xref: /aosp_15_r20/external/libaom/av1/encoder/aq_variance.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <math.h>
13 
14 #include "aom_ports/mem.h"
15 
16 #include "av1/encoder/aq_variance.h"
17 #include "av1/common/seg_common.h"
18 #include "av1/encoder/encodeframe.h"
19 #include "av1/encoder/ratectrl.h"
20 #include "av1/encoder/rd.h"
21 #include "av1/encoder/segmentation.h"
22 #include "av1/encoder/dwt.h"
23 #include "config/aom_config.h"
24 
25 #if !CONFIG_REALTIME_ONLY
26 static const double rate_ratio[MAX_SEGMENTS] = { 2.2, 1.7, 1.3, 1.0,
27                                                  0.9, .8,  .7,  .6 };
28 
29 static const double deltaq_rate_ratio[MAX_SEGMENTS] = { 2.5,  2.0, 1.5, 1.0,
30                                                         0.75, 1.0, 1.0, 1.0 };
31 #define ENERGY_MIN (-4)
32 #define ENERGY_MAX (1)
33 #define ENERGY_SPAN (ENERGY_MAX - ENERGY_MIN + 1)
34 #define ENERGY_IN_BOUNDS(energy) \
35   assert((energy) >= ENERGY_MIN && (energy) <= ENERGY_MAX)
36 
37 static const int segment_id[ENERGY_SPAN] = { 0, 1, 1, 2, 3, 4 };
38 
39 #define SEGMENT_ID(i) segment_id[(i)-ENERGY_MIN]
40 
av1_vaq_frame_setup(AV1_COMP * cpi)41 void av1_vaq_frame_setup(AV1_COMP *cpi) {
42   AV1_COMMON *cm = &cpi->common;
43   const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame;
44   const int base_qindex = cm->quant_params.base_qindex;
45   struct segmentation *seg = &cm->seg;
46   int i;
47 
48   int resolution_change =
49       cm->prev_frame && (cm->width != cm->prev_frame->width ||
50                          cm->height != cm->prev_frame->height);
51   int avg_energy = (int)(cpi->twopass_frame.mb_av_energy - 2);
52   double avg_ratio;
53   if (avg_energy > 7) avg_energy = 7;
54   if (avg_energy < 0) avg_energy = 0;
55   avg_ratio = rate_ratio[avg_energy];
56 
57   if (resolution_change) {
58     memset(cpi->enc_seg.map, 0, cm->mi_params.mi_rows * cm->mi_params.mi_cols);
59     av1_clearall_segfeatures(seg);
60     av1_disable_segmentation(seg);
61     return;
62   }
63   if (frame_is_intra_only(cm) || cm->features.error_resilient_mode ||
64       refresh_frame->alt_ref_frame ||
65       (refresh_frame->golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
66     cpi->vaq_refresh = 1;
67 
68     av1_enable_segmentation(seg);
69     av1_clearall_segfeatures(seg);
70 
71     for (i = 0; i < MAX_SEGMENTS; ++i) {
72       // Set up avg segment id to be 1.0 and adjust the other segments around
73       // it.
74       int qindex_delta =
75           av1_compute_qdelta_by_rate(cpi, cm->current_frame.frame_type,
76                                      base_qindex, rate_ratio[i] / avg_ratio);
77 
78       // We don't allow qindex 0 in a segment if the base value is not 0.
79       // Q index 0 (lossless) implies 4x4 encoding only and in AQ mode a segment
80       // Q delta is sometimes applied without going back around the rd loop.
81       // This could lead to an illegal combination of partition size and q.
82       if ((base_qindex != 0) && ((base_qindex + qindex_delta) == 0)) {
83         qindex_delta = -base_qindex + 1;
84       }
85 
86       av1_set_segdata(seg, i, SEG_LVL_ALT_Q, qindex_delta);
87       av1_enable_segfeature(seg, i, SEG_LVL_ALT_Q);
88     }
89   }
90 }
91 
av1_log_block_avg(const AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bs,int mi_row,int mi_col)92 int av1_log_block_avg(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs,
93                       int mi_row, int mi_col) {
94   // This functions returns the block average of luma block
95   unsigned int sum, avg, num_pix;
96   int r, c;
97   const int pic_w = cpi->common.width;
98   const int pic_h = cpi->common.height;
99   const int bw = MI_SIZE * mi_size_wide[bs];
100   const int bh = MI_SIZE * mi_size_high[bs];
101   const uint16_t *x16 = CONVERT_TO_SHORTPTR(x->plane[0].src.buf);
102 
103   sum = 0;
104   num_pix = 0;
105   avg = 0;
106   int row = mi_row << MI_SIZE_LOG2;
107   int col = mi_col << MI_SIZE_LOG2;
108   for (r = row; (r < (row + bh)) && (r < pic_h); r++) {
109     for (c = col; (c < (col + bw)) && (c < pic_w); c++) {
110       sum += *(x16 + r * x->plane[0].src.stride + c);
111       num_pix++;
112     }
113   }
114   if (num_pix != 0) {
115     avg = sum / num_pix;
116   }
117   return avg;
118 }
119 
120 #define DEFAULT_E_MIDPOINT 10.0
121 
haar_ac_energy(MACROBLOCK * x,BLOCK_SIZE bs)122 static unsigned int haar_ac_energy(MACROBLOCK *x, BLOCK_SIZE bs) {
123   MACROBLOCKD *xd = &x->e_mbd;
124   int stride = x->plane[0].src.stride;
125   uint8_t *buf = x->plane[0].src.buf;
126   const int num_8x8_cols = block_size_wide[bs] / 8;
127   const int num_8x8_rows = block_size_high[bs] / 8;
128   const int hbd = is_cur_buf_hbd(xd);
129 
130   int64_t var = av1_haar_ac_sad_mxn_uint8_input(buf, stride, hbd, num_8x8_rows,
131                                                 num_8x8_cols);
132 
133   return (unsigned int)((uint64_t)var * 256) >> num_pels_log2_lookup[bs];
134 }
135 
log_block_wavelet_energy(MACROBLOCK * x,BLOCK_SIZE bs)136 static double log_block_wavelet_energy(MACROBLOCK *x, BLOCK_SIZE bs) {
137   unsigned int haar_sad = haar_ac_energy(x, bs);
138   return log1p(haar_sad);
139 }
140 
av1_block_wavelet_energy_level(const AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bs)141 int av1_block_wavelet_energy_level(const AV1_COMP *cpi, MACROBLOCK *x,
142                                    BLOCK_SIZE bs) {
143   double energy, energy_midpoint;
144   energy_midpoint = (is_stat_consumption_stage_twopass(cpi))
145                         ? cpi->twopass_frame.frame_avg_haar_energy
146                         : DEFAULT_E_MIDPOINT;
147   energy = log_block_wavelet_energy(x, bs) - energy_midpoint;
148   return clamp((int)round(energy), ENERGY_MIN, ENERGY_MAX);
149 }
150 
av1_compute_q_from_energy_level_deltaq_mode(const AV1_COMP * const cpi,int block_var_level)151 int av1_compute_q_from_energy_level_deltaq_mode(const AV1_COMP *const cpi,
152                                                 int block_var_level) {
153   int rate_level;
154   const AV1_COMMON *const cm = &cpi->common;
155 
156   if (DELTA_Q_PERCEPTUAL_MODULATION == 1) {
157     ENERGY_IN_BOUNDS(block_var_level);
158     rate_level = SEGMENT_ID(block_var_level);
159   } else {
160     rate_level = block_var_level;
161   }
162   const int base_qindex = cm->quant_params.base_qindex;
163   int qindex_delta =
164       av1_compute_qdelta_by_rate(cpi, cm->current_frame.frame_type, base_qindex,
165                                  deltaq_rate_ratio[rate_level]);
166 
167   if ((base_qindex != 0) && ((base_qindex + qindex_delta) == 0)) {
168     qindex_delta = -base_qindex + 1;
169   }
170   return base_qindex + qindex_delta;
171 }
172 #endif  // !CONFIG_REALTIME_ONLY
173 
av1_log_block_var(const AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bs)174 int av1_log_block_var(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs) {
175   DECLARE_ALIGNED(16, static const uint16_t,
176                   av1_highbd_all_zeros[MAX_SB_SIZE]) = { 0 };
177   DECLARE_ALIGNED(16, static const uint8_t, av1_all_zeros[MAX_SB_SIZE]) = { 0 };
178 
179   // This function returns a score for the blocks local variance as calculated
180   // by: sum of the log of the (4x4 variances) of each subblock to the current
181   // block (x,bs)
182   // * 32 / number of pixels in the block_size.
183   // This is used for segmentation because to avoid situations in which a large
184   // block with a gentle gradient gets marked high variance even though each
185   // subblock has a low variance.   This allows us to assign the same segment
186   // number for the same sorts of area regardless of how the partitioning goes.
187 
188   MACROBLOCKD *xd = &x->e_mbd;
189   double var = 0;
190   unsigned int sse;
191   int i, j;
192 
193   int right_overflow =
194       (xd->mb_to_right_edge < 0) ? ((-xd->mb_to_right_edge) >> 3) : 0;
195   int bottom_overflow =
196       (xd->mb_to_bottom_edge < 0) ? ((-xd->mb_to_bottom_edge) >> 3) : 0;
197 
198   const int bw = MI_SIZE * mi_size_wide[bs] - right_overflow;
199   const int bh = MI_SIZE * mi_size_high[bs] - bottom_overflow;
200 
201   for (i = 0; i < bh; i += 4) {
202     for (j = 0; j < bw; j += 4) {
203       if (is_cur_buf_hbd(xd)) {
204         var += log1p(cpi->ppi->fn_ptr[BLOCK_4X4].vf(
205                          x->plane[0].src.buf + i * x->plane[0].src.stride + j,
206                          x->plane[0].src.stride,
207                          CONVERT_TO_BYTEPTR(av1_highbd_all_zeros), 0, &sse) /
208                      16.0);
209       } else {
210         var += log1p(cpi->ppi->fn_ptr[BLOCK_4X4].vf(
211                          x->plane[0].src.buf + i * x->plane[0].src.stride + j,
212                          x->plane[0].src.stride, av1_all_zeros, 0, &sse) /
213                      16.0);
214       }
215     }
216   }
217   // Use average of 4x4 log variance. The range for 8 bit 0 - 9.704121561.
218   var /= (bw / 4 * bh / 4);
219   if (var > 7) var = 7;
220 
221   return (int)(var);
222 }
223