1 /*
2 * Copyright (c) 2020, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include "av1/common/pred_common.h"
13 #include "av1/encoder/interp_search.h"
14 #include "av1/encoder/model_rd.h"
15 #include "av1/encoder/rdopt_utils.h"
16 #include "av1/encoder/reconinter_enc.h"
17
18 // return mv_diff
is_interp_filter_good_match(const INTERPOLATION_FILTER_STATS * st,MB_MODE_INFO * const mi,int skip_level)19 static inline int is_interp_filter_good_match(
20 const INTERPOLATION_FILTER_STATS *st, MB_MODE_INFO *const mi,
21 int skip_level) {
22 const int is_comp = has_second_ref(mi);
23 int i;
24
25 for (i = 0; i < 1 + is_comp; ++i) {
26 if (st->ref_frames[i] != mi->ref_frame[i]) return INT_MAX;
27 }
28
29 if (skip_level == 1 && is_comp) {
30 if (st->comp_type != mi->interinter_comp.type) return INT_MAX;
31 if (st->compound_idx != mi->compound_idx) return INT_MAX;
32 }
33
34 int mv_diff = 0;
35 for (i = 0; i < 1 + is_comp; ++i) {
36 mv_diff += abs(st->mv[i].as_mv.row - mi->mv[i].as_mv.row) +
37 abs(st->mv[i].as_mv.col - mi->mv[i].as_mv.col);
38 }
39 return mv_diff;
40 }
41
save_interp_filter_search_stat(MB_MODE_INFO * const mbmi,int64_t rd,unsigned int pred_sse,INTERPOLATION_FILTER_STATS * interp_filter_stats,int interp_filter_stats_idx)42 static inline int save_interp_filter_search_stat(
43 MB_MODE_INFO *const mbmi, int64_t rd, unsigned int pred_sse,
44 INTERPOLATION_FILTER_STATS *interp_filter_stats,
45 int interp_filter_stats_idx) {
46 if (interp_filter_stats_idx < MAX_INTERP_FILTER_STATS) {
47 INTERPOLATION_FILTER_STATS stat = { mbmi->interp_filters,
48 { mbmi->mv[0], mbmi->mv[1] },
49 { mbmi->ref_frame[0],
50 mbmi->ref_frame[1] },
51 mbmi->interinter_comp.type,
52 mbmi->compound_idx,
53 rd,
54 pred_sse };
55 interp_filter_stats[interp_filter_stats_idx] = stat;
56 interp_filter_stats_idx++;
57 }
58 return interp_filter_stats_idx;
59 }
60
find_interp_filter_in_stats(MB_MODE_INFO * const mbmi,INTERPOLATION_FILTER_STATS * interp_filter_stats,int interp_filter_stats_idx,int skip_level)61 static inline int find_interp_filter_in_stats(
62 MB_MODE_INFO *const mbmi, INTERPOLATION_FILTER_STATS *interp_filter_stats,
63 int interp_filter_stats_idx, int skip_level) {
64 // [skip_levels][single or comp]
65 const int thr[2][2] = { { 0, 0 }, { 3, 7 } };
66 const int is_comp = has_second_ref(mbmi);
67
68 // Find good enough match.
69 // TODO(yunqing): Separate single-ref mode and comp mode stats for fast
70 // search.
71 int best = INT_MAX;
72 int match = -1;
73 for (int j = 0; j < interp_filter_stats_idx; ++j) {
74 const INTERPOLATION_FILTER_STATS *st = &interp_filter_stats[j];
75 const int mv_diff = is_interp_filter_good_match(st, mbmi, skip_level);
76 // Exact match is found.
77 if (mv_diff == 0) {
78 match = j;
79 break;
80 } else if (mv_diff < best && mv_diff <= thr[skip_level - 1][is_comp]) {
81 best = mv_diff;
82 match = j;
83 }
84 }
85
86 if (match != -1) {
87 mbmi->interp_filters = interp_filter_stats[match].filters;
88 return match;
89 }
90 return -1; // no match result found
91 }
92
find_interp_filter_match(MB_MODE_INFO * const mbmi,const AV1_COMP * const cpi,const InterpFilter assign_filter,const int need_search,INTERPOLATION_FILTER_STATS * interp_filter_stats,int interp_filter_stats_idx)93 static int find_interp_filter_match(
94 MB_MODE_INFO *const mbmi, const AV1_COMP *const cpi,
95 const InterpFilter assign_filter, const int need_search,
96 INTERPOLATION_FILTER_STATS *interp_filter_stats,
97 int interp_filter_stats_idx) {
98 int match_found_idx = -1;
99 if (cpi->sf.interp_sf.use_interp_filter && need_search)
100 match_found_idx = find_interp_filter_in_stats(
101 mbmi, interp_filter_stats, interp_filter_stats_idx,
102 cpi->sf.interp_sf.use_interp_filter);
103
104 if (!need_search || match_found_idx == -1)
105 set_default_interp_filters(mbmi, assign_filter);
106 return match_found_idx;
107 }
108
get_switchable_rate(MACROBLOCK * const x,const int_interpfilters filters,const int ctx[2],int dual_filter)109 static inline int get_switchable_rate(MACROBLOCK *const x,
110 const int_interpfilters filters,
111 const int ctx[2], int dual_filter) {
112 const InterpFilter filter0 = filters.as_filters.y_filter;
113 int inter_filter_cost =
114 x->mode_costs.switchable_interp_costs[ctx[0]][filter0];
115 if (dual_filter) {
116 const InterpFilter filter1 = filters.as_filters.x_filter;
117 inter_filter_cost += x->mode_costs.switchable_interp_costs[ctx[1]][filter1];
118 }
119 return SWITCHABLE_INTERP_RATE_FACTOR * inter_filter_cost;
120 }
121
122 // Build inter predictor and calculate model rd
123 // for a given plane.
interp_model_rd_eval(MACROBLOCK * const x,const AV1_COMP * const cpi,BLOCK_SIZE bsize,const BUFFER_SET * const orig_dst,int plane_from,int plane_to,RD_STATS * rd_stats,int is_skip_build_pred)124 static inline void interp_model_rd_eval(
125 MACROBLOCK *const x, const AV1_COMP *const cpi, BLOCK_SIZE bsize,
126 const BUFFER_SET *const orig_dst, int plane_from, int plane_to,
127 RD_STATS *rd_stats, int is_skip_build_pred) {
128 const AV1_COMMON *cm = &cpi->common;
129 MACROBLOCKD *const xd = &x->e_mbd;
130 RD_STATS tmp_rd_stats;
131 av1_init_rd_stats(&tmp_rd_stats);
132
133 // Skip inter predictor if the predictor is already available.
134 if (!is_skip_build_pred) {
135 const int mi_row = xd->mi_row;
136 const int mi_col = xd->mi_col;
137 av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
138 plane_from, plane_to);
139 }
140
141 model_rd_sb_fn[cpi->sf.rt_sf.use_simple_rd_model
142 ? MODELRD_LEGACY
143 : MODELRD_TYPE_INTERP_FILTER](
144 cpi, bsize, x, xd, plane_from, plane_to, &tmp_rd_stats.rate,
145 &tmp_rd_stats.dist, &tmp_rd_stats.skip_txfm, &tmp_rd_stats.sse, NULL,
146 NULL, NULL);
147
148 av1_merge_rd_stats(rd_stats, &tmp_rd_stats);
149 }
150
151 // calculate the rdcost of given interpolation_filter
interpolation_filter_rd(MACROBLOCK * const x,const AV1_COMP * const cpi,const TileDataEnc * tile_data,BLOCK_SIZE bsize,const BUFFER_SET * const orig_dst,int64_t * const rd,RD_STATS * rd_stats_luma,RD_STATS * rd_stats,int * const switchable_rate,const BUFFER_SET * dst_bufs[2],int filter_idx,const int switchable_ctx[2],const int skip_pred)152 static inline int64_t interpolation_filter_rd(
153 MACROBLOCK *const x, const AV1_COMP *const cpi,
154 const TileDataEnc *tile_data, BLOCK_SIZE bsize,
155 const BUFFER_SET *const orig_dst, int64_t *const rd,
156 RD_STATS *rd_stats_luma, RD_STATS *rd_stats, int *const switchable_rate,
157 const BUFFER_SET *dst_bufs[2], int filter_idx, const int switchable_ctx[2],
158 const int skip_pred) {
159 const AV1_COMMON *cm = &cpi->common;
160 const InterpSearchFlags *interp_search_flags = &cpi->interp_search_flags;
161 const int num_planes = av1_num_planes(cm);
162 MACROBLOCKD *const xd = &x->e_mbd;
163 MB_MODE_INFO *const mbmi = xd->mi[0];
164 RD_STATS this_rd_stats_luma, this_rd_stats;
165
166 // Initialize rd_stats structures to default values.
167 av1_init_rd_stats(&this_rd_stats_luma);
168 this_rd_stats = *rd_stats_luma;
169 const int_interpfilters last_best = mbmi->interp_filters;
170 mbmi->interp_filters = filter_sets[filter_idx];
171 const int tmp_rs =
172 get_switchable_rate(x, mbmi->interp_filters, switchable_ctx,
173 cm->seq_params->enable_dual_filter);
174
175 int64_t min_rd = RDCOST(x->rdmult, tmp_rs, 0);
176 if (min_rd > *rd) {
177 mbmi->interp_filters = last_best;
178 return 0;
179 }
180
181 (void)tile_data;
182
183 assert(skip_pred != 2);
184 assert((rd_stats_luma->rate >= 0) && (rd_stats->rate >= 0));
185 assert((rd_stats_luma->dist >= 0) && (rd_stats->dist >= 0));
186 assert((rd_stats_luma->sse >= 0) && (rd_stats->sse >= 0));
187 assert((rd_stats_luma->skip_txfm == 0) || (rd_stats_luma->skip_txfm == 1));
188 assert((rd_stats->skip_txfm == 0) || (rd_stats->skip_txfm == 1));
189 assert((skip_pred >= 0) &&
190 (skip_pred <= interp_search_flags->default_interp_skip_flags));
191
192 // When skip_txfm pred is equal to default_interp_skip_flags,
193 // skip both luma and chroma MC.
194 // For mono-chrome images:
195 // num_planes = 1 and cpi->default_interp_skip_flags = 1,
196 // skip_pred = 1: skip both luma and chroma
197 // skip_pred = 0: Evaluate luma and as num_planes=1,
198 // skip chroma evaluation
199 int tmp_skip_pred =
200 (skip_pred == interp_search_flags->default_interp_skip_flags)
201 ? INTERP_SKIP_LUMA_SKIP_CHROMA
202 : skip_pred;
203
204 switch (tmp_skip_pred) {
205 case INTERP_EVAL_LUMA_EVAL_CHROMA:
206 // skip_pred = 0: Evaluate both luma and chroma.
207 // Luma MC
208 interp_model_rd_eval(x, cpi, bsize, orig_dst, AOM_PLANE_Y, AOM_PLANE_Y,
209 &this_rd_stats_luma, 0);
210 this_rd_stats = this_rd_stats_luma;
211 #if CONFIG_COLLECT_RD_STATS == 3
212 RD_STATS rd_stats_y;
213 av1_pick_recursive_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize,
214 INT64_MAX);
215 PrintPredictionUnitStats(cpi, tile_data, x, &rd_stats_y, bsize);
216 #endif // CONFIG_COLLECT_RD_STATS == 3
217 AOM_FALLTHROUGH_INTENDED;
218 case INTERP_SKIP_LUMA_EVAL_CHROMA:
219 // skip_pred = 1: skip luma evaluation (retain previous best luma stats)
220 // and do chroma evaluation.
221 for (int plane = 1; plane < num_planes; ++plane) {
222 int64_t tmp_rd =
223 RDCOST(x->rdmult, tmp_rs + this_rd_stats.rate, this_rd_stats.dist);
224 if (tmp_rd >= *rd) {
225 mbmi->interp_filters = last_best;
226 return 0;
227 }
228 interp_model_rd_eval(x, cpi, bsize, orig_dst, plane, plane,
229 &this_rd_stats, 0);
230 }
231 break;
232 case INTERP_SKIP_LUMA_SKIP_CHROMA:
233 // both luma and chroma evaluation is skipped
234 this_rd_stats = *rd_stats;
235 break;
236 case INTERP_EVAL_INVALID:
237 default: assert(0); return 0;
238 }
239 int64_t tmp_rd =
240 RDCOST(x->rdmult, tmp_rs + this_rd_stats.rate, this_rd_stats.dist);
241
242 if (tmp_rd < *rd) {
243 *rd = tmp_rd;
244 *switchable_rate = tmp_rs;
245 if (skip_pred != interp_search_flags->default_interp_skip_flags) {
246 if (skip_pred == INTERP_EVAL_LUMA_EVAL_CHROMA) {
247 // Overwrite the data as current filter is the best one
248 *rd_stats_luma = this_rd_stats_luma;
249 *rd_stats = this_rd_stats;
250 // As luma MC data is computed, no need to recompute after the search
251 x->recalc_luma_mc_data = 0;
252 } else if (skip_pred == INTERP_SKIP_LUMA_EVAL_CHROMA) {
253 // As luma MC data is not computed, update of luma data can be skipped
254 *rd_stats = this_rd_stats;
255 // As luma MC data is not recomputed and current filter is the best,
256 // indicate the possibility of recomputing MC data
257 // If current buffer contains valid MC data, toggle to indicate that
258 // luma MC data needs to be recomputed
259 x->recalc_luma_mc_data ^= 1;
260 }
261 swap_dst_buf(xd, dst_bufs, num_planes);
262 }
263 return 1;
264 }
265 mbmi->interp_filters = last_best;
266 return 0;
267 }
268
is_pred_filter_search_allowed(const AV1_COMP * const cpi,MACROBLOCKD * xd,BLOCK_SIZE bsize,int_interpfilters * af,int_interpfilters * lf)269 static inline INTERP_PRED_TYPE is_pred_filter_search_allowed(
270 const AV1_COMP *const cpi, MACROBLOCKD *xd, BLOCK_SIZE bsize,
271 int_interpfilters *af, int_interpfilters *lf) {
272 const AV1_COMMON *cm = &cpi->common;
273 const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
274 const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
275 const int bsl = mi_size_wide_log2[bsize];
276 int is_horiz_eq = 0, is_vert_eq = 0;
277
278 if (above_mbmi && is_inter_block(above_mbmi))
279 *af = above_mbmi->interp_filters;
280
281 if (left_mbmi && is_inter_block(left_mbmi)) *lf = left_mbmi->interp_filters;
282
283 if (af->as_filters.x_filter != INTERP_INVALID)
284 is_horiz_eq = af->as_filters.x_filter == lf->as_filters.x_filter;
285 if (af->as_filters.y_filter != INTERP_INVALID)
286 is_vert_eq = af->as_filters.y_filter == lf->as_filters.y_filter;
287
288 INTERP_PRED_TYPE pred_filter_type = (is_vert_eq << 1) + is_horiz_eq;
289 const int mi_row = xd->mi_row;
290 const int mi_col = xd->mi_col;
291 int pred_filter_enable =
292 cpi->sf.interp_sf.cb_pred_filter_search
293 ? (((mi_row + mi_col) >> bsl) +
294 get_chessboard_index(cm->current_frame.frame_number)) &
295 0x1
296 : 0;
297 pred_filter_enable &= is_horiz_eq || is_vert_eq;
298 // pred_filter_search = 0: pred_filter is disabled
299 // pred_filter_search = 1: pred_filter is enabled and only horz pred matching
300 // pred_filter_search = 2: pred_filter is enabled and only vert pred matching
301 // pred_filter_search = 3: pred_filter is enabled and
302 // both vert, horz pred matching
303 return pred_filter_enable * pred_filter_type;
304 }
305
find_best_interp_rd_facade(MACROBLOCK * const x,const AV1_COMP * const cpi,const TileDataEnc * tile_data,BLOCK_SIZE bsize,const BUFFER_SET * const orig_dst,int64_t * const rd,RD_STATS * rd_stats_y,RD_STATS * rd_stats,int * const switchable_rate,const BUFFER_SET * dst_bufs[2],const int switchable_ctx[2],const int skip_pred,uint16_t allow_interp_mask,int is_w4_or_h4)306 static DUAL_FILTER_TYPE find_best_interp_rd_facade(
307 MACROBLOCK *const x, const AV1_COMP *const cpi,
308 const TileDataEnc *tile_data, BLOCK_SIZE bsize,
309 const BUFFER_SET *const orig_dst, int64_t *const rd, RD_STATS *rd_stats_y,
310 RD_STATS *rd_stats, int *const switchable_rate,
311 const BUFFER_SET *dst_bufs[2], const int switchable_ctx[2],
312 const int skip_pred, uint16_t allow_interp_mask, int is_w4_or_h4) {
313 int tmp_skip_pred = skip_pred;
314 DUAL_FILTER_TYPE best_filt_type = REG_REG;
315
316 // If no filter are set to be evaluated, return from function
317 if (allow_interp_mask == 0x0) return best_filt_type;
318 // For block width or height is 4, skip the pred evaluation of SHARP_SHARP
319 tmp_skip_pred = is_w4_or_h4
320 ? cpi->interp_search_flags.default_interp_skip_flags
321 : skip_pred;
322
323 // Loop over the all filter types and evaluate for only allowed filter types
324 for (int filt_type = SHARP_SHARP; filt_type >= REG_REG; --filt_type) {
325 const int is_filter_allowed =
326 get_interp_filter_allowed_mask(allow_interp_mask, filt_type);
327 if (is_filter_allowed)
328 if (interpolation_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd,
329 rd_stats_y, rd_stats, switchable_rate,
330 dst_bufs, filt_type, switchable_ctx,
331 tmp_skip_pred))
332 best_filt_type = filt_type;
333 tmp_skip_pred = skip_pred;
334 }
335 return best_filt_type;
336 }
337
pred_dual_interp_filter_rd(MACROBLOCK * const x,const AV1_COMP * const cpi,const TileDataEnc * tile_data,BLOCK_SIZE bsize,const BUFFER_SET * const orig_dst,int64_t * const rd,RD_STATS * rd_stats_y,RD_STATS * rd_stats,int * const switchable_rate,const BUFFER_SET * dst_bufs[2],const int switchable_ctx[2],const int skip_pred,INTERP_PRED_TYPE pred_filt_type,int_interpfilters * af,int_interpfilters * lf)338 static inline void pred_dual_interp_filter_rd(
339 MACROBLOCK *const x, const AV1_COMP *const cpi,
340 const TileDataEnc *tile_data, BLOCK_SIZE bsize,
341 const BUFFER_SET *const orig_dst, int64_t *const rd, RD_STATS *rd_stats_y,
342 RD_STATS *rd_stats, int *const switchable_rate,
343 const BUFFER_SET *dst_bufs[2], const int switchable_ctx[2],
344 const int skip_pred, INTERP_PRED_TYPE pred_filt_type, int_interpfilters *af,
345 int_interpfilters *lf) {
346 (void)lf;
347 assert(pred_filt_type > INTERP_HORZ_NEQ_VERT_NEQ);
348 assert(pred_filt_type < INTERP_PRED_TYPE_ALL);
349 uint16_t allowed_interp_mask = 0;
350
351 if (pred_filt_type == INTERP_HORZ_EQ_VERT_NEQ) {
352 // pred_filter_search = 1: Only horizontal filter is matching
353 allowed_interp_mask =
354 av1_interp_dual_filt_mask[pred_filt_type - 1][af->as_filters.x_filter];
355 } else if (pred_filt_type == INTERP_HORZ_NEQ_VERT_EQ) {
356 // pred_filter_search = 2: Only vertical filter is matching
357 allowed_interp_mask =
358 av1_interp_dual_filt_mask[pred_filt_type - 1][af->as_filters.y_filter];
359 } else {
360 // pred_filter_search = 3: Both horizontal and vertical filter are matching
361 int filt_type =
362 af->as_filters.x_filter + af->as_filters.y_filter * SWITCHABLE_FILTERS;
363 set_interp_filter_allowed_mask(&allowed_interp_mask, filt_type);
364 }
365 // REG_REG is already been evaluated in the beginning
366 reset_interp_filter_allowed_mask(&allowed_interp_mask, REG_REG);
367 find_best_interp_rd_facade(x, cpi, tile_data, bsize, orig_dst, rd, rd_stats_y,
368 rd_stats, switchable_rate, dst_bufs,
369 switchable_ctx, skip_pred, allowed_interp_mask, 0);
370 }
371 // Evaluate dual filter type
372 // a) Using above, left block interp filter
373 // b) Find the best horizontal filter and
374 // then evaluate corresponding vertical filters.
fast_dual_interp_filter_rd(MACROBLOCK * const x,const AV1_COMP * const cpi,const TileDataEnc * tile_data,BLOCK_SIZE bsize,const BUFFER_SET * const orig_dst,int64_t * const rd,RD_STATS * rd_stats_y,RD_STATS * rd_stats,int * const switchable_rate,const BUFFER_SET * dst_bufs[2],const int switchable_ctx[2],const int skip_hor,const int skip_ver)375 static inline void fast_dual_interp_filter_rd(
376 MACROBLOCK *const x, const AV1_COMP *const cpi,
377 const TileDataEnc *tile_data, BLOCK_SIZE bsize,
378 const BUFFER_SET *const orig_dst, int64_t *const rd, RD_STATS *rd_stats_y,
379 RD_STATS *rd_stats, int *const switchable_rate,
380 const BUFFER_SET *dst_bufs[2], const int switchable_ctx[2],
381 const int skip_hor, const int skip_ver) {
382 const InterpSearchFlags *interp_search_flags = &cpi->interp_search_flags;
383 MACROBLOCKD *const xd = &x->e_mbd;
384 MB_MODE_INFO *const mbmi = xd->mi[0];
385 INTERP_PRED_TYPE pred_filter_type = INTERP_HORZ_NEQ_VERT_NEQ;
386 int_interpfilters af = av1_broadcast_interp_filter(INTERP_INVALID);
387 int_interpfilters lf = af;
388
389 if (!have_newmv_in_inter_mode(mbmi->mode)) {
390 pred_filter_type = is_pred_filter_search_allowed(cpi, xd, bsize, &af, &lf);
391 }
392
393 if (pred_filter_type) {
394 pred_dual_interp_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd,
395 rd_stats_y, rd_stats, switchable_rate, dst_bufs,
396 switchable_ctx, (skip_hor & skip_ver),
397 pred_filter_type, &af, &lf);
398 } else {
399 const int bw = block_size_wide[bsize];
400 const int bh = block_size_high[bsize];
401 int best_dual_mode = 0;
402 int skip_pred =
403 bw <= 4 ? interp_search_flags->default_interp_skip_flags : skip_hor;
404 // TODO(any): Make use of find_best_interp_rd_facade()
405 // if speed impact is negligible
406 for (int i = (SWITCHABLE_FILTERS - 1); i >= 1; --i) {
407 if (interpolation_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd,
408 rd_stats_y, rd_stats, switchable_rate,
409 dst_bufs, i, switchable_ctx, skip_pred)) {
410 best_dual_mode = i;
411 }
412 skip_pred = skip_hor;
413 }
414 // From best of horizontal EIGHTTAP_REGULAR modes, check vertical modes
415 skip_pred =
416 bh <= 4 ? interp_search_flags->default_interp_skip_flags : skip_ver;
417 for (int i = (best_dual_mode + (SWITCHABLE_FILTERS * 2));
418 i >= (best_dual_mode + SWITCHABLE_FILTERS); i -= SWITCHABLE_FILTERS) {
419 interpolation_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd,
420 rd_stats_y, rd_stats, switchable_rate, dst_bufs,
421 i, switchable_ctx, skip_pred);
422 skip_pred = skip_ver;
423 }
424 }
425 }
426
427 // Find the best interp filter if dual_interp_filter = 0
find_best_non_dual_interp_filter(MACROBLOCK * const x,const AV1_COMP * const cpi,const TileDataEnc * tile_data,BLOCK_SIZE bsize,const BUFFER_SET * const orig_dst,int64_t * const rd,RD_STATS * rd_stats_y,RD_STATS * rd_stats,int * const switchable_rate,const BUFFER_SET * dst_bufs[2],const int switchable_ctx[2],const int skip_ver,const int skip_hor)428 static inline void find_best_non_dual_interp_filter(
429 MACROBLOCK *const x, const AV1_COMP *const cpi,
430 const TileDataEnc *tile_data, BLOCK_SIZE bsize,
431 const BUFFER_SET *const orig_dst, int64_t *const rd, RD_STATS *rd_stats_y,
432 RD_STATS *rd_stats, int *const switchable_rate,
433 const BUFFER_SET *dst_bufs[2], const int switchable_ctx[2],
434 const int skip_ver, const int skip_hor) {
435 const InterpSearchFlags *interp_search_flags = &cpi->interp_search_flags;
436 int8_t i;
437 MACROBLOCKD *const xd = &x->e_mbd;
438 MB_MODE_INFO *const mbmi = xd->mi[0];
439
440 uint16_t interp_filter_search_mask =
441 interp_search_flags->interp_filter_search_mask;
442
443 if (cpi->sf.interp_sf.adaptive_interp_filter_search == 2) {
444 const FRAME_UPDATE_TYPE update_type =
445 get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
446 const int ctx0 = av1_get_pred_context_switchable_interp(xd, 0);
447 const int ctx1 = av1_get_pred_context_switchable_interp(xd, 1);
448 int use_actual_frame_probs = 1;
449 const int *switchable_interp_p0;
450 const int *switchable_interp_p1;
451 #if CONFIG_FPMT_TEST
452 use_actual_frame_probs =
453 (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 0 : 1;
454 if (!use_actual_frame_probs) {
455 switchable_interp_p0 = (int *)cpi->ppi->temp_frame_probs
456 .switchable_interp_probs[update_type][ctx0];
457 switchable_interp_p1 = (int *)cpi->ppi->temp_frame_probs
458 .switchable_interp_probs[update_type][ctx1];
459 }
460 #endif
461 if (use_actual_frame_probs) {
462 switchable_interp_p0 =
463 cpi->ppi->frame_probs.switchable_interp_probs[update_type][ctx0];
464 switchable_interp_p1 =
465 cpi->ppi->frame_probs.switchable_interp_probs[update_type][ctx1];
466 }
467 static const int thr[7] = { 0, 8, 8, 8, 8, 0, 8 };
468 const int thresh = thr[update_type];
469 for (i = 0; i < SWITCHABLE_FILTERS; i++) {
470 // For non-dual case, the 2 dir's prob should be identical.
471 assert(switchable_interp_p0[i] == switchable_interp_p1[i]);
472 if (switchable_interp_p0[i] < thresh &&
473 switchable_interp_p1[i] < thresh) {
474 DUAL_FILTER_TYPE filt_type = i + SWITCHABLE_FILTERS * i;
475 reset_interp_filter_allowed_mask(&interp_filter_search_mask, filt_type);
476 }
477 }
478 }
479
480 // Regular filter evaluation should have been done and hence the same should
481 // be the winner
482 assert(x->e_mbd.mi[0]->interp_filters.as_int == filter_sets[0].as_int);
483 if ((skip_hor & skip_ver) != interp_search_flags->default_interp_skip_flags) {
484 INTERP_PRED_TYPE pred_filter_type = INTERP_HORZ_NEQ_VERT_NEQ;
485 int_interpfilters af = av1_broadcast_interp_filter(INTERP_INVALID);
486 int_interpfilters lf = af;
487
488 pred_filter_type = is_pred_filter_search_allowed(cpi, xd, bsize, &af, &lf);
489 if (pred_filter_type) {
490 assert(af.as_filters.x_filter != INTERP_INVALID);
491 int filter_idx = SWITCHABLE * af.as_filters.x_filter;
492 // This assert tells that (filter_x == filter_y) for non-dual filter case
493 assert(filter_sets[filter_idx].as_filters.x_filter ==
494 filter_sets[filter_idx].as_filters.y_filter);
495 if (cpi->sf.interp_sf.adaptive_interp_filter_search &&
496 !(get_interp_filter_allowed_mask(interp_filter_search_mask,
497 filter_idx))) {
498 return;
499 }
500 if (filter_idx) {
501 interpolation_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd,
502 rd_stats_y, rd_stats, switchable_rate, dst_bufs,
503 filter_idx, switchable_ctx,
504 (skip_hor & skip_ver));
505 }
506 return;
507 }
508 }
509 // Reuse regular filter's modeled rd data for sharp filter for following
510 // cases
511 // 1) When bsize is 4x4
512 // 2) When block width is 4 (i.e. 4x8/4x16 blocks) and MV in vertical
513 // direction is full-pel
514 // 3) When block height is 4 (i.e. 8x4/16x4 blocks) and MV in horizontal
515 // direction is full-pel
516 // TODO(any): Optimize cases 2 and 3 further if luma MV in relavant direction
517 // alone is full-pel
518
519 if ((bsize == BLOCK_4X4) ||
520 (block_size_wide[bsize] == 4 &&
521 skip_ver == interp_search_flags->default_interp_skip_flags) ||
522 (block_size_high[bsize] == 4 &&
523 skip_hor == interp_search_flags->default_interp_skip_flags)) {
524 int skip_pred = skip_hor & skip_ver;
525 uint16_t allowed_interp_mask = 0;
526
527 // REG_REG filter type is evaluated beforehand, hence skip it
528 set_interp_filter_allowed_mask(&allowed_interp_mask, SHARP_SHARP);
529 set_interp_filter_allowed_mask(&allowed_interp_mask, SMOOTH_SMOOTH);
530 if (cpi->sf.interp_sf.adaptive_interp_filter_search)
531 allowed_interp_mask &= interp_filter_search_mask;
532
533 find_best_interp_rd_facade(x, cpi, tile_data, bsize, orig_dst, rd,
534 rd_stats_y, rd_stats, switchable_rate, dst_bufs,
535 switchable_ctx, skip_pred, allowed_interp_mask,
536 1);
537 } else {
538 int skip_pred = (skip_hor & skip_ver);
539 for (i = (SWITCHABLE_FILTERS + 1); i < DUAL_FILTER_SET_SIZE;
540 i += (SWITCHABLE_FILTERS + 1)) {
541 // This assert tells that (filter_x == filter_y) for non-dual filter case
542 assert(filter_sets[i].as_filters.x_filter ==
543 filter_sets[i].as_filters.y_filter);
544 if (cpi->sf.interp_sf.adaptive_interp_filter_search &&
545 !(get_interp_filter_allowed_mask(interp_filter_search_mask, i))) {
546 continue;
547 }
548 interpolation_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd,
549 rd_stats_y, rd_stats, switchable_rate, dst_bufs,
550 i, switchable_ctx, skip_pred);
551 // In first iteration, smooth filter is evaluated. If smooth filter
552 // (which is less sharper) is the winner among regular and smooth filters,
553 // sharp filter evaluation is skipped
554 // TODO(any): Refine this gating based on modelled rd only (i.e., by not
555 // accounting switchable filter rate)
556 if (cpi->sf.interp_sf.skip_sharp_interp_filter_search &&
557 skip_pred != interp_search_flags->default_interp_skip_flags) {
558 if (mbmi->interp_filters.as_int == filter_sets[SMOOTH_SMOOTH].as_int)
559 break;
560 }
561 }
562 }
563 }
564
calc_interp_skip_pred_flag(MACROBLOCK * const x,const AV1_COMP * const cpi,int * skip_hor,int * skip_ver)565 static inline void calc_interp_skip_pred_flag(MACROBLOCK *const x,
566 const AV1_COMP *const cpi,
567 int *skip_hor, int *skip_ver) {
568 const AV1_COMMON *cm = &cpi->common;
569 MACROBLOCKD *const xd = &x->e_mbd;
570 MB_MODE_INFO *const mbmi = xd->mi[0];
571 const int num_planes = av1_num_planes(cm);
572 const int is_compound = has_second_ref(mbmi);
573 assert(is_intrabc_block(mbmi) == 0);
574 for (int ref = 0; ref < 1 + is_compound; ++ref) {
575 const struct scale_factors *const sf =
576 get_ref_scale_factors_const(cm, mbmi->ref_frame[ref]);
577 // TODO(any): Refine skip flag calculation considering scaling
578 if (av1_is_scaled(sf)) {
579 *skip_hor = 0;
580 *skip_ver = 0;
581 break;
582 }
583 const MV mv = mbmi->mv[ref].as_mv;
584 int skip_hor_plane = 0;
585 int skip_ver_plane = 0;
586 for (int plane_idx = 0; plane_idx < AOMMAX(1, (num_planes - 1));
587 ++plane_idx) {
588 struct macroblockd_plane *const pd = &xd->plane[plane_idx];
589 const int bw = pd->width;
590 const int bh = pd->height;
591 const MV mv_q4 = clamp_mv_to_umv_border_sb(
592 xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y);
593 const int sub_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS;
594 const int sub_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS;
595 skip_hor_plane |= ((sub_x == 0) << plane_idx);
596 skip_ver_plane |= ((sub_y == 0) << plane_idx);
597 }
598 *skip_hor &= skip_hor_plane;
599 *skip_ver &= skip_ver_plane;
600 // It is not valid that "luma MV is sub-pel, whereas chroma MV is not"
601 assert(*skip_hor != 2);
602 assert(*skip_ver != 2);
603 }
604 // When compond prediction type is compound segment wedge, luma MC and chroma
605 // MC need to go hand in hand as mask generated during luma MC is reuired for
606 // chroma MC. If skip_hor = 0 and skip_ver = 1, mask used for chroma MC during
607 // vertical filter decision may be incorrect as temporary MC evaluation
608 // overwrites the mask. Make skip_ver as 0 for this case so that mask is
609 // populated during luma MC
610 if (is_compound && mbmi->compound_idx == 1 &&
611 mbmi->interinter_comp.type == COMPOUND_DIFFWTD) {
612 assert(mbmi->comp_group_idx == 1);
613 if (*skip_hor == 0 && *skip_ver == 1) *skip_ver = 0;
614 }
615 }
616
617 /*!\brief AV1 interpolation filter search
618 *
619 * \ingroup inter_mode_search
620 *
621 * \param[in] cpi Top-level encoder structure.
622 * \param[in] tile_data Pointer to struct holding adaptive
623 * data/contexts/models for the tile during
624 * encoding.
625 * \param[in] x Pointer to struc holding all the data for
626 * the current macroblock.
627 * \param[in] bsize Current block size.
628 * \param[in] tmp_dst A temporary prediction buffer to hold a
629 * computed prediction.
630 * \param[in,out] orig_dst A prediction buffer to hold a computed
631 * prediction. This will eventually hold the
632 * final prediction, and the tmp_dst info will
633 * be copied here.
634 * \param[in,out] rd The RD cost associated with the selected
635 * interpolation filter parameters.
636 * \param[in,out] switchable_rate The rate associated with using a SWITCHABLE
637 * filter mode.
638 * \param[in,out] skip_build_pred Indicates whether or not to build the inter
639 * predictor. If this is 0, the inter predictor
640 * has already been built and thus we can avoid
641 * repeating computation.
642 * \param[in] args HandleInterModeArgs struct holding
643 * miscellaneous arguments for inter mode
644 * search. See the documentation for this
645 * struct for a description of each member.
646 * \param[in] ref_best_rd Best RD found so far for this block.
647 * It is used for early termination of this
648 * search if the RD exceeds this value.
649 *
650 * \return Returns INT64_MAX if the filter parameters are invalid and the
651 * current motion mode being tested should be skipped. It returns 0 if the
652 * parameter search is a success.
653 */
av1_interpolation_filter_search(MACROBLOCK * const x,const AV1_COMP * const cpi,const TileDataEnc * tile_data,BLOCK_SIZE bsize,const BUFFER_SET * const tmp_dst,const BUFFER_SET * const orig_dst,int64_t * const rd,int * const switchable_rate,int * skip_build_pred,HandleInterModeArgs * args,int64_t ref_best_rd)654 int64_t av1_interpolation_filter_search(
655 MACROBLOCK *const x, const AV1_COMP *const cpi,
656 const TileDataEnc *tile_data, BLOCK_SIZE bsize,
657 const BUFFER_SET *const tmp_dst, const BUFFER_SET *const orig_dst,
658 int64_t *const rd, int *const switchable_rate, int *skip_build_pred,
659 HandleInterModeArgs *args, int64_t ref_best_rd) {
660 const AV1_COMMON *cm = &cpi->common;
661 const InterpSearchFlags *interp_search_flags = &cpi->interp_search_flags;
662 const int num_planes = av1_num_planes(cm);
663 MACROBLOCKD *const xd = &x->e_mbd;
664 MB_MODE_INFO *const mbmi = xd->mi[0];
665 const int need_search = av1_is_interp_needed(xd);
666 const int ref_frame = xd->mi[0]->ref_frame[0];
667 RD_STATS rd_stats_luma, rd_stats;
668
669 // Initialization of rd_stats structures with default values
670 av1_init_rd_stats(&rd_stats_luma);
671 av1_init_rd_stats(&rd_stats);
672
673 int match_found_idx = -1;
674 const InterpFilter assign_filter = cm->features.interp_filter;
675
676 match_found_idx = find_interp_filter_match(
677 mbmi, cpi, assign_filter, need_search, args->interp_filter_stats,
678 args->interp_filter_stats_idx);
679
680 if (match_found_idx != -1) {
681 *rd = args->interp_filter_stats[match_found_idx].rd;
682 x->pred_sse[ref_frame] =
683 args->interp_filter_stats[match_found_idx].pred_sse;
684 *skip_build_pred = 0;
685 return 0;
686 }
687
688 int switchable_ctx[2];
689 switchable_ctx[0] = av1_get_pred_context_switchable_interp(xd, 0);
690 switchable_ctx[1] = av1_get_pred_context_switchable_interp(xd, 1);
691 *switchable_rate =
692 get_switchable_rate(x, mbmi->interp_filters, switchable_ctx,
693 cm->seq_params->enable_dual_filter);
694
695 // Do MC evaluation for default filter_type.
696 // Luma MC
697 interp_model_rd_eval(x, cpi, bsize, orig_dst, AOM_PLANE_Y, AOM_PLANE_Y,
698 &rd_stats_luma, *skip_build_pred);
699
700 #if CONFIG_COLLECT_RD_STATS == 3
701 RD_STATS rd_stats_y;
702 av1_pick_recursive_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX);
703 PrintPredictionUnitStats(cpi, tile_data, x, &rd_stats_y, bsize);
704 #endif // CONFIG_COLLECT_RD_STATS == 3
705 // Chroma MC
706 if (num_planes > 1) {
707 interp_model_rd_eval(x, cpi, bsize, orig_dst, AOM_PLANE_U, AOM_PLANE_V,
708 &rd_stats, *skip_build_pred);
709 }
710 *skip_build_pred = 1;
711
712 av1_merge_rd_stats(&rd_stats, &rd_stats_luma);
713
714 assert(rd_stats.rate >= 0);
715
716 *rd = RDCOST(x->rdmult, *switchable_rate + rd_stats.rate, rd_stats.dist);
717 x->pred_sse[ref_frame] = (unsigned int)(rd_stats_luma.sse >> 4);
718
719 if (assign_filter != SWITCHABLE || match_found_idx != -1) {
720 return 0;
721 }
722 if (!need_search) {
723 int_interpfilters filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
724 assert(mbmi->interp_filters.as_int == filters.as_int);
725 (void)filters;
726 return 0;
727 }
728 if (args->modelled_rd != NULL) {
729 if (has_second_ref(mbmi)) {
730 const int ref_mv_idx = mbmi->ref_mv_idx;
731 MV_REFERENCE_FRAME *refs = mbmi->ref_frame;
732 const int mode0 = compound_ref0_mode(mbmi->mode);
733 const int mode1 = compound_ref1_mode(mbmi->mode);
734 const int64_t mrd = AOMMIN(args->modelled_rd[mode0][ref_mv_idx][refs[0]],
735 args->modelled_rd[mode1][ref_mv_idx][refs[1]]);
736 if ((*rd >> 1) > mrd && ref_best_rd < INT64_MAX) {
737 return INT64_MAX;
738 }
739 }
740 }
741
742 x->recalc_luma_mc_data = 0;
743 // skip_flag=xx (in binary form)
744 // Setting 0th flag corresonds to skipping luma MC and setting 1st bt
745 // corresponds to skipping chroma MC skip_flag=0 corresponds to "Don't skip
746 // luma and chroma MC" Skip flag=1 corresponds to "Skip Luma MC only"
747 // Skip_flag=2 is not a valid case
748 // skip_flag=3 corresponds to "Skip both luma and chroma MC"
749 int skip_hor = interp_search_flags->default_interp_skip_flags;
750 int skip_ver = interp_search_flags->default_interp_skip_flags;
751 calc_interp_skip_pred_flag(x, cpi, &skip_hor, &skip_ver);
752
753 // do interp_filter search
754 restore_dst_buf(xd, *tmp_dst, num_planes);
755 const BUFFER_SET *dst_bufs[2] = { tmp_dst, orig_dst };
756 // Evaluate dual interp filters
757 if (cm->seq_params->enable_dual_filter) {
758 if (cpi->sf.interp_sf.use_fast_interpolation_filter_search) {
759 fast_dual_interp_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd,
760 &rd_stats_luma, &rd_stats, switchable_rate,
761 dst_bufs, switchable_ctx, skip_hor, skip_ver);
762 } else {
763 // Use full interpolation filter search
764 uint16_t allowed_interp_mask = ALLOW_ALL_INTERP_FILT_MASK;
765 // REG_REG filter type is evaluated beforehand, so loop is repeated over
766 // REG_SMOOTH to SHARP_SHARP for full interpolation filter search
767 reset_interp_filter_allowed_mask(&allowed_interp_mask, REG_REG);
768 find_best_interp_rd_facade(x, cpi, tile_data, bsize, orig_dst, rd,
769 &rd_stats_luma, &rd_stats, switchable_rate,
770 dst_bufs, switchable_ctx,
771 (skip_hor & skip_ver), allowed_interp_mask, 0);
772 }
773 } else {
774 // Evaluate non-dual interp filters
775 find_best_non_dual_interp_filter(
776 x, cpi, tile_data, bsize, orig_dst, rd, &rd_stats_luma, &rd_stats,
777 switchable_rate, dst_bufs, switchable_ctx, skip_ver, skip_hor);
778 }
779 swap_dst_buf(xd, dst_bufs, num_planes);
780 // Recompute final MC data if required
781 if (x->recalc_luma_mc_data == 1) {
782 // Recomputing final luma MC data is required only if the same was skipped
783 // in either of the directions Condition below is necessary, but not
784 // sufficient
785 assert((skip_hor == 1) || (skip_ver == 1));
786 const int mi_row = xd->mi_row;
787 const int mi_col = xd->mi_col;
788 av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
789 AOM_PLANE_Y, AOM_PLANE_Y);
790 }
791 x->pred_sse[ref_frame] = (unsigned int)(rd_stats_luma.sse >> 4);
792
793 // save search results
794 if (cpi->sf.interp_sf.use_interp_filter) {
795 assert(match_found_idx == -1);
796 args->interp_filter_stats_idx = save_interp_filter_search_stat(
797 mbmi, *rd, x->pred_sse[ref_frame], args->interp_filter_stats,
798 args->interp_filter_stats_idx);
799 }
800 return 0;
801 }
802