1512 for (int p = 0; p < num_planes; ++p) {
1513 RestorationInfo *rsi = &cm->rst_info[p];
1514 if (aom_rb_read_bit(rb)) {
1515 rsi->frame_restoration_type =
1516 aom_rb_read_bit(rb) ? RESTORE_SGRPROJ : RESTORE_WIENER;
1517 } else {
1518 rsi->frame_restoration_type =
1519 aom_rb_read_bit(rb) ? RESTORE_SWITCHABLE : RESTORE_NONE;
1520 }
1521 if (rsi->frame_restoration_type != RESTORE_NONE) {
1522 all_none = 0;
1523 chroma_none &= p == 0;
1524 }
1525 }
1526 if (!all_none) {
1527 assert(cm->seq_params->sb_size == BLOCK_64X64 ||
1528 cm->seq_params->sb_size == BLOCK_128X128);
1529 const int sb_size = cm->seq_params->sb_size == BLOCK_128X128 ? 128 : 64;
1530
1531 for (int p = 0; p < num_planes; ++p)
1532 cm->rst_info[p].restoration_unit_size = sb_size;
1533
1534 RestorationInfo *rsi = &cm->rst_info[0];
1535
1536 if (sb_size == 64) {
1537 rsi->restoration_unit_size <<= aom_rb_read_bit(rb);
1538 }
1539 if (rsi->restoration_unit_size > 64) {
1540 rsi->restoration_unit_size <<= aom_rb_read_bit(rb);
1541 }
1542 } else {
1543 const int size = RESTORATION_UNITSIZE_MAX;
1544 for (int p = 0; p < num_planes; ++p)
1545 cm->rst_info[p].restoration_unit_size = size;
1546 }
1547
1548 if (num_planes > 1) {
1549 int s =
1550 AOMMIN(cm->seq_params->subsampling_x, cm->seq_params->subsampling_y);
1551 if (s && !chroma_none) {
1552 cm->rst_info[1].restoration_unit_size =
1553 cm->rst_info[0].restoration_unit_size >> (aom_rb_read_bit(rb) * s);
1554 } else {
1555 cm->rst_info[1].restoration_unit_size =
1556 cm->rst_info[0].restoration_unit_size;
1557 }
1558 cm->rst_info[2].restoration_unit_size =
1559 cm->rst_info[1].restoration_unit_size;
1560 }
1561 }
1562
read_wiener_filter(int wiener_win,WienerInfo * wiener_info,WienerInfo * ref_wiener_info,aom_reader * rb)1563 static inline void read_wiener_filter(int wiener_win, WienerInfo *wiener_info,
1564 WienerInfo *ref_wiener_info,
1565 aom_reader *rb) {
1566 memset(wiener_info->vfilter, 0, sizeof(wiener_info->vfilter));
1567 memset(wiener_info->hfilter, 0, sizeof(wiener_info->hfilter));
1568
1569 if (wiener_win == WIENER_WIN)
1570 wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] =
1571 aom_read_primitive_refsubexpfin(
1572 rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
1573 WIENER_FILT_TAP0_SUBEXP_K,
1574 ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, ACCT_STR) +
1575 WIENER_FILT_TAP0_MINV;
1576 else
1577 wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] = 0;
1578 wiener_info->vfilter[1] = wiener_info->vfilter[WIENER_WIN - 2] =
1579 aom_read_primitive_refsubexpfin(
1580 rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
1581 WIENER_FILT_TAP1_SUBEXP_K,
1582 ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, ACCT_STR) +
1583 WIENER_FILT_TAP1_MINV;
1584 wiener_info->vfilter[2] = wiener_info->vfilter[WIENER_WIN - 3] =
1585 aom_read_primitive_refsubexpfin(
1586 rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
1587 WIENER_FILT_TAP2_SUBEXP_K,
1588 ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, ACCT_STR) +
1589 WIENER_FILT_TAP2_MINV;
1590 // The central element has an implicit +WIENER_FILT_STEP
1591 wiener_info->vfilter[WIENER_HALFWIN] =
1592 -2 * (wiener_info->vfilter[0] + wiener_info->vfilter[1] +
1593 wiener_info->vfilter[2]);
1594
1595 if (wiener_win == WIENER_WIN)
1596 wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] =
1597 aom_read_primitive_refsubexpfin(
1598 rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
1599 WIENER_FILT_TAP0_SUBEXP_K,
1600 ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, ACCT_STR) +
1601 WIENER_FILT_TAP0_MINV;
1602 else
1603 wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] = 0;
1604 wiener_info->hfilter[1] = wiener_info->hfilter[WIENER_WIN - 2] =
1605 aom_read_primitive_refsubexpfin(
1606 rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
1607 WIENER_FILT_TAP1_SUBEXP_K,
1608 ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, ACCT_STR) +
1609 WIENER_FILT_TAP1_MINV;
1610 wiener_info->hfilter[2] = wiener_info->hfilter[WIENER_WIN - 3] =
1611 aom_read_primitive_refsubexpfin(
1612 rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
1613 WIENER_FILT_TAP2_SUBEXP_K,
1614 ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, ACCT_STR) +
1615 WIENER_FILT_TAP2_MINV;
1616 // The central element has an implicit +WIENER_FILT_STEP
1617 wiener_info->hfilter[WIENER_HALFWIN] =
1618 -2 * (wiener_info->hfilter[0] + wiener_info->hfilter[1] +
1619 wiener_info->hfilter[2]);
1620 memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info));
1621 }
1622
read_sgrproj_filter(SgrprojInfo * sgrproj_info,SgrprojInfo * ref_sgrproj_info,aom_reader * rb)1623 static inline void read_sgrproj_filter(SgrprojInfo *sgrproj_info,
1624 SgrprojInfo *ref_sgrproj_info,
1625 aom_reader *rb) {
1626 sgrproj_info->ep = aom_read_literal(rb, SGRPROJ_PARAMS_BITS, ACCT_STR);
1627 const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep];
1628
1629 if (params->r[0] == 0) {
1630 sgrproj_info->xqd[0] = 0;
1631 sgrproj_info->xqd[1] =
1632 aom_read_primitive_refsubexpfin(
1633 rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
1634 ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_STR) +
1635 SGRPROJ_PRJ_MIN1;
1636 } else if (params->r[1] == 0) {
1637 sgrproj_info->xqd[0] =
1638 aom_read_primitive_refsubexpfin(
1639 rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
1640 ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_STR) +
1641 SGRPROJ_PRJ_MIN0;
1642 sgrproj_info->xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - sgrproj_info->xqd[0],
1643 SGRPROJ_PRJ_MIN1, SGRPROJ_PRJ_MAX1);
1644 } else {
1645 sgrproj_info->xqd[0] =
1646 aom_read_primitive_refsubexpfin(
1647 rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
1648 ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_STR) +
1649 SGRPROJ_PRJ_MIN0;
1650 sgrproj_info->xqd[1] =
1651 aom_read_primitive_refsubexpfin(
1652 rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
1653 ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_STR) +
1654 SGRPROJ_PRJ_MIN1;
1655 }
1656
1657 memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info));
1658 }
1659
loop_restoration_read_sb_coeffs(const AV1_COMMON * const cm,MACROBLOCKD * xd,aom_reader * const r,int plane,int runit_idx)1660 static inline void loop_restoration_read_sb_coeffs(const AV1_COMMON *const cm,
1661 MACROBLOCKD *xd,
1662 aom_reader *const r,
1663 int plane, int runit_idx) {
1664 const RestorationInfo *rsi = &cm->rst_info[plane];
1665 RestorationUnitInfo *rui = &rsi->unit_info[runit_idx];
1666 assert(rsi->frame_restoration_type != RESTORE_NONE);
1667
1668 assert(!cm->features.all_lossless);
1669
1670 const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN;
1671 WienerInfo *wiener_info = xd->wiener_info + plane;
1672 SgrprojInfo *sgrproj_info = xd->sgrproj_info + plane;
1673
1674 if (rsi->frame_restoration_type == RESTORE_SWITCHABLE) {
1675 rui->restoration_type =
1676 aom_read_symbol(r, xd->tile_ctx->switchable_restore_cdf,
1677 RESTORE_SWITCHABLE_TYPES, ACCT_STR);
1678 switch (rui->restoration_type) {
1679 case RESTORE_WIENER:
1680 read_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, r);
1681 break;
1682 case RESTORE_SGRPROJ:
1683 read_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, r);
1684 break;
1685 default: assert(rui->restoration_type == RESTORE_NONE); break;
1686 }
1687 } else if (rsi->frame_restoration_type == RESTORE_WIENER) {
1688 if (aom_read_symbol(r, xd->tile_ctx->wiener_restore_cdf, 2, ACCT_STR)) {
1689 rui->restoration_type = RESTORE_WIENER;
1690 read_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, r);
1691 } else {
1692 rui->restoration_type = RESTORE_NONE;
1693 }
1694 } else if (rsi->frame_restoration_type == RESTORE_SGRPROJ) {
1695 if (aom_read_symbol(r, xd->tile_ctx->sgrproj_restore_cdf, 2, ACCT_STR)) {
1696 rui->restoration_type = RESTORE_SGRPROJ;
1697 read_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, r);
1698 } else {
1699 rui->restoration_type = RESTORE_NONE;
1700 }
1701 }
1702 }
1703
setup_loopfilter(AV1_COMMON * cm,struct aom_read_bit_buffer * rb)1704 static inline void setup_loopfilter(AV1_COMMON *cm,
1705 struct aom_read_bit_buffer *rb) {
1706 const int num_planes = av1_num_planes(cm);
1707 struct loopfilter *lf = &cm->lf;
1708
1709 if (cm->features.allow_intrabc || cm->features.coded_lossless) {
1710 // write default deltas to frame buffer
1711 av1_set_default_ref_deltas(cm->cur_frame->ref_deltas);
1712 av1_set_default_mode_deltas(cm->cur_frame->mode_deltas);
1713 return;
1714 }
1715 assert(!cm->features.coded_lossless);
1716 if (cm->prev_frame) {
1717 // write deltas to frame buffer
1718 memcpy(lf->ref_deltas, cm->prev_frame->ref_deltas, REF_FRAMES);
1719 memcpy(lf->mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS);
1720 } else {
1721 av1_set_default_ref_deltas(lf->ref_deltas);
1722 av1_set_default_mode_deltas(lf->mode_deltas);
1723 }
1724 lf->filter_level[0] = aom_rb_read_literal(rb, 6);
1725 lf->filter_level[1] = aom_rb_read_literal(rb, 6);
1726 if (num_planes > 1) {
1727 if (lf->filter_level[0] || lf->filter_level[1]) {
1728 lf->filter_level_u = aom_rb_read_literal(rb, 6);
1729 lf->filter_level_v = aom_rb_read_literal(rb, 6);
1730 }
1731 }
1732 lf->sharpness_level = aom_rb_read_literal(rb, 3);
1733
1734 // Read in loop filter deltas applied at the MB level based on mode or ref
1735 // frame.
1736 lf->mode_ref_delta_update = 0;
1737
1738 lf->mode_ref_delta_enabled = aom_rb_read_bit(rb);
1739 if (lf->mode_ref_delta_enabled) {
1740 lf->mode_ref_delta_update = aom_rb_read_bit(rb);
1741 if (lf->mode_ref_delta_update) {
1742 for (int i = 0; i < REF_FRAMES; i++)
1743 if (aom_rb_read_bit(rb))
1744 lf->ref_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6);
1745
1746 for (int i = 0; i < MAX_MODE_LF_DELTAS; i++)
1747 if (aom_rb_read_bit(rb))
1748 lf->mode_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6);
1749 }
1750 }
1751
1752 // write deltas to frame buffer
1753 memcpy(cm->cur_frame->ref_deltas, lf->ref_deltas, REF_FRAMES);
1754 memcpy(cm->cur_frame->mode_deltas, lf->mode_deltas, MAX_MODE_LF_DELTAS);
1755 }
1756
setup_cdef(AV1_COMMON * cm,struct aom_read_bit_buffer * rb)1757 static inline void setup_cdef(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
1758 const int num_planes = av1_num_planes(cm);
1759 CdefInfo *const cdef_info = &cm->cdef_info;
1760
1761 if (cm->features.allow_intrabc) return;
1762 cdef_info->cdef_damping = aom_rb_read_literal(rb, 2) + 3;
1763 cdef_info->cdef_bits = aom_rb_read_literal(rb, 2);
1764 cdef_info->nb_cdef_strengths = 1 << cdef_info->cdef_bits;
1765 for (int i = 0; i < cdef_info->nb_cdef_strengths; i++) {
1766 cdef_info->cdef_strengths[i] = aom_rb_read_literal(rb, CDEF_STRENGTH_BITS);
1767 cdef_info->cdef_uv_strengths[i] =
1768 num_planes > 1 ? aom_rb_read_literal(rb, CDEF_STRENGTH_BITS) : 0;
1769 }
1770 }
1771
read_delta_q(struct aom_read_bit_buffer * rb)1772 static inline int read_delta_q(struct aom_read_bit_buffer *rb) {
1773 return aom_rb_read_bit(rb) ? aom_rb_read_inv_signed_literal(rb, 6) : 0;
1774 }
1775
setup_quantization(CommonQuantParams * quant_params,int num_planes,bool separate_uv_delta_q,struct aom_read_bit_buffer * rb)1776 static inline void setup_quantization(CommonQuantParams *quant_params,
1777 int num_planes, bool separate_uv_delta_q,
1778 struct aom_read_bit_buffer *rb) {
1779 quant_params->base_qindex = aom_rb_read_literal(rb, QINDEX_BITS);
1780 quant_params->y_dc_delta_q = read_delta_q(rb);
1781 if (num_planes > 1) {
1782 int diff_uv_delta = 0;
1783 if (separate_uv_delta_q) diff_uv_delta = aom_rb_read_bit(rb);
1784 quant_params->u_dc_delta_q = read_delta_q(rb);
1785 quant_params->u_ac_delta_q = read_delta_q(rb);
1786 if (diff_uv_delta) {
1787 quant_params->v_dc_delta_q = read_delta_q(rb);
1788 quant_params->v_ac_delta_q = read_delta_q(rb);
1789 } else {
1790 quant_params->v_dc_delta_q = quant_params->u_dc_delta_q;
1791 quant_params->v_ac_delta_q = quant_params->u_ac_delta_q;
1792 }
1793 } else {
1794 quant_params->u_dc_delta_q = 0;
1795 quant_params->u_ac_delta_q = 0;
1796 quant_params->v_dc_delta_q = 0;
1797 quant_params->v_ac_delta_q = 0;
1798 }
1799 quant_params->using_qmatrix = aom_rb_read_bit(rb);
1800 if (quant_params->using_qmatrix) {
1801 quant_params->qmatrix_level_y = aom_rb_read_literal(rb, QM_LEVEL_BITS);
1802 quant_params->qmatrix_level_u = aom_rb_read_literal(rb, QM_LEVEL_BITS);
1803 if (!separate_uv_delta_q)
1804 quant_params->qmatrix_level_v = quant_params->qmatrix_level_u;
1805 else
1806 quant_params->qmatrix_level_v = aom_rb_read_literal(rb, QM_LEVEL_BITS);
1807 } else {
1808 quant_params->qmatrix_level_y = 0;
1809 quant_params->qmatrix_level_u = 0;
1810 quant_params->qmatrix_level_v = 0;
1811 }
1812 }
1813
1814 // Get global dequant matrix.
get_iqmatrix(const CommonQuantParams * quant_params,int qmlevel,int plane,TX_SIZE tx_size)1815 static const qm_val_t *get_iqmatrix(const CommonQuantParams *quant_params,
1816 int qmlevel, int plane, TX_SIZE tx_size) {
1817 assert(quant_params->giqmatrix[qmlevel][plane][tx_size] != NULL ||
1818 qmlevel == NUM_QM_LEVELS - 1);
1819 return quant_params->giqmatrix[qmlevel][plane][tx_size];
1820 }
1821
1822 // Build y/uv dequant values based on segmentation.
setup_segmentation_dequant(AV1_COMMON * const cm,MACROBLOCKD * const xd)1823 static inline void setup_segmentation_dequant(AV1_COMMON *const cm,
1824 MACROBLOCKD *const xd) {
1825 const int bit_depth = cm->seq_params->bit_depth;
1826 // When segmentation is disabled, only the first value is used. The
1827 // remaining are don't cares.
1828 const int max_segments = cm->seg.enabled ? MAX_SEGMENTS : 1;
1829 CommonQuantParams *const quant_params = &cm->quant_params;
1830 for (int i = 0; i < max_segments; ++i) {
1831 const int qindex = xd->qindex[i];
1832 quant_params->y_dequant_QTX[i][0] =
1833 av1_dc_quant_QTX(qindex, quant_params->y_dc_delta_q, bit_depth);
1834 quant_params->y_dequant_QTX[i][1] = av1_ac_quant_QTX(qindex, 0, bit_depth);
1835 quant_params->u_dequant_QTX[i][0] =
1836 av1_dc_quant_QTX(qindex, quant_params->u_dc_delta_q, bit_depth);
1837 quant_params->u_dequant_QTX[i][1] =
1838 av1_ac_quant_QTX(qindex, quant_params->u_ac_delta_q, bit_depth);
1839 quant_params->v_dequant_QTX[i][0] =
1840 av1_dc_quant_QTX(qindex, quant_params->v_dc_delta_q, bit_depth);
1841 quant_params->v_dequant_QTX[i][1] =
1842 av1_ac_quant_QTX(qindex, quant_params->v_ac_delta_q, bit_depth);
1843 const int use_qmatrix = av1_use_qmatrix(quant_params, xd, i);
1844 // NB: depends on base index so there is only 1 set per frame
1845 // No quant weighting when lossless or signalled not using QM
1846 const int qmlevel_y =
1847 use_qmatrix ? quant_params->qmatrix_level_y : NUM_QM_LEVELS - 1;
1848 for (int j = 0; j < TX_SIZES_ALL; ++j) {
1849 quant_params->y_iqmatrix[i][j] =
1850 get_iqmatrix(quant_params, qmlevel_y, AOM_PLANE_Y, j);
1851 }
1852 const int qmlevel_u =
1853 use_qmatrix ? quant_params->qmatrix_level_u : NUM_QM_LEVELS - 1;
1854 for (int j = 0; j < TX_SIZES_ALL; ++j) {
1855 quant_params->u_iqmatrix[i][j] =
1856 get_iqmatrix(quant_params, qmlevel_u, AOM_PLANE_U, j);
1857 }
1858 const int qmlevel_v =
1859 use_qmatrix ? quant_params->qmatrix_level_v : NUM_QM_LEVELS - 1;
1860 for (int j = 0; j < TX_SIZES_ALL; ++j) {
1861 quant_params->v_iqmatrix[i][j] =
1862 get_iqmatrix(quant_params, qmlevel_v, AOM_PLANE_V, j);
1863 }
1864 }
1865 }
1866
read_frame_interp_filter(struct aom_read_bit_buffer * rb)1867 static InterpFilter read_frame_interp_filter(struct aom_read_bit_buffer *rb) {
1868 return aom_rb_read_bit(rb) ? SWITCHABLE
1869 : aom_rb_read_literal(rb, LOG_SWITCHABLE_FILTERS);
1870 }
1871
read_frame_size(struct aom_read_bit_buffer * rb,int num_bits_width,int num_bits_height,int * width,int * height)1872 static void read_frame_size(struct aom_read_bit_buffer *rb, int num_bits_width,
1873 int num_bits_height, int *width, int *height) {
1874 *width = aom_rb_read_literal(rb, num_bits_width) + 1;
1875 *height = aom_rb_read_literal(rb, num_bits_height) + 1;
1876 }
1877
setup_render_size(AV1_COMMON * cm,struct aom_read_bit_buffer * rb)1878 static inline void setup_render_size(AV1_COMMON *cm,
1879 struct aom_read_bit_buffer *rb) {
1880 cm->render_width = cm->superres_upscaled_width;
1881 cm->render_height = cm->superres_upscaled_height;
1882 if (aom_rb_read_bit(rb))
1883 read_frame_size(rb, 16, 16, &cm->render_width, &cm->render_height);
1884 }
1885
1886 // TODO(afergs): make "struct aom_read_bit_buffer *const rb"?
setup_superres(AV1_COMMON * const cm,struct aom_read_bit_buffer * rb,int * width,int * height)1887 static inline void setup_superres(AV1_COMMON *const cm,
1888 struct aom_read_bit_buffer *rb, int *width,
1889 int *height) {
1890 cm->superres_upscaled_width = *width;
1891 cm->superres_upscaled_height = *height;
1892
1893 const SequenceHeader *const seq_params = cm->seq_params;
1894 if (!seq_params->enable_superres) return;
1895
1896 if (aom_rb_read_bit(rb)) {
1897 cm->superres_scale_denominator =
1898 (uint8_t)aom_rb_read_literal(rb, SUPERRES_SCALE_BITS);
1899 cm->superres_scale_denominator += SUPERRES_SCALE_DENOMINATOR_MIN;
1900 // Don't edit cm->width or cm->height directly, or the buffers won't get
1901 // resized correctly
1902 av1_calculate_scaled_superres_size(width, height,
1903 cm->superres_scale_denominator);
1904 } else {
1905 // 1:1 scaling - ie. no scaling, scale not provided
1906 cm->superres_scale_denominator = SCALE_NUMERATOR;
1907 }
1908 }
1909
resize_context_buffers(AV1_COMMON * cm,int width,int height)1910 static inline void resize_context_buffers(AV1_COMMON *cm, int width,
1911 int height) {
1912 #if CONFIG_SIZE_LIMIT
1913 if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT)
1914 aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME,
1915 "Dimensions of %dx%d beyond allowed size of %dx%d.",
1916 width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT);
1917 #endif
1918 if (cm->width != width || cm->height != height) {
1919 const int new_mi_rows = CEIL_POWER_OF_TWO(height, MI_SIZE_LOG2);
1920 const int new_mi_cols = CEIL_POWER_OF_TWO(width, MI_SIZE_LOG2);
1921
1922 // Allocations in av1_alloc_context_buffers() depend on individual
1923 // dimensions as well as the overall size.
1924 if (new_mi_cols > cm->mi_params.mi_cols ||
1925 new_mi_rows > cm->mi_params.mi_rows) {
1926 if (av1_alloc_context_buffers(cm, width, height, BLOCK_4X4)) {
1927 // The cm->mi_* values have been cleared and any existing context
1928 // buffers have been freed. Clear cm->width and cm->height to be
1929 // consistent and to force a realloc next time.
1930 cm->width = 0;
1931 cm->height = 0;
1932 aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
1933 "Failed to allocate context buffers");
1934 }
1935 } else {
1936 cm->mi_params.set_mb_mi(&cm->mi_params, width, height, BLOCK_4X4);
1937 }
1938 av1_init_mi_buffers(&cm->mi_params);
1939 cm->width = width;
1940 cm->height = height;
1941 }
1942
1943 ensure_mv_buffer(cm->cur_frame, cm);
1944 cm->cur_frame->width = cm->width;
1945 cm->cur_frame->height = cm->height;
1946 }
1947
setup_buffer_pool(AV1_COMMON * cm)1948 static inline void setup_buffer_pool(AV1_COMMON *cm) {
1949 BufferPool *const pool = cm->buffer_pool;
1950 const SequenceHeader *const seq_params = cm->seq_params;
1951
1952 lock_buffer_pool(pool);
1953 if (aom_realloc_frame_buffer(
1954 &cm->cur_frame->buf, cm->width, cm->height, seq_params->subsampling_x,
1955 seq_params->subsampling_y, seq_params->use_highbitdepth,
1956 AOM_DEC_BORDER_IN_PIXELS, cm->features.byte_alignment,
1957 &cm->cur_frame->raw_frame_buffer, pool->get_fb_cb, pool->cb_priv,
1958 false, 0)) {
1959 unlock_buffer_pool(pool);
1960 aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
1961 "Failed to allocate frame buffer");
1962 }
1963 unlock_buffer_pool(pool);
1964
1965 cm->cur_frame->buf.bit_depth = (unsigned int)seq_params->bit_depth;
1966 cm->cur_frame->buf.color_primaries = seq_params->color_primaries;
1967 cm->cur_frame->buf.transfer_characteristics =
1968 seq_params->transfer_characteristics;
1969 cm->cur_frame->buf.matrix_coefficients = seq_params->matrix_coefficients;
1970 cm->cur_frame->buf.monochrome = seq_params->monochrome;
1971 cm->cur_frame->buf.chroma_sample_position =
1972 seq_params->chroma_sample_position;
1973 cm->cur_frame->buf.color_range = seq_params->color_range;
1974 cm->cur_frame->buf.render_width = cm->render_width;
1975 cm->cur_frame->buf.render_height = cm->render_height;
1976 }
1977
setup_frame_size(AV1_COMMON * cm,int frame_size_override_flag,struct aom_read_bit_buffer * rb)1978 static inline void setup_frame_size(AV1_COMMON *cm,
1979 int frame_size_override_flag,
1980 struct aom_read_bit_buffer *rb) {
1981 const SequenceHeader *const seq_params = cm->seq_params;
1982 int width, height;
1983
1984 if (frame_size_override_flag) {
1985 int num_bits_width = seq_params->num_bits_width;
1986 int num_bits_height = seq_params->num_bits_height;
1987 read_frame_size(rb, num_bits_width, num_bits_height, &width, &height);
1988 if (width > seq_params->max_frame_width ||
1989 height > seq_params->max_frame_height) {
1990 aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME,
1991 "Frame dimensions are larger than the maximum values");
1992 }
1993 } else {
1994 width = seq_params->max_frame_width;
1995 height = seq_params->max_frame_height;
1996 }
1997
1998 setup_superres(cm, rb, &width, &height);
1999 resize_context_buffers(cm, width, height);
2000 setup_render_size(cm, rb);
2001 setup_buffer_pool(cm);
2002 }
2003
setup_sb_size(SequenceHeader * seq_params,struct aom_read_bit_buffer * rb)2004 static inline void setup_sb_size(SequenceHeader *seq_params,
2005 struct aom_read_bit_buffer *rb) {
2006 set_sb_size(seq_params, aom_rb_read_bit(rb) ? BLOCK_128X128 : BLOCK_64X64);
2007 }
2008
valid_ref_frame_img_fmt(aom_bit_depth_t ref_bit_depth,int ref_xss,int ref_yss,aom_bit_depth_t this_bit_depth,int this_xss,int this_yss)2009 static inline int valid_ref_frame_img_fmt(aom_bit_depth_t ref_bit_depth,
2010 int ref_xss, int ref_yss,
2011 aom_bit_depth_t this_bit_depth,
2012 int this_xss, int this_yss) {
2013 return ref_bit_depth == this_bit_depth && ref_xss == this_xss &&
2014 ref_yss == this_yss;
2015 }
2016
setup_frame_size_with_refs(AV1_COMMON * cm,struct aom_read_bit_buffer * rb)2017 static inline void setup_frame_size_with_refs(AV1_COMMON *cm,
2018 struct aom_read_bit_buffer *rb) {
2019 int width, height;
2020 int found = 0;
2021 int has_valid_ref_frame = 0;
2022 for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
2023 if (aom_rb_read_bit(rb)) {
2024 const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, i);
2025 // This will never be NULL in a normal stream, as streams are required to
2026 // have a shown keyframe before any inter frames, which would refresh all
2027 // the reference buffers. However, it might be null if we're starting in
2028 // the middle of a stream, and static analysis will error if we don't do
2029 // a null check here.
2030 if (ref_buf == NULL) {
2031 aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME,
2032 "Invalid condition: invalid reference buffer");
2033 } else {
2034 const YV12_BUFFER_CONFIG *const buf = &ref_buf->buf;
2035 width = buf->y_crop_width;
2036 height = buf->y_crop_height;
2037 cm->render_width = buf->render_width;
2038 cm->render_height = buf->render_height;
2039 setup_superres(cm, rb, &width, &height);
2040 resize_context_buffers(cm, width, height);
2041 found = 1;
2042 break;
2043 }
2044 }
2045 }
2046
2047 const SequenceHeader *const seq_params = cm->seq_params;
2048 if (!found) {
2049 int num_bits_width = seq_params->num_bits_width;
2050 int num_bits_height = seq_params->num_bits_height;
2051
2052 read_frame_size(rb, num_bits_width, num_bits_height, &width, &height);
2053 setup_superres(cm, rb, &width, &height);
2054 resize_context_buffers(cm, width, height);
2055 setup_render_size(cm, rb);
2056 }
2057
2058 if (width <= 0 || height <= 0)
2059 aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME,
2060 "Invalid frame size");
2061
2062 // Check to make sure at least one of frames that this frame references
2063 // has valid dimensions.
2064 for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
2065 const RefCntBuffer *const ref_frame = get_ref_frame_buf(cm, i);
2066 has_valid_ref_frame |=
2067 valid_ref_frame_size(ref_frame->buf.y_crop_width,
2068 ref_frame->buf.y_crop_height, width, height);
2069 }
2070 if (!has_valid_ref_frame)
2071 aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME,
2072 "Referenced frame has invalid size");
2073 for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
2074 const RefCntBuffer *const ref_frame = get_ref_frame_buf(cm, i);
2075 if (!valid_ref_frame_img_fmt(
2076 ref_frame->buf.bit_depth, ref_frame->buf.subsampling_x,
2077 ref_frame->buf.subsampling_y, seq_params->bit_depth,
2078 seq_params->subsampling_x, seq_params->subsampling_y))
2079 aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME,
2080 "Referenced frame has incompatible color format");
2081 }
2082 setup_buffer_pool(cm);
2083 }
2084
2085 // Same function as av1_read_uniform but reading from uncompresses header wb
rb_read_uniform(struct aom_read_bit_buffer * const rb,int n)2086 static int rb_read_uniform(struct aom_read_bit_buffer *const rb, int n) {
2087 const int l = get_unsigned_bits(n);
2088 const int m = (1 << l) - n;
2089 const int v = aom_rb_read_literal(rb, l - 1);
2090 assert(l != 0);
2091 if (v < m)
2092 return v;
2093 else
2094 return (v << 1) - m + aom_rb_read_bit(rb);
2095 }
2096
read_tile_info_max_tile(AV1_COMMON * const cm,struct aom_read_bit_buffer * const rb)2097 static inline void read_tile_info_max_tile(
2098 AV1_COMMON *const cm, struct aom_read_bit_buffer *const rb) {
2099 const SequenceHeader *const seq_params = cm->seq_params;
2100 CommonTileParams *const tiles = &cm->tiles;
2101 int width_sb =
2102 CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, seq_params->mib_size_log2);
2103 int height_sb =
2104 CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, seq_params->mib_size_log2);
2105
2106 av1_get_tile_limits(cm);
2107 tiles->uniform_spacing = aom_rb_read_bit(rb);
2108
2109 // Read tile columns
2110 if (tiles->uniform_spacing) {
2111 tiles->log2_cols = tiles->min_log2_cols;
2112 while (tiles->log2_cols < tiles->max_log2_cols) {
2113 if (!aom_rb_read_bit(rb)) {
2114 break;
2115 }
2116 tiles->log2_cols++;
2117 }
2118 } else {
2119 int i;
2120 int start_sb;
2121 for (i = 0, start_sb = 0; width_sb > 0 && i < MAX_TILE_COLS; i++) {
2122 const int size_sb =
2123 1 + rb_read_uniform(rb, AOMMIN(width_sb, tiles->max_width_sb));
2124 tiles->col_start_sb[i] = start_sb;
2125 start_sb += size_sb;
2126 width_sb -= size_sb;
2127 }
2128 tiles->cols = i;
2129 tiles->col_start_sb[i] = start_sb + width_sb;
2130 }
2131 av1_calculate_tile_cols(seq_params, cm->mi_params.mi_rows,
2132 cm->mi_params.mi_cols, tiles);
2133
2134 // Read tile rows
2135 if (tiles->uniform_spacing) {
2136 tiles->log2_rows = tiles->min_log2_rows;
2137 while (tiles->log2_rows < tiles->max_log2_rows) {
2138 if (!aom_rb_read_bit(rb)) {
2139 break;
2140 }
2141 tiles->log2_rows++;
2142 }
2143 } else {
2144 int i;
2145 int start_sb;
2146 for (i = 0, start_sb = 0; height_sb > 0 && i < MAX_TILE_ROWS; i++) {
2147 const int size_sb =
2148 1 + rb_read_uniform(rb, AOMMIN(height_sb, tiles->max_height_sb));
2149 tiles->row_start_sb[i] = start_sb;
2150 start_sb += size_sb;
2151 height_sb -= size_sb;
2152 }
2153 tiles->rows = i;
2154 tiles->row_start_sb[i] = start_sb + height_sb;
2155 }
2156 av1_calculate_tile_rows(seq_params, cm->mi_params.mi_rows, tiles);
2157 }
2158
av1_set_single_tile_decoding_mode(AV1_COMMON * const cm)2159 void av1_set_single_tile_decoding_mode(AV1_COMMON *const cm) {
2160 cm->tiles.single_tile_decoding = 0;
2161 if (cm->tiles.large_scale) {
2162 struct loopfilter *lf = &cm->lf;
2163 RestorationInfo *const rst_info = cm->rst_info;
2164 const CdefInfo *const cdef_info = &cm->cdef_info;
2165
2166 // Figure out single_tile_decoding by loopfilter_level.
2167 const int no_loopfilter = !(lf->filter_level[0] || lf->filter_level[1]);
2168 const int no_cdef = cdef_info->cdef_bits == 0 &&
2169 cdef_info->cdef_strengths[0] == 0 &&
2170 cdef_info->cdef_uv_strengths[0] == 0;
2171 const int no_restoration =
2172 rst_info[0].frame_restoration_type == RESTORE_NONE &&
2173 rst_info[1].frame_restoration_type == RESTORE_NONE &&
2174 rst_info[2].frame_restoration_type == RESTORE_NONE;
2175 assert(IMPLIES(cm->features.coded_lossless, no_loopfilter && no_cdef));
2176 assert(IMPLIES(cm->features.all_lossless, no_restoration));
2177 cm->tiles.single_tile_decoding = no_loopfilter && no_cdef && no_restoration;
2178 }
2179 }
2180
read_tile_info(AV1Decoder * const pbi,struct aom_read_bit_buffer * const rb)2181 static inline void read_tile_info(AV1Decoder *const pbi,
2182 struct aom_read_bit_buffer *const rb) {
2183 AV1_COMMON *const cm = &pbi->common;
2184
2185 read_tile_info_max_tile(cm, rb);
2186
2187 pbi->context_update_tile_id = 0;
2188 if (cm->tiles.rows * cm->tiles.cols > 1) {
2189 // tile to use for cdf update
2190 pbi->context_update_tile_id =
2191 aom_rb_read_literal(rb, cm->tiles.log2_rows + cm->tiles.log2_cols);
2192 if (pbi->context_update_tile_id >= cm->tiles.rows * cm->tiles.cols) {
2193 aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
2194 "Invalid context_update_tile_id");
2195 }
2196 // tile size magnitude
2197 pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1;
2198 }
2199 }
2200
2201 #if EXT_TILE_DEBUG
read_ext_tile_info(AV1Decoder * const pbi,struct aom_read_bit_buffer * const rb)2202 static inline void read_ext_tile_info(AV1Decoder *const pbi,
2203 struct aom_read_bit_buffer *const rb) {
2204 AV1_COMMON *const cm = &pbi->common;
2205
2206 // This information is stored as a separate byte.
2207 int mod = rb->bit_offset % CHAR_BIT;
2208 if (mod > 0) aom_rb_read_literal(rb, CHAR_BIT - mod);
2209 assert(rb->bit_offset % CHAR_BIT == 0);
2210
2211 if (cm->tiles.cols * cm->tiles.rows > 1) {
2212 // Read the number of bytes used to store tile size
2213 pbi->tile_col_size_bytes = aom_rb_read_literal(rb, 2) + 1;
2214 pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1;
2215 }
2216 }
2217 #endif // EXT_TILE_DEBUG
2218
mem_get_varsize(const uint8_t * src,int sz)2219 static size_t mem_get_varsize(const uint8_t *src, int sz) {
2220 switch (sz) {
2221 case 1: return src[0];
2222 case 2: return mem_get_le16(src);
2223 case 3: return mem_get_le24(src);
2224 case 4: return mem_get_le32(src);
2225 default: assert(0 && "Invalid size"); return -1;
2226 }
2227 }
2228
2229 #if EXT_TILE_DEBUG
2230 // Reads the next tile returning its size and adjusting '*data' accordingly
2231 // based on 'is_last'. On return, '*data' is updated to point to the end of the
2232 // raw tile buffer in the bit stream.
get_ls_tile_buffer(const uint8_t * const data_end,struct aom_internal_error_info * error_info,const uint8_t ** data,TileBufferDec (* const tile_buffers)[MAX_TILE_COLS],int tile_size_bytes,int col,int row,int tile_copy_mode)2233 static inline void get_ls_tile_buffer(
2234 const uint8_t *const data_end, struct aom_internal_error_info *error_info,
2235 const uint8_t **data, TileBufferDec (*const tile_buffers)[MAX_TILE_COLS],
2236 int tile_size_bytes, int col, int row, int tile_copy_mode) {
2237 size_t size;
2238
2239 size_t copy_size = 0;
2240 const uint8_t *copy_data = NULL;
2241
2242 if (!read_is_valid(*data, tile_size_bytes, data_end))
2243 aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
2244 "Truncated packet or corrupt tile length");
2245 size = mem_get_varsize(*data, tile_size_bytes);
2246
2247 // If tile_copy_mode = 1, then the top bit of the tile header indicates copy
2248 // mode.
2249 if (tile_copy_mode && (size >> (tile_size_bytes * 8 - 1)) == 1) {
2250 // The remaining bits in the top byte signal the row offset
2251 int offset = (size >> (tile_size_bytes - 1) * 8) & 0x7f;
2252 if (offset > row) {
2253 aom_internal_error(
2254 error_info, AOM_CODEC_CORRUPT_FRAME,
2255 "Invalid row offset in tile copy mode: row=%d offset=%d", row,
2256 offset);
2257 }
2258
2259 // Currently, only use tiles in same column as reference tiles.
2260 copy_data = tile_buffers[row - offset][col].data;
2261 copy_size = tile_buffers[row - offset][col].size;
2262 size = 0;
2263 } else {
2264 size += AV1_MIN_TILE_SIZE_BYTES;
2265 }
2266
2267 *data += tile_size_bytes;
2268
2269 if (size > (size_t)(data_end - *data))
2270 aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
2271 "Truncated packet or corrupt tile size");
2272
2273 if (size > 0) {
2274 tile_buffers[row][col].data = *data;
2275 tile_buffers[row][col].size = size;
2276 } else {
2277 tile_buffers[row][col].data = copy_data;
2278 tile_buffers[row][col].size = copy_size;
2279 }
2280
2281 *data += size;
2282 }
2283
2284 // Returns the end of the last tile buffer
2285 // (tile_buffers[cm->tiles.rows - 1][cm->tiles.cols - 1]).
get_ls_tile_buffers(AV1Decoder * pbi,const uint8_t * data,const uint8_t * data_end,TileBufferDec (* const tile_buffers)[MAX_TILE_COLS])2286 static const uint8_t *get_ls_tile_buffers(
2287 AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end,
2288 TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) {
2289 AV1_COMMON *const cm = &pbi->common;
2290 const int tile_cols = cm->tiles.cols;
2291 const int tile_rows = cm->tiles.rows;
2292 const int have_tiles = tile_cols * tile_rows > 1;
2293 const uint8_t *raw_data_end; // The end of the last tile buffer
2294
2295 if (!have_tiles) {
2296 const size_t tile_size = data_end - data;
2297 tile_buffers[0][0].data = data;
2298 tile_buffers[0][0].size = tile_size;
2299 raw_data_end = NULL;
2300 } else {
2301 // We locate only the tile buffers that are required, which are the ones
2302 // specified by pbi->dec_tile_col and pbi->dec_tile_row. Also, we always
2303 // need the last (bottom right) tile buffer, as we need to know where the
2304 // end of the compressed frame buffer is for proper superframe decoding.
2305
2306 const uint8_t *tile_col_data_end[MAX_TILE_COLS] = { NULL };
2307 const uint8_t *const data_start = data;
2308
2309 const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
2310 const int single_row = pbi->dec_tile_row >= 0;
2311 const int tile_rows_start = single_row ? dec_tile_row : 0;
2312 const int tile_rows_end = single_row ? tile_rows_start + 1 : tile_rows;
2313 const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
2314 const int single_col = pbi->dec_tile_col >= 0;
2315 const int tile_cols_start = single_col ? dec_tile_col : 0;
2316 const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
2317
2318 const int tile_col_size_bytes = pbi->tile_col_size_bytes;
2319 const int tile_size_bytes = pbi->tile_size_bytes;
2320 int tile_width, tile_height;
2321 if (!av1_get_uniform_tile_size(cm, &tile_width, &tile_height)) {
2322 aom_internal_error(
2323 &pbi->error, AOM_CODEC_CORRUPT_FRAME,
2324 "Not all the tiles in the tile list have the same size.");
2325 }
2326 const int tile_copy_mode =
2327 ((AOMMAX(tile_width, tile_height) << MI_SIZE_LOG2) <= 256) ? 1 : 0;
2328 // Read tile column sizes for all columns (we need the last tile buffer)
2329 for (int c = 0; c < tile_cols; ++c) {
2330 const int is_last = c == tile_cols - 1;
2331 size_t tile_col_size;
2332
2333 if (!is_last) {
2334 if (tile_col_size_bytes > data_end - data) {
2335 aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
2336 "Not enough data to read tile_col_size");
2337 }
2338 tile_col_size = mem_get_varsize(data, tile_col_size_bytes);
2339 data += tile_col_size_bytes;
2340 if (tile_col_size > (size_t)(data_end - data)) {
2341 aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
2342 "tile_col_data_end[%d] is out of bound", c);
2343 }
2344 tile_col_data_end[c] = data + tile_col_size;
2345 } else {
2346 tile_col_size = data_end - data;
2347 tile_col_data_end[c] = data_end;
2348 }
2349 data += tile_col_size;
2350 }
2351
2352 data = data_start;
2353
2354 // Read the required tile sizes.
2355 for (int c = tile_cols_start; c < tile_cols_end; ++c) {
2356 const int is_last = c == tile_cols - 1;
2357
2358 if (c > 0) data = tile_col_data_end[c - 1];
2359
2360 if (!is_last) data += tile_col_size_bytes;
2361
2362 // Get the whole of the last column, otherwise stop at the required tile.
2363 for (int r = 0; r < (is_last ? tile_rows : tile_rows_end); ++r) {
2364 get_ls_tile_buffer(tile_col_data_end[c], &pbi->error, &data,
2365 tile_buffers, tile_size_bytes, c, r, tile_copy_mode);
2366 }
2367 }
2368
2369 // If we have not read the last column, then read it to get the last tile.
2370 if (tile_cols_end != tile_cols) {
2371 const int c = tile_cols - 1;
2372
2373 data = tile_col_data_end[c - 1];
2374
2375 for (int r = 0; r < tile_rows; ++r) {
2376 get_ls_tile_buffer(tile_col_data_end[c], &pbi->error, &data,
2377 tile_buffers, tile_size_bytes, c, r, tile_copy_mode);
2378 }
2379 }
2380 raw_data_end = data;
2381 }
2382 return raw_data_end;
2383 }
2384 #endif // EXT_TILE_DEBUG
2385
get_ls_single_tile_buffer(AV1Decoder * pbi,const uint8_t * data,TileBufferDec (* const tile_buffers)[MAX_TILE_COLS])2386 static const uint8_t *get_ls_single_tile_buffer(
2387 AV1Decoder *pbi, const uint8_t *data,
2388 TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) {
2389 assert(pbi->dec_tile_row >= 0 && pbi->dec_tile_col >= 0);
2390 tile_buffers[pbi->dec_tile_row][pbi->dec_tile_col].data = data;
2391 tile_buffers[pbi->dec_tile_row][pbi->dec_tile_col].size =
2392 (size_t)pbi->coded_tile_data_size;
2393 return data + pbi->coded_tile_data_size;
2394 }
2395
2396 // Reads the next tile returning its size and adjusting '*data' accordingly
2397 // based on 'is_last'.
get_tile_buffer(const uint8_t * const data_end,const int tile_size_bytes,int is_last,struct aom_internal_error_info * error_info,const uint8_t ** data,TileBufferDec * const buf)2398 static inline void get_tile_buffer(const uint8_t *const data_end,
2399 const int tile_size_bytes, int is_last,
2400 struct aom_internal_error_info *error_info,
2401 const uint8_t **data,
2402 TileBufferDec *const buf) {
2403 size_t size;
2404
2405 if (!is_last) {
2406 if (!read_is_valid(*data, tile_size_bytes, data_end))
2407 aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
2408 "Not enough data to read tile size");
2409
2410 size = mem_get_varsize(*data, tile_size_bytes) + AV1_MIN_TILE_SIZE_BYTES;
2411 *data += tile_size_bytes;
2412
2413 if (size > (size_t)(data_end - *data))
2414 aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
2415 "Truncated packet or corrupt tile size");
2416 } else {
2417 size = data_end - *data;
2418 }
2419
2420 buf->data = *data;
2421 buf->size = size;
2422
2423 *data += size;
2424 }
2425
get_tile_buffers(AV1Decoder * pbi,const uint8_t * data,const uint8_t * data_end,TileBufferDec (* const tile_buffers)[MAX_TILE_COLS],int start_tile,int end_tile)2426 static inline void get_tile_buffers(
2427 AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end,
2428 TileBufferDec (*const tile_buffers)[MAX_TILE_COLS], int start_tile,
2429 int end_tile) {
2430 AV1_COMMON *const cm = &pbi->common;
2431 const int tile_cols = cm->tiles.cols;
2432 const int tile_rows = cm->tiles.rows;
2433 int tc = 0;
2434
2435 for (int r = 0; r < tile_rows; ++r) {
2436 for (int c = 0; c < tile_cols; ++c, ++tc) {
2437 TileBufferDec *const buf = &tile_buffers[r][c];
2438
2439 const int is_last = (tc == end_tile);
2440 const size_t hdr_offset = 0;
2441
2442 if (tc < start_tile || tc > end_tile) continue;
2443
2444 if (data + hdr_offset >= data_end)
2445 aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
2446 "Data ended before all tiles were read.");
2447 data += hdr_offset;
2448 get_tile_buffer(data_end, pbi->tile_size_bytes, is_last, &pbi->error,
2449 &data, buf);
2450 }
2451 }
2452 }
2453
set_cb_buffer(AV1Decoder * pbi,DecoderCodingBlock * dcb,CB_BUFFER * cb_buffer_base,const int num_planes,int mi_row,int mi_col)2454 static inline void set_cb_buffer(AV1Decoder *pbi, DecoderCodingBlock *dcb,
2455 CB_BUFFER *cb_buffer_base,
2456 const int num_planes, int mi_row, int mi_col) {
2457 AV1_COMMON *const cm = &pbi->common;
2458 int mib_size_log2 = cm->seq_params->mib_size_log2;
2459 int stride = (cm->mi_params.mi_cols >> mib_size_log2) + 1;
2460 int offset = (mi_row >> mib_size_log2) * stride + (mi_col >> mib_size_log2);
2461 CB_BUFFER *cb_buffer = cb_buffer_base + offset;
2462
2463 for (int plane = 0; plane < num_planes; ++plane) {
2464 dcb->dqcoeff_block[plane] = cb_buffer->dqcoeff[plane];
2465 dcb->eob_data[plane] = cb_buffer->eob_data[plane];
2466 dcb->cb_offset[plane] = 0;
2467 dcb->txb_offset[plane] = 0;
2468 }
2469 MACROBLOCKD *const xd = &dcb->xd;
2470 xd->plane[0].color_index_map = cb_buffer->color_index_map[0];
2471 xd->plane[1].color_index_map = cb_buffer->color_index_map[1];
2472 xd->color_index_map_offset[0] = 0;
2473 xd->color_index_map_offset[1] = 0;
2474 }
2475
decoder_alloc_tile_data(AV1Decoder * pbi,const int n_tiles)2476 static inline void decoder_alloc_tile_data(AV1Decoder *pbi, const int n_tiles) {
2477 AV1_COMMON *const cm = &pbi->common;
2478 aom_free(pbi->tile_data);
2479 pbi->allocated_tiles = 0;
2480 CHECK_MEM_ERROR(cm, pbi->tile_data,
2481 aom_memalign(32, n_tiles * sizeof(*pbi->tile_data)));
2482 pbi->allocated_tiles = n_tiles;
2483 for (int i = 0; i < n_tiles; i++) {
2484 TileDataDec *const tile_data = pbi->tile_data + i;
2485 av1_zero(tile_data->dec_row_mt_sync);
2486 }
2487 pbi->allocated_row_mt_sync_rows = 0;
2488 }
2489
2490 // Set up nsync by width.
get_sync_range(int width)2491 static inline int get_sync_range(int width) {
2492 // nsync numbers are picked by testing.
2493 #if 0
2494 if (width < 640)
2495 return 1;
2496 else if (width <= 1280)
2497 return 2;
2498 else if (width <= 4096)
2499 return 4;
2500 else
2501 return 8;
2502 #else
2503 (void)width;
2504 #endif
2505 return 1;
2506 }
2507
2508 // Allocate memory for decoder row synchronization
dec_row_mt_alloc(AV1DecRowMTSync * dec_row_mt_sync,AV1_COMMON * cm,int rows)2509 static inline void dec_row_mt_alloc(AV1DecRowMTSync *dec_row_mt_sync,
2510 AV1_COMMON *cm, int rows) {
2511 dec_row_mt_sync->allocated_sb_rows = rows;
2512 #if CONFIG_MULTITHREAD
2513 {
2514 int i;
2515
2516 CHECK_MEM_ERROR(cm, dec_row_mt_sync->mutex_,
2517 aom_malloc(sizeof(*(dec_row_mt_sync->mutex_)) * rows));
2518 if (dec_row_mt_sync->mutex_) {
2519 for (i = 0; i < rows; ++i) {
2520 pthread_mutex_init(&dec_row_mt_sync->mutex_[i], NULL);
2521 }
2522 }
2523
2524 CHECK_MEM_ERROR(cm, dec_row_mt_sync->cond_,
2525 aom_malloc(sizeof(*(dec_row_mt_sync->cond_)) * rows));
2526 if (dec_row_mt_sync->cond_) {
2527 for (i = 0; i < rows; ++i) {
2528 pthread_cond_init(&dec_row_mt_sync->cond_[i], NULL);
2529 }
2530 }
2531 }
2532 #endif // CONFIG_MULTITHREAD
2533
2534 CHECK_MEM_ERROR(cm, dec_row_mt_sync->cur_sb_col,
2535 aom_malloc(sizeof(*(dec_row_mt_sync->cur_sb_col)) * rows));
2536
2537 // Set up nsync.
2538 dec_row_mt_sync->sync_range = get_sync_range(cm->width);
2539 }
2540
2541 // Deallocate decoder row synchronization related mutex and data
av1_dec_row_mt_dealloc(AV1DecRowMTSync * dec_row_mt_sync)2542 void av1_dec_row_mt_dealloc(AV1DecRowMTSync *dec_row_mt_sync) {
2543 if (dec_row_mt_sync != NULL) {
2544 #if CONFIG_MULTITHREAD
2545 int i;
2546 if (dec_row_mt_sync->mutex_ != NULL) {
2547 for (i = 0; i < dec_row_mt_sync->allocated_sb_rows; ++i) {
2548 pthread_mutex_destroy(&dec_row_mt_sync->mutex_[i]);
2549 }
2550 aom_free(dec_row_mt_sync->mutex_);
2551 }
2552 if (dec_row_mt_sync->cond_ != NULL) {
2553 for (i = 0; i < dec_row_mt_sync->allocated_sb_rows; ++i) {
2554 pthread_cond_destroy(&dec_row_mt_sync->cond_[i]);
2555 }
2556 aom_free(dec_row_mt_sync->cond_);
2557 }
2558 #endif // CONFIG_MULTITHREAD
2559 aom_free(dec_row_mt_sync->cur_sb_col);
2560
2561 // clear the structure as the source of this call may be a resize in which
2562 // case this call will be followed by an _alloc() which may fail.
2563 av1_zero(*dec_row_mt_sync);
2564 }
2565 }
2566
sync_read(AV1DecRowMTSync * const dec_row_mt_sync,int r,int c)2567 static inline void sync_read(AV1DecRowMTSync *const dec_row_mt_sync, int r,
2568 int c) {
2569 #if CONFIG_MULTITHREAD
2570 const int nsync = dec_row_mt_sync->sync_range;
2571
2572 if (r && !(c & (nsync - 1))) {
2573 pthread_mutex_t *const mutex = &dec_row_mt_sync->mutex_[r - 1];
2574 pthread_mutex_lock(mutex);
2575
2576 while (c > dec_row_mt_sync->cur_sb_col[r - 1] - nsync -
2577 dec_row_mt_sync->intrabc_extra_top_right_sb_delay) {
2578 pthread_cond_wait(&dec_row_mt_sync->cond_[r - 1], mutex);
2579 }
2580 pthread_mutex_unlock(mutex);
2581 }
2582 #else
2583 (void)dec_row_mt_sync;
2584 (void)r;
2585 (void)c;
2586 #endif // CONFIG_MULTITHREAD
2587 }
2588
sync_write(AV1DecRowMTSync * const dec_row_mt_sync,int r,int c,const int sb_cols)2589 static inline void sync_write(AV1DecRowMTSync *const dec_row_mt_sync, int r,
2590 int c, const int sb_cols) {
2591 #if CONFIG_MULTITHREAD
2592 const int nsync = dec_row_mt_sync->sync_range;
2593 int cur;
2594 int sig = 1;
2595
2596 if (c < sb_cols - 1) {
2597 cur = c;
2598 if (c % nsync) sig = 0;
2599 } else {
2600 cur = sb_cols + nsync + dec_row_mt_sync->intrabc_extra_top_right_sb_delay;
2601 }
2602
2603 if (sig) {
2604 pthread_mutex_lock(&dec_row_mt_sync->mutex_[r]);
2605
2606 dec_row_mt_sync->cur_sb_col[r] = cur;
2607
2608 pthread_cond_signal(&dec_row_mt_sync->cond_[r]);
2609 pthread_mutex_unlock(&dec_row_mt_sync->mutex_[r]);
2610 }
2611 #else
2612 (void)dec_row_mt_sync;
2613 (void)r;
2614 (void)c;
2615 (void)sb_cols;
2616 #endif // CONFIG_MULTITHREAD
2617 }
2618
signal_decoding_done_for_erroneous_row(AV1Decoder * const pbi,const MACROBLOCKD * const xd)2619 static inline void signal_decoding_done_for_erroneous_row(
2620 AV1Decoder *const pbi, const MACROBLOCKD *const xd) {
2621 AV1_COMMON *const cm = &pbi->common;
2622 const TileInfo *const tile = &xd->tile;
2623 const int sb_row_in_tile =
2624 ((xd->mi_row - tile->mi_row_start) >> cm->seq_params->mib_size_log2);
2625 const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile);
2626 TileDataDec *const tile_data =
2627 pbi->tile_data + tile->tile_row * cm->tiles.cols + tile->tile_col;
2628 AV1DecRowMTSync *dec_row_mt_sync = &tile_data->dec_row_mt_sync;
2629
2630 sync_write(dec_row_mt_sync, sb_row_in_tile, sb_cols_in_tile - 1,
2631 sb_cols_in_tile);
2632 }
2633
decode_tile_sb_row(AV1Decoder * pbi,ThreadData * const td,const TileInfo * tile_info,const int mi_row)2634 static inline void decode_tile_sb_row(AV1Decoder *pbi, ThreadData *const td,
2635 const TileInfo *tile_info,
2636 const int mi_row) {
2637 AV1_COMMON *const cm = &pbi->common;
2638 const int num_planes = av1_num_planes(cm);
2639 TileDataDec *const tile_data = pbi->tile_data +
2640 tile_info->tile_row * cm->tiles.cols +
2641 tile_info->tile_col;
2642 const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info);
2643 const int sb_row_in_tile =
2644 (mi_row - tile_info->mi_row_start) >> cm->seq_params->mib_size_log2;
2645 int sb_col_in_tile = 0;
2646 int row_mt_exit = 0;
2647
2648 for (int mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end;
2649 mi_col += cm->seq_params->mib_size, sb_col_in_tile++) {
2650 set_cb_buffer(pbi, &td->dcb, pbi->cb_buffer_base, num_planes, mi_row,
2651 mi_col);
2652
2653 sync_read(&tile_data->dec_row_mt_sync, sb_row_in_tile, sb_col_in_tile);
2654
2655 #if CONFIG_MULTITHREAD
2656 pthread_mutex_lock(pbi->row_mt_mutex_);
2657 #endif
2658 row_mt_exit = pbi->frame_row_mt_info.row_mt_exit;
2659 #if CONFIG_MULTITHREAD
2660 pthread_mutex_unlock(pbi->row_mt_mutex_);
2661 #endif
2662
2663 if (!row_mt_exit) {
2664 // Decoding of the super-block
2665 decode_partition(pbi, td, mi_row, mi_col, td->bit_reader,
2666 cm->seq_params->sb_size, 0x2);
2667 }
2668
2669 sync_write(&tile_data->dec_row_mt_sync, sb_row_in_tile, sb_col_in_tile,
2670 sb_cols_in_tile);
2671 }
2672 }
2673
check_trailing_bits_after_symbol_coder(aom_reader * r)2674 static int check_trailing_bits_after_symbol_coder(aom_reader *r) {
2675 if (aom_reader_has_overflowed(r)) return -1;
2676
2677 uint32_t nb_bits = aom_reader_tell(r);
2678 uint32_t nb_bytes = (nb_bits + 7) >> 3;
2679 const uint8_t *p = aom_reader_find_begin(r) + nb_bytes;
2680
2681 // aom_reader_tell() returns 1 for a newly initialized decoder, and the
2682 // return value only increases as values are decoded. So nb_bits > 0, and
2683 // thus p > p_begin. Therefore accessing p[-1] is safe.
2684 uint8_t last_byte = p[-1];
2685 uint8_t pattern = 128 >> ((nb_bits - 1) & 7);
2686 if ((last_byte & (2 * pattern - 1)) != pattern) return -1;
2687
2688 // Make sure that all padding bytes are zero as required by the spec.
2689 const uint8_t *p_end = aom_reader_find_end(r);
2690 while (p < p_end) {
2691 if (*p != 0) return -1;
2692 p++;
2693 }
2694 return 0;
2695 }
2696
set_decode_func_pointers(ThreadData * td,int parse_decode_flag)2697 static inline void set_decode_func_pointers(ThreadData *td,
2698 int parse_decode_flag) {
2699 td->read_coeffs_tx_intra_block_visit = decode_block_void;
2700 td->predict_and_recon_intra_block_visit = decode_block_void;
2701 td->read_coeffs_tx_inter_block_visit = decode_block_void;
2702 td->inverse_tx_inter_block_visit = decode_block_void;
2703 td->predict_inter_block_visit = predict_inter_block_void;
2704 td->cfl_store_inter_block_visit = cfl_store_inter_block_void;
2705
2706 if (parse_decode_flag & 0x1) {
2707 td->read_coeffs_tx_intra_block_visit = read_coeffs_tx_intra_block;
2708 td->read_coeffs_tx_inter_block_visit = av1_read_coeffs_txb;
2709 }
2710 if (parse_decode_flag & 0x2) {
2711 td->predict_and_recon_intra_block_visit =
2712 predict_and_reconstruct_intra_block;
2713 td->inverse_tx_inter_block_visit = inverse_transform_inter_block;
2714 td->predict_inter_block_visit = predict_inter_block;
2715 td->cfl_store_inter_block_visit = cfl_store_inter_block;
2716 }
2717 }
2718
decode_tile(AV1Decoder * pbi,ThreadData * const td,int tile_row,int tile_col)2719 static inline void decode_tile(AV1Decoder *pbi, ThreadData *const td,
2720 int tile_row, int tile_col) {
2721 TileInfo tile_info;
2722
2723 AV1_COMMON *const cm = &pbi->common;
2724 const int num_planes = av1_num_planes(cm);
2725
2726 av1_tile_set_row(&tile_info, cm, tile_row);
2727 av1_tile_set_col(&tile_info, cm, tile_col);
2728 DecoderCodingBlock *const dcb = &td->dcb;
2729 MACROBLOCKD *const xd = &dcb->xd;
2730
2731 av1_zero_above_context(cm, xd, tile_info.mi_col_start, tile_info.mi_col_end,
2732 tile_row);
2733 av1_reset_loop_filter_delta(xd, num_planes);
2734 av1_reset_loop_restoration(xd, num_planes);
2735
2736 for (int mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end;
2737 mi_row += cm->seq_params->mib_size) {
2738 av1_zero_left_context(xd);
2739
2740 for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end;
2741 mi_col += cm->seq_params->mib_size) {
2742 set_cb_buffer(pbi, dcb, &td->cb_buffer_base, num_planes, 0, 0);
2743
2744 // Bit-stream parsing and decoding of the superblock
2745 decode_partition(pbi, td, mi_row, mi_col, td->bit_reader,
2746 cm->seq_params->sb_size, 0x3);
2747
2748 if (aom_reader_has_overflowed(td->bit_reader)) {
2749 aom_merge_corrupted_flag(&dcb->corrupted, 1);
2750 return;
2751 }
2752 }
2753 }
2754
2755 int corrupted =
2756 (check_trailing_bits_after_symbol_coder(td->bit_reader)) ? 1 : 0;
2757 aom_merge_corrupted_flag(&dcb->corrupted, corrupted);
2758 }
2759
decode_tiles(AV1Decoder * pbi,const uint8_t * data,const uint8_t * data_end,int start_tile,int end_tile)2760 static const uint8_t *decode_tiles(AV1Decoder *pbi, const uint8_t *data,
2761 const uint8_t *data_end, int start_tile,
2762 int end_tile) {
2763 AV1_COMMON *const cm = &pbi->common;
2764 ThreadData *const td = &pbi->td;
2765 CommonTileParams *const tiles = &cm->tiles;
2766 const int tile_cols = tiles->cols;
2767 const int tile_rows = tiles->rows;
2768 const int n_tiles = tile_cols * tile_rows;
2769 TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers;
2770 const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
2771 const int single_row = pbi->dec_tile_row >= 0;
2772 const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
2773 const int single_col = pbi->dec_tile_col >= 0;
2774 int tile_rows_start;
2775 int tile_rows_end;
2776 int tile_cols_start;
2777 int tile_cols_end;
2778 int inv_col_order;
2779 int inv_row_order;
2780 int tile_row, tile_col;
2781 uint8_t allow_update_cdf;
2782 const uint8_t *raw_data_end = NULL;
2783
2784 if (tiles->large_scale) {
2785 tile_rows_start = single_row ? dec_tile_row : 0;
2786 tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows;
2787 tile_cols_start = single_col ? dec_tile_col : 0;
2788 tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
2789 inv_col_order = pbi->inv_tile_order && !single_col;
2790 inv_row_order = pbi->inv_tile_order && !single_row;
2791 allow_update_cdf = 0;
2792 } else {
2793 tile_rows_start = 0;
2794 tile_rows_end = tile_rows;
2795 tile_cols_start = 0;
2796 tile_cols_end = tile_cols;
2797 inv_col_order = pbi->inv_tile_order;
2798 inv_row_order = pbi->inv_tile_order;
2799 allow_update_cdf = 1;
2800 }
2801
2802 // No tiles to decode.
2803 if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start ||
2804 // First tile is larger than end_tile.
2805 tile_rows_start * tiles->cols + tile_cols_start > end_tile ||
2806 // Last tile is smaller than start_tile.
2807 (tile_rows_end - 1) * tiles->cols + tile_cols_end - 1 < start_tile)
2808 return data;
2809
2810 allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update;
2811
2812 assert(tile_rows <= MAX_TILE_ROWS);
2813 assert(tile_cols <= MAX_TILE_COLS);
2814
2815 #if EXT_TILE_DEBUG
2816 if (tiles->large_scale && !pbi->ext_tile_debug)
2817 raw_data_end = get_ls_single_tile_buffer(pbi, data, tile_buffers);
2818 else if (tiles->large_scale && pbi->ext_tile_debug)
2819 raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers);
2820 else
2821 #endif // EXT_TILE_DEBUG
2822 get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile);
2823
2824 if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) {
2825 decoder_alloc_tile_data(pbi, n_tiles);
2826 }
2827 if (pbi->dcb.xd.seg_mask == NULL)
2828 CHECK_MEM_ERROR(cm, pbi->dcb.xd.seg_mask,
2829 (uint8_t *)aom_memalign(
2830 16, 2 * MAX_SB_SQUARE * sizeof(*pbi->dcb.xd.seg_mask)));
2831 #if CONFIG_ACCOUNTING
2832 if (pbi->acct_enabled) {
2833 aom_accounting_reset(&pbi->accounting);
2834 }
2835 #endif
2836
2837 set_decode_func_pointers(&pbi->td, 0x3);
2838
2839 // Load all tile information into thread_data.
2840 td->dcb = pbi->dcb;
2841
2842 td->dcb.corrupted = 0;
2843 td->dcb.mc_buf[0] = td->mc_buf[0];
2844 td->dcb.mc_buf[1] = td->mc_buf[1];
2845 td->dcb.xd.tmp_conv_dst = td->tmp_conv_dst;
2846 for (int j = 0; j < 2; ++j) {
2847 td->dcb.xd.tmp_obmc_bufs[j] = td->tmp_obmc_bufs[j];
2848 }
2849
2850 for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) {
2851 const int row = inv_row_order ? tile_rows - 1 - tile_row : tile_row;
2852
2853 for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) {
2854 const int col = inv_col_order ? tile_cols - 1 - tile_col : tile_col;
2855 TileDataDec *const tile_data = pbi->tile_data + row * tiles->cols + col;
2856 const TileBufferDec *const tile_bs_buf = &tile_buffers[row][col];
2857
2858 if (row * tiles->cols + col < start_tile ||
2859 row * tiles->cols + col > end_tile)
2860 continue;
2861
2862 td->bit_reader = &tile_data->bit_reader;
2863 av1_zero(td->cb_buffer_base.dqcoeff);
2864 av1_tile_init(&td->dcb.xd.tile, cm, row, col);
2865 td->dcb.xd.current_base_qindex = cm->quant_params.base_qindex;
2866 setup_bool_decoder(&td->dcb.xd, tile_bs_buf->data, data_end,
2867 tile_bs_buf->size, &pbi->error, td->bit_reader,
2868 allow_update_cdf);
2869 #if CONFIG_ACCOUNTING
2870 if (pbi->acct_enabled) {
2871 td->bit_reader->accounting = &pbi->accounting;
2872 td->bit_reader->accounting->last_tell_frac =
2873 aom_reader_tell_frac(td->bit_reader);
2874 } else {
2875 td->bit_reader->accounting = NULL;
2876 }
2877 #endif
2878 av1_init_macroblockd(cm, &td->dcb.xd);
2879 av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), row,
2880 &td->dcb.xd);
2881
2882 // Initialise the tile context from the frame context
2883 tile_data->tctx = *cm->fc;
2884 td->dcb.xd.tile_ctx = &tile_data->tctx;
2885
2886 // decode tile
2887 decode_tile(pbi, td, row, col);
2888 aom_merge_corrupted_flag(&pbi->dcb.corrupted, td->dcb.corrupted);
2889 if (pbi->dcb.corrupted)
2890 aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
2891 "Failed to decode tile data");
2892 }
2893 }
2894
2895 if (tiles->large_scale) {
2896 if (n_tiles == 1) {
2897 // Find the end of the single tile buffer
2898 return aom_reader_find_end(&pbi->tile_data->bit_reader);
2899 }
2900 // Return the end of the last tile buffer
2901 return raw_data_end;
2902 }
2903 TileDataDec *const tile_data = pbi->tile_data + end_tile;
2904
2905 return aom_reader_find_end(&tile_data->bit_reader);
2906 }
2907
get_dec_job_info(AV1DecTileMT * tile_mt_info)2908 static TileJobsDec *get_dec_job_info(AV1DecTileMT *tile_mt_info) {
2909 TileJobsDec *cur_job_info = NULL;
2910 #if CONFIG_MULTITHREAD
2911 pthread_mutex_lock(tile_mt_info->job_mutex);
2912
2913 if (tile_mt_info->jobs_dequeued < tile_mt_info->jobs_enqueued) {
2914 cur_job_info = tile_mt_info->job_queue + tile_mt_info->jobs_dequeued;
2915 tile_mt_info->jobs_dequeued++;
2916 }
2917
2918 pthread_mutex_unlock(tile_mt_info->job_mutex);
2919 #else
2920 (void)tile_mt_info;
2921 #endif
2922 return cur_job_info;
2923 }
2924
tile_worker_hook_init(AV1Decoder * const pbi,DecWorkerData * const thread_data,const TileBufferDec * const tile_buffer,TileDataDec * const tile_data,uint8_t allow_update_cdf)2925 static inline void tile_worker_hook_init(AV1Decoder *const pbi,
2926 DecWorkerData *const thread_data,
2927 const TileBufferDec *const tile_buffer,
2928 TileDataDec *const tile_data,
2929 uint8_t allow_update_cdf) {
2930 AV1_COMMON *cm = &pbi->common;
2931 ThreadData *const td = thread_data->td;
2932 int tile_row = tile_data->tile_info.tile_row;
2933 int tile_col = tile_data->tile_info.tile_col;
2934
2935 td->bit_reader = &tile_data->bit_reader;
2936 av1_zero(td->cb_buffer_base.dqcoeff);
2937
2938 MACROBLOCKD *const xd = &td->dcb.xd;
2939 av1_tile_init(&xd->tile, cm, tile_row, tile_col);
2940 xd->current_base_qindex = cm->quant_params.base_qindex;
2941
2942 setup_bool_decoder(xd, tile_buffer->data, thread_data->data_end,
2943 tile_buffer->size, &thread_data->error_info,
2944 td->bit_reader, allow_update_cdf);
2945 #if CONFIG_ACCOUNTING
2946 if (pbi->acct_enabled) {
2947 td->bit_reader->accounting = &pbi->accounting;
2948 td->bit_reader->accounting->last_tell_frac =
2949 aom_reader_tell_frac(td->bit_reader);
2950 } else {
2951 td->bit_reader->accounting = NULL;
2952 }
2953 #endif
2954 av1_init_macroblockd(cm, xd);
2955 xd->error_info = &thread_data->error_info;
2956 av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row, xd);
2957
2958 // Initialise the tile context from the frame context
2959 tile_data->tctx = *cm->fc;
2960 xd->tile_ctx = &tile_data->tctx;
2961 #if CONFIG_ACCOUNTING
2962 if (pbi->acct_enabled) {
2963 tile_data->bit_reader.accounting->last_tell_frac =
2964 aom_reader_tell_frac(&tile_data->bit_reader);
2965 }
2966 #endif
2967 }
2968
tile_worker_hook(void * arg1,void * arg2)2969 static int tile_worker_hook(void *arg1, void *arg2) {
2970 DecWorkerData *const thread_data = (DecWorkerData *)arg1;
2971 AV1Decoder *const pbi = (AV1Decoder *)arg2;
2972 AV1_COMMON *cm = &pbi->common;
2973 ThreadData *const td = thread_data->td;
2974 uint8_t allow_update_cdf;
2975
2976 // The jmp_buf is valid only for the duration of the function that calls
2977 // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
2978 // before it returns.
2979 if (setjmp(thread_data->error_info.jmp)) {
2980 thread_data->error_info.setjmp = 0;
2981 thread_data->td->dcb.corrupted = 1;
2982 return 0;
2983 }
2984 thread_data->error_info.setjmp = 1;
2985
2986 allow_update_cdf = cm->tiles.large_scale ? 0 : 1;
2987 allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update;
2988
2989 set_decode_func_pointers(td, 0x3);
2990
2991 assert(cm->tiles.cols > 0);
2992 while (!td->dcb.corrupted) {
2993 TileJobsDec *cur_job_info = get_dec_job_info(&pbi->tile_mt_info);
2994
2995 if (cur_job_info != NULL) {
2996 const TileBufferDec *const tile_buffer = cur_job_info->tile_buffer;
2997 TileDataDec *const tile_data = cur_job_info->tile_data;
2998 tile_worker_hook_init(pbi, thread_data, tile_buffer, tile_data,
2999 allow_update_cdf);
3000 // decode tile
3001 int tile_row = tile_data->tile_info.tile_row;
3002 int tile_col = tile_data->tile_info.tile_col;
3003 decode_tile(pbi, td, tile_row, tile_col);
3004 } else {
3005 break;
3006 }
3007 }
3008 thread_data->error_info.setjmp = 0;
3009 return !td->dcb.corrupted;
3010 }
3011
get_max_row_mt_workers_per_tile(AV1_COMMON * cm,const TileInfo * tile)3012 static inline int get_max_row_mt_workers_per_tile(AV1_COMMON *cm,
3013 const TileInfo *tile) {
3014 // NOTE: Currently value of max workers is calculated based
3015 // on the parse and decode time. As per the theoretical estimate
3016 // when percentage of parse time is equal to percentage of decode
3017 // time, number of workers needed to parse + decode a tile can not
3018 // exceed more than 2.
3019 // TODO(any): Modify this value if parsing is optimized in future.
3020 int sb_rows = av1_get_sb_rows_in_tile(cm, tile);
3021 int max_workers =
3022 sb_rows == 1 ? AOM_MIN_THREADS_PER_TILE : AOM_MAX_THREADS_PER_TILE;
3023 return max_workers;
3024 }
3025
3026 // The caller must hold pbi->row_mt_mutex_ when calling this function.
3027 // Returns 1 if either the next job is stored in *next_job_info or 1 is stored
3028 // in *end_of_frame.
3029 // NOTE: The caller waits on pbi->row_mt_cond_ if this function returns 0.
3030 // The return value of this function depends on the following variables:
3031 // - frame_row_mt_info->mi_rows_parse_done
3032 // - frame_row_mt_info->mi_rows_decode_started
3033 // - frame_row_mt_info->row_mt_exit
3034 // Therefore we may need to signal or broadcast pbi->row_mt_cond_ if any of
3035 // these variables is modified.
get_next_job_info(AV1Decoder * const pbi,AV1DecRowMTJobInfo * next_job_info,int * end_of_frame)3036 static int get_next_job_info(AV1Decoder *const pbi,
3037 AV1DecRowMTJobInfo *next_job_info,
3038 int *end_of_frame) {
3039 AV1_COMMON *cm = &pbi->common;
3040 TileDataDec *tile_data;
3041 AV1DecRowMTSync *dec_row_mt_sync;
3042 AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info;
3043 const int tile_rows_start = frame_row_mt_info->tile_rows_start;
3044 const int tile_rows_end = frame_row_mt_info->tile_rows_end;
3045 const int tile_cols_start = frame_row_mt_info->tile_cols_start;
3046 const int tile_cols_end = frame_row_mt_info->tile_cols_end;
3047 const int start_tile = frame_row_mt_info->start_tile;
3048 const int end_tile = frame_row_mt_info->end_tile;
3049 const int sb_mi_size = mi_size_wide[cm->seq_params->sb_size];
3050 int num_mis_to_decode, num_threads_working;
3051 int num_mis_waiting_for_decode;
3052 int min_threads_working = INT_MAX;
3053 int max_mis_to_decode = 0;
3054 int tile_row_idx, tile_col_idx;
3055 int tile_row = -1;
3056 int tile_col = -1;
3057
3058 memset(next_job_info, 0, sizeof(*next_job_info));
3059
3060 // Frame decode is completed or error is encountered.
3061 *end_of_frame = (frame_row_mt_info->mi_rows_decode_started ==
3062 frame_row_mt_info->mi_rows_to_decode) ||
3063 (frame_row_mt_info->row_mt_exit == 1);
3064 if (*end_of_frame) {
3065 return 1;
3066 }
3067
3068 // Decoding cannot start as bit-stream parsing is not complete.
3069 assert(frame_row_mt_info->mi_rows_parse_done >=
3070 frame_row_mt_info->mi_rows_decode_started);
3071 if (frame_row_mt_info->mi_rows_parse_done ==
3072 frame_row_mt_info->mi_rows_decode_started)
3073 return 0;
3074
3075 // Choose the tile to decode.
3076 for (tile_row_idx = tile_rows_start; tile_row_idx < tile_rows_end;
3077 ++tile_row_idx) {
3078 for (tile_col_idx = tile_cols_start; tile_col_idx < tile_cols_end;
3079 ++tile_col_idx) {
3080 if (tile_row_idx * cm->tiles.cols + tile_col_idx < start_tile ||
3081 tile_row_idx * cm->tiles.cols + tile_col_idx > end_tile)
3082 continue;
3083
3084 tile_data = pbi->tile_data + tile_row_idx * cm->tiles.cols + tile_col_idx;
3085 dec_row_mt_sync = &tile_data->dec_row_mt_sync;
3086
3087 num_threads_working = dec_row_mt_sync->num_threads_working;
3088 num_mis_waiting_for_decode = (dec_row_mt_sync->mi_rows_parse_done -
3089 dec_row_mt_sync->mi_rows_decode_started) *
3090 dec_row_mt_sync->mi_cols;
3091 num_mis_to_decode =
3092 (dec_row_mt_sync->mi_rows - dec_row_mt_sync->mi_rows_decode_started) *
3093 dec_row_mt_sync->mi_cols;
3094
3095 assert(num_mis_to_decode >= num_mis_waiting_for_decode);
3096
3097 // Pick the tile which has minimum number of threads working on it.
3098 if (num_mis_waiting_for_decode > 0) {
3099 if (num_threads_working < min_threads_working) {
3100 min_threads_working = num_threads_working;
3101 max_mis_to_decode = 0;
3102 }
3103 if (num_threads_working == min_threads_working &&
3104 num_mis_to_decode > max_mis_to_decode &&
3105 num_threads_working <
3106 get_max_row_mt_workers_per_tile(cm, &tile_data->tile_info)) {
3107 max_mis_to_decode = num_mis_to_decode;
3108 tile_row = tile_row_idx;
3109 tile_col = tile_col_idx;
3110 }
3111 }
3112 }
3113 }
3114 // No job found to process
3115 if (tile_row == -1 || tile_col == -1) return 0;
3116
3117 tile_data = pbi->tile_data + tile_row * cm->tiles.cols + tile_col;
3118 dec_row_mt_sync = &tile_data->dec_row_mt_sync;
3119
3120 next_job_info->tile_row = tile_row;
3121 next_job_info->tile_col = tile_col;
3122 next_job_info->mi_row = dec_row_mt_sync->mi_rows_decode_started +
3123 tile_data->tile_info.mi_row_start;
3124
3125 dec_row_mt_sync->num_threads_working++;
3126 dec_row_mt_sync->mi_rows_decode_started += sb_mi_size;
3127 frame_row_mt_info->mi_rows_decode_started += sb_mi_size;
3128 assert(frame_row_mt_info->mi_rows_parse_done >=
3129 frame_row_mt_info->mi_rows_decode_started);
3130 #if CONFIG_MULTITHREAD
3131 if (frame_row_mt_info->mi_rows_decode_started ==
3132 frame_row_mt_info->mi_rows_to_decode) {
3133 pthread_cond_broadcast(pbi->row_mt_cond_);
3134 }
3135 #endif
3136
3137 return 1;
3138 }
3139
signal_parse_sb_row_done(AV1Decoder * const pbi,TileDataDec * const tile_data,const int sb_mi_size)3140 static inline void signal_parse_sb_row_done(AV1Decoder *const pbi,
3141 TileDataDec *const tile_data,
3142 const int sb_mi_size) {
3143 AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info;
3144 #if CONFIG_MULTITHREAD
3145 pthread_mutex_lock(pbi->row_mt_mutex_);
3146 #endif
3147 assert(frame_row_mt_info->mi_rows_parse_done >=
3148 frame_row_mt_info->mi_rows_decode_started);
3149 tile_data->dec_row_mt_sync.mi_rows_parse_done += sb_mi_size;
3150 frame_row_mt_info->mi_rows_parse_done += sb_mi_size;
3151 #if CONFIG_MULTITHREAD
3152 // A new decode job is available. Wake up one worker thread to handle the
3153 // new decode job.
3154 // NOTE: This assumes we bump mi_rows_parse_done and mi_rows_decode_started
3155 // by the same increment (sb_mi_size).
3156 pthread_cond_signal(pbi->row_mt_cond_);
3157 pthread_mutex_unlock(pbi->row_mt_mutex_);
3158 #endif
3159 }
3160
3161 // This function is very similar to decode_tile(). It would be good to figure
3162 // out how to share code.
parse_tile_row_mt(AV1Decoder * pbi,ThreadData * const td,TileDataDec * const tile_data)3163 static inline void parse_tile_row_mt(AV1Decoder *pbi, ThreadData *const td,
3164 TileDataDec *const tile_data) {
3165 AV1_COMMON *const cm = &pbi->common;
3166 const int sb_mi_size = mi_size_wide[cm->seq_params->sb_size];
3167 const int num_planes = av1_num_planes(cm);
3168 const TileInfo *const tile_info = &tile_data->tile_info;
3169 int tile_row = tile_info->tile_row;
3170 DecoderCodingBlock *const dcb = &td->dcb;
3171 MACROBLOCKD *const xd = &dcb->xd;
3172
3173 av1_zero_above_context(cm, xd, tile_info->mi_col_start, tile_info->mi_col_end,
3174 tile_row);
3175 av1_reset_loop_filter_delta(xd, num_planes);
3176 av1_reset_loop_restoration(xd, num_planes);
3177
3178 for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
3179 mi_row += cm->seq_params->mib_size) {
3180 av1_zero_left_context(xd);
3181
3182 for (int mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end;
3183 mi_col += cm->seq_params->mib_size) {
3184 set_cb_buffer(pbi, dcb, pbi->cb_buffer_base, num_planes, mi_row, mi_col);
3185
3186 // Bit-stream parsing of the superblock
3187 decode_partition(pbi, td, mi_row, mi_col, td->bit_reader,
3188 cm->seq_params->sb_size, 0x1);
3189
3190 if (aom_reader_has_overflowed(td->bit_reader)) {
3191 aom_merge_corrupted_flag(&dcb->corrupted, 1);
3192 return;
3193 }
3194 }
3195 signal_parse_sb_row_done(pbi, tile_data, sb_mi_size);
3196 }
3197
3198 int corrupted =
3199 (check_trailing_bits_after_symbol_coder(td->bit_reader)) ? 1 : 0;
3200 aom_merge_corrupted_flag(&dcb->corrupted, corrupted);
3201 }
3202
row_mt_worker_hook(void * arg1,void * arg2)3203 static int row_mt_worker_hook(void *arg1, void *arg2) {
3204 DecWorkerData *const thread_data = (DecWorkerData *)arg1;
3205 AV1Decoder *const pbi = (AV1Decoder *)arg2;
3206 ThreadData *const td = thread_data->td;
3207 uint8_t allow_update_cdf;
3208 AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info;
3209 td->dcb.corrupted = 0;
3210
3211 // The jmp_buf is valid only for the duration of the function that calls
3212 // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
3213 // before it returns.
3214 if (setjmp(thread_data->error_info.jmp)) {
3215 thread_data->error_info.setjmp = 0;
3216 thread_data->td->dcb.corrupted = 1;
3217 #if CONFIG_MULTITHREAD
3218 pthread_mutex_lock(pbi->row_mt_mutex_);
3219 #endif
3220 frame_row_mt_info->row_mt_exit = 1;
3221 #if CONFIG_MULTITHREAD
3222 pthread_cond_broadcast(pbi->row_mt_cond_);
3223 pthread_mutex_unlock(pbi->row_mt_mutex_);
3224 #endif
3225 // If any SB row (erroneous row) processed by a thread encounters an
3226 // internal error, there is a need to indicate other threads that decoding
3227 // of the erroneous row is complete. This ensures that other threads which
3228 // wait upon the completion of SB's present in erroneous row are not waiting
3229 // indefinitely.
3230 signal_decoding_done_for_erroneous_row(pbi, &thread_data->td->dcb.xd);
3231 return 0;
3232 }
3233 thread_data->error_info.setjmp = 1;
3234
3235 AV1_COMMON *cm = &pbi->common;
3236 allow_update_cdf = cm->tiles.large_scale ? 0 : 1;
3237 allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update;
3238
3239 set_decode_func_pointers(td, 0x1);
3240
3241 assert(cm->tiles.cols > 0);
3242 while (!td->dcb.corrupted) {
3243 TileJobsDec *cur_job_info = get_dec_job_info(&pbi->tile_mt_info);
3244
3245 if (cur_job_info != NULL) {
3246 const TileBufferDec *const tile_buffer = cur_job_info->tile_buffer;
3247 TileDataDec *const tile_data = cur_job_info->tile_data;
3248 tile_worker_hook_init(pbi, thread_data, tile_buffer, tile_data,
3249 allow_update_cdf);
3250 #if CONFIG_MULTITHREAD
3251 pthread_mutex_lock(pbi->row_mt_mutex_);
3252 #endif
3253 tile_data->dec_row_mt_sync.num_threads_working++;
3254 #if CONFIG_MULTITHREAD
3255 pthread_mutex_unlock(pbi->row_mt_mutex_);
3256 #endif
3257 // decode tile
3258 parse_tile_row_mt(pbi, td, tile_data);
3259 #if CONFIG_MULTITHREAD
3260 pthread_mutex_lock(pbi->row_mt_mutex_);
3261 #endif
3262 tile_data->dec_row_mt_sync.num_threads_working--;
3263 #if CONFIG_MULTITHREAD
3264 pthread_mutex_unlock(pbi->row_mt_mutex_);
3265 #endif
3266 } else {
3267 break;
3268 }
3269 }
3270
3271 if (td->dcb.corrupted) {
3272 thread_data->error_info.setjmp = 0;
3273 #if CONFIG_MULTITHREAD
3274 pthread_mutex_lock(pbi->row_mt_mutex_);
3275 #endif
3276 frame_row_mt_info->row_mt_exit = 1;
3277 #if CONFIG_MULTITHREAD
3278 pthread_cond_broadcast(pbi->row_mt_cond_);
3279 pthread_mutex_unlock(pbi->row_mt_mutex_);
3280 #endif
3281 return 0;
3282 }
3283
3284 set_decode_func_pointers(td, 0x2);
3285
3286 while (1) {
3287 AV1DecRowMTJobInfo next_job_info;
3288 int end_of_frame = 0;
3289
3290 #if CONFIG_MULTITHREAD
3291 pthread_mutex_lock(pbi->row_mt_mutex_);
3292 #endif
3293 while (!get_next_job_info(pbi, &next_job_info, &end_of_frame)) {
3294 #if CONFIG_MULTITHREAD
3295 pthread_cond_wait(pbi->row_mt_cond_, pbi->row_mt_mutex_);
3296 #endif
3297 }
3298 #if CONFIG_MULTITHREAD
3299 pthread_mutex_unlock(pbi->row_mt_mutex_);
3300 #endif
3301
3302 if (end_of_frame) break;
3303
3304 int tile_row = next_job_info.tile_row;
3305 int tile_col = next_job_info.tile_col;
3306 int mi_row = next_job_info.mi_row;
3307
3308 TileDataDec *tile_data =
3309 pbi->tile_data + tile_row * cm->tiles.cols + tile_col;
3310 AV1DecRowMTSync *dec_row_mt_sync = &tile_data->dec_row_mt_sync;
3311
3312 av1_tile_init(&td->dcb.xd.tile, cm, tile_row, tile_col);
3313 av1_init_macroblockd(cm, &td->dcb.xd);
3314 td->dcb.xd.error_info = &thread_data->error_info;
3315
3316 decode_tile_sb_row(pbi, td, &tile_data->tile_info, mi_row);
3317
3318 #if CONFIG_MULTITHREAD
3319 pthread_mutex_lock(pbi->row_mt_mutex_);
3320 #endif
3321 dec_row_mt_sync->num_threads_working--;
3322 #if CONFIG_MULTITHREAD
3323 pthread_mutex_unlock(pbi->row_mt_mutex_);
3324 #endif
3325 }
3326 thread_data->error_info.setjmp = 0;
3327 return !td->dcb.corrupted;
3328 }
3329
3330 // sorts in descending order
compare_tile_buffers(const void * a,const void * b)3331 static int compare_tile_buffers(const void *a, const void *b) {
3332 const TileJobsDec *const buf1 = (const TileJobsDec *)a;
3333 const TileJobsDec *const buf2 = (const TileJobsDec *)b;
3334 return (((int)buf2->tile_buffer->size) - ((int)buf1->tile_buffer->size));
3335 }
3336
enqueue_tile_jobs(AV1Decoder * pbi,AV1_COMMON * cm,int tile_rows_start,int tile_rows_end,int tile_cols_start,int tile_cols_end,int start_tile,int end_tile)3337 static inline void enqueue_tile_jobs(AV1Decoder *pbi, AV1_COMMON *cm,
3338 int tile_rows_start, int tile_rows_end,
3339 int tile_cols_start, int tile_cols_end,
3340 int start_tile, int end_tile) {
3341 AV1DecTileMT *tile_mt_info = &pbi->tile_mt_info;
3342 TileJobsDec *tile_job_queue = tile_mt_info->job_queue;
3343 tile_mt_info->jobs_enqueued = 0;
3344 tile_mt_info->jobs_dequeued = 0;
3345
3346 for (int row = tile_rows_start; row < tile_rows_end; row++) {
3347 for (int col = tile_cols_start; col < tile_cols_end; col++) {
3348 if (row * cm->tiles.cols + col < start_tile ||
3349 row * cm->tiles.cols + col > end_tile)
3350 continue;
3351 tile_job_queue->tile_buffer = &pbi->tile_buffers[row][col];
3352 tile_job_queue->tile_data = pbi->tile_data + row * cm->tiles.cols + col;
3353 tile_job_queue++;
3354 tile_mt_info->jobs_enqueued++;
3355 }
3356 }
3357 }
3358
alloc_dec_jobs(AV1DecTileMT * tile_mt_info,AV1_COMMON * cm,int tile_rows,int tile_cols)3359 static inline void alloc_dec_jobs(AV1DecTileMT *tile_mt_info, AV1_COMMON *cm,
3360 int tile_rows, int tile_cols) {
3361 tile_mt_info->alloc_tile_rows = tile_rows;
3362 tile_mt_info->alloc_tile_cols = tile_cols;
3363 int num_tiles = tile_rows * tile_cols;
3364 #if CONFIG_MULTITHREAD
3365 {
3366 CHECK_MEM_ERROR(cm, tile_mt_info->job_mutex,
3367 aom_malloc(sizeof(*tile_mt_info->job_mutex) * num_tiles));
3368
3369 for (int i = 0; i < num_tiles; i++) {
3370 pthread_mutex_init(&tile_mt_info->job_mutex[i], NULL);
3371 }
3372 }
3373 #endif
3374 CHECK_MEM_ERROR(cm, tile_mt_info->job_queue,
3375 aom_malloc(sizeof(*tile_mt_info->job_queue) * num_tiles));
3376 }
3377
av1_free_mc_tmp_buf(ThreadData * thread_data)3378 void av1_free_mc_tmp_buf(ThreadData *thread_data) {
3379 int ref;
3380 for (ref = 0; ref < 2; ref++) {
3381 if (thread_data->mc_buf_use_highbd)
3382 aom_free(CONVERT_TO_SHORTPTR(thread_data->mc_buf[ref]));
3383 else
3384 aom_free(thread_data->mc_buf[ref]);
3385 thread_data->mc_buf[ref] = NULL;
3386 }
3387 thread_data->mc_buf_size = 0;
3388 thread_data->mc_buf_use_highbd = 0;
3389
3390 aom_free(thread_data->tmp_conv_dst);
3391 thread_data->tmp_conv_dst = NULL;
3392 aom_free(thread_data->seg_mask);
3393 thread_data->seg_mask = NULL;
3394 for (int i = 0; i < 2; ++i) {
3395 aom_free(thread_data->tmp_obmc_bufs[i]);
3396 thread_data->tmp_obmc_bufs[i] = NULL;
3397 }
3398 }
3399
allocate_mc_tmp_buf(AV1_COMMON * const cm,ThreadData * thread_data,int buf_size,int use_highbd)3400 static inline void allocate_mc_tmp_buf(AV1_COMMON *const cm,
3401 ThreadData *thread_data, int buf_size,
3402 int use_highbd) {
3403 for (int ref = 0; ref < 2; ref++) {
3404 // The mc_buf/hbd_mc_buf must be zeroed to fix a intermittent valgrind error
3405 // 'Conditional jump or move depends on uninitialised value' from the loop
3406 // filter. Uninitialized reads in convolve function (e.g. horiz_4tap path in
3407 // av1_convolve_2d_sr_avx2()) from mc_buf/hbd_mc_buf are seen to be the
3408 // potential reason for this issue.
3409 if (use_highbd) {
3410 uint16_t *hbd_mc_buf;
3411 CHECK_MEM_ERROR(cm, hbd_mc_buf, (uint16_t *)aom_memalign(16, buf_size));
3412 memset(hbd_mc_buf, 0, buf_size);
3413 thread_data->mc_buf[ref] = CONVERT_TO_BYTEPTR(hbd_mc_buf);
3414 } else {
3415 CHECK_MEM_ERROR(cm, thread_data->mc_buf[ref],
3416 (uint8_t *)aom_memalign(16, buf_size));
3417 memset(thread_data->mc_buf[ref], 0, buf_size);
3418 }
3419 }
3420 thread_data->mc_buf_size = buf_size;
3421 thread_data->mc_buf_use_highbd = use_highbd;
3422
3423 CHECK_MEM_ERROR(cm, thread_data->tmp_conv_dst,
3424 aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE *
3425 sizeof(*thread_data->tmp_conv_dst)));
3426 CHECK_MEM_ERROR(cm, thread_data->seg_mask,
3427 (uint8_t *)aom_memalign(
3428 16, 2 * MAX_SB_SQUARE * sizeof(*thread_data->seg_mask)));
3429
3430 for (int i = 0; i < 2; ++i) {
3431 CHECK_MEM_ERROR(
3432 cm, thread_data->tmp_obmc_bufs[i],
3433 aom_memalign(16, 2 * MAX_MB_PLANE * MAX_SB_SQUARE *
3434 sizeof(*thread_data->tmp_obmc_bufs[i])));
3435 }
3436 }
3437
reset_dec_workers(AV1Decoder * pbi,AVxWorkerHook worker_hook,int num_workers)3438 static inline void reset_dec_workers(AV1Decoder *pbi, AVxWorkerHook worker_hook,
3439 int num_workers) {
3440 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
3441
3442 // Reset tile decoding hook
3443 for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) {
3444 AVxWorker *const worker = &pbi->tile_workers[worker_idx];
3445 DecWorkerData *const thread_data = pbi->thread_data + worker_idx;
3446 thread_data->td->dcb = pbi->dcb;
3447 thread_data->td->dcb.corrupted = 0;
3448 thread_data->td->dcb.mc_buf[0] = thread_data->td->mc_buf[0];
3449 thread_data->td->dcb.mc_buf[1] = thread_data->td->mc_buf[1];
3450 thread_data->td->dcb.xd.tmp_conv_dst = thread_data->td->tmp_conv_dst;
3451 if (worker_idx)
3452 thread_data->td->dcb.xd.seg_mask = thread_data->td->seg_mask;
3453 for (int j = 0; j < 2; ++j) {
3454 thread_data->td->dcb.xd.tmp_obmc_bufs[j] =
3455 thread_data->td->tmp_obmc_bufs[j];
3456 }
3457 winterface->sync(worker);
3458
3459 worker->hook = worker_hook;
3460 worker->data1 = thread_data;
3461 worker->data2 = pbi;
3462 }
3463 #if CONFIG_ACCOUNTING
3464 if (pbi->acct_enabled) {
3465 aom_accounting_reset(&pbi->accounting);
3466 }
3467 #endif
3468 }
3469
launch_dec_workers(AV1Decoder * pbi,const uint8_t * data_end,int num_workers)3470 static inline void launch_dec_workers(AV1Decoder *pbi, const uint8_t *data_end,
3471 int num_workers) {
3472 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
3473
3474 for (int worker_idx = num_workers - 1; worker_idx >= 0; --worker_idx) {
3475 AVxWorker *const worker = &pbi->tile_workers[worker_idx];
3476 DecWorkerData *const thread_data = (DecWorkerData *)worker->data1;
3477
3478 thread_data->data_end = data_end;
3479
3480 worker->had_error = 0;
3481 if (worker_idx == 0) {
3482 winterface->execute(worker);
3483 } else {
3484 winterface->launch(worker);
3485 }
3486 }
3487 }
3488
sync_dec_workers(AV1Decoder * pbi,int num_workers)3489 static inline void sync_dec_workers(AV1Decoder *pbi, int num_workers) {
3490 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
3491 int corrupted = 0;
3492
3493 for (int worker_idx = num_workers; worker_idx > 0; --worker_idx) {
3494 AVxWorker *const worker = &pbi->tile_workers[worker_idx - 1];
3495 aom_merge_corrupted_flag(&corrupted, !winterface->sync(worker));
3496 }
3497
3498 pbi->dcb.corrupted = corrupted;
3499 }
3500
decode_mt_init(AV1Decoder * pbi)3501 static inline void decode_mt_init(AV1Decoder *pbi) {
3502 AV1_COMMON *const cm = &pbi->common;
3503 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
3504 int worker_idx;
3505
3506 // Create workers and thread_data
3507 if (pbi->num_workers == 0) {
3508 const int num_threads = pbi->max_threads;
3509 CHECK_MEM_ERROR(cm, pbi->tile_workers,
3510 aom_malloc(num_threads * sizeof(*pbi->tile_workers)));
3511 CHECK_MEM_ERROR(cm, pbi->thread_data,
3512 aom_calloc(num_threads, sizeof(*pbi->thread_data)));
3513
3514 for (worker_idx = 0; worker_idx < num_threads; ++worker_idx) {
3515 AVxWorker *const worker = &pbi->tile_workers[worker_idx];
3516 DecWorkerData *const thread_data = pbi->thread_data + worker_idx;
3517
3518 winterface->init(worker);
3519 worker->thread_name = "aom tile worker";
3520 if (worker_idx != 0 && !winterface->reset(worker)) {
3521 aom_internal_error(&pbi->error, AOM_CODEC_ERROR,
3522 "Tile decoder thread creation failed");
3523 }
3524 ++pbi->num_workers;
3525
3526 if (worker_idx != 0) {
3527 // Allocate thread data.
3528 CHECK_MEM_ERROR(cm, thread_data->td,
3529 aom_memalign(32, sizeof(*thread_data->td)));
3530 av1_zero(*thread_data->td);
3531 } else {
3532 // Main thread acts as a worker and uses the thread data in pbi
3533 thread_data->td = &pbi->td;
3534 }
3535 thread_data->error_info.error_code = AOM_CODEC_OK;
3536 thread_data->error_info.setjmp = 0;
3537 }
3538 }
3539 const int use_highbd = cm->seq_params->use_highbitdepth;
3540 const int buf_size = MC_TEMP_BUF_PELS << use_highbd;
3541 for (worker_idx = 1; worker_idx < pbi->max_threads; ++worker_idx) {
3542 DecWorkerData *const thread_data = pbi->thread_data + worker_idx;
3543 if (thread_data->td->mc_buf_size != buf_size) {
3544 av1_free_mc_tmp_buf(thread_data->td);
3545 allocate_mc_tmp_buf(cm, thread_data->td, buf_size, use_highbd);
3546 }
3547 }
3548 }
3549
tile_mt_queue(AV1Decoder * pbi,int tile_cols,int tile_rows,int tile_rows_start,int tile_rows_end,int tile_cols_start,int tile_cols_end,int start_tile,int end_tile)3550 static inline void tile_mt_queue(AV1Decoder *pbi, int tile_cols, int tile_rows,
3551 int tile_rows_start, int tile_rows_end,
3552 int tile_cols_start, int tile_cols_end,
3553 int start_tile, int end_tile) {
3554 AV1_COMMON *const cm = &pbi->common;
3555 if (pbi->tile_mt_info.alloc_tile_cols != tile_cols ||
3556 pbi->tile_mt_info.alloc_tile_rows != tile_rows) {
3557 av1_dealloc_dec_jobs(&pbi->tile_mt_info);
3558 alloc_dec_jobs(&pbi->tile_mt_info, cm, tile_rows, tile_cols);
3559 }
3560 enqueue_tile_jobs(pbi, cm, tile_rows_start, tile_rows_end, tile_cols_start,
3561 tile_cols_end, start_tile, end_tile);
3562 qsort(pbi->tile_mt_info.job_queue, pbi->tile_mt_info.jobs_enqueued,
3563 sizeof(pbi->tile_mt_info.job_queue[0]), compare_tile_buffers);
3564 }
3565
decode_tiles_mt(AV1Decoder * pbi,const uint8_t * data,const uint8_t * data_end,int start_tile,int end_tile)3566 static const uint8_t *decode_tiles_mt(AV1Decoder *pbi, const uint8_t *data,
3567 const uint8_t *data_end, int start_tile,
3568 int end_tile) {
3569 AV1_COMMON *const cm = &pbi->common;
3570 CommonTileParams *const tiles = &cm->tiles;
3571 const int tile_cols = tiles->cols;
3572 const int tile_rows = tiles->rows;
3573 const int n_tiles = tile_cols * tile_rows;
3574 TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers;
3575 const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
3576 const int single_row = pbi->dec_tile_row >= 0;
3577 const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
3578 const int single_col = pbi->dec_tile_col >= 0;
3579 int tile_rows_start;
3580 int tile_rows_end;
3581 int tile_cols_start;
3582 int tile_cols_end;
3583 int tile_count_tg;
3584 int num_workers;
3585 const uint8_t *raw_data_end = NULL;
3586
3587 if (tiles->large_scale) {
3588 tile_rows_start = single_row ? dec_tile_row : 0;
3589 tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows;
3590 tile_cols_start = single_col ? dec_tile_col : 0;
3591 tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
3592 } else {
3593 tile_rows_start = 0;
3594 tile_rows_end = tile_rows;
3595 tile_cols_start = 0;
3596 tile_cols_end = tile_cols;
3597 }
3598 tile_count_tg = end_tile - start_tile + 1;
3599 num_workers = AOMMIN(pbi->max_threads, tile_count_tg);
3600
3601 // No tiles to decode.
3602 if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start ||
3603 // First tile is larger than end_tile.
3604 tile_rows_start * tile_cols + tile_cols_start > end_tile ||
3605 // Last tile is smaller than start_tile.
3606 (tile_rows_end - 1) * tile_cols + tile_cols_end - 1 < start_tile)
3607 return data;
3608
3609 assert(tile_rows <= MAX_TILE_ROWS);
3610 assert(tile_cols <= MAX_TILE_COLS);
3611 assert(tile_count_tg > 0);
3612 assert(num_workers > 0);
3613 assert(start_tile <= end_tile);
3614 assert(start_tile >= 0 && end_tile < n_tiles);
3615
3616 decode_mt_init(pbi);
3617
3618 // get tile size in tile group
3619 #if EXT_TILE_DEBUG
3620 if (tiles->large_scale) assert(pbi->ext_tile_debug == 1);
3621 if (tiles->large_scale)
3622 raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers);
3623 else
3624 #endif // EXT_TILE_DEBUG
3625 get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile);
3626
3627 if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) {
3628 decoder_alloc_tile_data(pbi, n_tiles);
3629 }
3630 if (pbi->dcb.xd.seg_mask == NULL)
3631 CHECK_MEM_ERROR(cm, pbi->dcb.xd.seg_mask,
3632 (uint8_t *)aom_memalign(
3633 16, 2 * MAX_SB_SQUARE * sizeof(*pbi->dcb.xd.seg_mask)));
3634
3635 for (int row = 0; row < tile_rows; row++) {
3636 for (int col = 0; col < tile_cols; col++) {
3637 TileDataDec *tile_data = pbi->tile_data + row * tiles->cols + col;
3638 av1_tile_init(&tile_data->tile_info, cm, row, col);
3639 }
3640 }
3641
3642 tile_mt_queue(pbi, tile_cols, tile_rows, tile_rows_start, tile_rows_end,
3643 tile_cols_start, tile_cols_end, start_tile, end_tile);
3644
3645 reset_dec_workers(pbi, tile_worker_hook, num_workers);
3646 launch_dec_workers(pbi, data_end, num_workers);
3647 sync_dec_workers(pbi, num_workers);
3648
3649 if (pbi->dcb.corrupted)
3650 aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
3651 "Failed to decode tile data");
3652
3653 if (tiles->large_scale) {
3654 if (n_tiles == 1) {
3655 // Find the end of the single tile buffer
3656 return aom_reader_find_end(&pbi->tile_data->bit_reader);
3657 }
3658 // Return the end of the last tile buffer
3659 return raw_data_end;
3660 }
3661 TileDataDec *const tile_data = pbi->tile_data + end_tile;
3662
3663 return aom_reader_find_end(&tile_data->bit_reader);
3664 }
3665
dec_alloc_cb_buf(AV1Decoder * pbi)3666 static inline void dec_alloc_cb_buf(AV1Decoder *pbi) {
3667 AV1_COMMON *const cm = &pbi->common;
3668 int size = ((cm->mi_params.mi_rows >> cm->seq_params->mib_size_log2) + 1) *
3669 ((cm->mi_params.mi_cols >> cm->seq_params->mib_size_log2) + 1);
3670
3671 if (pbi->cb_buffer_alloc_size < size) {
3672 av1_dec_free_cb_buf(pbi);
3673 CHECK_MEM_ERROR(cm, pbi->cb_buffer_base,
3674 aom_memalign(32, sizeof(*pbi->cb_buffer_base) * size));
3675 memset(pbi->cb_buffer_base, 0, sizeof(*pbi->cb_buffer_base) * size);
3676 pbi->cb_buffer_alloc_size = size;
3677 }
3678 }
3679
row_mt_frame_init(AV1Decoder * pbi,int tile_rows_start,int tile_rows_end,int tile_cols_start,int tile_cols_end,int start_tile,int end_tile,int max_sb_rows)3680 static inline void row_mt_frame_init(AV1Decoder *pbi, int tile_rows_start,
3681 int tile_rows_end, int tile_cols_start,
3682 int tile_cols_end, int start_tile,
3683 int end_tile, int max_sb_rows) {
3684 AV1_COMMON *const cm = &pbi->common;
3685 AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info;
3686
3687 frame_row_mt_info->tile_rows_start = tile_rows_start;
3688 frame_row_mt_info->tile_rows_end = tile_rows_end;
3689 frame_row_mt_info->tile_cols_start = tile_cols_start;
3690 frame_row_mt_info->tile_cols_end = tile_cols_end;
3691 frame_row_mt_info->start_tile = start_tile;
3692 frame_row_mt_info->end_tile = end_tile;
3693 frame_row_mt_info->mi_rows_to_decode = 0;
3694 frame_row_mt_info->mi_rows_parse_done = 0;
3695 frame_row_mt_info->mi_rows_decode_started = 0;
3696 frame_row_mt_info->row_mt_exit = 0;
3697
3698 for (int tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) {
3699 for (int tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) {
3700 if (tile_row * cm->tiles.cols + tile_col < start_tile ||
3701 tile_row * cm->tiles.cols + tile_col > end_tile)
3702 continue;
3703
3704 TileDataDec *const tile_data =
3705 pbi->tile_data + tile_row * cm->tiles.cols + tile_col;
3706 const TileInfo *const tile_info = &tile_data->tile_info;
3707
3708 tile_data->dec_row_mt_sync.mi_rows_parse_done = 0;
3709 tile_data->dec_row_mt_sync.mi_rows_decode_started = 0;
3710 tile_data->dec_row_mt_sync.num_threads_working = 0;
3711 tile_data->dec_row_mt_sync.mi_rows =
3712 ALIGN_POWER_OF_TWO(tile_info->mi_row_end - tile_info->mi_row_start,
3713 cm->seq_params->mib_size_log2);
3714 tile_data->dec_row_mt_sync.mi_cols =
3715 ALIGN_POWER_OF_TWO(tile_info->mi_col_end - tile_info->mi_col_start,
3716 cm->seq_params->mib_size_log2);
3717 tile_data->dec_row_mt_sync.intrabc_extra_top_right_sb_delay =
3718 av1_get_intrabc_extra_top_right_sb_delay(cm);
3719
3720 frame_row_mt_info->mi_rows_to_decode +=
3721 tile_data->dec_row_mt_sync.mi_rows;
3722
3723 // Initialize cur_sb_col to -1 for all SB rows.
3724 memset(tile_data->dec_row_mt_sync.cur_sb_col, -1,
3725 sizeof(*tile_data->dec_row_mt_sync.cur_sb_col) * max_sb_rows);
3726 }
3727 }
3728
3729 #if CONFIG_MULTITHREAD
3730 if (pbi->row_mt_mutex_ == NULL) {
3731 CHECK_MEM_ERROR(cm, pbi->row_mt_mutex_,
3732 aom_malloc(sizeof(*(pbi->row_mt_mutex_))));
3733 if (pbi->row_mt_mutex_) {
3734 pthread_mutex_init(pbi->row_mt_mutex_, NULL);
3735 }
3736 }
3737
3738 if (pbi->row_mt_cond_ == NULL) {
3739 CHECK_MEM_ERROR(cm, pbi->row_mt_cond_,
3740 aom_malloc(sizeof(*(pbi->row_mt_cond_))));
3741 if (pbi->row_mt_cond_) {
3742 pthread_cond_init(pbi->row_mt_cond_, NULL);
3743 }
3744 }
3745 #endif
3746 }
3747
decode_tiles_row_mt(AV1Decoder * pbi,const uint8_t * data,const uint8_t * data_end,int start_tile,int end_tile)3748 static const uint8_t *decode_tiles_row_mt(AV1Decoder *pbi, const uint8_t *data,
3749 const uint8_t *data_end,
3750 int start_tile, int end_tile) {
3751 AV1_COMMON *const cm = &pbi->common;
3752 CommonTileParams *const tiles = &cm->tiles;
3753 const int tile_cols = tiles->cols;
3754 const int tile_rows = tiles->rows;
3755 const int n_tiles = tile_cols * tile_rows;
3756 TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers;
3757 const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
3758 const int single_row = pbi->dec_tile_row >= 0;
3759 const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
3760 const int single_col = pbi->dec_tile_col >= 0;
3761 int tile_rows_start;
3762 int tile_rows_end;
3763 int tile_cols_start;
3764 int tile_cols_end;
3765 int tile_count_tg;
3766 int num_workers = 0;
3767 int max_threads;
3768 const uint8_t *raw_data_end = NULL;
3769 int max_sb_rows = 0;
3770
3771 if (tiles->large_scale) {
3772 tile_rows_start = single_row ? dec_tile_row : 0;
3773 tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows;
3774 tile_cols_start = single_col ? dec_tile_col : 0;
3775 tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
3776 } else {
3777 tile_rows_start = 0;
3778 tile_rows_end = tile_rows;
3779 tile_cols_start = 0;
3780 tile_cols_end = tile_cols;
3781 }
3782 tile_count_tg = end_tile - start_tile + 1;
3783 max_threads = pbi->max_threads;
3784
3785 // No tiles to decode.
3786 if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start ||
3787 // First tile is larger than end_tile.
3788 tile_rows_start * tile_cols + tile_cols_start > end_tile ||
3789 // Last tile is smaller than start_tile.
3790 (tile_rows_end - 1) * tile_cols + tile_cols_end - 1 < start_tile)
3791 return data;
3792
3793 assert(tile_rows <= MAX_TILE_ROWS);
3794 assert(tile_cols <= MAX_TILE_COLS);
3795 assert(tile_count_tg > 0);
3796 assert(max_threads > 0);
3797 assert(start_tile <= end_tile);
3798 assert(start_tile >= 0 && end_tile < n_tiles);
3799
3800 (void)tile_count_tg;
3801
3802 decode_mt_init(pbi);
3803
3804 // get tile size in tile group
3805 #if EXT_TILE_DEBUG
3806 if (tiles->large_scale) assert(pbi->ext_tile_debug == 1);
3807 if (tiles->large_scale)
3808 raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers);
3809 else
3810 #endif // EXT_TILE_DEBUG
3811 get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile);
3812
3813 if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) {
3814 if (pbi->tile_data != NULL) {
3815 for (int i = 0; i < pbi->allocated_tiles; i++) {
3816 TileDataDec *const tile_data = pbi->tile_data + i;
3817 av1_dec_row_mt_dealloc(&tile_data->dec_row_mt_sync);
3818 }
3819 }
3820 decoder_alloc_tile_data(pbi, n_tiles);
3821 }
3822 if (pbi->dcb.xd.seg_mask == NULL)
3823 CHECK_MEM_ERROR(cm, pbi->dcb.xd.seg_mask,
3824 (uint8_t *)aom_memalign(
3825 16, 2 * MAX_SB_SQUARE * sizeof(*pbi->dcb.xd.seg_mask)));
3826
3827 for (int row = 0; row < tile_rows; row++) {
3828 for (int col = 0; col < tile_cols; col++) {
3829 TileDataDec *tile_data = pbi->tile_data + row * tiles->cols + col;
3830 av1_tile_init(&tile_data->tile_info, cm, row, col);
3831
3832 max_sb_rows = AOMMAX(max_sb_rows,
3833 av1_get_sb_rows_in_tile(cm, &tile_data->tile_info));
3834 num_workers += get_max_row_mt_workers_per_tile(cm, &tile_data->tile_info);
3835 }
3836 }
3837 num_workers = AOMMIN(num_workers, max_threads);
3838
3839 if (pbi->allocated_row_mt_sync_rows != max_sb_rows) {
3840 for (int i = 0; i < n_tiles; ++i) {
3841 TileDataDec *const tile_data = pbi->tile_data + i;
3842 av1_dec_row_mt_dealloc(&tile_data->dec_row_mt_sync);
3843 dec_row_mt_alloc(&tile_data->dec_row_mt_sync, cm, max_sb_rows);
3844 }
3845 pbi->allocated_row_mt_sync_rows = max_sb_rows;
3846 }
3847
3848 tile_mt_queue(pbi, tile_cols, tile_rows, tile_rows_start, tile_rows_end,
3849 tile_cols_start, tile_cols_end, start_tile, end_tile);
3850
3851 dec_alloc_cb_buf(pbi);
3852
3853 row_mt_frame_init(pbi, tile_rows_start, tile_rows_end, tile_cols_start,
3854 tile_cols_end, start_tile, end_tile, max_sb_rows);
3855
3856 reset_dec_workers(pbi, row_mt_worker_hook, num_workers);
3857 launch_dec_workers(pbi, data_end, num_workers);
3858 sync_dec_workers(pbi, num_workers);
3859
3860 if (pbi->dcb.corrupted)
3861 aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
3862 "Failed to decode tile data");
3863
3864 if (tiles->large_scale) {
3865 if (n_tiles == 1) {
3866 // Find the end of the single tile buffer
3867 return aom_reader_find_end(&pbi->tile_data->bit_reader);
3868 }
3869 // Return the end of the last tile buffer
3870 return raw_data_end;
3871 }
3872 TileDataDec *const tile_data = pbi->tile_data + end_tile;
3873
3874 return aom_reader_find_end(&tile_data->bit_reader);
3875 }
3876
error_handler(void * data)3877 static inline void error_handler(void *data) {
3878 AV1_COMMON *const cm = (AV1_COMMON *)data;
3879 aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME, "Truncated packet");
3880 }
3881
3882 // Reads the high_bitdepth and twelve_bit fields in color_config() and sets
3883 // seq_params->bit_depth based on the values of those fields and
3884 // seq_params->profile. Reports errors by calling rb->error_handler() or
3885 // aom_internal_error().
read_bitdepth(struct aom_read_bit_buffer * rb,SequenceHeader * seq_params,struct aom_internal_error_info * error_info)3886 static inline void read_bitdepth(struct aom_read_bit_buffer *rb,
3887 SequenceHeader *seq_params,
3888 struct aom_internal_error_info *error_info) {
3889 const int high_bitdepth = aom_rb_read_bit(rb);
3890 if (seq_params->profile == PROFILE_2 && high_bitdepth) {
3891 const int twelve_bit = aom_rb_read_bit(rb);
3892 seq_params->bit_depth = twelve_bit ? AOM_BITS_12 : AOM_BITS_10;
3893 } else if (seq_params->profile <= PROFILE_2) {
3894 seq_params->bit_depth = high_bitdepth ? AOM_BITS_10 : AOM_BITS_8;
3895 } else {
3896 aom_internal_error(error_info, AOM_CODEC_UNSUP_BITSTREAM,
3897 "Unsupported profile/bit-depth combination");
3898 }
3899 #if !CONFIG_AV1_HIGHBITDEPTH
3900 if (seq_params->bit_depth > AOM_BITS_8) {
3901 aom_internal_error(error_info, AOM_CODEC_UNSUP_BITSTREAM,
3902 "Bit-depth %d not supported", seq_params->bit_depth);
3903 }
3904 #endif
3905 }
3906
read_film_grain_params(AV1_COMMON * cm,struct aom_read_bit_buffer * rb)3907 static void read_film_grain_params(AV1_COMMON *cm,
3908 struct aom_read_bit_buffer *rb) {
3909 aom_film_grain_t *pars = &cm->film_grain_params;
3910 const SequenceHeader *const seq_params = cm->seq_params;
3911
3912 pars->apply_grain = aom_rb_read_bit(rb);
3913 if (!pars->apply_grain) {
3914 memset(pars, 0, sizeof(*pars));
3915 return;
3916 }
3917
3918 pars->random_seed = aom_rb_read_literal(rb, 16);
3919 if (cm->current_frame.frame_type == INTER_FRAME)
3920 pars->update_parameters = aom_rb_read_bit(rb);
3921 else
3922 pars->update_parameters = 1;
3923
3924 pars->bit_depth = seq_params->bit_depth;
3925
3926 if (!pars->update_parameters) {
3927 // inherit parameters from a previous reference frame
3928 int film_grain_params_ref_idx = aom_rb_read_literal(rb, 3);
3929 // Section 6.8.20: It is a requirement of bitstream conformance that
3930 // film_grain_params_ref_idx is equal to ref_frame_idx[ j ] for some value
3931 // of j in the range 0 to REFS_PER_FRAME - 1.
3932 int found = 0;
3933 for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
3934 if (film_grain_params_ref_idx == cm->remapped_ref_idx[i]) {
3935 found = 1;
3936 break;
3937 }
3938 }
3939 if (!found) {
3940 aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
3941 "Invalid film grain reference idx %d. ref_frame_idx = "
3942 "{%d, %d, %d, %d, %d, %d, %d}",
3943 film_grain_params_ref_idx, cm->remapped_ref_idx[0],
3944 cm->remapped_ref_idx[1], cm->remapped_ref_idx[2],
3945 cm->remapped_ref_idx[3], cm->remapped_ref_idx[4],
3946 cm->remapped_ref_idx[5], cm->remapped_ref_idx[6]);
3947 }
3948 RefCntBuffer *const buf = cm->ref_frame_map[film_grain_params_ref_idx];
3949 if (buf == NULL) {
3950 aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
3951 "Invalid Film grain reference idx");
3952 }
3953 if (!buf->film_grain_params_present) {
3954 aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
3955 "Film grain reference parameters not available");
3956 }
3957 uint16_t random_seed = pars->random_seed;
3958 *pars = buf->film_grain_params; // inherit paramaters
3959 pars->random_seed = random_seed; // with new random seed
3960 return;
3961 }
3962
3963 // Scaling functions parameters
3964 pars->num_y_points = aom_rb_read_literal(rb, 4); // max 14
3965 if (pars->num_y_points > 14)
3966 aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
3967 "Number of points for film grain luma scaling function "
3968 "exceeds the maximum value.");
3969 for (int i = 0; i < pars->num_y_points; i++) {
3970 pars->scaling_points_y[i][0] = aom_rb_read_literal(rb, 8);
3971 if (i && pars->scaling_points_y[i - 1][0] >= pars->scaling_points_y[i][0])
3972 aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
3973 "First coordinate of the scaling function points "
3974 "shall be increasing.");
3975 pars->scaling_points_y[i][1] = aom_rb_read_literal(rb, 8);
3976 }
3977
3978 if (!seq_params->monochrome)
3979 pars->chroma_scaling_from_luma = aom_rb_read_bit(rb);
3980 else
3981 pars->chroma_scaling_from_luma = 0;
3982
3983 if (seq_params->monochrome || pars->chroma_scaling_from_luma ||
3984 ((seq_params->subsampling_x == 1) && (seq_params->subsampling_y == 1) &&
3985 (pars->num_y_points == 0))) {
3986 pars->num_cb_points = 0;
3987 pars->num_cr_points = 0;
3988 } else {
3989 pars->num_cb_points = aom_rb_read_literal(rb, 4); // max 10
3990 if (pars->num_cb_points > 10)
3991 aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
3992 "Number of points for film grain cb scaling function "
3993 "exceeds the maximum value.");
3994 for (int i = 0; i < pars->num_cb_points; i++) {
3995 pars->scaling_points_cb[i][0] = aom_rb_read_literal(rb, 8);
3996 if (i &&
3997 pars->scaling_points_cb[i - 1][0] >= pars->scaling_points_cb[i][0])
3998 aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
3999 "First coordinate of the scaling function points "
4000 "shall be increasing.");
4001 pars->scaling_points_cb[i][1] = aom_rb_read_literal(rb, 8);
4002 }
4003
4004 pars->num_cr_points = aom_rb_read_literal(rb, 4); // max 10
4005 if (pars->num_cr_points > 10)
4006 aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
4007 "Number of points for film grain cr scaling function "
4008 "exceeds the maximum value.");
4009 for (int i = 0; i < pars->num_cr_points; i++) {
4010 pars->scaling_points_cr[i][0] = aom_rb_read_literal(rb, 8);
4011 if (i &&
4012 pars->scaling_points_cr[i - 1][0] >= pars->scaling_points_cr[i][0])
4013 aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
4014 "First coordinate of the scaling function points "
4015 "shall be increasing.");
4016 pars->scaling_points_cr[i][1] = aom_rb_read_literal(rb, 8);
4017 }
4018
4019 if ((seq_params->subsampling_x == 1) && (seq_params->subsampling_y == 1) &&
4020 (((pars->num_cb_points == 0) && (pars->num_cr_points != 0)) ||
4021 ((pars->num_cb_points != 0) && (pars->num_cr_points == 0))))
4022 aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
4023 "In YCbCr 4:2:0, film grain shall be applied "
4024 "to both chroma components or neither.");
4025 }
4026
4027 pars->scaling_shift = aom_rb_read_literal(rb, 2) + 8; // 8 + value
4028
4029 // AR coefficients
4030 // Only sent if the corresponsing scaling function has
4031 // more than 0 points
4032
4033 pars->ar_coeff_lag = aom_rb_read_literal(rb, 2);
4034
4035 int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1);
4036 int num_pos_chroma = num_pos_luma;
4037 if (pars->num_y_points > 0) ++num_pos_chroma;
4038
4039 if (pars->num_y_points)
4040 for (int i = 0; i < num_pos_luma; i++)
4041 pars->ar_coeffs_y[i] = aom_rb_read_literal(rb, 8) - 128;
4042
4043 if (pars->num_cb_points || pars->chroma_scaling_from_luma)
4044 for (int i = 0; i < num_pos_chroma; i++)
4045 pars->ar_coeffs_cb[i] = aom_rb_read_literal(rb, 8) - 128;
4046
4047 if (pars->num_cr_points || pars->chroma_scaling_from_luma)
4048 for (int i = 0; i < num_pos_chroma; i++)
4049 pars->ar_coeffs_cr[i] = aom_rb_read_literal(rb, 8) - 128;
4050
4051 pars->ar_coeff_shift = aom_rb_read_literal(rb, 2) + 6; // 6 + value
4052
4053 pars->grain_scale_shift = aom_rb_read_literal(rb, 2);
4054
4055 if (pars->num_cb_points) {
4056 pars->cb_mult = aom_rb_read_literal(rb, 8);
4057 pars->cb_luma_mult = aom_rb_read_literal(rb, 8);
4058 pars->cb_offset = aom_rb_read_literal(rb, 9);
4059 }
4060
4061 if (pars->num_cr_points) {
4062 pars->cr_mult = aom_rb_read_literal(rb, 8);
4063 pars->cr_luma_mult = aom_rb_read_literal(rb, 8);
4064 pars->cr_offset = aom_rb_read_literal(rb, 9);
4065 }
4066
4067 pars->overlap_flag = aom_rb_read_bit(rb);
4068
4069 pars->clip_to_restricted_range = aom_rb_read_bit(rb);
4070 }
4071
read_film_grain(AV1_COMMON * cm,struct aom_read_bit_buffer * rb)4072 static inline void read_film_grain(AV1_COMMON *cm,
4073 struct aom_read_bit_buffer *rb) {
4074 if (cm->seq_params->film_grain_params_present &&
4075 (cm->show_frame || cm->showable_frame)) {
4076 read_film_grain_params(cm, rb);
4077 } else {
4078 memset(&cm->film_grain_params, 0, sizeof(cm->film_grain_params));
4079 }
4080 cm->film_grain_params.bit_depth = cm->seq_params->bit_depth;
4081 memcpy(&cm->cur_frame->film_grain_params, &cm->film_grain_params,
4082 sizeof(aom_film_grain_t));
4083 }
4084
av1_read_color_config(struct aom_read_bit_buffer * rb,int allow_lowbitdepth,SequenceHeader * seq_params,struct aom_internal_error_info * error_info)4085 void av1_read_color_config(struct aom_read_bit_buffer *rb,
4086 int allow_lowbitdepth, SequenceHeader *seq_params,
4087 struct aom_internal_error_info *error_info) {
4088 read_bitdepth(rb, seq_params, error_info);
4089
4090 seq_params->use_highbitdepth =
4091 seq_params->bit_depth > AOM_BITS_8 || !allow_lowbitdepth;
4092 // monochrome bit (not needed for PROFILE_1)
4093 const int is_monochrome =
4094 seq_params->profile != PROFILE_1 ? aom_rb_read_bit(rb) : 0;
4095 seq_params->monochrome = is_monochrome;
4096 int color_description_present_flag = aom_rb_read_bit(rb);
4097 if (color_description_present_flag) {
4098 seq_params->color_primaries = aom_rb_read_literal(rb, 8);
4099 seq_params->transfer_characteristics = aom_rb_read_literal(rb, 8);
4100 seq_params->matrix_coefficients = aom_rb_read_literal(rb, 8);
4101 } else {
4102 seq_params->color_primaries = AOM_CICP_CP_UNSPECIFIED;
4103 seq_params->transfer_characteristics = AOM_CICP_TC_UNSPECIFIED;
4104 seq_params->matrix_coefficients = AOM_CICP_MC_UNSPECIFIED;
4105 }
4106 if (is_monochrome) {
4107 // [16,235] (including xvycc) vs [0,255] range
4108 seq_params->color_range = aom_rb_read_bit(rb);
4109 seq_params->subsampling_y = seq_params->subsampling_x = 1;
4110 seq_params->chroma_sample_position = AOM_CSP_UNKNOWN;
4111 seq_params->separate_uv_delta_q = 0;
4112 return;
4113 }
4114 if (seq_params->color_primaries == AOM_CICP_CP_BT_709 &&
4115 seq_params->transfer_characteristics == AOM_CICP_TC_SRGB &&
4116 seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
4117 seq_params->subsampling_y = seq_params->subsampling_x = 0;
4118 seq_params->color_range = 1; // assume full color-range
4119 if (!(seq_params->profile == PROFILE_1 ||
4120 (seq_params->profile == PROFILE_2 &&
4121 seq_params->bit_depth == AOM_BITS_12))) {
4122 aom_internal_error(
4123 error_info, AOM_CODEC_UNSUP_BITSTREAM,
4124 "sRGB colorspace not compatible with specified profile");
4125 }
4126 } else {
4127 // [16,235] (including xvycc) vs [0,255] range
4128 seq_params->color_range = aom_rb_read_bit(rb);
4129 if (seq_params->profile == PROFILE_0) {
4130 // 420 only
4131 seq_params->subsampling_x = seq_params->subsampling_y = 1;
4132 } else if (seq_params->profile == PROFILE_1) {
4133 // 444 only
4134 seq_params->subsampling_x = seq_params->subsampling_y = 0;
4135 } else {
4136 assert(seq_params->profile == PROFILE_2);
4137 if (seq_params->bit_depth == AOM_BITS_12) {
4138 seq_params->subsampling_x = aom_rb_read_bit(rb);
4139 if (seq_params->subsampling_x)
4140 seq_params->subsampling_y = aom_rb_read_bit(rb); // 422 or 420
4141 else
4142 seq_params->subsampling_y = 0; // 444
4143 } else {
4144 // 422
4145 seq_params->subsampling_x = 1;
4146 seq_params->subsampling_y = 0;
4147 }
4148 }
4149 if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY &&
4150 (seq_params->subsampling_x || seq_params->subsampling_y)) {
4151 aom_internal_error(
4152 error_info, AOM_CODEC_UNSUP_BITSTREAM,
4153 "Identity CICP Matrix incompatible with non 4:4:4 color sampling");
4154 }
4155 if (seq_params->subsampling_x && seq_params->subsampling_y) {
4156 seq_params->chroma_sample_position = aom_rb_read_literal(rb, 2);
4157 }
4158 }
4159 seq_params->separate_uv_delta_q = aom_rb_read_bit(rb);
4160 }
4161
av1_read_timing_info_header(aom_timing_info_t * timing_info,struct aom_internal_error_info * error,struct aom_read_bit_buffer * rb)4162 void av1_read_timing_info_header(aom_timing_info_t *timing_info,
4163 struct aom_internal_error_info *error,
4164 struct aom_read_bit_buffer *rb) {
4165 timing_info->num_units_in_display_tick =
4166 aom_rb_read_unsigned_literal(rb,
4167 32); // Number of units in a display tick
4168 timing_info->time_scale = aom_rb_read_unsigned_literal(rb, 32); // Time scale
4169 if (timing_info->num_units_in_display_tick == 0 ||
4170 timing_info->time_scale == 0) {
4171 aom_internal_error(
4172 error, AOM_CODEC_UNSUP_BITSTREAM,
4173 "num_units_in_display_tick and time_scale must be greater than 0.");
4174 }
4175 timing_info->equal_picture_interval =
4176 aom_rb_read_bit(rb); // Equal picture interval bit
4177 if (timing_info->equal_picture_interval) {
4178 const uint32_t num_ticks_per_picture_minus_1 = aom_rb_read_uvlc(rb);
4179 if (num_ticks_per_picture_minus_1 == UINT32_MAX) {
4180 aom_internal_error(
4181 error, AOM_CODEC_UNSUP_BITSTREAM,
4182 "num_ticks_per_picture_minus_1 cannot be (1 << 32) - 1.");
4183 }
4184 timing_info->num_ticks_per_picture = num_ticks_per_picture_minus_1 + 1;
4185 }
4186 }
4187
av1_read_decoder_model_info(aom_dec_model_info_t * decoder_model_info,struct aom_read_bit_buffer * rb)4188 void av1_read_decoder_model_info(aom_dec_model_info_t *decoder_model_info,
4189 struct aom_read_bit_buffer *rb) {
4190 decoder_model_info->encoder_decoder_buffer_delay_length =
4191 aom_rb_read_literal(rb, 5) + 1;
4192 decoder_model_info->num_units_in_decoding_tick =
4193 aom_rb_read_unsigned_literal(rb,
4194 32); // Number of units in a decoding tick
4195 decoder_model_info->buffer_removal_time_length =
4196 aom_rb_read_literal(rb, 5) + 1;
4197 decoder_model_info->frame_presentation_time_length =
4198 aom_rb_read_literal(rb, 5) + 1;
4199 }
4200
av1_read_op_parameters_info(aom_dec_model_op_parameters_t * op_params,int buffer_delay_length,struct aom_read_bit_buffer * rb)4201 void av1_read_op_parameters_info(aom_dec_model_op_parameters_t *op_params,
4202 int buffer_delay_length,
4203 struct aom_read_bit_buffer *rb) {
4204 op_params->decoder_buffer_delay =
4205 aom_rb_read_unsigned_literal(rb, buffer_delay_length);
4206 op_params->encoder_buffer_delay =
4207 aom_rb_read_unsigned_literal(rb, buffer_delay_length);
4208 op_params->low_delay_mode_flag = aom_rb_read_bit(rb);
4209 }
4210
read_temporal_point_info(AV1_COMMON * const cm,struct aom_read_bit_buffer * rb)4211 static inline void read_temporal_point_info(AV1_COMMON *const cm,
4212 struct aom_read_bit_buffer *rb) {
4213 cm->frame_presentation_time = aom_rb_read_unsigned_literal(
4214 rb, cm->seq_params->decoder_model_info.frame_presentation_time_length);
4215 }
4216
av1_read_sequence_header(AV1_COMMON * cm,struct aom_read_bit_buffer * rb,SequenceHeader * seq_params)4217 void av1_read_sequence_header(AV1_COMMON *cm, struct aom_read_bit_buffer *rb,
4218 SequenceHeader *seq_params) {
4219 const int num_bits_width = aom_rb_read_literal(rb, 4) + 1;
4220 const int num_bits_height = aom_rb_read_literal(rb, 4) + 1;
4221 const int max_frame_width = aom_rb_read_literal(rb, num_bits_width) + 1;
4222 const int max_frame_height = aom_rb_read_literal(rb, num_bits_height) + 1;
4223
4224 seq_params->num_bits_width = num_bits_width;
4225 seq_params->num_bits_height = num_bits_height;
4226 seq_params->max_frame_width = max_frame_width;
4227 seq_params->max_frame_height = max_frame_height;
4228
4229 if (seq_params->reduced_still_picture_hdr) {
4230 seq_params->frame_id_numbers_present_flag = 0;
4231 } else {
4232 seq_params->frame_id_numbers_present_flag = aom_rb_read_bit(rb);
4233 }
4234 if (seq_params->frame_id_numbers_present_flag) {
4235 // We must always have delta_frame_id_length < frame_id_length,
4236 // in order for a frame to be referenced with a unique delta.
4237 // Avoid wasting bits by using a coding that enforces this restriction.
4238 seq_params->delta_frame_id_length = aom_rb_read_literal(rb, 4) + 2;
4239 seq_params->frame_id_length =
4240 aom_rb_read_literal(rb, 3) + seq_params->delta_frame_id_length + 1;
4241 if (seq_params->frame_id_length > 16)
4242 aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME,
4243 "Invalid frame_id_length");
4244 }
4245
4246 setup_sb_size(seq_params, rb);
4247
4248 seq_params->enable_filter_intra = aom_rb_read_bit(rb);
4249 seq_params->enable_intra_edge_filter = aom_rb_read_bit(rb);
4250
4251 if (seq_params->reduced_still_picture_hdr) {
4252 seq_params->enable_interintra_compound = 0;
4253 seq_params->enable_masked_compound = 0;
4254 seq_params->enable_warped_motion = 0;
4255 seq_params->enable_dual_filter = 0;
4256 seq_params->order_hint_info.enable_order_hint = 0;
4257 seq_params->order_hint_info.enable_dist_wtd_comp = 0;
4258 seq_params->order_hint_info.enable_ref_frame_mvs = 0;
4259 seq_params->force_screen_content_tools = 2; // SELECT_SCREEN_CONTENT_TOOLS
4260 seq_params->force_integer_mv = 2; // SELECT_INTEGER_MV
4261 seq_params->order_hint_info.order_hint_bits_minus_1 = -1;
4262 } else {
4263 seq_params->enable_interintra_compound = aom_rb_read_bit(rb);
4264 seq_params->enable_masked_compound = aom_rb_read_bit(rb);
4265 seq_params->enable_warped_motion = aom_rb_read_bit(rb);
4266 seq_params->enable_dual_filter = aom_rb_read_bit(rb);
4267
4268 seq_params->order_hint_info.enable_order_hint = aom_rb_read_bit(rb);
4269 seq_params->order_hint_info.enable_dist_wtd_comp =
4270 seq_params->order_hint_info.enable_order_hint ? aom_rb_read_bit(rb) : 0;
4271 seq_params->order_hint_info.enable_ref_frame_mvs =
4272 seq_params->order_hint_info.enable_order_hint ? aom_rb_read_bit(rb) : 0;
4273
4274 if (aom_rb_read_bit(rb)) {
4275 seq_params->force_screen_content_tools =
4276 2; // SELECT_SCREEN_CONTENT_TOOLS
4277 } else {
4278 seq_params->force_screen_content_tools = aom_rb_read_bit(rb);
4279 }
4280
4281 if (seq_params->force_screen_content_tools > 0) {
4282 if (aom_rb_read_bit(rb)) {
4283 seq_params->force_integer_mv = 2; // SELECT_INTEGER_MV
4284 } else {
4285 seq_params->force_integer_mv = aom_rb_read_bit(rb);
4286 }
4287 } else {
4288 seq_params->force_integer_mv = 2; // SELECT_INTEGER_MV
4289 }
4290 seq_params->order_hint_info.order_hint_bits_minus_1 =
4291 seq_params->order_hint_info.enable_order_hint
4292 ? aom_rb_read_literal(rb, 3)
4293 : -1;
4294 }
4295
4296 seq_params->enable_superres = aom_rb_read_bit(rb);
4297 seq_params->enable_cdef = aom_rb_read_bit(rb);
4298 seq_params->enable_restoration = aom_rb_read_bit(rb);
4299 }
4300
read_global_motion_params(WarpedMotionParams * params,const WarpedMotionParams * ref_params,struct aom_read_bit_buffer * rb,int allow_hp)4301 static int read_global_motion_params(WarpedMotionParams *params,
4302 const WarpedMotionParams *ref_params,
4303 struct aom_read_bit_buffer *rb,
4304 int allow_hp) {
4305 TransformationType type = aom_rb_read_bit(rb);
4306 if (type != IDENTITY) {
4307 if (aom_rb_read_bit(rb))
4308 type = ROTZOOM;
4309 else
4310 type = aom_rb_read_bit(rb) ? TRANSLATION : AFFINE;
4311 }
4312
4313 *params = default_warp_params;
4314 params->wmtype = type;
4315
4316 if (type >= ROTZOOM) {
4317 params->wmmat[2] = aom_rb_read_signed_primitive_refsubexpfin(
4318 rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
4319 (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) -
4320 (1 << GM_ALPHA_PREC_BITS)) *
4321 GM_ALPHA_DECODE_FACTOR +
4322 (1 << WARPEDMODEL_PREC_BITS);
4323 params->wmmat[3] = aom_rb_read_signed_primitive_refsubexpfin(
4324 rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
4325 (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF)) *
4326 GM_ALPHA_DECODE_FACTOR;
4327 }
4328
4329 if (type >= AFFINE) {
4330 params->wmmat[4] = aom_rb_read_signed_primitive_refsubexpfin(
4331 rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
4332 (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF)) *
4333 GM_ALPHA_DECODE_FACTOR;
4334 params->wmmat[5] = aom_rb_read_signed_primitive_refsubexpfin(
4335 rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
4336 (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
4337 (1 << GM_ALPHA_PREC_BITS)) *
4338 GM_ALPHA_DECODE_FACTOR +
4339 (1 << WARPEDMODEL_PREC_BITS);
4340 } else {
4341 params->wmmat[4] = -params->wmmat[3];
4342 params->wmmat[5] = params->wmmat[2];
4343 }
4344
4345 if (type >= TRANSLATION) {
4346 const int trans_bits = (type == TRANSLATION)
4347 ? GM_ABS_TRANS_ONLY_BITS - !allow_hp
4348 : GM_ABS_TRANS_BITS;
4349 const int trans_dec_factor =
4350 (type == TRANSLATION) ? GM_TRANS_ONLY_DECODE_FACTOR * (1 << !allow_hp)
4351 : GM_TRANS_DECODE_FACTOR;
4352 const int trans_prec_diff = (type == TRANSLATION)
4353 ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
4354 : GM_TRANS_PREC_DIFF;
4355 params->wmmat[0] = aom_rb_read_signed_primitive_refsubexpfin(
4356 rb, (1 << trans_bits) + 1, SUBEXPFIN_K,
4357 (ref_params->wmmat[0] >> trans_prec_diff)) *
4358 trans_dec_factor;
4359 params->wmmat[1] = aom_rb_read_signed_primitive_refsubexpfin(
4360 rb, (1 << trans_bits) + 1, SUBEXPFIN_K,
4361 (ref_params->wmmat[1] >> trans_prec_diff)) *
4362 trans_dec_factor;
4363 }
4364
4365 int good_shear_params = av1_get_shear_params(params);
4366 if (!good_shear_params) return 0;
4367
4368 return 1;
4369 }
4370
read_global_motion(AV1_COMMON * cm,struct aom_read_bit_buffer * rb)4371 static inline void read_global_motion(AV1_COMMON *cm,
4372 struct aom_read_bit_buffer *rb) {
4373 for (int frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
4374 const WarpedMotionParams *ref_params =
4375 cm->prev_frame ? &cm->prev_frame->global_motion[frame]
4376 : &default_warp_params;
4377 int good_params =
4378 read_global_motion_params(&cm->global_motion[frame], ref_params, rb,
4379 cm->features.allow_high_precision_mv);
4380 if (!good_params) {
4381 #if WARPED_MOTION_DEBUG
4382 printf("Warning: unexpected global motion shear params from aomenc\n");
4383 #endif
4384 cm->global_motion[frame].invalid = 1;
4385 }
4386
4387 // TODO(sarahparker, debargha): The logic in the commented out code below
4388 // does not work currently and causes mismatches when resize is on. Fix it
4389 // before turning the optimization back on.
4390 /*
4391 YV12_BUFFER_CONFIG *ref_buf = get_ref_frame(cm, frame);
4392 if (cm->width == ref_buf->y_crop_width &&
4393 cm->height == ref_buf->y_crop_height) {
4394 read_global_motion_params(&cm->global_motion[frame],
4395 &cm->prev_frame->global_motion[frame], rb,
4396 cm->features.allow_high_precision_mv);
4397 } else {
4398 cm->global_motion[frame] = default_warp_params;
4399 }
4400 */
4401 /*
4402 printf("Dec Ref %d [%d/%d]: %d %d %d %d\n",
4403 frame, cm->current_frame.frame_number, cm->show_frame,
4404 cm->global_motion[frame].wmmat[0],
4405 cm->global_motion[frame].wmmat[1],
4406 cm->global_motion[frame].wmmat[2],
4407 cm->global_motion[frame].wmmat[3]);
4408 */
4409 }
4410 memcpy(cm->cur_frame->global_motion, cm->global_motion,
4411 REF_FRAMES * sizeof(WarpedMotionParams));
4412 }
4413
4414 // Release the references to the frame buffers in cm->ref_frame_map and reset
4415 // all elements of cm->ref_frame_map to NULL.
reset_ref_frame_map(AV1_COMMON * const cm)4416 static inline void reset_ref_frame_map(AV1_COMMON *const cm) {
4417 BufferPool *const pool = cm->buffer_pool;
4418
4419 for (int i = 0; i < REF_FRAMES; i++) {
4420 decrease_ref_count(cm->ref_frame_map[i], pool);
4421 cm->ref_frame_map[i] = NULL;
4422 }
4423 }
4424
4425 // If the refresh_frame_flags bitmask is set, update reference frame id values
4426 // and mark frames as valid for reference.
update_ref_frame_id(AV1Decoder * const pbi)4427 static inline void update_ref_frame_id(AV1Decoder *const pbi) {
4428 AV1_COMMON *const cm = &pbi->common;
4429 int refresh_frame_flags = cm->current_frame.refresh_frame_flags;
4430 for (int i = 0; i < REF_FRAMES; i++) {
4431 if ((refresh_frame_flags >> i) & 1) {
4432 cm->ref_frame_id[i] = cm->current_frame_id;
4433 pbi->valid_for_referencing[i] = 1;
4434 }
4435 }
4436 }
4437
show_existing_frame_reset(AV1Decoder * const pbi,int existing_frame_idx)4438 static inline void show_existing_frame_reset(AV1Decoder *const pbi,
4439 int existing_frame_idx) {
4440 AV1_COMMON *const cm = &pbi->common;
4441
4442 assert(cm->show_existing_frame);
4443
4444 cm->current_frame.frame_type = KEY_FRAME;
4445
4446 cm->current_frame.refresh_frame_flags = (1 << REF_FRAMES) - 1;
4447
4448 for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
4449 cm->remapped_ref_idx[i] = INVALID_IDX;
4450 }
4451
4452 if (pbi->need_resync) {
4453 reset_ref_frame_map(cm);
4454 pbi->need_resync = 0;
4455 }
4456
4457 // Note that the displayed frame must be valid for referencing in order to
4458 // have been selected.
4459 cm->current_frame_id = cm->ref_frame_id[existing_frame_idx];
4460 update_ref_frame_id(pbi);
4461
4462 cm->features.refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED;
4463 }
4464
reset_frame_buffers(AV1_COMMON * cm)4465 static inline void reset_frame_buffers(AV1_COMMON *cm) {
4466 RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
4467 int i;
4468
4469 lock_buffer_pool(cm->buffer_pool);
4470 reset_ref_frame_map(cm);
4471 assert(cm->cur_frame->ref_count == 1);
4472 for (i = 0; i < cm->buffer_pool->num_frame_bufs; ++i) {
4473 // Reset all unreferenced frame buffers. We can also reset cm->cur_frame
4474 // because we are the sole owner of cm->cur_frame.
4475 if (frame_bufs[i].ref_count > 0 && &frame_bufs[i] != cm->cur_frame) {
4476 continue;
4477 }
4478 frame_bufs[i].order_hint = 0;
4479 av1_zero(frame_bufs[i].ref_order_hints);
4480 }
4481 av1_zero_unused_internal_frame_buffers(&cm->buffer_pool->int_frame_buffers);
4482 unlock_buffer_pool(cm->buffer_pool);
4483 }
4484
4485 // On success, returns 0. On failure, calls aom_internal_error and does not
4486 // return.
read_uncompressed_header(AV1Decoder * pbi,struct aom_read_bit_buffer * rb)4487 static int read_uncompressed_header(AV1Decoder *pbi,
4488 struct aom_read_bit_buffer *rb) {
4489 AV1_COMMON *const cm = &pbi->common;
4490 const SequenceHeader *const seq_params = cm->seq_params;
4491 CurrentFrame *const current_frame = &cm->current_frame;
4492 FeatureFlags *const features = &cm->features;
4493 MACROBLOCKD *const xd = &pbi->dcb.xd;
4494 BufferPool *const pool = cm->buffer_pool;
4495 RefCntBuffer *const frame_bufs = pool->frame_bufs;
4496 aom_s_frame_info *sframe_info = &pbi->sframe_info;
4497 sframe_info->is_s_frame = 0;
4498 sframe_info->is_s_frame_at_altref = 0;
4499
4500 if (!pbi->sequence_header_ready) {
4501 aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
4502 "No sequence header");
4503 }
4504
4505 if (seq_params->reduced_still_picture_hdr) {
4506 cm->show_existing_frame = 0;
4507 cm->show_frame = 1;
4508 current_frame->frame_type = KEY_FRAME;
4509 if (pbi->sequence_header_changed) {
4510 // This is the start of a new coded video sequence.
4511 pbi->sequence_header_changed = 0;
4512 pbi->decoding_first_frame = 1;
4513 reset_frame_buffers(cm);
4514 }
4515 features->error_resilient_mode = 1;
4516 } else {
4517 cm->show_existing_frame = aom_rb_read_bit(rb);
4518 pbi->reset_decoder_state = 0;
4519
4520 if (cm->show_existing_frame) {
4521 if (pbi->sequence_header_changed) {
4522 aom_internal_error(
4523 &pbi->error, AOM_CODEC_CORRUPT_FRAME,
4524 "New sequence header starts with a show_existing_frame.");
4525 }
4526 // Show an existing frame directly.
4527 const int existing_frame_idx = aom_rb_read_literal(rb, 3);
4528 RefCntBuffer *const frame_to_show = cm->ref_frame_map[existing_frame_idx];
4529 if (frame_to_show == NULL) {
4530 aom_internal_error(&pbi->error, AOM_CODEC_UNSUP_BITSTREAM,
4531 "Buffer does not contain a decoded frame");
4532 }
4533 if (seq_params->decoder_model_info_present_flag &&
4534 seq_params->timing_info.equal_picture_interval == 0) {
4535 read_temporal_point_info(cm, rb);
4536 }
4537 if (seq_params->frame_id_numbers_present_flag) {
4538 int frame_id_length = seq_params->frame_id_length;
4539 int display_frame_id = aom_rb_read_literal(rb, frame_id_length);
4540 /* Compare display_frame_id with ref_frame_id and check valid for
4541 * referencing */
4542 if (display_frame_id != cm->ref_frame_id[existing_frame_idx] ||
4543 pbi->valid_for_referencing[existing_frame_idx] == 0)
4544 aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
4545 "Reference buffer frame ID mismatch");
4546 }
4547 lock_buffer_pool(pool);
4548 assert(frame_to_show->ref_count > 0);
4549 // cm->cur_frame should be the buffer referenced by the return value
4550 // of the get_free_fb() call in assign_cur_frame_new_fb() (called by
4551 // av1_receive_compressed_data()), so the ref_count should be 1.
4552 assert(cm->cur_frame->ref_count == 1);
4553 // assign_frame_buffer_p() decrements ref_count directly rather than
4554 // call decrease_ref_count(). If cm->cur_frame->raw_frame_buffer has
4555 // already been allocated, it will not be released by
4556 // assign_frame_buffer_p()!
4557 assert(!cm->cur_frame->raw_frame_buffer.data);
4558 assign_frame_buffer_p(&cm->cur_frame, frame_to_show);
4559 pbi->reset_decoder_state = frame_to_show->frame_type == KEY_FRAME;
4560 unlock_buffer_pool(pool);
4561
4562 cm->lf.filter_level[0] = 0;
4563 cm->lf.filter_level[1] = 0;
4564 cm->show_frame = 1;
4565 current_frame->order_hint = frame_to_show->order_hint;
4566
4567 // Section 6.8.2: It is a requirement of bitstream conformance that when
4568 // show_existing_frame is used to show a previous frame, that the value
4569 // of showable_frame for the previous frame was equal to 1.
4570 if (!frame_to_show->showable_frame) {
4571 aom_internal_error(&pbi->error, AOM_CODEC_UNSUP_BITSTREAM,
4572 "Buffer does not contain a showable frame");
4573 }
4574 // Section 6.8.2: It is a requirement of bitstream conformance that when
4575 // show_existing_frame is used to show a previous frame with
4576 // RefFrameType[ frame_to_show_map_idx ] equal to KEY_FRAME, that the
4577 // frame is output via the show_existing_frame mechanism at most once.
4578 if (pbi->reset_decoder_state) frame_to_show->showable_frame = 0;
4579
4580 cm->film_grain_params = frame_to_show->film_grain_params;
4581
4582 if (pbi->reset_decoder_state) {
4583 show_existing_frame_reset(pbi, existing_frame_idx);
4584 } else {
4585 current_frame->refresh_frame_flags = 0;
4586 }
4587
4588 return 0;
4589 }
4590
4591 current_frame->frame_type = (FRAME_TYPE)aom_rb_read_literal(rb, 2);
4592 if (pbi->sequence_header_changed) {
4593 if (current_frame->frame_type == KEY_FRAME) {
4594 // This is the start of a new coded video sequence.
4595 pbi->sequence_header_changed = 0;
4596 pbi->decoding_first_frame = 1;
4597 reset_frame_buffers(cm);
4598 } else {
4599 aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
4600 "Sequence header has changed without a keyframe.");
4601 }
4602 }
4603
4604 cm->show_frame = aom_rb_read_bit(rb);
4605 if (cm->show_frame == 0) pbi->is_arf_frame_present = 1;
4606 if (cm->show_frame == 0 && cm->current_frame.frame_type == KEY_FRAME)
4607 pbi->is_fwd_kf_present = 1;
4608 if (cm->current_frame.frame_type == S_FRAME) {
4609 sframe_info->is_s_frame = 1;
4610 sframe_info->is_s_frame_at_altref = cm->show_frame ? 0 : 1;
4611 }
4612 if (seq_params->still_picture &&
4613 (current_frame->frame_type != KEY_FRAME || !cm->show_frame)) {
4614 aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
4615 "Still pictures must be coded as shown keyframes");
4616 }
4617 cm->showable_frame = current_frame->frame_type != KEY_FRAME;
4618 if (cm->show_frame) {
4619 if (seq_params->decoder_model_info_present_flag &&
4620 seq_params->timing_info.equal_picture_interval == 0)
4621 read_temporal_point_info(cm, rb);
4622 } else {
4623 // See if this frame can be used as show_existing_frame in future
4624 cm->showable_frame = aom_rb_read_bit(rb);
4625 }
4626 cm->cur_frame->showable_frame = cm->showable_frame;
4627 features->error_resilient_mode =
4628 frame_is_sframe(cm) ||
4629 (current_frame->frame_type == KEY_FRAME && cm->show_frame)
4630 ? 1
4631 : aom_rb_read_bit(rb);
4632 }
4633
4634 if (current_frame->frame_type == KEY_FRAME && cm->show_frame) {
4635 /* All frames need to be marked as not valid for referencing */
4636 for (int i = 0; i < REF_FRAMES; i++) {
4637 pbi->valid_for_referencing[i] = 0;
4638 }
4639 }
4640 features->disable_cdf_update = aom_rb_read_bit(rb);
4641 if (seq_params->force_screen_content_tools == 2) {
4642 features->allow_screen_content_tools = aom_rb_read_bit(rb);
4643 } else {
4644 features->allow_screen_content_tools =
4645 seq_params->force_screen_content_tools;
4646 }
4647
4648 if (features->allow_screen_content_tools) {
4649 if (seq_params->force_integer_mv == 2) {
4650 features->cur_frame_force_integer_mv = aom_rb_read_bit(rb);
4651 } else {
4652 features->cur_frame_force_integer_mv = seq_params->force_integer_mv;
4653 }
4654 } else {
4655 features->cur_frame_force_integer_mv = 0;
4656 }
4657
4658 int frame_size_override_flag = 0;
4659 features->allow_intrabc = 0;
4660 features->primary_ref_frame = PRIMARY_REF_NONE;
4661
4662 if (!seq_params->reduced_still_picture_hdr) {
4663 if (seq_params->frame_id_numbers_present_flag) {
4664 int frame_id_length = seq_params->frame_id_length;
4665 int diff_len = seq_params->delta_frame_id_length;
4666 int prev_frame_id = 0;
4667 int have_prev_frame_id =
4668 !pbi->decoding_first_frame &&
4669 !(current_frame->frame_type == KEY_FRAME && cm->show_frame);
4670 if (have_prev_frame_id) {
4671 prev_frame_id = cm->current_frame_id;
4672 }
4673 cm->current_frame_id = aom_rb_read_literal(rb, frame_id_length);
4674
4675 if (have_prev_frame_id) {
4676 int diff_frame_id;
4677 if (cm->current_frame_id > prev_frame_id) {
4678 diff_frame_id = cm->current_frame_id - prev_frame_id;
4679 } else {
4680 diff_frame_id =
4681 (1 << frame_id_length) + cm->current_frame_id - prev_frame_id;
4682 }
4683 /* Check current_frame_id for conformance */
4684 if (prev_frame_id == cm->current_frame_id ||
4685 diff_frame_id >= (1 << (frame_id_length - 1))) {
4686 aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
4687 "Invalid value of current_frame_id");
4688 }
4689 }
4690 /* Check if some frames need to be marked as not valid for referencing */
4691 for (int i = 0; i < REF_FRAMES; i++) {
4692 if (cm->current_frame_id - (1 << diff_len) > 0) {
4693 if (cm->ref_frame_id[i] > cm->current_frame_id ||
4694 cm->ref_frame_id[i] < cm->current_frame_id - (1 << diff_len))
4695 pbi->valid_for_referencing[i] = 0;
4696 } else {
4697 if (cm->ref_frame_id[i] > cm->current_frame_id &&
4698 cm->ref_frame_id[i] < (1 << frame_id_length) +
4699 cm->current_frame_id - (1 << diff_len))
4700 pbi->valid_for_referencing[i] = 0;
4701 }
4702 }
4703 }
4704
4705 frame_size_override_flag = frame_is_sframe(cm) ? 1 : aom_rb_read_bit(rb);
4706
4707 current_frame->order_hint = aom_rb_read_literal(
4708 rb, seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
4709
4710 if (seq_params->order_hint_info.enable_order_hint)
4711 current_frame->frame_number = current_frame->order_hint;
4712
4713 if (!features->error_resilient_mode && !frame_is_intra_only(cm)) {
4714 features->primary_ref_frame = aom_rb_read_literal(rb, PRIMARY_REF_BITS);
4715 }
4716 }
4717
4718 if (seq_params->decoder_model_info_present_flag) {
4719 pbi->buffer_removal_time_present = aom_rb_read_bit(rb);
4720 if (pbi->buffer_removal_time_present) {
4721 for (int op_num = 0;
4722 op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) {
4723 if (seq_params->op_params[op_num].decoder_model_param_present_flag) {
4724 if (seq_params->operating_point_idc[op_num] == 0 ||
4725 (((seq_params->operating_point_idc[op_num] >>
4726 cm->temporal_layer_id) &
4727 0x1) &&
4728 ((seq_params->operating_point_idc[op_num] >>
4729 (cm->spatial_layer_id + 8)) &
4730 0x1))) {
4731 cm->buffer_removal_times[op_num] = aom_rb_read_unsigned_literal(
4732 rb, seq_params->decoder_model_info.buffer_removal_time_length);
4733 } else {
4734 cm->buffer_removal_times[op_num] = 0;
4735 }
4736 } else {
4737 cm->buffer_removal_times[op_num] = 0;
4738 }
4739 }
4740 }
4741 }
4742 if (current_frame->frame_type == KEY_FRAME) {
4743 if (!cm->show_frame) { // unshown keyframe (forward keyframe)
4744 current_frame->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES);
4745 } else { // shown keyframe
4746 current_frame->refresh_frame_flags = (1 << REF_FRAMES) - 1;
4747 }
4748
4749 for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
4750 cm->remapped_ref_idx[i] = INVALID_IDX;
4751 }
4752 if (pbi->need_resync) {
4753 reset_ref_frame_map(cm);
4754 pbi->need_resync = 0;
4755 }
4756 } else {
4757 if (current_frame->frame_type == INTRA_ONLY_FRAME) {
4758 current_frame->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES);
4759 if (current_frame->refresh_frame_flags == 0xFF) {
4760 aom_internal_error(&pbi->error, AOM_CODEC_UNSUP_BITSTREAM,
4761 "Intra only frames cannot have refresh flags 0xFF");
4762 }
4763 if (pbi->need_resync) {
4764 reset_ref_frame_map(cm);
4765 pbi->need_resync = 0;
4766 }
4767 } else if (pbi->need_resync != 1) { /* Skip if need resync */
4768 current_frame->refresh_frame_flags =
4769 frame_is_sframe(cm) ? 0xFF : aom_rb_read_literal(rb, REF_FRAMES);
4770 }
4771 }
4772
4773 if (!frame_is_intra_only(cm) || current_frame->refresh_frame_flags != 0xFF) {
4774 // Read all ref frame order hints if error_resilient_mode == 1
4775 if (features->error_resilient_mode &&
4776 seq_params->order_hint_info.enable_order_hint) {
4777 for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) {
4778 // Read order hint from bit stream
4779 unsigned int order_hint = aom_rb_read_literal(
4780 rb, seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
4781 // Get buffer
4782 RefCntBuffer *buf = cm->ref_frame_map[ref_idx];
4783 if (buf == NULL || order_hint != buf->order_hint) {
4784 if (buf != NULL) {
4785 lock_buffer_pool(pool);
4786 decrease_ref_count(buf, pool);
4787 unlock_buffer_pool(pool);
4788 cm->ref_frame_map[ref_idx] = NULL;
4789 }
4790 // If no corresponding buffer exists, allocate a new buffer with all
4791 // pixels set to neutral grey.
4792 int buf_idx = get_free_fb(cm);
4793 if (buf_idx == INVALID_IDX) {
4794 aom_internal_error(&pbi->error, AOM_CODEC_MEM_ERROR,
4795 "Unable to find free frame buffer");
4796 }
4797 buf = &frame_bufs[buf_idx];
4798 lock_buffer_pool(pool);
4799 if (aom_realloc_frame_buffer(
4800 &buf->buf, seq_params->max_frame_width,
4801 seq_params->max_frame_height, seq_params->subsampling_x,
4802 seq_params->subsampling_y, seq_params->use_highbitdepth,
4803 AOM_BORDER_IN_PIXELS, features->byte_alignment,
4804 &buf->raw_frame_buffer, pool->get_fb_cb, pool->cb_priv, false,
4805 0)) {
4806 decrease_ref_count(buf, pool);
4807 unlock_buffer_pool(pool);
4808 aom_internal_error(&pbi->error, AOM_CODEC_MEM_ERROR,
4809 "Failed to allocate frame buffer");
4810 }
4811 unlock_buffer_pool(pool);
4812 // According to the specification, valid bitstreams are required to
4813 // never use missing reference frames so the filling process for
4814 // missing frames is not normatively defined and RefValid for missing
4815 // frames is set to 0.
4816
4817 // To make libaom more robust when the bitstream has been corrupted
4818 // by the loss of some frames of data, this code adds a neutral grey
4819 // buffer in place of missing frames, i.e.
4820 //
4821 set_planes_to_neutral_grey(seq_params, &buf->buf, 0);
4822 //
4823 // and allows the frames to be used for referencing, i.e.
4824 //
4825 pbi->valid_for_referencing[ref_idx] = 1;
4826 //
4827 // Please note such behavior is not normative and other decoders may
4828 // use a different approach.
4829 cm->ref_frame_map[ref_idx] = buf;
4830 buf->order_hint = order_hint;
4831 }
4832 }
4833 }
4834 }
4835
4836 if (current_frame->frame_type == KEY_FRAME) {
4837 setup_frame_size(cm, frame_size_override_flag, rb);
4838
4839 if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
4840 features->allow_intrabc = aom_rb_read_bit(rb);
4841 features->allow_ref_frame_mvs = 0;
4842 cm->prev_frame = NULL;
4843 } else {
4844 features->allow_ref_frame_mvs = 0;
4845
4846 if (current_frame->frame_type == INTRA_ONLY_FRAME) {
4847 cm->cur_frame->film_grain_params_present =
4848 seq_params->film_grain_params_present;
4849 setup_frame_size(cm, frame_size_override_flag, rb);
4850 if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
4851 features->allow_intrabc = aom_rb_read_bit(rb);
4852
4853 } else if (pbi->need_resync != 1) { /* Skip if need resync */
4854 int frame_refs_short_signaling = 0;
4855 // Frame refs short signaling is off when error resilient mode is on.
4856 if (seq_params->order_hint_info.enable_order_hint)
4857 frame_refs_short_signaling = aom_rb_read_bit(rb);
4858
4859 if (frame_refs_short_signaling) {
4860 // == LAST_FRAME ==
4861 const int lst_ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2);
4862 const RefCntBuffer *const lst_buf = cm->ref_frame_map[lst_ref];
4863
4864 // == GOLDEN_FRAME ==
4865 const int gld_ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2);
4866 const RefCntBuffer *const gld_buf = cm->ref_frame_map[gld_ref];
4867
4868 // Most of the time, streams start with a keyframe. In that case,
4869 // ref_frame_map will have been filled in at that point and will not
4870 // contain any NULLs. However, streams are explicitly allowed to start
4871 // with an intra-only frame, so long as they don't then signal a
4872 // reference to a slot that hasn't been set yet. That's what we are
4873 // checking here.
4874 if (lst_buf == NULL)
4875 aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
4876 "Inter frame requests nonexistent reference");
4877 if (gld_buf == NULL)
4878 aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
4879 "Inter frame requests nonexistent reference");
4880
4881 av1_set_frame_refs(cm, cm->remapped_ref_idx, lst_ref, gld_ref);
4882 }
4883
4884 for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
4885 int ref = 0;
4886 if (!frame_refs_short_signaling) {
4887 ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2);
4888
4889 // Most of the time, streams start with a keyframe. In that case,
4890 // ref_frame_map will have been filled in at that point and will not
4891 // contain any NULLs. However, streams are explicitly allowed to start
4892 // with an intra-only frame, so long as they don't then signal a
4893 // reference to a slot that hasn't been set yet. That's what we are
4894 // checking here.
4895 if (cm->ref_frame_map[ref] == NULL)
4896 aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
4897 "Inter frame requests nonexistent reference");
4898 cm->remapped_ref_idx[i] = ref;
4899 } else {
4900 ref = cm->remapped_ref_idx[i];
4901 }
4902 // Check valid for referencing
4903 if (pbi->valid_for_referencing[ref] == 0)
4904 aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
4905 "Reference frame not valid for referencing");
4906
4907 cm->ref_frame_sign_bias[LAST_FRAME + i] = 0;
4908
4909 if (seq_params->frame_id_numbers_present_flag) {
4910 int frame_id_length = seq_params->frame_id_length;
4911 int diff_len = seq_params->delta_frame_id_length;
4912 int delta_frame_id_minus_1 = aom_rb_read_literal(rb, diff_len);
4913 int ref_frame_id =
4914 ((cm->current_frame_id - (delta_frame_id_minus_1 + 1) +
4915 (1 << frame_id_length)) %
4916 (1 << frame_id_length));
4917 // Compare values derived from delta_frame_id_minus_1 and
4918 // refresh_frame_flags.
4919 if (ref_frame_id != cm->ref_frame_id[ref])
4920 aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
4921 "Reference buffer frame ID mismatch");
4922 }
4923 }
4924
4925 if (!features->error_resilient_mode && frame_size_override_flag) {
4926 setup_frame_size_with_refs(cm, rb);
4927 } else {
4928 setup_frame_size(cm, frame_size_override_flag, rb);
4929 }
4930
4931 if (features->cur_frame_force_integer_mv) {
4932 features->allow_high_precision_mv = 0;
4933 } else {
4934 features->allow_high_precision_mv = aom_rb_read_bit(rb);
4935 }
4936 features->interp_filter = read_frame_interp_filter(rb);
4937 features->switchable_motion_mode = aom_rb_read_bit(rb);
4938 }
4939
4940 cm->prev_frame = get_primary_ref_frame_buf(cm);
4941 if (features->primary_ref_frame != PRIMARY_REF_NONE &&
4942 get_primary_ref_frame_buf(cm) == NULL) {
4943 aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
4944 "Reference frame containing this frame's initial "
4945 "frame context is unavailable.");
4946 }
4947
4948 if (!(current_frame->frame_type == INTRA_ONLY_FRAME) &&
4949 pbi->need_resync != 1) {
4950 if (frame_might_allow_ref_frame_mvs(cm))
4951 features->allow_ref_frame_mvs = aom_rb_read_bit(rb);
4952 else
4953 features->allow_ref_frame_mvs = 0;
4954
4955 for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
4956 const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, i);
4957 struct scale_factors *const ref_scale_factors =
4958 get_ref_scale_factors(cm, i);
4959 av1_setup_scale_factors_for_frame(
4960 ref_scale_factors, ref_buf->buf.y_crop_width,
4961 ref_buf->buf.y_crop_height, cm->width, cm->height);
4962 if ((!av1_is_valid_scale(ref_scale_factors)))
4963 aom_internal_error(&pbi->error, AOM_CODEC_UNSUP_BITSTREAM,
4964 "Reference frame has invalid dimensions");
4965 }
4966 }
4967 }
4968
4969 av1_setup_frame_buf_refs(cm);
4970
4971 av1_setup_frame_sign_bias(cm);
4972
4973 cm->cur_frame->frame_type = current_frame->frame_type;
4974
4975 update_ref_frame_id(pbi);
4976
4977 const int might_bwd_adapt = !(seq_params->reduced_still_picture_hdr) &&
4978 !(features->disable_cdf_update);
4979 if (might_bwd_adapt) {
4980 features->refresh_frame_context = aom_rb_read_bit(rb)
4981 ? REFRESH_FRAME_CONTEXT_DISABLED
4982 : REFRESH_FRAME_CONTEXT_BACKWARD;
4983 } else {
4984 features->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED;
4985 }
4986
4987 cm->cur_frame->buf.bit_depth = seq_params->bit_depth;
4988 cm->cur_frame->buf.color_primaries = seq_params->color_primaries;
4989 cm->cur_frame->buf.transfer_characteristics =
4990 seq_params->transfer_characteristics;
4991 cm->cur_frame->buf.matrix_coefficients = seq_params->matrix_coefficients;
4992 cm->cur_frame->buf.monochrome = seq_params->monochrome;
4993 cm->cur_frame->buf.chroma_sample_position =
4994 seq_params->chroma_sample_position;
4995 cm->cur_frame->buf.color_range = seq_params->color_range;
4996 cm->cur_frame->buf.render_width = cm->render_width;
4997 cm->cur_frame->buf.render_height = cm->render_height;
4998
4999 if (pbi->need_resync) {
5000 aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
5001 "Keyframe / intra-only frame required to reset decoder"
5002 " state");
5003 }
5004
5005 if (features->allow_intrabc) {
5006 // Set parameters corresponding to no filtering.
5007 struct loopfilter *lf = &cm->lf;
5008 lf->filter_level[0] = 0;
5009 lf->filter_level[1] = 0;
5010 cm->cdef_info.cdef_bits = 0;
5011 cm->cdef_info.cdef_strengths[0] = 0;
5012 cm->cdef_info.nb_cdef_strengths = 1;
5013 cm->cdef_info.cdef_uv_strengths[0] = 0;
5014 cm->rst_info[0].frame_restoration_type = RESTORE_NONE;
5015 cm->rst_info[1].frame_restoration_type = RESTORE_NONE;
5016 cm->rst_info[2].frame_restoration_type = RESTORE_NONE;
5017 }
5018
5019 read_tile_info(pbi, rb);
5020 if (!av1_is_min_tile_width_satisfied(cm)) {
5021 aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
5022 "Minimum tile width requirement not satisfied");
5023 }
5024
5025 CommonQuantParams *const quant_params = &cm->quant_params;
5026 setup_quantization(quant_params, av1_num_planes(cm),
5027 cm->seq_params->separate_uv_delta_q, rb);
5028 xd->bd = (int)seq_params->bit_depth;
5029
5030 CommonContexts *const above_contexts = &cm->above_contexts;
5031 if (above_contexts->num_planes < av1_num_planes(cm) ||
5032 above_contexts->num_mi_cols < cm->mi_params.mi_cols ||
5033 above_contexts->num_tile_rows < cm->tiles.rows) {
5034 av1_free_above_context_buffers(above_contexts);
5035 if (av1_alloc_above_context_buffers(above_contexts, cm->tiles.rows,
5036 cm->mi_params.mi_cols,
5037 av1_num_planes(cm))) {
5038 aom_internal_error(&pbi->error, AOM_CODEC_MEM_ERROR,
5039 "Failed to allocate context buffers");
5040 }
5041 }
5042
5043 if (features->primary_ref_frame == PRIMARY_REF_NONE) {
5044 av1_setup_past_independence(cm);
5045 }
5046
5047 setup_segmentation(cm, rb);
5048
5049 cm->delta_q_info.delta_q_res = 1;
5050 cm->delta_q_info.delta_lf_res = 1;
5051 cm->delta_q_info.delta_lf_present_flag = 0;
5052 cm->delta_q_info.delta_lf_multi = 0;
5053 cm->delta_q_info.delta_q_present_flag =
5054 quant_params->base_qindex > 0 ? aom_rb_read_bit(rb) : 0;
5055 if (cm->delta_q_info.delta_q_present_flag) {
5056 xd->current_base_qindex = quant_params->base_qindex;
5057 cm->delta_q_info.delta_q_res = 1 << aom_rb_read_literal(rb, 2);
5058 if (!features->allow_intrabc)
5059 cm->delta_q_info.delta_lf_present_flag = aom_rb_read_bit(rb);
5060 if (cm->delta_q_info.delta_lf_present_flag) {
5061 cm->delta_q_info.delta_lf_res = 1 << aom_rb_read_literal(rb, 2);
5062 cm->delta_q_info.delta_lf_multi = aom_rb_read_bit(rb);
5063 av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
5064 }
5065 }
5066
5067 xd->cur_frame_force_integer_mv = features->cur_frame_force_integer_mv;
5068
5069 for (int i = 0; i < MAX_SEGMENTS; ++i) {
5070 const int qindex = av1_get_qindex(&cm->seg, i, quant_params->base_qindex);
5071 xd->lossless[i] =
5072 qindex == 0 && quant_params->y_dc_delta_q == 0 &&
5073 quant_params->u_dc_delta_q == 0 && quant_params->u_ac_delta_q == 0 &&
5074 quant_params->v_dc_delta_q == 0 && quant_params->v_ac_delta_q == 0;
5075 xd->qindex[i] = qindex;
5076 }
5077 features->coded_lossless = is_coded_lossless(cm, xd);
5078 features->all_lossless = features->coded_lossless && !av1_superres_scaled(cm);
5079 setup_segmentation_dequant(cm, xd);
5080 if (features->coded_lossless) {
5081 cm->lf.filter_level[0] = 0;
5082 cm->lf.filter_level[1] = 0;
5083 }
5084 if (features->coded_lossless || !seq_params->enable_cdef) {
5085 cm->cdef_info.cdef_bits = 0;
5086 cm->cdef_info.cdef_strengths[0] = 0;
5087 cm->cdef_info.cdef_uv_strengths[0] = 0;
5088 }
5089 if (features->all_lossless || !seq_params->enable_restoration) {
5090 cm->rst_info[0].frame_restoration_type = RESTORE_NONE;
5091 cm->rst_info[1].frame_restoration_type = RESTORE_NONE;
5092 cm->rst_info[2].frame_restoration_type = RESTORE_NONE;
5093 }
5094 setup_loopfilter(cm, rb);
5095
5096 if (!features->coded_lossless && seq_params->enable_cdef) {
5097 setup_cdef(cm, rb);
5098 }
5099 if (!features->all_lossless && seq_params->enable_restoration) {
5100 decode_restoration_mode(cm, rb);
5101 }
5102
5103 features->tx_mode = read_tx_mode(rb, features->coded_lossless);
5104 current_frame->reference_mode = read_frame_reference_mode(cm, rb);
5105
5106 av1_setup_skip_mode_allowed(cm);
5107 current_frame->skip_mode_info.skip_mode_flag =
5108 current_frame->skip_mode_info.skip_mode_allowed ? aom_rb_read_bit(rb) : 0;
5109
5110 if (frame_might_allow_warped_motion(cm))
5111 features->allow_warped_motion = aom_rb_read_bit(rb);
5112 else
5113 features->allow_warped_motion = 0;
5114
5115 features->reduced_tx_set_used = aom_rb_read_bit(rb);
5116
5117 if (features->allow_ref_frame_mvs && !frame_might_allow_ref_frame_mvs(cm)) {
5118 aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
5119 "Frame wrongly requests reference frame MVs");
5120 }
5121
5122 if (!frame_is_intra_only(cm)) read_global_motion(cm, rb);
5123
5124 cm->cur_frame->film_grain_params_present =
5125 seq_params->film_grain_params_present;
5126 read_film_grain(cm, rb);
5127
5128 #if EXT_TILE_DEBUG
5129 if (pbi->ext_tile_debug && cm->tiles.large_scale) {
5130 read_ext_tile_info(pbi, rb);
5131 av1_set_single_tile_decoding_mode(cm);
5132 }
5133 #endif // EXT_TILE_DEBUG
5134 return 0;
5135 }
5136
av1_init_read_bit_buffer(AV1Decoder * pbi,struct aom_read_bit_buffer * rb,const uint8_t * data,const uint8_t * data_end)5137 struct aom_read_bit_buffer *av1_init_read_bit_buffer(
5138 AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data,
5139 const uint8_t *data_end) {
5140 rb->bit_offset = 0;
5141 rb->error_handler = error_handler;
5142 rb->error_handler_data = &pbi->common;
5143 rb->bit_buffer = data;
5144 rb->bit_buffer_end = data_end;
5145 return rb;
5146 }
5147
av1_read_profile(struct aom_read_bit_buffer * rb)5148 BITSTREAM_PROFILE av1_read_profile(struct aom_read_bit_buffer *rb) {
5149 int profile = aom_rb_read_literal(rb, PROFILE_BITS);
5150 return (BITSTREAM_PROFILE)profile;
5151 }
5152
superres_post_decode(AV1Decoder * pbi)5153 static inline void superres_post_decode(AV1Decoder *pbi) {
5154 AV1_COMMON *const cm = &pbi->common;
5155 BufferPool *const pool = cm->buffer_pool;
5156
5157 if (!av1_superres_scaled(cm)) return;
5158 assert(!cm->features.all_lossless);
5159
5160 av1_superres_upscale(cm, pool, 0);
5161 }
5162
av1_decode_frame_headers_and_setup(AV1Decoder * pbi,struct aom_read_bit_buffer * rb,int trailing_bits_present)5163 uint32_t av1_decode_frame_headers_and_setup(AV1Decoder *pbi,
5164 struct aom_read_bit_buffer *rb,
5165 int trailing_bits_present) {
5166 AV1_COMMON *const cm = &pbi->common;
5167 const int num_planes = av1_num_planes(cm);
5168 MACROBLOCKD *const xd = &pbi->dcb.xd;
5169
5170 #if CONFIG_BITSTREAM_DEBUG
5171 if (cm->seq_params->order_hint_info.enable_order_hint) {
5172 aom_bitstream_queue_set_frame_read(cm->current_frame.order_hint * 2 +
5173 cm->show_frame);
5174 } else {
5175 // This is currently used in RTC encoding. cm->show_frame is always 1.
5176 assert(cm->show_frame);
5177 aom_bitstream_queue_set_frame_read(cm->current_frame.frame_number);
5178 }
5179 #endif
5180 #if CONFIG_MISMATCH_DEBUG
5181 mismatch_move_frame_idx_r();
5182 #endif
5183
5184 for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
5185 cm->global_motion[i] = default_warp_params;
5186 cm->cur_frame->global_motion[i] = default_warp_params;
5187 }
5188 xd->global_motion = cm->global_motion;
5189
5190 read_uncompressed_header(pbi, rb);
5191
5192 if (trailing_bits_present) av1_check_trailing_bits(pbi, rb);
5193
5194 if (!cm->tiles.single_tile_decoding &&
5195 (pbi->dec_tile_row >= 0 || pbi->dec_tile_col >= 0)) {
5196 pbi->dec_tile_row = -1;
5197 pbi->dec_tile_col = -1;
5198 }
5199
5200 const uint32_t uncomp_hdr_size =
5201 (uint32_t)aom_rb_bytes_read(rb); // Size of the uncompressed header
5202 YV12_BUFFER_CONFIG *new_fb = &cm->cur_frame->buf;
5203 xd->cur_buf = new_fb;
5204 if (av1_allow_intrabc(cm)) {
5205 av1_setup_scale_factors_for_frame(
5206 &cm->sf_identity, xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height,
5207 xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height);
5208 }
5209
5210 // Showing a frame directly.
5211 if (cm->show_existing_frame) {
5212 if (pbi->reset_decoder_state) {
5213 // Use the default frame context values.
5214 *cm->fc = *cm->default_frame_context;
5215 if (!cm->fc->initialized)
5216 aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
5217 "Uninitialized entropy context.");
5218 }
5219 return uncomp_hdr_size;
5220 }
5221
5222 cm->mi_params.setup_mi(&cm->mi_params);
5223
5224 av1_calculate_ref_frame_side(cm);
5225 if (cm->features.allow_ref_frame_mvs) av1_setup_motion_field(cm);
5226
5227 av1_setup_block_planes(xd, cm->seq_params->subsampling_x,
5228 cm->seq_params->subsampling_y, num_planes);
5229 if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) {
5230 // use the default frame context values
5231 *cm->fc = *cm->default_frame_context;
5232 } else {
5233 *cm->fc = get_primary_ref_frame_buf(cm)->frame_context;
5234 }
5235 if (!cm->fc->initialized)
5236 aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
5237 "Uninitialized entropy context.");
5238
5239 pbi->dcb.corrupted = 0;
5240 return uncomp_hdr_size;
5241 }
5242
5243 // Once-per-frame initialization
setup_frame_info(AV1Decoder * pbi)5244 static inline void setup_frame_info(AV1Decoder *pbi) {
5245 AV1_COMMON *const cm = &pbi->common;
5246
5247 if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE ||
5248 cm->rst_info[1].frame_restoration_type != RESTORE_NONE ||
5249 cm->rst_info[2].frame_restoration_type != RESTORE_NONE) {
5250 av1_alloc_restoration_buffers(cm, /*is_sgr_enabled =*/true);
5251 for (int p = 0; p < av1_num_planes(cm); p++) {
5252 av1_alloc_restoration_struct(cm, &cm->rst_info[p], p > 0);
5253 }
5254 }
5255
5256 const int use_highbd = cm->seq_params->use_highbitdepth;
5257 const int buf_size = MC_TEMP_BUF_PELS << use_highbd;
5258 if (pbi->td.mc_buf_size != buf_size) {
5259 av1_free_mc_tmp_buf(&pbi->td);
5260 allocate_mc_tmp_buf(cm, &pbi->td, buf_size, use_highbd);
5261 }
5262 }
5263
av1_decode_tg_tiles_and_wrapup(AV1Decoder * pbi,const uint8_t * data,const uint8_t * data_end,const uint8_t ** p_data_end,int start_tile,int end_tile,int initialize_flag)5264 void av1_decode_tg_tiles_and_wrapup(AV1Decoder *pbi, const uint8_t *data,
5265 const uint8_t *data_end,
5266 const uint8_t **p_data_end, int start_tile,
5267 int end_tile, int initialize_flag) {
5268 AV1_COMMON *const cm = &pbi->common;
5269 CommonTileParams *const tiles = &cm->tiles;
5270 MACROBLOCKD *const xd = &pbi->dcb.xd;
5271 const int tile_count_tg = end_tile - start_tile + 1;
5272
5273 xd->error_info = cm->error;
5274 if (initialize_flag) setup_frame_info(pbi);
5275 const int num_planes = av1_num_planes(cm);
5276
5277 if (pbi->max_threads > 1 && !(tiles->large_scale && !pbi->ext_tile_debug) &&
5278 pbi->row_mt)
5279 *p_data_end =
5280 decode_tiles_row_mt(pbi, data, data_end, start_tile, end_tile);
5281 else if (pbi->max_threads > 1 && tile_count_tg > 1 &&
5282 !(tiles->large_scale && !pbi->ext_tile_debug))
5283 *p_data_end = decode_tiles_mt(pbi, data, data_end, start_tile, end_tile);
5284 else
5285 *p_data_end = decode_tiles(pbi, data, data_end, start_tile, end_tile);
5286
5287 // If the bit stream is monochrome, set the U and V buffers to a constant.
5288 if (num_planes < 3) {
5289 set_planes_to_neutral_grey(cm->seq_params, xd->cur_buf, 1);
5290 }
5291
5292 if (end_tile != tiles->rows * tiles->cols - 1) {
5293 return;
5294 }
5295
5296 av1_alloc_cdef_buffers(cm, &pbi->cdef_worker, &pbi->cdef_sync,
5297 pbi->num_workers, 1);
5298 av1_alloc_cdef_sync(cm, &pbi->cdef_sync, pbi->num_workers);
5299
5300 if (!cm->features.allow_intrabc && !tiles->single_tile_decoding) {
5301 if (cm->lf.filter_level[0] || cm->lf.filter_level[1]) {
5302 av1_loop_filter_frame_mt(&cm->cur_frame->buf, cm, &pbi->dcb.xd, 0,
5303 num_planes, 0, pbi->tile_workers,
5304 pbi->num_workers, &pbi->lf_row_sync, 0);
5305 }
5306
5307 const int do_cdef =
5308 !pbi->skip_loop_filter && !cm->features.coded_lossless &&
5309 (cm->cdef_info.cdef_bits || cm->cdef_info.cdef_strengths[0] ||
5310 cm->cdef_info.cdef_uv_strengths[0]);
5311 const int do_superres = av1_superres_scaled(cm);
5312 const int optimized_loop_restoration = !do_cdef && !do_superres;
5313 const int do_loop_restoration =
5314 cm->rst_info[0].frame_restoration_type != RESTORE_NONE ||
5315 cm->rst_info[1].frame_restoration_type != RESTORE_NONE ||
5316 cm->rst_info[2].frame_restoration_type != RESTORE_NONE;
5317 // Frame border extension is not required in the decoder
5318 // as it happens in extend_mc_border().
5319 int do_extend_border_mt = 0;
5320 if (!optimized_loop_restoration) {
5321 if (do_loop_restoration)
5322 av1_loop_restoration_save_boundary_lines(&pbi->common.cur_frame->buf,
5323 cm, 0);
5324
5325 if (do_cdef) {
5326 if (pbi->num_workers > 1) {
5327 av1_cdef_frame_mt(cm, &pbi->dcb.xd, pbi->cdef_worker,
5328 pbi->tile_workers, &pbi->cdef_sync,
5329 pbi->num_workers, av1_cdef_init_fb_row_mt,
5330 do_extend_border_mt);
5331 } else {
5332 av1_cdef_frame(&pbi->common.cur_frame->buf, cm, &pbi->dcb.xd,
5333 av1_cdef_init_fb_row);
5334 }
5335 }
5336
5337 superres_post_decode(pbi);
5338
5339 if (do_loop_restoration) {
5340 av1_loop_restoration_save_boundary_lines(&pbi->common.cur_frame->buf,
5341 cm, 1);
5342 if (pbi->num_workers > 1) {
5343 av1_loop_restoration_filter_frame_mt(
5344 (YV12_BUFFER_CONFIG *)xd->cur_buf, cm, optimized_loop_restoration,
5345 pbi->tile_workers, pbi->num_workers, &pbi->lr_row_sync,
5346 &pbi->lr_ctxt, do_extend_border_mt);
5347 } else {
5348 av1_loop_restoration_filter_frame((YV12_BUFFER_CONFIG *)xd->cur_buf,
5349 cm, optimized_loop_restoration,
5350 &pbi->lr_ctxt);
5351 }
5352 }
5353 } else {
5354 // In no cdef and no superres case. Provide an optimized version of
5355 // loop_restoration_filter.
5356 if (do_loop_restoration) {
5357 if (pbi->num_workers > 1) {
5358 av1_loop_restoration_filter_frame_mt(
5359 (YV12_BUFFER_CONFIG *)xd->cur_buf, cm, optimized_loop_restoration,
5360 pbi->tile_workers, pbi->num_workers, &pbi->lr_row_sync,
5361 &pbi->lr_ctxt, do_extend_border_mt);
5362 } else {
5363 av1_loop_restoration_filter_frame((YV12_BUFFER_CONFIG *)xd->cur_buf,
5364 cm, optimized_loop_restoration,
5365 &pbi->lr_ctxt);
5366 }
5367 }
5368 }
5369 }
5370
5371 if (!pbi->dcb.corrupted) {
5372 if (cm->features.refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
5373 assert(pbi->context_update_tile_id < pbi->allocated_tiles);
5374 *cm->fc = pbi->tile_data[pbi->context_update_tile_id].tctx;
5375 av1_reset_cdf_symbol_counters(cm->fc);
5376 }
5377 } else {
5378 aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
5379 "Decode failed. Frame data is corrupted.");
5380 }
5381
5382 #if CONFIG_INSPECTION
5383 if (pbi->inspect_cb != NULL) {
5384 (*pbi->inspect_cb)(pbi, pbi->inspect_ctx);
5385 }
5386 #endif
5387
5388 // Non frame parallel update frame context here.
5389 if (!tiles->large_scale) {
5390 cm->cur_frame->frame_context = *cm->fc;
5391 }
5392
5393 if (cm->show_frame && !cm->seq_params->order_hint_info.enable_order_hint) {
5394 ++cm->current_frame.frame_number;
5395 }
5396 }
5397