xref: /aosp_15_r20/external/libaom/av1/encoder/ml.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <assert.h>
13 #include <math.h>
14 
15 #include "aom_dsp/aom_dsp_common.h"
16 #include "aom_dsp/mathutils.h"
17 #include "av1/encoder/ml.h"
18 
av1_nn_output_prec_reduce(float * const output,int num_output)19 void av1_nn_output_prec_reduce(float *const output, int num_output) {
20   const int prec_bits = 9;
21   const int prec = 1 << prec_bits;
22   const float inv_prec = (float)(1.0 / prec);
23   for (int i = 0; i < num_output; i++) {
24     output[i] = ((int)(output[i] * prec + 0.5)) * inv_prec;
25   }
26 }
27 
28 // Calculate prediction based on the given input features and neural net config.
29 // Assume there are no more than NN_MAX_NODES_PER_LAYER nodes in each hidden
30 // layer.
av1_nn_predict_c(const float * input_nodes,const NN_CONFIG * const nn_config,int reduce_prec,float * const output)31 void av1_nn_predict_c(const float *input_nodes,
32                       const NN_CONFIG *const nn_config, int reduce_prec,
33                       float *const output) {
34   int num_input_nodes = nn_config->num_inputs;
35   int buf_index = 0;
36   float buf[2][NN_MAX_NODES_PER_LAYER];
37 
38   // Propagate hidden layers.
39   const int num_layers = nn_config->num_hidden_layers;
40   assert(num_layers <= NN_MAX_HIDDEN_LAYERS);
41   for (int layer = 0; layer < num_layers; ++layer) {
42     const float *layer_weights = nn_config->weights[layer];
43     const float *layer_bias = nn_config->bias[layer];
44     float *output_nodes = buf[buf_index];
45     const int num_output_nodes = nn_config->num_hidden_nodes[layer];
46     assert(num_output_nodes < NN_MAX_NODES_PER_LAYER);
47     for (int node = 0; node < num_output_nodes; ++node) {
48       float val = layer_bias[node];
49       for (int i = 0; i < num_input_nodes; ++i)
50         val += layer_weights[node * num_input_nodes + i] * input_nodes[i];
51       // ReLU as activation function.
52       val = val > 0.0f ? val : 0.0f;  // Could use AOMMAX().
53       output_nodes[node] = val;
54     }
55     num_input_nodes = num_output_nodes;
56     input_nodes = output_nodes;
57     buf_index = 1 - buf_index;
58   }
59 
60   // Final output layer.
61   const float *layer_weights = nn_config->weights[num_layers];
62   const float *layer_bias = nn_config->bias[num_layers];
63   for (int node = 0; node < nn_config->num_outputs; ++node) {
64     float val = layer_bias[node];
65     for (int i = 0; i < num_input_nodes; ++i)
66       val += layer_weights[node * num_input_nodes + i] * input_nodes[i];
67     output[node] = val;
68   }
69   if (reduce_prec) av1_nn_output_prec_reduce(output, nn_config->num_outputs);
70 }
71 
72 #if CONFIG_NN_V2
73 // Applies the ReLu activation to one fc layer
74 // output[i] = Max(input[i],0.0f)
nn_relu(const float * input,FC_LAYER * layer)75 static float *nn_relu(const float *input, FC_LAYER *layer) {
76   for (int i = 0; i < layer->num_outputs; ++i) {
77     layer->output[i] = AOMMAX(input[i], 0.0f);
78   }
79 
80   return layer->output;
81 }
82 
83 // Applies the Sigmoid activation to one fc layer
84 // output[i] = 1/(1+exp(input[i]))
nn_sigmoid(const float * input,FC_LAYER * layer)85 static float *nn_sigmoid(const float *input, FC_LAYER *layer) {
86   for (int i = 0; i < layer->num_outputs; ++i) {
87     const float tmp = AOMMIN(AOMMAX(input[i], -10.0f), 10.0f);
88     layer->output[i] = 1.0f / (1.0f + expf(-tmp));
89   }
90 
91   return layer->output;
92 }
93 
94 // Forward prediction in one fc layer, used in function av1_nn_predict_V2
nn_fc_forward(const float * input,FC_LAYER * layer)95 static float *nn_fc_forward(const float *input, FC_LAYER *layer) {
96   const float *weights = layer->weights;
97   const float *bias = layer->bias;
98   assert(layer->num_outputs < NN_MAX_NODES_PER_LAYER);
99   // fc
100   for (int node = 0; node < layer->num_outputs; ++node) {
101     float val = bias[node];
102     for (int i = 0; i < layer->num_inputs; ++i) val += weights[i] * input[i];
103     layer->output[node] = val;
104     weights += layer->num_inputs;
105   }
106 
107   // activation
108   switch (layer->activation) {
109     case NONE: return layer->output;
110     case RELU: return nn_relu(layer->output, layer);
111     case SIGMOID: return nn_sigmoid(layer->output, layer);
112     case SOFTSIGN:
113       assert(0 && "Softsign has not been supported in NN.");  // TO DO
114       return NULL;
115     default:
116       assert(0 && "Unknown activation");  // Unknown activation
117       return NULL;
118   }
119 }
120 
av1_nn_predict_v2(const float * feature,NN_CONFIG_V2 * nn_config,int reduce_prec,float * output)121 void av1_nn_predict_v2(const float *feature, NN_CONFIG_V2 *nn_config,
122                        int reduce_prec, float *output) {
123   const float *input_nodes = feature;
124 
125   // Propagate the layers.
126   const int num_layers = nn_config->num_hidden_layers;
127   assert(num_layers <= NN_MAX_HIDDEN_LAYERS);
128   for (int i = 0; i < num_layers; ++i) {
129     input_nodes = nn_fc_forward(input_nodes, nn_config->layer + i);
130     assert(nn_config->layer[i + 1].num_inputs ==
131            nn_config->layer[i].num_outputs);
132   }
133 
134   // Final layer
135   input_nodes = nn_fc_forward(input_nodes, nn_config->layer + num_layers);
136   assert(nn_config->layer[num_layers].num_outputs == nn_config->num_logits);
137   // Copy the final layer output
138   memcpy(output, input_nodes, sizeof(*input_nodes) * nn_config->num_logits);
139   if (reduce_prec) av1_nn_output_prec_reduce(output, nn_config->num_logits);
140 }
141 #endif  // CONFIG_NN_V2
142 
av1_nn_softmax(const float * input,float * output,int n)143 void av1_nn_softmax(const float *input, float *output, int n) {
144   // Softmax function is invariant to adding the same constant
145   // to all input values, so we subtract the maximum input to avoid
146   // possible overflow.
147   float max_input = input[0];
148   for (int i = 1; i < n; i++) max_input = AOMMAX(max_input, input[i]);
149   float sum_out = 0.0f;
150   for (int i = 0; i < n; i++) {
151     // Clamp to range [-10.0, 0.0] to prevent FE_UNDERFLOW errors.
152     const float normalized_input = AOMMAX(input[i] - max_input, -10.0f);
153     output[i] = expf(normalized_input);
154     sum_out += output[i];
155   }
156   for (int i = 0; i < n; i++) output[i] /= sum_out;
157 }
158 
av1_nn_fast_softmax_16_c(const float * input,float * output)159 void av1_nn_fast_softmax_16_c(const float *input, float *output) {
160   const int kNumClasses = 16;
161   float max_input = input[0];
162   for (int i = 1; i < kNumClasses; i++) max_input = AOMMAX(max_input, input[i]);
163   float sum_out = 0.0f;
164   for (int i = 0; i < kNumClasses; i++) {
165     // Clamp to range [-10.0, 0.0] to prevent FE_UNDERFLOW errors.
166     const float normalized_input = AOMMAX(input[i] - max_input, -10.0f);
167     output[i] = approx_exp(normalized_input);
168     sum_out += output[i];
169   }
170   for (int i = 0; i < kNumClasses; i++) output[i] /= sum_out;
171 }
172