1 /*
2 * Copyright (c) 2019, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 /*!\defgroup gf_group_algo Golden Frame Group
13 * \ingroup high_level_algo
14 * Algorithms regarding determining the length of GF groups and defining GF
15 * group structures.
16 * @{
17 */
18 /*! @} - end defgroup gf_group_algo */
19
20 #include <assert.h>
21 #include <limits.h>
22 #include <stdint.h>
23
24 #include "aom_dsp/aom_dsp_common.h"
25 #include "aom_mem/aom_mem.h"
26 #include "config/aom_config.h"
27 #include "config/aom_scale_rtcd.h"
28
29 #include "aom/aom_codec.h"
30 #include "aom/aom_encoder.h"
31
32 #include "av1/common/av1_common_int.h"
33
34 #include "av1/encoder/encoder.h"
35 #include "av1/encoder/firstpass.h"
36 #include "av1/encoder/gop_structure.h"
37 #include "av1/encoder/pass2_strategy.h"
38 #include "av1/encoder/ratectrl.h"
39 #include "av1/encoder/rc_utils.h"
40 #include "av1/encoder/temporal_filter.h"
41 #if CONFIG_THREE_PASS
42 #include "av1/encoder/thirdpass.h"
43 #endif
44 #include "av1/encoder/tpl_model.h"
45 #include "av1/encoder/encode_strategy.h"
46
47 #define DEFAULT_KF_BOOST 2300
48 #define DEFAULT_GF_BOOST 2000
49 #define GROUP_ADAPTIVE_MAXQ 1
50
51 static void init_gf_stats(GF_GROUP_STATS *gf_stats);
52 #if CONFIG_THREE_PASS
53 static int define_gf_group_pass3(AV1_COMP *cpi, EncodeFrameParams *frame_params,
54 int is_final_pass);
55 #endif
56
57 // Calculate an active area of the image that discounts formatting
58 // bars and partially discounts other 0 energy areas.
59 #define MIN_ACTIVE_AREA 0.5
60 #define MAX_ACTIVE_AREA 1.0
calculate_active_area(const FRAME_INFO * frame_info,const FIRSTPASS_STATS * this_frame)61 static double calculate_active_area(const FRAME_INFO *frame_info,
62 const FIRSTPASS_STATS *this_frame) {
63 const double active_pct =
64 1.0 -
65 ((this_frame->intra_skip_pct / 2) +
66 ((this_frame->inactive_zone_rows * 2) / (double)frame_info->mb_rows));
67 return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA);
68 }
69
70 // Calculate a modified Error used in distributing bits between easier and
71 // harder frames.
72 #define ACT_AREA_CORRECTION 0.5
calculate_modified_err_new(const FRAME_INFO * frame_info,const FIRSTPASS_STATS * total_stats,const FIRSTPASS_STATS * this_stats,int vbrbias,double modified_error_min,double modified_error_max)73 static double calculate_modified_err_new(const FRAME_INFO *frame_info,
74 const FIRSTPASS_STATS *total_stats,
75 const FIRSTPASS_STATS *this_stats,
76 int vbrbias, double modified_error_min,
77 double modified_error_max) {
78 if (total_stats == NULL) {
79 return 0;
80 }
81 const double av_weight = total_stats->weight / total_stats->count;
82 const double av_err =
83 (total_stats->coded_error * av_weight) / total_stats->count;
84 double modified_error =
85 av_err * pow(this_stats->coded_error * this_stats->weight /
86 DOUBLE_DIVIDE_CHECK(av_err),
87 vbrbias / 100.0);
88
89 // Correction for active area. Frames with a reduced active area
90 // (eg due to formatting bars) have a higher error per mb for the
91 // remaining active MBs. The correction here assumes that coding
92 // 0.5N blocks of complexity 2X is a little easier than coding N
93 // blocks of complexity X.
94 modified_error *=
95 pow(calculate_active_area(frame_info, this_stats), ACT_AREA_CORRECTION);
96
97 return fclamp(modified_error, modified_error_min, modified_error_max);
98 }
99
calculate_modified_err(const FRAME_INFO * frame_info,const TWO_PASS * twopass,const AV1EncoderConfig * oxcf,const FIRSTPASS_STATS * this_frame)100 static double calculate_modified_err(const FRAME_INFO *frame_info,
101 const TWO_PASS *twopass,
102 const AV1EncoderConfig *oxcf,
103 const FIRSTPASS_STATS *this_frame) {
104 const FIRSTPASS_STATS *total_stats = twopass->stats_buf_ctx->total_stats;
105 return calculate_modified_err_new(
106 frame_info, total_stats, this_frame, oxcf->rc_cfg.vbrbias,
107 twopass->modified_error_min, twopass->modified_error_max);
108 }
109
110 // Resets the first pass file to the given position using a relative seek from
111 // the current position.
reset_fpf_position(TWO_PASS_FRAME * p_frame,const FIRSTPASS_STATS * position)112 static void reset_fpf_position(TWO_PASS_FRAME *p_frame,
113 const FIRSTPASS_STATS *position) {
114 p_frame->stats_in = position;
115 }
116
input_stats(TWO_PASS * p,TWO_PASS_FRAME * p_frame,FIRSTPASS_STATS * fps)117 static int input_stats(TWO_PASS *p, TWO_PASS_FRAME *p_frame,
118 FIRSTPASS_STATS *fps) {
119 if (p_frame->stats_in >= p->stats_buf_ctx->stats_in_end) return EOF;
120
121 *fps = *p_frame->stats_in;
122 ++p_frame->stats_in;
123 return 1;
124 }
125
input_stats_lap(TWO_PASS * p,TWO_PASS_FRAME * p_frame,FIRSTPASS_STATS * fps)126 static int input_stats_lap(TWO_PASS *p, TWO_PASS_FRAME *p_frame,
127 FIRSTPASS_STATS *fps) {
128 if (p_frame->stats_in >= p->stats_buf_ctx->stats_in_end) return EOF;
129
130 *fps = *p_frame->stats_in;
131 /* Move old stats[0] out to accommodate for next frame stats */
132 memmove(p->frame_stats_arr[0], p->frame_stats_arr[1],
133 (p->stats_buf_ctx->stats_in_end - p_frame->stats_in - 1) *
134 sizeof(FIRSTPASS_STATS));
135 p->stats_buf_ctx->stats_in_end--;
136 return 1;
137 }
138
139 // Read frame stats at an offset from the current position.
read_frame_stats(const TWO_PASS * p,const TWO_PASS_FRAME * p_frame,int offset)140 static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p,
141 const TWO_PASS_FRAME *p_frame,
142 int offset) {
143 if ((offset >= 0 &&
144 p_frame->stats_in + offset >= p->stats_buf_ctx->stats_in_end) ||
145 (offset < 0 &&
146 p_frame->stats_in + offset < p->stats_buf_ctx->stats_in_start)) {
147 return NULL;
148 }
149
150 return &p_frame->stats_in[offset];
151 }
152
153 // This function returns the maximum target rate per frame.
frame_max_bits(const RATE_CONTROL * rc,const AV1EncoderConfig * oxcf)154 static int frame_max_bits(const RATE_CONTROL *rc,
155 const AV1EncoderConfig *oxcf) {
156 int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth *
157 (int64_t)oxcf->rc_cfg.vbrmax_section) /
158 100;
159 if (max_bits < 0)
160 max_bits = 0;
161 else if (max_bits > rc->max_frame_bandwidth)
162 max_bits = rc->max_frame_bandwidth;
163
164 return (int)max_bits;
165 }
166
167 // Based on history adjust expectations of bits per macroblock.
twopass_update_bpm_factor(AV1_COMP * cpi,int rate_err_tol)168 static void twopass_update_bpm_factor(AV1_COMP *cpi, int rate_err_tol) {
169 TWO_PASS *const twopass = &cpi->ppi->twopass;
170 const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
171
172 // Based on recent history adjust expectations of bits per macroblock.
173 double rate_err_factor = 1.0;
174 const double adj_limit = AOMMAX(0.2, (double)(100 - rate_err_tol) / 200.0);
175 const double min_fac = 1.0 - adj_limit;
176 const double max_fac = 1.0 + adj_limit;
177
178 #if CONFIG_THREE_PASS
179 if (cpi->third_pass_ctx && cpi->third_pass_ctx->frame_info_count > 0) {
180 int64_t actual_bits = 0;
181 int64_t target_bits = 0;
182 double factor = 0.0;
183 int count = 0;
184 for (int i = 0; i < cpi->third_pass_ctx->frame_info_count; i++) {
185 actual_bits += cpi->third_pass_ctx->frame_info[i].actual_bits;
186 target_bits += cpi->third_pass_ctx->frame_info[i].bits_allocated;
187 factor += cpi->third_pass_ctx->frame_info[i].bpm_factor;
188 count++;
189 }
190
191 if (count == 0) {
192 factor = 1.0;
193 } else {
194 factor /= (double)count;
195 }
196
197 factor *= (double)actual_bits / DOUBLE_DIVIDE_CHECK((double)target_bits);
198
199 if ((twopass->bpm_factor <= 1 && factor < twopass->bpm_factor) ||
200 (twopass->bpm_factor >= 1 && factor > twopass->bpm_factor)) {
201 twopass->bpm_factor = factor;
202 twopass->bpm_factor =
203 AOMMAX(min_fac, AOMMIN(max_fac, twopass->bpm_factor));
204 }
205 }
206 #endif // CONFIG_THREE_PASS
207
208 int err_estimate = p_rc->rate_error_estimate;
209 int64_t total_actual_bits = p_rc->total_actual_bits;
210 double rolling_arf_group_actual_bits =
211 (double)twopass->rolling_arf_group_actual_bits;
212 double rolling_arf_group_target_bits =
213 (double)twopass->rolling_arf_group_target_bits;
214
215 #if CONFIG_FPMT_TEST
216 const int is_parallel_frame =
217 cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 ? 1 : 0;
218 const int simulate_parallel_frame =
219 cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE
220 ? is_parallel_frame
221 : 0;
222 total_actual_bits = simulate_parallel_frame ? p_rc->temp_total_actual_bits
223 : p_rc->total_actual_bits;
224 rolling_arf_group_target_bits =
225 (double)(simulate_parallel_frame
226 ? p_rc->temp_rolling_arf_group_target_bits
227 : twopass->rolling_arf_group_target_bits);
228 rolling_arf_group_actual_bits =
229 (double)(simulate_parallel_frame
230 ? p_rc->temp_rolling_arf_group_actual_bits
231 : twopass->rolling_arf_group_actual_bits);
232 err_estimate = simulate_parallel_frame ? p_rc->temp_rate_error_estimate
233 : p_rc->rate_error_estimate;
234 #endif
235
236 if ((p_rc->bits_off_target && total_actual_bits > 0) &&
237 (rolling_arf_group_target_bits >= 1.0)) {
238 if (rolling_arf_group_actual_bits > rolling_arf_group_target_bits) {
239 double error_fraction =
240 (rolling_arf_group_actual_bits - rolling_arf_group_target_bits) /
241 rolling_arf_group_target_bits;
242 error_fraction = (error_fraction > 1.0) ? 1.0 : error_fraction;
243 rate_err_factor = 1.0 + error_fraction;
244 } else {
245 double error_fraction =
246 (rolling_arf_group_target_bits - rolling_arf_group_actual_bits) /
247 rolling_arf_group_target_bits;
248 rate_err_factor = 1.0 - error_fraction;
249 }
250
251 rate_err_factor = AOMMAX(min_fac, AOMMIN(max_fac, rate_err_factor));
252 }
253
254 // Is the rate control trending in the right direction. Only make
255 // an adjustment if things are getting worse.
256 if ((rate_err_factor < 1.0 && err_estimate >= 0) ||
257 (rate_err_factor > 1.0 && err_estimate <= 0)) {
258 twopass->bpm_factor *= rate_err_factor;
259 twopass->bpm_factor = AOMMAX(min_fac, AOMMIN(max_fac, twopass->bpm_factor));
260 }
261 }
262
263 static const double q_div_term[(QINDEX_RANGE >> 4) + 1] = {
264 18.0, 30.0, 38.0, 44.0, 47.0, 50.0, 52.0, 54.0, 56.0,
265 58.0, 60.0, 62.0, 64.0, 66.0, 68.0, 70.0, 72.0
266 };
267
268 #define EPMB_SCALER 1250000
calc_correction_factor(double err_per_mb,int q)269 static double calc_correction_factor(double err_per_mb, int q) {
270 double power_term = 0.90;
271 const int index = q >> 4;
272 const double divisor =
273 q_div_term[index] +
274 (((q_div_term[index + 1] - q_div_term[index]) * (q % 16)) / 16.0);
275 double error_term = EPMB_SCALER * pow(err_per_mb, power_term);
276 return error_term / divisor;
277 }
278
279 // Similar to find_qindex_by_rate() function in ratectrl.c, but includes
280 // calculation of a correction_factor.
find_qindex_by_rate_with_correction(uint64_t desired_bits_per_mb,aom_bit_depth_t bit_depth,double error_per_mb,double group_weight_factor,int best_qindex,int worst_qindex)281 static int find_qindex_by_rate_with_correction(uint64_t desired_bits_per_mb,
282 aom_bit_depth_t bit_depth,
283 double error_per_mb,
284 double group_weight_factor,
285 int best_qindex,
286 int worst_qindex) {
287 assert(best_qindex <= worst_qindex);
288 int low = best_qindex;
289 int high = worst_qindex;
290
291 while (low < high) {
292 const int mid = (low + high) >> 1;
293 const double q_factor = calc_correction_factor(error_per_mb, mid);
294 const double q = av1_convert_qindex_to_q(mid, bit_depth);
295 const uint64_t mid_bits_per_mb =
296 (uint64_t)((q_factor * group_weight_factor) / q);
297
298 if (mid_bits_per_mb > desired_bits_per_mb) {
299 low = mid + 1;
300 } else {
301 high = mid;
302 }
303 }
304 return low;
305 }
306
307 /*!\brief Choose a target maximum Q for a group of frames
308 *
309 * \ingroup rate_control
310 *
311 * This function is used to estimate a suitable maximum Q for a
312 * group of frames. Inititally it is called to get a crude estimate
313 * for the whole clip. It is then called for each ARF/GF group to get
314 * a revised estimate for that group.
315 *
316 * \param[in] cpi Top-level encoder structure
317 * \param[in] av_frame_err The average per frame coded error score
318 * for frames making up this section/group.
319 * \param[in] inactive_zone Used to mask off /ignore part of the
320 * frame. The most common use case is where
321 * a wide format video (e.g. 16:9) is
322 * letter-boxed into a more square format.
323 * Here we want to ignore the bands at the
324 * top and bottom.
325 * \param[in] av_target_bandwidth The target bits per frame
326 *
327 * \return The maximum Q for frames in the group.
328 */
get_twopass_worst_quality(AV1_COMP * cpi,const double av_frame_err,double inactive_zone,int av_target_bandwidth)329 static int get_twopass_worst_quality(AV1_COMP *cpi, const double av_frame_err,
330 double inactive_zone,
331 int av_target_bandwidth) {
332 const RATE_CONTROL *const rc = &cpi->rc;
333 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
334 const RateControlCfg *const rc_cfg = &oxcf->rc_cfg;
335 inactive_zone = fclamp(inactive_zone, 0.0, 0.9999);
336
337 if (av_target_bandwidth <= 0) {
338 return rc->worst_quality; // Highest value allowed
339 } else {
340 const int num_mbs = (oxcf->resize_cfg.resize_mode != RESIZE_NONE)
341 ? cpi->initial_mbs
342 : cpi->common.mi_params.MBs;
343 const int active_mbs = AOMMAX(1, num_mbs - (int)(num_mbs * inactive_zone));
344 const double av_err_per_mb = av_frame_err / (1.0 - inactive_zone);
345 const uint64_t target_norm_bits_per_mb =
346 ((uint64_t)av_target_bandwidth << BPER_MB_NORMBITS) / active_mbs;
347 int rate_err_tol = AOMMIN(rc_cfg->under_shoot_pct, rc_cfg->over_shoot_pct);
348 const double size_factor =
349 (active_mbs < 500) ? 0.925 : ((active_mbs > 3000) ? 1.05 : 1.0);
350 const double speed_factor =
351 AOMMIN(1.02, (0.975 + (0.005 * cpi->oxcf.speed)));
352
353 // Update bpm correction factor based on previous GOP rate error.
354 twopass_update_bpm_factor(cpi, rate_err_tol);
355
356 // Try and pick a max Q that will be high enough to encode the
357 // content at the given rate.
358 int q = find_qindex_by_rate_with_correction(
359 target_norm_bits_per_mb, cpi->common.seq_params->bit_depth,
360 av_err_per_mb,
361 cpi->ppi->twopass.bpm_factor * speed_factor * size_factor,
362 rc->best_quality, rc->worst_quality);
363
364 // Restriction on active max q for constrained quality mode.
365 if (rc_cfg->mode == AOM_CQ) q = AOMMAX(q, rc_cfg->cq_level);
366 return q;
367 }
368 }
369
370 #define INTRA_PART 0.005
371 #define DEFAULT_DECAY_LIMIT 0.75
372 #define LOW_SR_DIFF_TRHESH 0.01
373 #define NCOUNT_FRAME_II_THRESH 5.0
374 #define LOW_CODED_ERR_PER_MB 0.01
375
376 /* This function considers how the quality of prediction may be deteriorating
377 * with distance. It comapres the coded error for the last frame and the
378 * second reference frame (usually two frames old) and also applies a factor
379 * based on the extent of INTRA coding.
380 *
381 * The decay factor is then used to reduce the contribution of frames further
382 * from the alt-ref or golden frame, to the bitframe boost calculation for that
383 * alt-ref or golden frame.
384 */
get_sr_decay_rate(const FIRSTPASS_STATS * frame)385 static double get_sr_decay_rate(const FIRSTPASS_STATS *frame) {
386 double sr_diff = (frame->sr_coded_error - frame->coded_error);
387 double sr_decay = 1.0;
388 double modified_pct_inter;
389 double modified_pcnt_intra;
390
391 modified_pct_inter = frame->pcnt_inter;
392 if ((frame->coded_error > LOW_CODED_ERR_PER_MB) &&
393 ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) <
394 (double)NCOUNT_FRAME_II_THRESH)) {
395 modified_pct_inter = frame->pcnt_inter - frame->pcnt_neutral;
396 }
397 modified_pcnt_intra = 100 * (1.0 - modified_pct_inter);
398
399 if ((sr_diff > LOW_SR_DIFF_TRHESH)) {
400 double sr_diff_part = ((sr_diff * 0.25) / frame->intra_error);
401 sr_decay = 1.0 - sr_diff_part - (INTRA_PART * modified_pcnt_intra);
402 }
403 return AOMMAX(sr_decay, DEFAULT_DECAY_LIMIT);
404 }
405
406 // This function gives an estimate of how badly we believe the prediction
407 // quality is decaying from frame to frame.
get_zero_motion_factor(const FIRSTPASS_STATS * frame)408 static double get_zero_motion_factor(const FIRSTPASS_STATS *frame) {
409 const double zero_motion_pct = frame->pcnt_inter - frame->pcnt_motion;
410 double sr_decay = get_sr_decay_rate(frame);
411 return AOMMIN(sr_decay, zero_motion_pct);
412 }
413
414 #define DEFAULT_ZM_FACTOR 0.5
get_prediction_decay_rate(const FIRSTPASS_STATS * frame_stats)415 static double get_prediction_decay_rate(const FIRSTPASS_STATS *frame_stats) {
416 const double sr_decay_rate = get_sr_decay_rate(frame_stats);
417 double zero_motion_factor =
418 DEFAULT_ZM_FACTOR * (frame_stats->pcnt_inter - frame_stats->pcnt_motion);
419
420 // Clamp value to range 0.0 to 1.0
421 // This should happen anyway if input values are sensibly clamped but checked
422 // here just in case.
423 if (zero_motion_factor > 1.0)
424 zero_motion_factor = 1.0;
425 else if (zero_motion_factor < 0.0)
426 zero_motion_factor = 0.0;
427
428 return AOMMAX(zero_motion_factor,
429 (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor)));
430 }
431
432 // Function to test for a condition where a complex transition is followed
433 // by a static section. For example in slide shows where there is a fade
434 // between slides. This is to help with more optimal kf and gf positioning.
detect_transition_to_still(const FIRSTPASS_INFO * firstpass_info,int next_stats_index,const int min_gf_interval,const int frame_interval,const int still_interval,const double loop_decay_rate,const double last_decay_rate)435 static int detect_transition_to_still(const FIRSTPASS_INFO *firstpass_info,
436 int next_stats_index,
437 const int min_gf_interval,
438 const int frame_interval,
439 const int still_interval,
440 const double loop_decay_rate,
441 const double last_decay_rate) {
442 // Break clause to detect very still sections after motion
443 // For example a static image after a fade or other transition
444 // instead of a clean scene cut.
445 if (frame_interval > min_gf_interval && loop_decay_rate >= 0.999 &&
446 last_decay_rate < 0.9) {
447 int stats_left =
448 av1_firstpass_info_future_count(firstpass_info, next_stats_index);
449 if (stats_left >= still_interval) {
450 int j;
451 // Look ahead a few frames to see if static condition persists...
452 for (j = 0; j < still_interval; ++j) {
453 const FIRSTPASS_STATS *stats =
454 av1_firstpass_info_peek(firstpass_info, next_stats_index + j);
455 if (stats->pcnt_inter - stats->pcnt_motion < 0.999) break;
456 }
457 // Only if it does do we signal a transition to still.
458 return j == still_interval;
459 }
460 }
461 return 0;
462 }
463
464 // This function detects a flash through the high relative pcnt_second_ref
465 // score in the frame following a flash frame. The offset passed in should
466 // reflect this.
detect_flash(const TWO_PASS * twopass,const TWO_PASS_FRAME * twopass_frame,const int offset)467 static int detect_flash(const TWO_PASS *twopass,
468 const TWO_PASS_FRAME *twopass_frame, const int offset) {
469 const FIRSTPASS_STATS *const next_frame =
470 read_frame_stats(twopass, twopass_frame, offset);
471
472 // What we are looking for here is a situation where there is a
473 // brief break in prediction (such as a flash) but subsequent frames
474 // are reasonably well predicted by an earlier (pre flash) frame.
475 // The recovery after a flash is indicated by a high pcnt_second_ref
476 // compared to pcnt_inter.
477 return next_frame != NULL &&
478 next_frame->pcnt_second_ref > next_frame->pcnt_inter &&
479 next_frame->pcnt_second_ref >= 0.5;
480 }
481
482 // Update the motion related elements to the GF arf boost calculation.
accumulate_frame_motion_stats(const FIRSTPASS_STATS * stats,GF_GROUP_STATS * gf_stats,double f_w,double f_h)483 static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats,
484 GF_GROUP_STATS *gf_stats, double f_w,
485 double f_h) {
486 const double pct = stats->pcnt_motion;
487
488 // Accumulate Motion In/Out of frame stats.
489 gf_stats->this_frame_mv_in_out = stats->mv_in_out_count * pct;
490 gf_stats->mv_in_out_accumulator += gf_stats->this_frame_mv_in_out;
491 gf_stats->abs_mv_in_out_accumulator += fabs(gf_stats->this_frame_mv_in_out);
492
493 // Accumulate a measure of how uniform (or conversely how random) the motion
494 // field is (a ratio of abs(mv) / mv).
495 if (pct > 0.05) {
496 const double mvr_ratio =
497 fabs(stats->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVr));
498 const double mvc_ratio =
499 fabs(stats->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVc));
500
501 gf_stats->mv_ratio_accumulator +=
502 pct *
503 (mvr_ratio < stats->mvr_abs * f_h ? mvr_ratio : stats->mvr_abs * f_h);
504 gf_stats->mv_ratio_accumulator +=
505 pct *
506 (mvc_ratio < stats->mvc_abs * f_w ? mvc_ratio : stats->mvc_abs * f_w);
507 }
508 }
509
accumulate_this_frame_stats(const FIRSTPASS_STATS * stats,const double mod_frame_err,GF_GROUP_STATS * gf_stats)510 static void accumulate_this_frame_stats(const FIRSTPASS_STATS *stats,
511 const double mod_frame_err,
512 GF_GROUP_STATS *gf_stats) {
513 gf_stats->gf_group_err += mod_frame_err;
514 #if GROUP_ADAPTIVE_MAXQ
515 gf_stats->gf_group_raw_error += stats->coded_error;
516 #endif
517 gf_stats->gf_group_skip_pct += stats->intra_skip_pct;
518 gf_stats->gf_group_inactive_zone_rows += stats->inactive_zone_rows;
519 }
520
accumulate_next_frame_stats(const FIRSTPASS_STATS * stats,const int flash_detected,const int frames_since_key,const int cur_idx,GF_GROUP_STATS * gf_stats,int f_w,int f_h)521 static void accumulate_next_frame_stats(const FIRSTPASS_STATS *stats,
522 const int flash_detected,
523 const int frames_since_key,
524 const int cur_idx,
525 GF_GROUP_STATS *gf_stats, int f_w,
526 int f_h) {
527 accumulate_frame_motion_stats(stats, gf_stats, f_w, f_h);
528 // sum up the metric values of current gf group
529 gf_stats->avg_sr_coded_error += stats->sr_coded_error;
530 gf_stats->avg_pcnt_second_ref += stats->pcnt_second_ref;
531 gf_stats->avg_new_mv_count += stats->new_mv_count;
532 gf_stats->avg_wavelet_energy += stats->frame_avg_wavelet_energy;
533 if (fabs(stats->raw_error_stdev) > 0.000001) {
534 gf_stats->non_zero_stdev_count++;
535 gf_stats->avg_raw_err_stdev += stats->raw_error_stdev;
536 }
537
538 // Accumulate the effect of prediction quality decay
539 if (!flash_detected) {
540 gf_stats->last_loop_decay_rate = gf_stats->loop_decay_rate;
541 gf_stats->loop_decay_rate = get_prediction_decay_rate(stats);
542
543 gf_stats->decay_accumulator =
544 gf_stats->decay_accumulator * gf_stats->loop_decay_rate;
545
546 // Monitor for static sections.
547 if ((frames_since_key + cur_idx - 1) > 1) {
548 gf_stats->zero_motion_accumulator = AOMMIN(
549 gf_stats->zero_motion_accumulator, get_zero_motion_factor(stats));
550 }
551 }
552 }
553
average_gf_stats(const int total_frame,GF_GROUP_STATS * gf_stats)554 static void average_gf_stats(const int total_frame, GF_GROUP_STATS *gf_stats) {
555 if (total_frame) {
556 gf_stats->avg_sr_coded_error /= total_frame;
557 gf_stats->avg_pcnt_second_ref /= total_frame;
558 gf_stats->avg_new_mv_count /= total_frame;
559 gf_stats->avg_wavelet_energy /= total_frame;
560 }
561
562 if (gf_stats->non_zero_stdev_count)
563 gf_stats->avg_raw_err_stdev /= gf_stats->non_zero_stdev_count;
564 }
565
566 #define BOOST_FACTOR 12.5
baseline_err_per_mb(const FRAME_INFO * frame_info)567 static double baseline_err_per_mb(const FRAME_INFO *frame_info) {
568 unsigned int screen_area = frame_info->frame_height * frame_info->frame_width;
569
570 // Use a different error per mb factor for calculating boost for
571 // different formats.
572 if (screen_area <= 640 * 360) {
573 return 500.0;
574 } else {
575 return 1000.0;
576 }
577 }
578
calc_frame_boost(const PRIMARY_RATE_CONTROL * p_rc,const FRAME_INFO * frame_info,const FIRSTPASS_STATS * this_frame,double this_frame_mv_in_out,double max_boost)579 static double calc_frame_boost(const PRIMARY_RATE_CONTROL *p_rc,
580 const FRAME_INFO *frame_info,
581 const FIRSTPASS_STATS *this_frame,
582 double this_frame_mv_in_out, double max_boost) {
583 double frame_boost;
584 const double lq = av1_convert_qindex_to_q(p_rc->avg_frame_qindex[INTER_FRAME],
585 frame_info->bit_depth);
586 const double boost_q_correction = AOMMIN((0.5 + (lq * 0.015)), 1.5);
587 const double active_area = calculate_active_area(frame_info, this_frame);
588
589 // Underlying boost factor is based on inter error ratio.
590 frame_boost = AOMMAX(baseline_err_per_mb(frame_info) * active_area,
591 this_frame->intra_error * active_area) /
592 DOUBLE_DIVIDE_CHECK(this_frame->coded_error);
593 frame_boost = frame_boost * BOOST_FACTOR * boost_q_correction;
594
595 // Increase boost for frames where new data coming into frame (e.g. zoom out).
596 // Slightly reduce boost if there is a net balance of motion out of the frame
597 // (zoom in). The range for this_frame_mv_in_out is -1.0 to +1.0.
598 if (this_frame_mv_in_out > 0.0)
599 frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
600 // In the extreme case the boost is halved.
601 else
602 frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);
603
604 return AOMMIN(frame_boost, max_boost * boost_q_correction);
605 }
606
calc_kf_frame_boost(const PRIMARY_RATE_CONTROL * p_rc,const FRAME_INFO * frame_info,const FIRSTPASS_STATS * this_frame,double * sr_accumulator,double max_boost)607 static double calc_kf_frame_boost(const PRIMARY_RATE_CONTROL *p_rc,
608 const FRAME_INFO *frame_info,
609 const FIRSTPASS_STATS *this_frame,
610 double *sr_accumulator, double max_boost) {
611 double frame_boost;
612 const double lq = av1_convert_qindex_to_q(p_rc->avg_frame_qindex[INTER_FRAME],
613 frame_info->bit_depth);
614 const double boost_q_correction = AOMMIN((0.50 + (lq * 0.015)), 2.00);
615 const double active_area = calculate_active_area(frame_info, this_frame);
616
617 // Underlying boost factor is based on inter error ratio.
618 frame_boost = AOMMAX(baseline_err_per_mb(frame_info) * active_area,
619 this_frame->intra_error * active_area) /
620 DOUBLE_DIVIDE_CHECK(
621 (this_frame->coded_error + *sr_accumulator) * active_area);
622
623 // Update the accumulator for second ref error difference.
624 // This is intended to give an indication of how much the coded error is
625 // increasing over time.
626 *sr_accumulator += (this_frame->sr_coded_error - this_frame->coded_error);
627 *sr_accumulator = AOMMAX(0.0, *sr_accumulator);
628
629 // Q correction and scaling
630 // The 40.0 value here is an experimentally derived baseline minimum.
631 // This value is in line with the minimum per frame boost in the alt_ref
632 // boost calculation.
633 frame_boost = ((frame_boost + 40.0) * boost_q_correction);
634
635 return AOMMIN(frame_boost, max_boost * boost_q_correction);
636 }
637
get_projected_gfu_boost(const PRIMARY_RATE_CONTROL * p_rc,int gfu_boost,int frames_to_project,int num_stats_used_for_gfu_boost)638 static int get_projected_gfu_boost(const PRIMARY_RATE_CONTROL *p_rc,
639 int gfu_boost, int frames_to_project,
640 int num_stats_used_for_gfu_boost) {
641 /*
642 * If frames_to_project is equal to num_stats_used_for_gfu_boost,
643 * it means that gfu_boost was calculated over frames_to_project to
644 * begin with(ie; all stats required were available), hence return
645 * the original boost.
646 */
647 if (num_stats_used_for_gfu_boost >= frames_to_project) return gfu_boost;
648
649 double min_boost_factor = sqrt(p_rc->baseline_gf_interval);
650 // Get the current tpl factor (number of frames = frames_to_project).
651 double tpl_factor = av1_get_gfu_boost_projection_factor(
652 min_boost_factor, MAX_GFUBOOST_FACTOR, frames_to_project);
653 // Get the tpl factor when number of frames = num_stats_used_for_prior_boost.
654 double tpl_factor_num_stats = av1_get_gfu_boost_projection_factor(
655 min_boost_factor, MAX_GFUBOOST_FACTOR, num_stats_used_for_gfu_boost);
656 int projected_gfu_boost =
657 (int)rint((tpl_factor * gfu_boost) / tpl_factor_num_stats);
658 return projected_gfu_boost;
659 }
660
661 #define GF_MAX_BOOST 90.0
662 #define GF_MIN_BOOST 50
663 #define MIN_DECAY_FACTOR 0.01
av1_calc_arf_boost(const TWO_PASS * twopass,const TWO_PASS_FRAME * twopass_frame,const PRIMARY_RATE_CONTROL * p_rc,FRAME_INFO * frame_info,int offset,int f_frames,int b_frames,int * num_fpstats_used,int * num_fpstats_required,int project_gfu_boost)664 int av1_calc_arf_boost(const TWO_PASS *twopass,
665 const TWO_PASS_FRAME *twopass_frame,
666 const PRIMARY_RATE_CONTROL *p_rc, FRAME_INFO *frame_info,
667 int offset, int f_frames, int b_frames,
668 int *num_fpstats_used, int *num_fpstats_required,
669 int project_gfu_boost) {
670 int i;
671 GF_GROUP_STATS gf_stats;
672 init_gf_stats(&gf_stats);
673 double boost_score = (double)NORMAL_BOOST;
674 int arf_boost;
675 int flash_detected = 0;
676 if (num_fpstats_used) *num_fpstats_used = 0;
677
678 // Search forward from the proposed arf/next gf position.
679 for (i = 0; i < f_frames; ++i) {
680 const FIRSTPASS_STATS *this_frame =
681 read_frame_stats(twopass, twopass_frame, i + offset);
682 if (this_frame == NULL) break;
683
684 // Update the motion related elements to the boost calculation.
685 accumulate_frame_motion_stats(this_frame, &gf_stats,
686 frame_info->frame_width,
687 frame_info->frame_height);
688
689 // We want to discount the flash frame itself and the recovery
690 // frame that follows as both will have poor scores.
691 flash_detected = detect_flash(twopass, twopass_frame, i + offset) ||
692 detect_flash(twopass, twopass_frame, i + offset + 1);
693
694 // Accumulate the effect of prediction quality decay.
695 if (!flash_detected) {
696 gf_stats.decay_accumulator *= get_prediction_decay_rate(this_frame);
697 gf_stats.decay_accumulator = gf_stats.decay_accumulator < MIN_DECAY_FACTOR
698 ? MIN_DECAY_FACTOR
699 : gf_stats.decay_accumulator;
700 }
701
702 boost_score +=
703 gf_stats.decay_accumulator *
704 calc_frame_boost(p_rc, frame_info, this_frame,
705 gf_stats.this_frame_mv_in_out, GF_MAX_BOOST);
706 if (num_fpstats_used) (*num_fpstats_used)++;
707 }
708
709 arf_boost = (int)boost_score;
710
711 // Reset for backward looking loop.
712 boost_score = 0.0;
713 init_gf_stats(&gf_stats);
714 // Search backward towards last gf position.
715 for (i = -1; i >= -b_frames; --i) {
716 const FIRSTPASS_STATS *this_frame =
717 read_frame_stats(twopass, twopass_frame, i + offset);
718 if (this_frame == NULL) break;
719
720 // Update the motion related elements to the boost calculation.
721 accumulate_frame_motion_stats(this_frame, &gf_stats,
722 frame_info->frame_width,
723 frame_info->frame_height);
724
725 // We want to discount the the flash frame itself and the recovery
726 // frame that follows as both will have poor scores.
727 flash_detected = detect_flash(twopass, twopass_frame, i + offset) ||
728 detect_flash(twopass, twopass_frame, i + offset + 1);
729
730 // Cumulative effect of prediction quality decay.
731 if (!flash_detected) {
732 gf_stats.decay_accumulator *= get_prediction_decay_rate(this_frame);
733 gf_stats.decay_accumulator = gf_stats.decay_accumulator < MIN_DECAY_FACTOR
734 ? MIN_DECAY_FACTOR
735 : gf_stats.decay_accumulator;
736 }
737
738 boost_score +=
739 gf_stats.decay_accumulator *
740 calc_frame_boost(p_rc, frame_info, this_frame,
741 gf_stats.this_frame_mv_in_out, GF_MAX_BOOST);
742 if (num_fpstats_used) (*num_fpstats_used)++;
743 }
744 arf_boost += (int)boost_score;
745
746 if (project_gfu_boost) {
747 assert(num_fpstats_required != NULL);
748 assert(num_fpstats_used != NULL);
749 *num_fpstats_required = f_frames + b_frames;
750 arf_boost = get_projected_gfu_boost(p_rc, arf_boost, *num_fpstats_required,
751 *num_fpstats_used);
752 }
753
754 if (arf_boost < ((b_frames + f_frames) * GF_MIN_BOOST))
755 arf_boost = ((b_frames + f_frames) * GF_MIN_BOOST);
756
757 return arf_boost;
758 }
759
760 // Calculate a section intra ratio used in setting max loop filter.
calculate_section_intra_ratio(const FIRSTPASS_STATS * begin,const FIRSTPASS_STATS * end,int section_length)761 static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin,
762 const FIRSTPASS_STATS *end,
763 int section_length) {
764 const FIRSTPASS_STATS *s = begin;
765 double intra_error = 0.0;
766 double coded_error = 0.0;
767 int i = 0;
768
769 while (s < end && i < section_length) {
770 intra_error += s->intra_error;
771 coded_error += s->coded_error;
772 ++s;
773 ++i;
774 }
775
776 return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error));
777 }
778
779 /*!\brief Calculates the bit target for this GF/ARF group
780 *
781 * \ingroup rate_control
782 *
783 * Calculates the total bits to allocate in this GF/ARF group.
784 *
785 * \param[in] cpi Top-level encoder structure
786 * \param[in] gf_group_err Cumulative coded error score for the
787 * frames making up this group.
788 *
789 * \return The target total number of bits for this GF/ARF group.
790 */
calculate_total_gf_group_bits(AV1_COMP * cpi,double gf_group_err)791 static int64_t calculate_total_gf_group_bits(AV1_COMP *cpi,
792 double gf_group_err) {
793 const RATE_CONTROL *const rc = &cpi->rc;
794 const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
795 const TWO_PASS *const twopass = &cpi->ppi->twopass;
796 const int max_bits = frame_max_bits(rc, &cpi->oxcf);
797 int64_t total_group_bits;
798
799 // Calculate the bits to be allocated to the group as a whole.
800 if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0)) {
801 total_group_bits = (int64_t)(twopass->kf_group_bits *
802 (gf_group_err / twopass->kf_group_error_left));
803 } else {
804 total_group_bits = 0;
805 }
806
807 // Clamp odd edge cases.
808 total_group_bits = (total_group_bits < 0) ? 0
809 : (total_group_bits > twopass->kf_group_bits)
810 ? twopass->kf_group_bits
811 : total_group_bits;
812
813 // Clip based on user supplied data rate variability limit.
814 if (total_group_bits > (int64_t)max_bits * p_rc->baseline_gf_interval)
815 total_group_bits = (int64_t)max_bits * p_rc->baseline_gf_interval;
816
817 return total_group_bits;
818 }
819
820 // Calculate the number of bits to assign to boosted frames in a group.
calculate_boost_bits(int frame_count,int boost,int64_t total_group_bits)821 static int calculate_boost_bits(int frame_count, int boost,
822 int64_t total_group_bits) {
823 int allocation_chunks;
824
825 // return 0 for invalid inputs (could arise e.g. through rounding errors)
826 if (!boost || (total_group_bits <= 0)) return 0;
827
828 if (frame_count <= 0) return (int)(AOMMIN(total_group_bits, INT_MAX));
829
830 allocation_chunks = (frame_count * 100) + boost;
831
832 // Prevent overflow.
833 if (boost > 1023) {
834 int divisor = boost >> 10;
835 boost /= divisor;
836 allocation_chunks /= divisor;
837 }
838
839 // Calculate the number of extra bits for use in the boosted frame or frames.
840 return AOMMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks),
841 0);
842 }
843
844 // Calculate the boost factor based on the number of bits assigned, i.e. the
845 // inverse of calculate_boost_bits().
calculate_boost_factor(int frame_count,int bits,int64_t total_group_bits)846 static int calculate_boost_factor(int frame_count, int bits,
847 int64_t total_group_bits) {
848 return (int)(100.0 * frame_count * bits / (total_group_bits - bits));
849 }
850
851 // Reduce the number of bits assigned to keyframe or arf if necessary, to
852 // prevent bitrate spikes that may break level constraints.
853 // frame_type: 0: keyframe; 1: arf.
adjust_boost_bits_for_target_level(const AV1_COMP * const cpi,RATE_CONTROL * const rc,int bits_assigned,int64_t group_bits,int frame_type)854 static int adjust_boost_bits_for_target_level(const AV1_COMP *const cpi,
855 RATE_CONTROL *const rc,
856 int bits_assigned,
857 int64_t group_bits,
858 int frame_type) {
859 const AV1_COMMON *const cm = &cpi->common;
860 const SequenceHeader *const seq_params = cm->seq_params;
861 PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
862 const int temporal_layer_id = cm->temporal_layer_id;
863 const int spatial_layer_id = cm->spatial_layer_id;
864 for (int index = 0; index < seq_params->operating_points_cnt_minus_1 + 1;
865 ++index) {
866 if (!is_in_operating_point(seq_params->operating_point_idc[index],
867 temporal_layer_id, spatial_layer_id)) {
868 continue;
869 }
870
871 const AV1_LEVEL target_level =
872 cpi->ppi->level_params.target_seq_level_idx[index];
873 if (target_level >= SEQ_LEVELS) continue;
874
875 assert(is_valid_seq_level_idx(target_level));
876
877 const double level_bitrate_limit = av1_get_max_bitrate_for_level(
878 target_level, seq_params->tier[0], seq_params->profile);
879 const int target_bits_per_frame =
880 (int)(level_bitrate_limit / cpi->framerate);
881 if (frame_type == 0) {
882 // Maximum bits for keyframe is 8 times the target_bits_per_frame.
883 const int level_enforced_max_kf_bits = target_bits_per_frame * 8;
884 if (bits_assigned > level_enforced_max_kf_bits) {
885 const int frames = rc->frames_to_key - 1;
886 p_rc->kf_boost = calculate_boost_factor(
887 frames, level_enforced_max_kf_bits, group_bits);
888 bits_assigned =
889 calculate_boost_bits(frames, p_rc->kf_boost, group_bits);
890 }
891 } else if (frame_type == 1) {
892 // Maximum bits for arf is 4 times the target_bits_per_frame.
893 const int level_enforced_max_arf_bits = target_bits_per_frame * 4;
894 if (bits_assigned > level_enforced_max_arf_bits) {
895 p_rc->gfu_boost =
896 calculate_boost_factor(p_rc->baseline_gf_interval,
897 level_enforced_max_arf_bits, group_bits);
898 bits_assigned = calculate_boost_bits(p_rc->baseline_gf_interval,
899 p_rc->gfu_boost, group_bits);
900 }
901 } else {
902 assert(0);
903 }
904 }
905
906 return bits_assigned;
907 }
908
909 // Allocate bits to each frame in a GF / ARF group
allocate_gf_group_bits(GF_GROUP * gf_group,PRIMARY_RATE_CONTROL * const p_rc,RATE_CONTROL * const rc,int64_t gf_group_bits,int gf_arf_bits,int key_frame,int use_arf)910 static void allocate_gf_group_bits(GF_GROUP *gf_group,
911 PRIMARY_RATE_CONTROL *const p_rc,
912 RATE_CONTROL *const rc,
913 int64_t gf_group_bits, int gf_arf_bits,
914 int key_frame, int use_arf) {
915 static const double layer_fraction[MAX_ARF_LAYERS + 1] = { 1.0, 0.70, 0.55,
916 0.60, 0.60, 1.0,
917 1.0 };
918 int64_t total_group_bits = gf_group_bits;
919 int base_frame_bits;
920 const int gf_group_size = gf_group->size;
921 int layer_frames[MAX_ARF_LAYERS + 1] = { 0 };
922
923 // For key frames the frame target rate is already set and it
924 // is also the golden frame.
925 // === [frame_index == 0] ===
926 int frame_index = !!key_frame;
927
928 // Subtract the extra bits set aside for ARF frames from the Group Total
929 if (use_arf) total_group_bits -= gf_arf_bits;
930
931 int num_frames =
932 AOMMAX(1, p_rc->baseline_gf_interval - (rc->frames_since_key == 0));
933 base_frame_bits = (int)(total_group_bits / num_frames);
934
935 // Check the number of frames in each layer in case we have a
936 // non standard group length.
937 int max_arf_layer = gf_group->max_layer_depth - 1;
938 for (int idx = frame_index; idx < gf_group_size; ++idx) {
939 if ((gf_group->update_type[idx] == ARF_UPDATE) ||
940 (gf_group->update_type[idx] == INTNL_ARF_UPDATE)) {
941 layer_frames[gf_group->layer_depth[idx]]++;
942 }
943 }
944
945 // Allocate extra bits to each ARF layer
946 int i;
947 int layer_extra_bits[MAX_ARF_LAYERS + 1] = { 0 };
948 assert(max_arf_layer <= MAX_ARF_LAYERS);
949 for (i = 1; i <= max_arf_layer; ++i) {
950 double fraction = (i == max_arf_layer) ? 1.0 : layer_fraction[i];
951 layer_extra_bits[i] =
952 (int)((gf_arf_bits * fraction) / AOMMAX(1, layer_frames[i]));
953 gf_arf_bits -= (int)(gf_arf_bits * fraction);
954 }
955
956 // Now combine ARF layer and baseline bits to give total bits for each frame.
957 int arf_extra_bits;
958 for (int idx = frame_index; idx < gf_group_size; ++idx) {
959 switch (gf_group->update_type[idx]) {
960 case ARF_UPDATE:
961 case INTNL_ARF_UPDATE:
962 arf_extra_bits = layer_extra_bits[gf_group->layer_depth[idx]];
963 gf_group->bit_allocation[idx] =
964 (base_frame_bits > INT_MAX - arf_extra_bits)
965 ? INT_MAX
966 : (base_frame_bits + arf_extra_bits);
967 break;
968 case INTNL_OVERLAY_UPDATE:
969 case OVERLAY_UPDATE: gf_group->bit_allocation[idx] = 0; break;
970 default: gf_group->bit_allocation[idx] = base_frame_bits; break;
971 }
972 }
973
974 // Set the frame following the current GOP to 0 bit allocation. For ARF
975 // groups, this next frame will be overlay frame, which is the first frame
976 // in the next GOP. For GF group, next GOP will overwrite the rate allocation.
977 // Setting this frame to use 0 bit (of out the current GOP budget) will
978 // simplify logics in reference frame management.
979 if (gf_group_size < MAX_STATIC_GF_GROUP_LENGTH)
980 gf_group->bit_allocation[gf_group_size] = 0;
981 }
982
983 // Returns true if KF group and GF group both are almost completely static.
is_almost_static(double gf_zero_motion,int kf_zero_motion,int is_lap_enabled)984 static inline int is_almost_static(double gf_zero_motion, int kf_zero_motion,
985 int is_lap_enabled) {
986 if (is_lap_enabled) {
987 /*
988 * when LAP enabled kf_zero_motion is not reliable, so use strict
989 * constraint on gf_zero_motion.
990 */
991 return (gf_zero_motion >= 0.999);
992 } else {
993 return (gf_zero_motion >= 0.995) &&
994 (kf_zero_motion >= STATIC_KF_GROUP_THRESH);
995 }
996 }
997
998 #define ARF_ABS_ZOOM_THRESH 4.4
detect_gf_cut(AV1_COMP * cpi,int frame_index,int cur_start,int flash_detected,int active_max_gf_interval,int active_min_gf_interval,GF_GROUP_STATS * gf_stats)999 static inline int detect_gf_cut(AV1_COMP *cpi, int frame_index, int cur_start,
1000 int flash_detected, int active_max_gf_interval,
1001 int active_min_gf_interval,
1002 GF_GROUP_STATS *gf_stats) {
1003 RATE_CONTROL *const rc = &cpi->rc;
1004 TWO_PASS *const twopass = &cpi->ppi->twopass;
1005 AV1_COMMON *const cm = &cpi->common;
1006 // Motion breakout threshold for loop below depends on image size.
1007 const double mv_ratio_accumulator_thresh = (cm->height + cm->width) / 4.0;
1008
1009 if (!flash_detected) {
1010 // Break clause to detect very still sections after motion. For example,
1011 // a static image after a fade or other transition.
1012
1013 // TODO(angiebird): This is a temporary change, we will avoid using
1014 // twopass_frame.stats_in in the follow-up CL
1015 int index = (int)(cpi->twopass_frame.stats_in -
1016 twopass->stats_buf_ctx->stats_in_start);
1017 if (detect_transition_to_still(&twopass->firstpass_info, index,
1018 rc->min_gf_interval, frame_index - cur_start,
1019 5, gf_stats->loop_decay_rate,
1020 gf_stats->last_loop_decay_rate)) {
1021 return 1;
1022 }
1023 }
1024
1025 // Some conditions to breakout after min interval.
1026 if (frame_index - cur_start >= active_min_gf_interval &&
1027 // If possible don't break very close to a kf
1028 (rc->frames_to_key - frame_index >= rc->min_gf_interval) &&
1029 ((frame_index - cur_start) & 0x01) && !flash_detected &&
1030 (gf_stats->mv_ratio_accumulator > mv_ratio_accumulator_thresh ||
1031 gf_stats->abs_mv_in_out_accumulator > ARF_ABS_ZOOM_THRESH)) {
1032 return 1;
1033 }
1034
1035 // If almost totally static, we will not use the the max GF length later,
1036 // so we can continue for more frames.
1037 if (((frame_index - cur_start) >= active_max_gf_interval + 1) &&
1038 !is_almost_static(gf_stats->zero_motion_accumulator,
1039 twopass->kf_zeromotion_pct, cpi->ppi->lap_enabled)) {
1040 return 1;
1041 }
1042 return 0;
1043 }
1044
is_shorter_gf_interval_better(AV1_COMP * cpi,const EncodeFrameParams * frame_params)1045 static int is_shorter_gf_interval_better(
1046 AV1_COMP *cpi, const EncodeFrameParams *frame_params) {
1047 const RATE_CONTROL *const rc = &cpi->rc;
1048 PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
1049 int gop_length_decision_method = cpi->sf.tpl_sf.gop_length_decision_method;
1050 int shorten_gf_interval;
1051
1052 av1_tpl_preload_rc_estimate(cpi, frame_params);
1053
1054 if (gop_length_decision_method == 2) {
1055 // GF group length is decided based on GF boost and tpl stats of ARFs from
1056 // base layer, (base+1) layer.
1057 shorten_gf_interval =
1058 (p_rc->gfu_boost <
1059 p_rc->num_stats_used_for_gfu_boost * GF_MIN_BOOST * 1.4) &&
1060 !av1_tpl_setup_stats(cpi, 3, frame_params);
1061 } else {
1062 int do_complete_tpl = 1;
1063 GF_GROUP *const gf_group = &cpi->ppi->gf_group;
1064 int is_temporal_filter_enabled =
1065 (rc->frames_since_key > 0 && gf_group->arf_index > -1);
1066
1067 if (gop_length_decision_method == 1) {
1068 // Check if tpl stats of ARFs from base layer, (base+1) layer,
1069 // (base+2) layer can decide the GF group length.
1070 int gop_length_eval = av1_tpl_setup_stats(cpi, 2, frame_params);
1071
1072 if (gop_length_eval != 2) {
1073 do_complete_tpl = 0;
1074 shorten_gf_interval = !gop_length_eval;
1075 }
1076 }
1077
1078 if (do_complete_tpl) {
1079 // Decide GF group length based on complete tpl stats.
1080 shorten_gf_interval = !av1_tpl_setup_stats(cpi, 1, frame_params);
1081 // Tpl stats is reused when the ARF is temporally filtered and GF
1082 // interval is not shortened.
1083 if (is_temporal_filter_enabled && !shorten_gf_interval) {
1084 cpi->skip_tpl_setup_stats = 1;
1085 #if CONFIG_BITRATE_ACCURACY && !CONFIG_THREE_PASS
1086 assert(cpi->gf_frame_index == 0);
1087 av1_vbr_rc_update_q_index_list(&cpi->vbr_rc_info, &cpi->ppi->tpl_data,
1088 gf_group,
1089 cpi->common.seq_params->bit_depth);
1090 #endif // CONFIG_BITRATE_ACCURACY
1091 }
1092 }
1093 }
1094 return shorten_gf_interval;
1095 }
1096
1097 #define MIN_SHRINK_LEN 6 // the minimum length of gf if we are shrinking
1098 #define SMOOTH_FILT_LEN 7
1099 #define HALF_FILT_LEN (SMOOTH_FILT_LEN / 2)
1100 #define WINDOW_SIZE 7
1101 #define HALF_WIN (WINDOW_SIZE / 2)
1102
1103 // Smooth filter intra_error and coded_error in firstpass stats.
1104 // If stats[i].is_flash==1, the ith element should not be used in the filtering.
smooth_filter_stats(const FIRSTPASS_STATS * stats,int start_idx,int last_idx,double * filt_intra_err,double * filt_coded_err)1105 static void smooth_filter_stats(const FIRSTPASS_STATS *stats, int start_idx,
1106 int last_idx, double *filt_intra_err,
1107 double *filt_coded_err) {
1108 // A 7-tap gaussian smooth filter
1109 static const double smooth_filt[SMOOTH_FILT_LEN] = { 0.006, 0.061, 0.242,
1110 0.383, 0.242, 0.061,
1111 0.006 };
1112 int i, j;
1113 for (i = start_idx; i <= last_idx; i++) {
1114 double total_wt = 0;
1115 for (j = -HALF_FILT_LEN; j <= HALF_FILT_LEN; j++) {
1116 int idx = AOMMIN(AOMMAX(i + j, start_idx), last_idx);
1117 if (stats[idx].is_flash) continue;
1118
1119 filt_intra_err[i] +=
1120 smooth_filt[j + HALF_FILT_LEN] * stats[idx].intra_error;
1121 total_wt += smooth_filt[j + HALF_FILT_LEN];
1122 }
1123 if (total_wt > 0.01) {
1124 filt_intra_err[i] /= total_wt;
1125 } else {
1126 filt_intra_err[i] = stats[i].intra_error;
1127 }
1128 }
1129 for (i = start_idx; i <= last_idx; i++) {
1130 double total_wt = 0;
1131 for (j = -HALF_FILT_LEN; j <= HALF_FILT_LEN; j++) {
1132 int idx = AOMMIN(AOMMAX(i + j, start_idx), last_idx);
1133 // Coded error involves idx and idx - 1.
1134 if (stats[idx].is_flash || (idx > 0 && stats[idx - 1].is_flash)) continue;
1135
1136 filt_coded_err[i] +=
1137 smooth_filt[j + HALF_FILT_LEN] * stats[idx].coded_error;
1138 total_wt += smooth_filt[j + HALF_FILT_LEN];
1139 }
1140 if (total_wt > 0.01) {
1141 filt_coded_err[i] /= total_wt;
1142 } else {
1143 filt_coded_err[i] = stats[i].coded_error;
1144 }
1145 }
1146 }
1147
1148 // Calculate gradient
get_gradient(const double * values,int start,int last,double * grad)1149 static void get_gradient(const double *values, int start, int last,
1150 double *grad) {
1151 if (start == last) {
1152 grad[start] = 0;
1153 return;
1154 }
1155 for (int i = start; i <= last; i++) {
1156 int prev = AOMMAX(i - 1, start);
1157 int next = AOMMIN(i + 1, last);
1158 grad[i] = (values[next] - values[prev]) / (next - prev);
1159 }
1160 }
1161
find_next_scenecut(const FIRSTPASS_STATS * const stats_start,int first,int last)1162 static int find_next_scenecut(const FIRSTPASS_STATS *const stats_start,
1163 int first, int last) {
1164 // Identify unstable areas caused by scenecuts.
1165 // Find the max and 2nd max coded error, and the average of the rest frames.
1166 // If there is only one frame that yields a huge coded error, it is likely a
1167 // scenecut.
1168 double this_ratio, max_prev_ratio, max_next_ratio, max_prev_coded,
1169 max_next_coded;
1170
1171 if (last - first == 0) return -1;
1172
1173 for (int i = first; i <= last; i++) {
1174 if (stats_start[i].is_flash || (i > 0 && stats_start[i - 1].is_flash))
1175 continue;
1176 double temp_intra = AOMMAX(stats_start[i].intra_error, 0.01);
1177 this_ratio = stats_start[i].coded_error / temp_intra;
1178 // find the avg ratio in the preceding neighborhood
1179 max_prev_ratio = 0;
1180 max_prev_coded = 0;
1181 for (int j = AOMMAX(first, i - HALF_WIN); j < i; j++) {
1182 if (stats_start[j].is_flash || (j > 0 && stats_start[j - 1].is_flash))
1183 continue;
1184 temp_intra = AOMMAX(stats_start[j].intra_error, 0.01);
1185 double temp_ratio = stats_start[j].coded_error / temp_intra;
1186 if (temp_ratio > max_prev_ratio) {
1187 max_prev_ratio = temp_ratio;
1188 }
1189 if (stats_start[j].coded_error > max_prev_coded) {
1190 max_prev_coded = stats_start[j].coded_error;
1191 }
1192 }
1193 // find the avg ratio in the following neighborhood
1194 max_next_ratio = 0;
1195 max_next_coded = 0;
1196 for (int j = i + 1; j <= AOMMIN(i + HALF_WIN, last); j++) {
1197 if (stats_start[i].is_flash || (i > 0 && stats_start[i - 1].is_flash))
1198 continue;
1199 temp_intra = AOMMAX(stats_start[j].intra_error, 0.01);
1200 double temp_ratio = stats_start[j].coded_error / temp_intra;
1201 if (temp_ratio > max_next_ratio) {
1202 max_next_ratio = temp_ratio;
1203 }
1204 if (stats_start[j].coded_error > max_next_coded) {
1205 max_next_coded = stats_start[j].coded_error;
1206 }
1207 }
1208
1209 if (max_prev_ratio < 0.001 && max_next_ratio < 0.001) {
1210 // the ratios are very small, only check a small fixed threshold
1211 if (this_ratio < 0.02) continue;
1212 } else {
1213 // check if this frame has a larger ratio than the neighborhood
1214 double max_sr = stats_start[i].sr_coded_error;
1215 if (i < last) max_sr = AOMMAX(max_sr, stats_start[i + 1].sr_coded_error);
1216 double max_sr_fr_ratio =
1217 max_sr / AOMMAX(stats_start[i].coded_error, 0.01);
1218
1219 if (max_sr_fr_ratio > 1.2) continue;
1220 if (this_ratio < 2 * AOMMAX(max_prev_ratio, max_next_ratio) &&
1221 stats_start[i].coded_error <
1222 2 * AOMMAX(max_prev_coded, max_next_coded)) {
1223 continue;
1224 }
1225 }
1226 return i;
1227 }
1228 return -1;
1229 }
1230
1231 // Remove the region with index next_region.
1232 // parameter merge: 0: merge with previous; 1: merge with next; 2:
1233 // merge with both, take type from previous if possible
1234 // After removing, next_region will be the index of the next region.
remove_region(int merge,REGIONS * regions,int * num_regions,int * next_region)1235 static void remove_region(int merge, REGIONS *regions, int *num_regions,
1236 int *next_region) {
1237 int k = *next_region;
1238 assert(k < *num_regions);
1239 if (*num_regions == 1) {
1240 *num_regions = 0;
1241 return;
1242 }
1243 if (k == 0) {
1244 merge = 1;
1245 } else if (k == *num_regions - 1) {
1246 merge = 0;
1247 }
1248 int num_merge = (merge == 2) ? 2 : 1;
1249 switch (merge) {
1250 case 0:
1251 regions[k - 1].last = regions[k].last;
1252 *next_region = k;
1253 break;
1254 case 1:
1255 regions[k + 1].start = regions[k].start;
1256 *next_region = k + 1;
1257 break;
1258 case 2:
1259 regions[k - 1].last = regions[k + 1].last;
1260 *next_region = k;
1261 break;
1262 default: assert(0);
1263 }
1264 *num_regions -= num_merge;
1265 for (k = *next_region - (merge == 1); k < *num_regions; k++) {
1266 regions[k] = regions[k + num_merge];
1267 }
1268 }
1269
1270 // Insert a region in the cur_region_idx. The start and last should both be in
1271 // the current region. After insertion, the cur_region_idx will point to the
1272 // last region that was splitted from the original region.
insert_region(int start,int last,REGION_TYPES type,REGIONS * regions,int * num_regions,int * cur_region_idx)1273 static void insert_region(int start, int last, REGION_TYPES type,
1274 REGIONS *regions, int *num_regions,
1275 int *cur_region_idx) {
1276 int k = *cur_region_idx;
1277 REGION_TYPES this_region_type = regions[k].type;
1278 int this_region_last = regions[k].last;
1279 int num_add = (start != regions[k].start) + (last != regions[k].last);
1280 // move the following regions further to the back
1281 for (int r = *num_regions - 1; r > k; r--) {
1282 regions[r + num_add] = regions[r];
1283 }
1284 *num_regions += num_add;
1285 if (start > regions[k].start) {
1286 regions[k].last = start - 1;
1287 k++;
1288 regions[k].start = start;
1289 }
1290 regions[k].type = type;
1291 if (last < this_region_last) {
1292 regions[k].last = last;
1293 k++;
1294 regions[k].start = last + 1;
1295 regions[k].last = this_region_last;
1296 regions[k].type = this_region_type;
1297 } else {
1298 regions[k].last = this_region_last;
1299 }
1300 *cur_region_idx = k;
1301 }
1302
1303 // Get the average of stats inside a region.
analyze_region(const FIRSTPASS_STATS * stats,int k,REGIONS * regions)1304 static void analyze_region(const FIRSTPASS_STATS *stats, int k,
1305 REGIONS *regions) {
1306 int i;
1307 regions[k].avg_cor_coeff = 0;
1308 regions[k].avg_sr_fr_ratio = 0;
1309 regions[k].avg_intra_err = 0;
1310 regions[k].avg_coded_err = 0;
1311
1312 int check_first_sr = (k != 0);
1313
1314 for (i = regions[k].start; i <= regions[k].last; i++) {
1315 if (i > regions[k].start || check_first_sr) {
1316 double num_frames =
1317 (double)(regions[k].last - regions[k].start + check_first_sr);
1318 double max_coded_error =
1319 AOMMAX(stats[i].coded_error, stats[i - 1].coded_error);
1320 double this_ratio =
1321 stats[i].sr_coded_error / AOMMAX(max_coded_error, 0.001);
1322 regions[k].avg_sr_fr_ratio += this_ratio / num_frames;
1323 }
1324
1325 regions[k].avg_intra_err +=
1326 stats[i].intra_error / (double)(regions[k].last - regions[k].start + 1);
1327 regions[k].avg_coded_err +=
1328 stats[i].coded_error / (double)(regions[k].last - regions[k].start + 1);
1329
1330 regions[k].avg_cor_coeff +=
1331 AOMMAX(stats[i].cor_coeff, 0.001) /
1332 (double)(regions[k].last - regions[k].start + 1);
1333 regions[k].avg_noise_var +=
1334 AOMMAX(stats[i].noise_var, 0.001) /
1335 (double)(regions[k].last - regions[k].start + 1);
1336 }
1337 }
1338
1339 // Calculate the regions stats of every region.
get_region_stats(const FIRSTPASS_STATS * stats,REGIONS * regions,int num_regions)1340 static void get_region_stats(const FIRSTPASS_STATS *stats, REGIONS *regions,
1341 int num_regions) {
1342 for (int k = 0; k < num_regions; k++) {
1343 analyze_region(stats, k, regions);
1344 }
1345 }
1346
1347 // Find tentative stable regions
find_stable_regions(const FIRSTPASS_STATS * stats,const double * grad_coded,int this_start,int this_last,REGIONS * regions)1348 static int find_stable_regions(const FIRSTPASS_STATS *stats,
1349 const double *grad_coded, int this_start,
1350 int this_last, REGIONS *regions) {
1351 int i, j, k = 0;
1352 regions[k].start = this_start;
1353 for (i = this_start; i <= this_last; i++) {
1354 // Check mean and variance of stats in a window
1355 double mean_intra = 0.001, var_intra = 0.001;
1356 double mean_coded = 0.001, var_coded = 0.001;
1357 int count = 0;
1358 for (j = -HALF_WIN; j <= HALF_WIN; j++) {
1359 int idx = AOMMIN(AOMMAX(i + j, this_start), this_last);
1360 if (stats[idx].is_flash || (idx > 0 && stats[idx - 1].is_flash)) continue;
1361 mean_intra += stats[idx].intra_error;
1362 var_intra += stats[idx].intra_error * stats[idx].intra_error;
1363 mean_coded += stats[idx].coded_error;
1364 var_coded += stats[idx].coded_error * stats[idx].coded_error;
1365 count++;
1366 }
1367
1368 REGION_TYPES cur_type;
1369 if (count > 0) {
1370 mean_intra /= (double)count;
1371 var_intra /= (double)count;
1372 mean_coded /= (double)count;
1373 var_coded /= (double)count;
1374 int is_intra_stable = (var_intra / (mean_intra * mean_intra) < 1.03);
1375 int is_coded_stable = (var_coded / (mean_coded * mean_coded) < 1.04 &&
1376 fabs(grad_coded[i]) / mean_coded < 0.05) ||
1377 mean_coded / mean_intra < 0.05;
1378 int is_coded_small = mean_coded < 0.5 * mean_intra;
1379 cur_type = (is_intra_stable && is_coded_stable && is_coded_small)
1380 ? STABLE_REGION
1381 : HIGH_VAR_REGION;
1382 } else {
1383 cur_type = HIGH_VAR_REGION;
1384 }
1385
1386 // mark a new region if type changes
1387 if (i == regions[k].start) {
1388 // first frame in the region
1389 regions[k].type = cur_type;
1390 } else if (cur_type != regions[k].type) {
1391 // Append a new region
1392 regions[k].last = i - 1;
1393 regions[k + 1].start = i;
1394 regions[k + 1].type = cur_type;
1395 k++;
1396 }
1397 }
1398 regions[k].last = this_last;
1399 return k + 1;
1400 }
1401
1402 // Clean up regions that should be removed or merged.
cleanup_regions(REGIONS * regions,int * num_regions)1403 static void cleanup_regions(REGIONS *regions, int *num_regions) {
1404 int k = 0;
1405 while (k < *num_regions) {
1406 if ((k > 0 && regions[k - 1].type == regions[k].type &&
1407 regions[k].type != SCENECUT_REGION) ||
1408 regions[k].last < regions[k].start) {
1409 remove_region(0, regions, num_regions, &k);
1410 } else {
1411 k++;
1412 }
1413 }
1414 }
1415
1416 // Remove regions that are of type and shorter than length.
1417 // Merge it with its neighboring regions.
remove_short_regions(REGIONS * regions,int * num_regions,REGION_TYPES type,int length)1418 static void remove_short_regions(REGIONS *regions, int *num_regions,
1419 REGION_TYPES type, int length) {
1420 int k = 0;
1421 while (k < *num_regions && (*num_regions) > 1) {
1422 if ((regions[k].last - regions[k].start + 1 < length &&
1423 regions[k].type == type)) {
1424 // merge current region with the previous and next regions
1425 remove_region(2, regions, num_regions, &k);
1426 } else {
1427 k++;
1428 }
1429 }
1430 cleanup_regions(regions, num_regions);
1431 }
1432
adjust_unstable_region_bounds(const FIRSTPASS_STATS * stats,REGIONS * regions,int * num_regions)1433 static void adjust_unstable_region_bounds(const FIRSTPASS_STATS *stats,
1434 REGIONS *regions, int *num_regions) {
1435 int i, j, k;
1436 // Remove regions that are too short. Likely noise.
1437 remove_short_regions(regions, num_regions, STABLE_REGION, HALF_WIN);
1438 remove_short_regions(regions, num_regions, HIGH_VAR_REGION, HALF_WIN);
1439
1440 get_region_stats(stats, regions, *num_regions);
1441
1442 // Adjust region boundaries. The thresholds are empirically obtained, but
1443 // overall the performance is not very sensitive to small changes to them.
1444 for (k = 0; k < *num_regions; k++) {
1445 if (regions[k].type == STABLE_REGION) continue;
1446 if (k > 0) {
1447 // Adjust previous boundary.
1448 // First find the average intra/coded error in the previous
1449 // neighborhood.
1450 double avg_intra_err = 0;
1451 const int starti = AOMMAX(regions[k - 1].last - WINDOW_SIZE + 1,
1452 regions[k - 1].start + 1);
1453 const int lasti = regions[k - 1].last;
1454 int counti = 0;
1455 for (i = starti; i <= lasti; i++) {
1456 avg_intra_err += stats[i].intra_error;
1457 counti++;
1458 }
1459 if (counti > 0) {
1460 avg_intra_err = AOMMAX(avg_intra_err / (double)counti, 0.001);
1461 int count_coded = 0, count_grad = 0;
1462 for (j = lasti + 1; j <= regions[k].last; j++) {
1463 const int intra_close =
1464 fabs(stats[j].intra_error - avg_intra_err) / avg_intra_err < 0.1;
1465 const int coded_small = stats[j].coded_error / avg_intra_err < 0.1;
1466 const int coeff_close = stats[j].cor_coeff > 0.995;
1467 if (!coeff_close || !coded_small) count_coded--;
1468 if (intra_close && count_coded >= 0 && count_grad >= 0) {
1469 // this frame probably belongs to the previous stable region
1470 regions[k - 1].last = j;
1471 regions[k].start = j + 1;
1472 } else {
1473 break;
1474 }
1475 }
1476 }
1477 } // if k > 0
1478 if (k < *num_regions - 1) {
1479 // Adjust next boundary.
1480 // First find the average intra/coded error in the next neighborhood.
1481 double avg_intra_err = 0;
1482 const int starti = regions[k + 1].start;
1483 const int lasti = AOMMIN(regions[k + 1].last - 1,
1484 regions[k + 1].start + WINDOW_SIZE - 1);
1485 int counti = 0;
1486 for (i = starti; i <= lasti; i++) {
1487 avg_intra_err += stats[i].intra_error;
1488 counti++;
1489 }
1490 if (counti > 0) {
1491 avg_intra_err = AOMMAX(avg_intra_err / (double)counti, 0.001);
1492 // At the boundary, coded error is large, but still the frame is stable
1493 int count_coded = 1, count_grad = 1;
1494 for (j = starti - 1; j >= regions[k].start; j--) {
1495 const int intra_close =
1496 fabs(stats[j].intra_error - avg_intra_err) / avg_intra_err < 0.1;
1497 const int coded_small =
1498 stats[j + 1].coded_error / avg_intra_err < 0.1;
1499 const int coeff_close = stats[j].cor_coeff > 0.995;
1500 if (!coeff_close || !coded_small) count_coded--;
1501 if (intra_close && count_coded >= 0 && count_grad >= 0) {
1502 // this frame probably belongs to the next stable region
1503 regions[k + 1].start = j;
1504 regions[k].last = j - 1;
1505 } else {
1506 break;
1507 }
1508 }
1509 }
1510 } // if k < *num_regions - 1
1511 } // end of loop over all regions
1512
1513 cleanup_regions(regions, num_regions);
1514 remove_short_regions(regions, num_regions, HIGH_VAR_REGION, HALF_WIN);
1515 get_region_stats(stats, regions, *num_regions);
1516
1517 // If a stable regions has higher error than neighboring high var regions,
1518 // or if the stable region has a lower average correlation,
1519 // then it should be merged with them
1520 k = 0;
1521 while (k < *num_regions && (*num_regions) > 1) {
1522 if (regions[k].type == STABLE_REGION &&
1523 (regions[k].last - regions[k].start + 1) < 2 * WINDOW_SIZE &&
1524 ((k > 0 && // previous regions
1525 (regions[k].avg_coded_err > regions[k - 1].avg_coded_err * 1.01 ||
1526 regions[k].avg_cor_coeff < regions[k - 1].avg_cor_coeff * 0.999)) &&
1527 (k < *num_regions - 1 && // next region
1528 (regions[k].avg_coded_err > regions[k + 1].avg_coded_err * 1.01 ||
1529 regions[k].avg_cor_coeff < regions[k + 1].avg_cor_coeff * 0.999)))) {
1530 // merge current region with the previous and next regions
1531 remove_region(2, regions, num_regions, &k);
1532 analyze_region(stats, k - 1, regions);
1533 } else if (regions[k].type == HIGH_VAR_REGION &&
1534 (regions[k].last - regions[k].start + 1) < 2 * WINDOW_SIZE &&
1535 ((k > 0 && // previous regions
1536 (regions[k].avg_coded_err <
1537 regions[k - 1].avg_coded_err * 0.99 ||
1538 regions[k].avg_cor_coeff >
1539 regions[k - 1].avg_cor_coeff * 1.001)) &&
1540 (k < *num_regions - 1 && // next region
1541 (regions[k].avg_coded_err <
1542 regions[k + 1].avg_coded_err * 0.99 ||
1543 regions[k].avg_cor_coeff >
1544 regions[k + 1].avg_cor_coeff * 1.001)))) {
1545 // merge current region with the previous and next regions
1546 remove_region(2, regions, num_regions, &k);
1547 analyze_region(stats, k - 1, regions);
1548 } else {
1549 k++;
1550 }
1551 }
1552
1553 remove_short_regions(regions, num_regions, STABLE_REGION, WINDOW_SIZE);
1554 remove_short_regions(regions, num_regions, HIGH_VAR_REGION, HALF_WIN);
1555 }
1556
1557 // Identify blending regions.
find_blending_regions(const FIRSTPASS_STATS * stats,REGIONS * regions,int * num_regions)1558 static void find_blending_regions(const FIRSTPASS_STATS *stats,
1559 REGIONS *regions, int *num_regions) {
1560 int i, k = 0;
1561 // Blending regions will have large content change, therefore will have a
1562 // large consistent change in intra error.
1563 int count_stable = 0;
1564 while (k < *num_regions) {
1565 if (regions[k].type == STABLE_REGION) {
1566 k++;
1567 count_stable++;
1568 continue;
1569 }
1570 int dir = 0;
1571 int start = 0, last;
1572 for (i = regions[k].start; i <= regions[k].last; i++) {
1573 // First mark the regions that has consistent large change of intra error.
1574 if (k == 0 && i == regions[k].start) continue;
1575 if (stats[i].is_flash || (i > 0 && stats[i - 1].is_flash)) continue;
1576 double grad = stats[i].intra_error - stats[i - 1].intra_error;
1577 int large_change = fabs(grad) / AOMMAX(stats[i].intra_error, 0.01) > 0.05;
1578 int this_dir = 0;
1579 if (large_change) {
1580 this_dir = (grad > 0) ? 1 : -1;
1581 }
1582 // the current trend continues
1583 if (dir == this_dir) continue;
1584 if (dir != 0) {
1585 // Mark the end of a new large change group and add it
1586 last = i - 1;
1587 insert_region(start, last, BLENDING_REGION, regions, num_regions, &k);
1588 }
1589 dir = this_dir;
1590 if (k == 0 && i == regions[k].start + 1) {
1591 start = i - 1;
1592 } else {
1593 start = i;
1594 }
1595 }
1596 if (dir != 0) {
1597 last = regions[k].last;
1598 insert_region(start, last, BLENDING_REGION, regions, num_regions, &k);
1599 }
1600 k++;
1601 }
1602
1603 // If the blending region has very low correlation, mark it as high variance
1604 // since we probably cannot benefit from it anyways.
1605 get_region_stats(stats, regions, *num_regions);
1606 for (k = 0; k < *num_regions; k++) {
1607 if (regions[k].type != BLENDING_REGION) continue;
1608 if (regions[k].last == regions[k].start || regions[k].avg_cor_coeff < 0.6 ||
1609 count_stable == 0)
1610 regions[k].type = HIGH_VAR_REGION;
1611 }
1612 get_region_stats(stats, regions, *num_regions);
1613
1614 // It is possible for blending to result in a "dip" in intra error (first
1615 // decrease then increase). Therefore we need to find the dip and combine the
1616 // two regions.
1617 k = 1;
1618 while (k < *num_regions) {
1619 if (k < *num_regions - 1 && regions[k].type == HIGH_VAR_REGION) {
1620 // Check if this short high variance regions is actually in the middle of
1621 // a blending region.
1622 if (regions[k - 1].type == BLENDING_REGION &&
1623 regions[k + 1].type == BLENDING_REGION &&
1624 regions[k].last - regions[k].start < 3) {
1625 int prev_dir = (stats[regions[k - 1].last].intra_error -
1626 stats[regions[k - 1].last - 1].intra_error) > 0
1627 ? 1
1628 : -1;
1629 int next_dir = (stats[regions[k + 1].last].intra_error -
1630 stats[regions[k + 1].last - 1].intra_error) > 0
1631 ? 1
1632 : -1;
1633 if (prev_dir < 0 && next_dir > 0) {
1634 // This is possibly a mid region of blending. Check the ratios
1635 double ratio_thres = AOMMIN(regions[k - 1].avg_sr_fr_ratio,
1636 regions[k + 1].avg_sr_fr_ratio) *
1637 0.95;
1638 if (regions[k].avg_sr_fr_ratio > ratio_thres) {
1639 regions[k].type = BLENDING_REGION;
1640 remove_region(2, regions, num_regions, &k);
1641 analyze_region(stats, k - 1, regions);
1642 continue;
1643 }
1644 }
1645 }
1646 }
1647 // Check if we have a pair of consecutive blending regions.
1648 if (regions[k - 1].type == BLENDING_REGION &&
1649 regions[k].type == BLENDING_REGION) {
1650 int prev_dir = (stats[regions[k - 1].last].intra_error -
1651 stats[regions[k - 1].last - 1].intra_error) > 0
1652 ? 1
1653 : -1;
1654 int next_dir = (stats[regions[k].last].intra_error -
1655 stats[regions[k].last - 1].intra_error) > 0
1656 ? 1
1657 : -1;
1658
1659 // if both are too short, no need to check
1660 int total_length = regions[k].last - regions[k - 1].start + 1;
1661 if (total_length < 4) {
1662 regions[k - 1].type = HIGH_VAR_REGION;
1663 k++;
1664 continue;
1665 }
1666
1667 int to_merge = 0;
1668 if (prev_dir < 0 && next_dir > 0) {
1669 // In this case we check the last frame in the previous region.
1670 double prev_length =
1671 (double)(regions[k - 1].last - regions[k - 1].start + 1);
1672 double last_ratio, ratio_thres;
1673 if (prev_length < 2.01) {
1674 // if the previous region is very short
1675 double max_coded_error =
1676 AOMMAX(stats[regions[k - 1].last].coded_error,
1677 stats[regions[k - 1].last - 1].coded_error);
1678 last_ratio = stats[regions[k - 1].last].sr_coded_error /
1679 AOMMAX(max_coded_error, 0.001);
1680 ratio_thres = regions[k].avg_sr_fr_ratio * 0.95;
1681 } else {
1682 double max_coded_error =
1683 AOMMAX(stats[regions[k - 1].last].coded_error,
1684 stats[regions[k - 1].last - 1].coded_error);
1685 last_ratio = stats[regions[k - 1].last].sr_coded_error /
1686 AOMMAX(max_coded_error, 0.001);
1687 double prev_ratio =
1688 (regions[k - 1].avg_sr_fr_ratio * prev_length - last_ratio) /
1689 (prev_length - 1.0);
1690 ratio_thres = AOMMIN(prev_ratio, regions[k].avg_sr_fr_ratio) * 0.95;
1691 }
1692 if (last_ratio > ratio_thres) {
1693 to_merge = 1;
1694 }
1695 }
1696
1697 if (to_merge) {
1698 remove_region(0, regions, num_regions, &k);
1699 analyze_region(stats, k - 1, regions);
1700 continue;
1701 } else {
1702 // These are possibly two separate blending regions. Mark the boundary
1703 // frame as HIGH_VAR_REGION to separate the two.
1704 int prev_k = k - 1;
1705 insert_region(regions[prev_k].last, regions[prev_k].last,
1706 HIGH_VAR_REGION, regions, num_regions, &prev_k);
1707 analyze_region(stats, prev_k, regions);
1708 k = prev_k + 1;
1709 analyze_region(stats, k, regions);
1710 }
1711 }
1712 k++;
1713 }
1714 cleanup_regions(regions, num_regions);
1715 }
1716
1717 // Clean up decision for blendings. Remove blending regions that are too short.
1718 // Also if a very short high var region is between a blending and a stable
1719 // region, just merge it with one of them.
cleanup_blendings(REGIONS * regions,int * num_regions)1720 static void cleanup_blendings(REGIONS *regions, int *num_regions) {
1721 int k = 0;
1722 while (k<*num_regions && * num_regions> 1) {
1723 int is_short_blending = regions[k].type == BLENDING_REGION &&
1724 regions[k].last - regions[k].start + 1 < 5;
1725 int is_short_hv = regions[k].type == HIGH_VAR_REGION &&
1726 regions[k].last - regions[k].start + 1 < 5;
1727 int has_stable_neighbor =
1728 ((k > 0 && regions[k - 1].type == STABLE_REGION) ||
1729 (k < *num_regions - 1 && regions[k + 1].type == STABLE_REGION));
1730 int has_blend_neighbor =
1731 ((k > 0 && regions[k - 1].type == BLENDING_REGION) ||
1732 (k < *num_regions - 1 && regions[k + 1].type == BLENDING_REGION));
1733 int total_neighbors = (k > 0) + (k < *num_regions - 1);
1734
1735 if (is_short_blending ||
1736 (is_short_hv &&
1737 has_stable_neighbor + has_blend_neighbor >= total_neighbors)) {
1738 // Remove this region.Try to determine whether to combine it with the
1739 // previous or next region.
1740 int merge;
1741 double prev_diff =
1742 (k > 0)
1743 ? fabs(regions[k].avg_cor_coeff - regions[k - 1].avg_cor_coeff)
1744 : 1;
1745 double next_diff =
1746 (k < *num_regions - 1)
1747 ? fabs(regions[k].avg_cor_coeff - regions[k + 1].avg_cor_coeff)
1748 : 1;
1749 // merge == 0 means to merge with previous, 1 means to merge with next
1750 merge = prev_diff > next_diff;
1751 remove_region(merge, regions, num_regions, &k);
1752 } else {
1753 k++;
1754 }
1755 }
1756 cleanup_regions(regions, num_regions);
1757 }
1758
free_firstpass_stats_buffers(REGIONS * temp_regions,double * filt_intra_err,double * filt_coded_err,double * grad_coded)1759 static void free_firstpass_stats_buffers(REGIONS *temp_regions,
1760 double *filt_intra_err,
1761 double *filt_coded_err,
1762 double *grad_coded) {
1763 aom_free(temp_regions);
1764 aom_free(filt_intra_err);
1765 aom_free(filt_coded_err);
1766 aom_free(grad_coded);
1767 }
1768
1769 // Identify stable and unstable regions from first pass stats.
1770 // stats_start points to the first frame to analyze.
1771 // |offset| is the offset from the current frame to the frame stats_start is
1772 // pointing to.
1773 // Returns 0 on success, -1 on memory allocation failure.
identify_regions(const FIRSTPASS_STATS * const stats_start,int total_frames,int offset,REGIONS * regions,int * total_regions)1774 static int identify_regions(const FIRSTPASS_STATS *const stats_start,
1775 int total_frames, int offset, REGIONS *regions,
1776 int *total_regions) {
1777 int k;
1778 if (total_frames <= 1) return 0;
1779
1780 // store the initial decisions
1781 REGIONS *temp_regions =
1782 (REGIONS *)aom_malloc(total_frames * sizeof(temp_regions[0]));
1783 // buffers for filtered stats
1784 double *filt_intra_err =
1785 (double *)aom_calloc(total_frames, sizeof(*filt_intra_err));
1786 double *filt_coded_err =
1787 (double *)aom_calloc(total_frames, sizeof(*filt_coded_err));
1788 double *grad_coded = (double *)aom_calloc(total_frames, sizeof(*grad_coded));
1789 if (!(temp_regions && filt_intra_err && filt_coded_err && grad_coded)) {
1790 free_firstpass_stats_buffers(temp_regions, filt_intra_err, filt_coded_err,
1791 grad_coded);
1792 return -1;
1793 }
1794 av1_zero_array(temp_regions, total_frames);
1795
1796 int cur_region = 0, this_start = 0, this_last;
1797
1798 int next_scenecut = -1;
1799 do {
1800 // first get the obvious scenecuts
1801 next_scenecut =
1802 find_next_scenecut(stats_start, this_start, total_frames - 1);
1803 this_last = (next_scenecut >= 0) ? (next_scenecut - 1) : total_frames - 1;
1804
1805 // low-pass filter the needed stats
1806 smooth_filter_stats(stats_start, this_start, this_last, filt_intra_err,
1807 filt_coded_err);
1808 get_gradient(filt_coded_err, this_start, this_last, grad_coded);
1809
1810 // find tentative stable regions and unstable regions
1811 int num_regions = find_stable_regions(stats_start, grad_coded, this_start,
1812 this_last, temp_regions);
1813
1814 adjust_unstable_region_bounds(stats_start, temp_regions, &num_regions);
1815
1816 get_region_stats(stats_start, temp_regions, num_regions);
1817
1818 // Try to identify blending regions in the unstable regions
1819 find_blending_regions(stats_start, temp_regions, &num_regions);
1820 cleanup_blendings(temp_regions, &num_regions);
1821
1822 // The flash points should all be considered high variance points
1823 k = 0;
1824 while (k < num_regions) {
1825 if (temp_regions[k].type != STABLE_REGION) {
1826 k++;
1827 continue;
1828 }
1829 int start = temp_regions[k].start;
1830 int last = temp_regions[k].last;
1831 for (int i = start; i <= last; i++) {
1832 if (stats_start[i].is_flash) {
1833 insert_region(i, i, HIGH_VAR_REGION, temp_regions, &num_regions, &k);
1834 }
1835 }
1836 k++;
1837 }
1838 cleanup_regions(temp_regions, &num_regions);
1839
1840 // copy the regions in the scenecut group
1841 for (k = 0; k < num_regions; k++) {
1842 if (temp_regions[k].last < temp_regions[k].start &&
1843 k == num_regions - 1) {
1844 num_regions--;
1845 break;
1846 }
1847 regions[k + cur_region] = temp_regions[k];
1848 }
1849 cur_region += num_regions;
1850
1851 // add the scenecut region
1852 if (next_scenecut > -1) {
1853 // add the scenecut region, and find the next scenecut
1854 regions[cur_region].type = SCENECUT_REGION;
1855 regions[cur_region].start = next_scenecut;
1856 regions[cur_region].last = next_scenecut;
1857 cur_region++;
1858 this_start = next_scenecut + 1;
1859 }
1860 } while (next_scenecut >= 0);
1861
1862 *total_regions = cur_region;
1863 get_region_stats(stats_start, regions, *total_regions);
1864
1865 for (k = 0; k < *total_regions; k++) {
1866 // If scenecuts are very minor, mark them as high variance.
1867 if (regions[k].type != SCENECUT_REGION ||
1868 regions[k].avg_cor_coeff *
1869 (1 - stats_start[regions[k].start].noise_var /
1870 regions[k].avg_intra_err) <
1871 0.8) {
1872 continue;
1873 }
1874 regions[k].type = HIGH_VAR_REGION;
1875 }
1876 cleanup_regions(regions, total_regions);
1877 get_region_stats(stats_start, regions, *total_regions);
1878
1879 for (k = 0; k < *total_regions; k++) {
1880 regions[k].start += offset;
1881 regions[k].last += offset;
1882 }
1883
1884 free_firstpass_stats_buffers(temp_regions, filt_intra_err, filt_coded_err,
1885 grad_coded);
1886 return 0;
1887 }
1888
find_regions_index(const REGIONS * regions,int num_regions,int frame_idx)1889 static int find_regions_index(const REGIONS *regions, int num_regions,
1890 int frame_idx) {
1891 for (int k = 0; k < num_regions; k++) {
1892 if (regions[k].start <= frame_idx && regions[k].last >= frame_idx) {
1893 return k;
1894 }
1895 }
1896 return -1;
1897 }
1898
1899 /*!\brief Determine the length of future GF groups.
1900 *
1901 * \ingroup gf_group_algo
1902 * This function decides the gf group length of future frames in batch
1903 *
1904 * \param[in] cpi Top-level encoder structure
1905 * \param[in] max_gop_length Maximum length of the GF group
1906 * \param[in] max_intervals Maximum number of intervals to decide
1907 *
1908 * \remark Nothing is returned. Instead, cpi->ppi->rc.gf_intervals is
1909 * changed to store the decided GF group lengths.
1910 */
calculate_gf_length(AV1_COMP * cpi,int max_gop_length,int max_intervals)1911 static void calculate_gf_length(AV1_COMP *cpi, int max_gop_length,
1912 int max_intervals) {
1913 RATE_CONTROL *const rc = &cpi->rc;
1914 PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
1915 TWO_PASS *const twopass = &cpi->ppi->twopass;
1916 FIRSTPASS_STATS next_frame;
1917 const FIRSTPASS_STATS *const start_pos = cpi->twopass_frame.stats_in;
1918 const FIRSTPASS_STATS *const stats = start_pos - (rc->frames_since_key == 0);
1919
1920 const int f_w = cpi->common.width;
1921 const int f_h = cpi->common.height;
1922 int i;
1923
1924 int flash_detected;
1925
1926 av1_zero(next_frame);
1927
1928 if (has_no_stats_stage(cpi)) {
1929 for (i = 0; i < MAX_NUM_GF_INTERVALS; i++) {
1930 p_rc->gf_intervals[i] = AOMMIN(rc->max_gf_interval, max_gop_length);
1931 }
1932 p_rc->cur_gf_index = 0;
1933 rc->intervals_till_gf_calculate_due = MAX_NUM_GF_INTERVALS;
1934 return;
1935 }
1936
1937 // TODO(urvang): Try logic to vary min and max interval based on q.
1938 const int active_min_gf_interval = rc->min_gf_interval;
1939 const int active_max_gf_interval =
1940 AOMMIN(rc->max_gf_interval, max_gop_length);
1941 const int min_shrink_int = AOMMAX(MIN_SHRINK_LEN, active_min_gf_interval);
1942
1943 i = (rc->frames_since_key == 0);
1944 max_intervals = cpi->ppi->lap_enabled ? 1 : max_intervals;
1945 int count_cuts = 1;
1946 // If cpi->gf_state.arf_gf_boost_lst is 0, we are starting with a KF or GF.
1947 int cur_start = -1 + !cpi->ppi->gf_state.arf_gf_boost_lst, cur_last;
1948 int cut_pos[MAX_NUM_GF_INTERVALS + 1] = { -1 };
1949 int cut_here;
1950 GF_GROUP_STATS gf_stats;
1951 init_gf_stats(&gf_stats);
1952 while (count_cuts < max_intervals + 1) {
1953 // reaches next key frame, break here
1954 if (i >= rc->frames_to_key) {
1955 cut_here = 2;
1956 } else if (i - cur_start >= rc->static_scene_max_gf_interval) {
1957 // reached maximum len, but nothing special yet (almost static)
1958 // let's look at the next interval
1959 cut_here = 1;
1960 } else if (EOF == input_stats(twopass, &cpi->twopass_frame, &next_frame)) {
1961 // reaches last frame, break
1962 cut_here = 2;
1963 } else {
1964 // Test for the case where there is a brief flash but the prediction
1965 // quality back to an earlier frame is then restored.
1966 flash_detected = detect_flash(twopass, &cpi->twopass_frame, 0);
1967 // TODO(bohanli): remove redundant accumulations here, or unify
1968 // this and the ones in define_gf_group
1969 accumulate_next_frame_stats(&next_frame, flash_detected,
1970 rc->frames_since_key, i, &gf_stats, f_w, f_h);
1971
1972 cut_here = detect_gf_cut(cpi, i, cur_start, flash_detected,
1973 active_max_gf_interval, active_min_gf_interval,
1974 &gf_stats);
1975 }
1976 if (cut_here) {
1977 cur_last = i - 1; // the current last frame in the gf group
1978 int ori_last = cur_last;
1979 // The region frame idx does not start from the same frame as cur_start
1980 // and cur_last. Need to offset them.
1981 int offset = rc->frames_since_key - p_rc->regions_offset;
1982 REGIONS *regions = p_rc->regions;
1983 int num_regions = p_rc->num_regions;
1984
1985 int scenecut_idx = -1;
1986 // only try shrinking if interval smaller than active_max_gf_interval
1987 if (cur_last - cur_start <= active_max_gf_interval &&
1988 cur_last > cur_start) {
1989 // find the region indices of where the first and last frame belong.
1990 int k_start =
1991 find_regions_index(regions, num_regions, cur_start + offset);
1992 int k_last =
1993 find_regions_index(regions, num_regions, cur_last + offset);
1994 if (cur_start + offset == 0) k_start = 0;
1995
1996 // See if we have a scenecut in between
1997 for (int r = k_start + 1; r <= k_last; r++) {
1998 if (regions[r].type == SCENECUT_REGION &&
1999 regions[r].last - offset - cur_start > active_min_gf_interval) {
2000 scenecut_idx = r;
2001 break;
2002 }
2003 }
2004
2005 // if the found scenecut is very close to the end, ignore it.
2006 if (regions[num_regions - 1].last - regions[scenecut_idx].last < 4) {
2007 scenecut_idx = -1;
2008 }
2009
2010 if (scenecut_idx != -1) {
2011 // If we have a scenecut, then stop at it.
2012 // TODO(bohanli): add logic here to stop before the scenecut and for
2013 // the next gop start from the scenecut with GF
2014 int is_minor_sc =
2015 (regions[scenecut_idx].avg_cor_coeff *
2016 (1 - stats[regions[scenecut_idx].start - offset].noise_var /
2017 regions[scenecut_idx].avg_intra_err) >
2018 0.6);
2019 cur_last = regions[scenecut_idx].last - offset - !is_minor_sc;
2020 } else {
2021 int is_last_analysed = (k_last == num_regions - 1) &&
2022 (cur_last + offset == regions[k_last].last);
2023 int not_enough_regions =
2024 k_last - k_start <=
2025 1 + (regions[k_start].type == SCENECUT_REGION);
2026 // if we are very close to the end, then do not shrink since it may
2027 // introduce intervals that are too short
2028 if (!(is_last_analysed && not_enough_regions)) {
2029 const double arf_length_factor = 0.1;
2030 double best_score = 0;
2031 int best_j = -1;
2032 const int first_frame = regions[0].start - offset;
2033 const int last_frame = regions[num_regions - 1].last - offset;
2034 // score of how much the arf helps the whole GOP
2035 double base_score = 0.0;
2036 // Accumulate base_score in
2037 for (int j = cur_start + 1; j < cur_start + min_shrink_int; j++) {
2038 if (stats + j >= twopass->stats_buf_ctx->stats_in_end) break;
2039 base_score = (base_score + 1.0) * stats[j].cor_coeff;
2040 }
2041 int met_blending = 0; // Whether we have met blending areas before
2042 int last_blending = 0; // Whether the previous frame if blending
2043 for (int j = cur_start + min_shrink_int; j <= cur_last; j++) {
2044 if (stats + j >= twopass->stats_buf_ctx->stats_in_end) break;
2045 base_score = (base_score + 1.0) * stats[j].cor_coeff;
2046 int this_reg =
2047 find_regions_index(regions, num_regions, j + offset);
2048 if (this_reg < 0) continue;
2049 // A GOP should include at most 1 blending region.
2050 if (regions[this_reg].type == BLENDING_REGION) {
2051 last_blending = 1;
2052 if (met_blending) {
2053 break;
2054 } else {
2055 base_score = 0;
2056 continue;
2057 }
2058 } else {
2059 if (last_blending) met_blending = 1;
2060 last_blending = 0;
2061 }
2062
2063 // Add the factor of how good the neighborhood is for this
2064 // candidate arf.
2065 double this_score = arf_length_factor * base_score;
2066 double temp_accu_coeff = 1.0;
2067 // following frames
2068 int count_f = 0;
2069 for (int n = j + 1; n <= j + 3 && n <= last_frame; n++) {
2070 if (stats + n >= twopass->stats_buf_ctx->stats_in_end) break;
2071 temp_accu_coeff *= stats[n].cor_coeff;
2072 this_score +=
2073 temp_accu_coeff *
2074 sqrt(AOMMAX(0.5,
2075 1 - stats[n].noise_var /
2076 AOMMAX(stats[n].intra_error, 0.001)));
2077 count_f++;
2078 }
2079 // preceding frames
2080 temp_accu_coeff = 1.0;
2081 for (int n = j; n > j - 3 * 2 + count_f && n > first_frame; n--) {
2082 if (stats + n < twopass->stats_buf_ctx->stats_in_start) break;
2083 temp_accu_coeff *= stats[n].cor_coeff;
2084 this_score +=
2085 temp_accu_coeff *
2086 sqrt(AOMMAX(0.5,
2087 1 - stats[n].noise_var /
2088 AOMMAX(stats[n].intra_error, 0.001)));
2089 }
2090
2091 if (this_score > best_score) {
2092 best_score = this_score;
2093 best_j = j;
2094 }
2095 }
2096
2097 // For blending areas, move one more frame in case we missed the
2098 // first blending frame.
2099 int best_reg =
2100 find_regions_index(regions, num_regions, best_j + offset);
2101 if (best_reg < num_regions - 1 && best_reg > 0) {
2102 if (regions[best_reg - 1].type == BLENDING_REGION &&
2103 regions[best_reg + 1].type == BLENDING_REGION) {
2104 if (best_j + offset == regions[best_reg].start &&
2105 best_j + offset < regions[best_reg].last) {
2106 best_j += 1;
2107 } else if (best_j + offset == regions[best_reg].last &&
2108 best_j + offset > regions[best_reg].start) {
2109 best_j -= 1;
2110 }
2111 }
2112 }
2113
2114 if (cur_last - best_j < 2) best_j = cur_last;
2115 if (best_j > 0 && best_score > 0.1) cur_last = best_j;
2116 // if cannot find anything, just cut at the original place.
2117 }
2118 }
2119 }
2120 cut_pos[count_cuts] = cur_last;
2121 count_cuts++;
2122
2123 // reset pointers to the shrunken location
2124 cpi->twopass_frame.stats_in = start_pos + cur_last;
2125 cur_start = cur_last;
2126 int cur_region_idx =
2127 find_regions_index(regions, num_regions, cur_start + 1 + offset);
2128 if (cur_region_idx >= 0)
2129 if (regions[cur_region_idx].type == SCENECUT_REGION) cur_start++;
2130
2131 i = cur_last;
2132
2133 if (cut_here > 1 && cur_last == ori_last) break;
2134
2135 // reset accumulators
2136 init_gf_stats(&gf_stats);
2137 }
2138 ++i;
2139 }
2140
2141 // save intervals
2142 rc->intervals_till_gf_calculate_due = count_cuts - 1;
2143 for (int n = 1; n < count_cuts; n++) {
2144 p_rc->gf_intervals[n - 1] = cut_pos[n] - cut_pos[n - 1];
2145 }
2146 p_rc->cur_gf_index = 0;
2147 cpi->twopass_frame.stats_in = start_pos;
2148 }
2149
correct_frames_to_key(AV1_COMP * cpi)2150 static void correct_frames_to_key(AV1_COMP *cpi) {
2151 int lookahead_size =
2152 (int)av1_lookahead_depth(cpi->ppi->lookahead, cpi->compressor_stage);
2153 if (lookahead_size <
2154 av1_lookahead_pop_sz(cpi->ppi->lookahead, cpi->compressor_stage)) {
2155 assert(
2156 IMPLIES(cpi->oxcf.pass != AOM_RC_ONE_PASS && cpi->ppi->frames_left > 0,
2157 lookahead_size == cpi->ppi->frames_left));
2158 cpi->rc.frames_to_key = AOMMIN(cpi->rc.frames_to_key, lookahead_size);
2159 } else if (cpi->ppi->frames_left > 0) {
2160 // Correct frames to key based on limit
2161 cpi->rc.frames_to_key =
2162 AOMMIN(cpi->rc.frames_to_key, cpi->ppi->frames_left);
2163 }
2164 }
2165
2166 /*!\brief Define a GF group in one pass mode when no look ahead stats are
2167 * available.
2168 *
2169 * \ingroup gf_group_algo
2170 * This function defines the structure of a GF group, along with various
2171 * parameters regarding bit-allocation and quality setup in the special
2172 * case of one pass encoding where no lookahead stats are avialable.
2173 *
2174 * \param[in] cpi Top-level encoder structure
2175 *
2176 * \remark Nothing is returned. Instead, cpi->ppi->gf_group is changed.
2177 */
define_gf_group_pass0(AV1_COMP * cpi)2178 static void define_gf_group_pass0(AV1_COMP *cpi) {
2179 RATE_CONTROL *const rc = &cpi->rc;
2180 PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
2181 GF_GROUP *const gf_group = &cpi->ppi->gf_group;
2182 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
2183 const GFConfig *const gf_cfg = &oxcf->gf_cfg;
2184 int target;
2185
2186 if (oxcf->q_cfg.aq_mode == CYCLIC_REFRESH_AQ) {
2187 av1_cyclic_refresh_set_golden_update(cpi);
2188 } else {
2189 p_rc->baseline_gf_interval = p_rc->gf_intervals[p_rc->cur_gf_index];
2190 rc->intervals_till_gf_calculate_due--;
2191 p_rc->cur_gf_index++;
2192 }
2193
2194 // correct frames_to_key when lookahead queue is flushing
2195 correct_frames_to_key(cpi);
2196
2197 if (p_rc->baseline_gf_interval > rc->frames_to_key)
2198 p_rc->baseline_gf_interval = rc->frames_to_key;
2199
2200 p_rc->gfu_boost = DEFAULT_GF_BOOST;
2201 p_rc->constrained_gf_group =
2202 (p_rc->baseline_gf_interval >= rc->frames_to_key) ? 1 : 0;
2203
2204 gf_group->max_layer_depth_allowed = oxcf->gf_cfg.gf_max_pyr_height;
2205
2206 // Rare case when the look-ahead is less than the target GOP length, can't
2207 // generate ARF frame.
2208 if (p_rc->baseline_gf_interval > gf_cfg->lag_in_frames ||
2209 !is_altref_enabled(gf_cfg->lag_in_frames, gf_cfg->enable_auto_arf) ||
2210 p_rc->baseline_gf_interval < rc->min_gf_interval)
2211 gf_group->max_layer_depth_allowed = 0;
2212
2213 // Set up the structure of this Group-Of-Pictures (same as GF_GROUP)
2214 av1_gop_setup_structure(cpi);
2215
2216 // Allocate bits to each of the frames in the GF group.
2217 // TODO(sarahparker) Extend this to work with pyramid structure.
2218 for (int cur_index = 0; cur_index < gf_group->size; ++cur_index) {
2219 const FRAME_UPDATE_TYPE cur_update_type = gf_group->update_type[cur_index];
2220 if (oxcf->rc_cfg.mode == AOM_CBR) {
2221 if (cur_update_type == KF_UPDATE) {
2222 target = av1_calc_iframe_target_size_one_pass_cbr(cpi);
2223 } else {
2224 target = av1_calc_pframe_target_size_one_pass_cbr(cpi, cur_update_type);
2225 }
2226 } else {
2227 if (cur_update_type == KF_UPDATE) {
2228 target = av1_calc_iframe_target_size_one_pass_vbr(cpi);
2229 } else {
2230 target = av1_calc_pframe_target_size_one_pass_vbr(cpi, cur_update_type);
2231 }
2232 }
2233 gf_group->bit_allocation[cur_index] = target;
2234 }
2235 }
2236
set_baseline_gf_interval(PRIMARY_RATE_CONTROL * p_rc,int arf_position)2237 static inline void set_baseline_gf_interval(PRIMARY_RATE_CONTROL *p_rc,
2238 int arf_position) {
2239 p_rc->baseline_gf_interval = arf_position;
2240 }
2241
2242 // initialize GF_GROUP_STATS
init_gf_stats(GF_GROUP_STATS * gf_stats)2243 static void init_gf_stats(GF_GROUP_STATS *gf_stats) {
2244 gf_stats->gf_group_err = 0.0;
2245 gf_stats->gf_group_raw_error = 0.0;
2246 gf_stats->gf_group_skip_pct = 0.0;
2247 gf_stats->gf_group_inactive_zone_rows = 0.0;
2248
2249 gf_stats->mv_ratio_accumulator = 0.0;
2250 gf_stats->decay_accumulator = 1.0;
2251 gf_stats->zero_motion_accumulator = 1.0;
2252 gf_stats->loop_decay_rate = 1.0;
2253 gf_stats->last_loop_decay_rate = 1.0;
2254 gf_stats->this_frame_mv_in_out = 0.0;
2255 gf_stats->mv_in_out_accumulator = 0.0;
2256 gf_stats->abs_mv_in_out_accumulator = 0.0;
2257
2258 gf_stats->avg_sr_coded_error = 0.0;
2259 gf_stats->avg_pcnt_second_ref = 0.0;
2260 gf_stats->avg_new_mv_count = 0.0;
2261 gf_stats->avg_wavelet_energy = 0.0;
2262 gf_stats->avg_raw_err_stdev = 0.0;
2263 gf_stats->non_zero_stdev_count = 0;
2264 }
2265
accumulate_gop_stats(AV1_COMP * cpi,int is_intra_only,int f_w,int f_h,FIRSTPASS_STATS * next_frame,const FIRSTPASS_STATS * start_pos,GF_GROUP_STATS * gf_stats,int * idx)2266 static void accumulate_gop_stats(AV1_COMP *cpi, int is_intra_only, int f_w,
2267 int f_h, FIRSTPASS_STATS *next_frame,
2268 const FIRSTPASS_STATS *start_pos,
2269 GF_GROUP_STATS *gf_stats, int *idx) {
2270 int i, flash_detected;
2271 TWO_PASS *const twopass = &cpi->ppi->twopass;
2272 PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
2273 RATE_CONTROL *const rc = &cpi->rc;
2274 FRAME_INFO *frame_info = &cpi->frame_info;
2275 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
2276
2277 init_gf_stats(gf_stats);
2278 av1_zero(*next_frame);
2279
2280 // If this is a key frame or the overlay from a previous arf then
2281 // the error score / cost of this frame has already been accounted for.
2282 i = is_intra_only;
2283 // get the determined gf group length from p_rc->gf_intervals
2284 while (i < p_rc->gf_intervals[p_rc->cur_gf_index]) {
2285 // read in the next frame
2286 if (EOF == input_stats(twopass, &cpi->twopass_frame, next_frame)) break;
2287 // Accumulate error score of frames in this gf group.
2288 double mod_frame_err =
2289 calculate_modified_err(frame_info, twopass, oxcf, next_frame);
2290 // accumulate stats for this frame
2291 accumulate_this_frame_stats(next_frame, mod_frame_err, gf_stats);
2292 ++i;
2293 }
2294
2295 reset_fpf_position(&cpi->twopass_frame, start_pos);
2296
2297 i = is_intra_only;
2298 input_stats(twopass, &cpi->twopass_frame, next_frame);
2299 while (i < p_rc->gf_intervals[p_rc->cur_gf_index]) {
2300 // read in the next frame
2301 if (EOF == input_stats(twopass, &cpi->twopass_frame, next_frame)) break;
2302
2303 // Test for the case where there is a brief flash but the prediction
2304 // quality back to an earlier frame is then restored.
2305 flash_detected = detect_flash(twopass, &cpi->twopass_frame, 0);
2306
2307 // accumulate stats for next frame
2308 accumulate_next_frame_stats(next_frame, flash_detected,
2309 rc->frames_since_key, i, gf_stats, f_w, f_h);
2310
2311 ++i;
2312 }
2313
2314 i = p_rc->gf_intervals[p_rc->cur_gf_index];
2315 average_gf_stats(i, gf_stats);
2316
2317 *idx = i;
2318 }
2319
update_gop_length(RATE_CONTROL * rc,PRIMARY_RATE_CONTROL * p_rc,int idx,int is_final_pass)2320 static void update_gop_length(RATE_CONTROL *rc, PRIMARY_RATE_CONTROL *p_rc,
2321 int idx, int is_final_pass) {
2322 if (is_final_pass) {
2323 rc->intervals_till_gf_calculate_due--;
2324 p_rc->cur_gf_index++;
2325 }
2326
2327 // Was the group length constrained by the requirement for a new KF?
2328 p_rc->constrained_gf_group = (idx >= rc->frames_to_key) ? 1 : 0;
2329
2330 set_baseline_gf_interval(p_rc, idx);
2331 rc->frames_till_gf_update_due = p_rc->baseline_gf_interval;
2332 }
2333
2334 #define MAX_GF_BOOST 5400
2335 #define REDUCE_GF_LENGTH_THRESH 4
2336 #define REDUCE_GF_LENGTH_TO_KEY_THRESH 9
2337 #define REDUCE_GF_LENGTH_BY 1
set_gop_bits_boost(AV1_COMP * cpi,int i,int is_intra_only,int is_final_pass,int use_alt_ref,int alt_offset,const FIRSTPASS_STATS * start_pos,GF_GROUP_STATS * gf_stats)2338 static void set_gop_bits_boost(AV1_COMP *cpi, int i, int is_intra_only,
2339 int is_final_pass, int use_alt_ref,
2340 int alt_offset, const FIRSTPASS_STATS *start_pos,
2341 GF_GROUP_STATS *gf_stats) {
2342 // Should we use the alternate reference frame.
2343 AV1_COMMON *const cm = &cpi->common;
2344 RATE_CONTROL *const rc = &cpi->rc;
2345 PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
2346 TWO_PASS *const twopass = &cpi->ppi->twopass;
2347 GF_GROUP *gf_group = &cpi->ppi->gf_group;
2348 FRAME_INFO *frame_info = &cpi->frame_info;
2349 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
2350 const RateControlCfg *const rc_cfg = &oxcf->rc_cfg;
2351
2352 int ext_len = i - is_intra_only;
2353 if (use_alt_ref) {
2354 const int forward_frames = (rc->frames_to_key - i >= ext_len)
2355 ? ext_len
2356 : AOMMAX(0, rc->frames_to_key - i);
2357
2358 // Calculate the boost for alt ref.
2359 p_rc->gfu_boost = av1_calc_arf_boost(
2360 twopass, &cpi->twopass_frame, p_rc, frame_info, alt_offset,
2361 forward_frames, ext_len, &p_rc->num_stats_used_for_gfu_boost,
2362 &p_rc->num_stats_required_for_gfu_boost, cpi->ppi->lap_enabled);
2363 } else {
2364 reset_fpf_position(&cpi->twopass_frame, start_pos);
2365 p_rc->gfu_boost = AOMMIN(
2366 MAX_GF_BOOST,
2367 av1_calc_arf_boost(
2368 twopass, &cpi->twopass_frame, p_rc, frame_info, alt_offset, ext_len,
2369 0, &p_rc->num_stats_used_for_gfu_boost,
2370 &p_rc->num_stats_required_for_gfu_boost, cpi->ppi->lap_enabled));
2371 }
2372
2373 #define LAST_ALR_BOOST_FACTOR 0.2f
2374 p_rc->arf_boost_factor = 1.0;
2375 if (use_alt_ref && !is_lossless_requested(rc_cfg)) {
2376 // Reduce the boost of altref in the last gf group
2377 if (rc->frames_to_key - ext_len == REDUCE_GF_LENGTH_BY ||
2378 rc->frames_to_key - ext_len == 0) {
2379 p_rc->arf_boost_factor = LAST_ALR_BOOST_FACTOR;
2380 }
2381 }
2382
2383 // Reset the file position.
2384 reset_fpf_position(&cpi->twopass_frame, start_pos);
2385 if (cpi->ppi->lap_enabled) {
2386 // Since we don't have enough stats to know the actual error of the
2387 // gf group, we assume error of each frame to be equal to 1 and set
2388 // the error of the group as baseline_gf_interval.
2389 gf_stats->gf_group_err = p_rc->baseline_gf_interval;
2390 }
2391 // Calculate the bits to be allocated to the gf/arf group as a whole
2392 p_rc->gf_group_bits =
2393 calculate_total_gf_group_bits(cpi, gf_stats->gf_group_err);
2394
2395 #if GROUP_ADAPTIVE_MAXQ
2396 // Calculate an estimate of the maxq needed for the group.
2397 // We are more aggressive about correcting for sections
2398 // where there could be significant overshoot than for easier
2399 // sections where we do not wish to risk creating an overshoot
2400 // of the allocated bit budget.
2401 if ((rc_cfg->mode != AOM_Q) && (p_rc->baseline_gf_interval > 1) &&
2402 is_final_pass) {
2403 const int vbr_group_bits_per_frame =
2404 (int)(p_rc->gf_group_bits / p_rc->baseline_gf_interval);
2405 const double group_av_err =
2406 gf_stats->gf_group_raw_error / p_rc->baseline_gf_interval;
2407 const double group_av_skip_pct =
2408 gf_stats->gf_group_skip_pct / p_rc->baseline_gf_interval;
2409 const double group_av_inactive_zone =
2410 ((gf_stats->gf_group_inactive_zone_rows * 2) /
2411 (p_rc->baseline_gf_interval * (double)cm->mi_params.mb_rows));
2412
2413 int tmp_q;
2414 tmp_q = get_twopass_worst_quality(
2415 cpi, group_av_err, (group_av_skip_pct + group_av_inactive_zone),
2416 vbr_group_bits_per_frame);
2417 rc->active_worst_quality = AOMMAX(tmp_q, rc->active_worst_quality >> 1);
2418 }
2419 #endif
2420
2421 // Adjust KF group bits and error remaining.
2422 if (is_final_pass) twopass->kf_group_error_left -= gf_stats->gf_group_err;
2423
2424 // Reset the file position.
2425 reset_fpf_position(&cpi->twopass_frame, start_pos);
2426
2427 // Calculate a section intra ratio used in setting max loop filter.
2428 if (rc->frames_since_key != 0) {
2429 twopass->section_intra_rating = calculate_section_intra_ratio(
2430 start_pos, twopass->stats_buf_ctx->stats_in_end,
2431 p_rc->baseline_gf_interval);
2432 }
2433
2434 av1_gop_bit_allocation(cpi, rc, gf_group, rc->frames_since_key == 0,
2435 use_alt_ref, p_rc->gf_group_bits);
2436
2437 // TODO(jingning): Generalize this condition.
2438 if (is_final_pass) {
2439 cpi->ppi->gf_state.arf_gf_boost_lst = use_alt_ref;
2440
2441 // Reset rolling actual and target bits counters for ARF groups.
2442 twopass->rolling_arf_group_target_bits = 1;
2443 twopass->rolling_arf_group_actual_bits = 1;
2444 }
2445 #if CONFIG_BITRATE_ACCURACY
2446 if (is_final_pass) {
2447 av1_vbr_rc_set_gop_bit_budget(&cpi->vbr_rc_info,
2448 p_rc->baseline_gf_interval);
2449 }
2450 #endif
2451 }
2452
2453 /*!\brief Define a GF group.
2454 *
2455 * \ingroup gf_group_algo
2456 * This function defines the structure of a GF group, along with various
2457 * parameters regarding bit-allocation and quality setup.
2458 *
2459 * \param[in] cpi Top-level encoder structure
2460 * \param[in] frame_params Structure with frame parameters
2461 * \param[in] is_final_pass Whether this is the final pass for the
2462 * GF group, or a trial (non-zero)
2463 *
2464 * \remark Nothing is returned. Instead, cpi->ppi->gf_group is changed.
2465 */
define_gf_group(AV1_COMP * cpi,EncodeFrameParams * frame_params,int is_final_pass)2466 static void define_gf_group(AV1_COMP *cpi, EncodeFrameParams *frame_params,
2467 int is_final_pass) {
2468 AV1_COMMON *const cm = &cpi->common;
2469 RATE_CONTROL *const rc = &cpi->rc;
2470 PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
2471 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
2472 TWO_PASS *const twopass = &cpi->ppi->twopass;
2473 FIRSTPASS_STATS next_frame;
2474 const FIRSTPASS_STATS *const start_pos = cpi->twopass_frame.stats_in;
2475 GF_GROUP *gf_group = &cpi->ppi->gf_group;
2476 const GFConfig *const gf_cfg = &oxcf->gf_cfg;
2477 const RateControlCfg *const rc_cfg = &oxcf->rc_cfg;
2478 const int f_w = cm->width;
2479 const int f_h = cm->height;
2480 int i;
2481 const int is_intra_only = rc->frames_since_key == 0;
2482
2483 cpi->ppi->internal_altref_allowed = (gf_cfg->gf_max_pyr_height > 1);
2484
2485 // Reset the GF group data structures unless this is a key
2486 // frame in which case it will already have been done.
2487 if (!is_intra_only) {
2488 av1_zero(cpi->ppi->gf_group);
2489 cpi->gf_frame_index = 0;
2490 }
2491
2492 if (has_no_stats_stage(cpi)) {
2493 define_gf_group_pass0(cpi);
2494 return;
2495 }
2496
2497 #if CONFIG_THREE_PASS
2498 if (cpi->third_pass_ctx && oxcf->pass == AOM_RC_THIRD_PASS) {
2499 int ret = define_gf_group_pass3(cpi, frame_params, is_final_pass);
2500 if (ret == 0) return;
2501
2502 av1_free_thirdpass_ctx(cpi->third_pass_ctx);
2503 cpi->third_pass_ctx = NULL;
2504 }
2505 #endif // CONFIG_THREE_PASS
2506
2507 // correct frames_to_key when lookahead queue is emptying
2508 if (cpi->ppi->lap_enabled) {
2509 correct_frames_to_key(cpi);
2510 }
2511
2512 GF_GROUP_STATS gf_stats;
2513 accumulate_gop_stats(cpi, is_intra_only, f_w, f_h, &next_frame, start_pos,
2514 &gf_stats, &i);
2515
2516 const int can_disable_arf = !gf_cfg->gf_min_pyr_height;
2517
2518 // If this is a key frame or the overlay from a previous arf then
2519 // the error score / cost of this frame has already been accounted for.
2520 const int active_min_gf_interval = rc->min_gf_interval;
2521
2522 // Disable internal ARFs for "still" gf groups.
2523 // zero_motion_accumulator: minimum percentage of (0,0) motion;
2524 // avg_sr_coded_error: average of the SSE per pixel of each frame;
2525 // avg_raw_err_stdev: average of the standard deviation of (0,0)
2526 // motion error per block of each frame.
2527 const int can_disable_internal_arfs = gf_cfg->gf_min_pyr_height <= 1;
2528 if (can_disable_internal_arfs &&
2529 gf_stats.zero_motion_accumulator > MIN_ZERO_MOTION &&
2530 gf_stats.avg_sr_coded_error < MAX_SR_CODED_ERROR &&
2531 gf_stats.avg_raw_err_stdev < MAX_RAW_ERR_VAR) {
2532 cpi->ppi->internal_altref_allowed = 0;
2533 }
2534
2535 int use_alt_ref;
2536 if (can_disable_arf) {
2537 use_alt_ref =
2538 !is_almost_static(gf_stats.zero_motion_accumulator,
2539 twopass->kf_zeromotion_pct, cpi->ppi->lap_enabled) &&
2540 p_rc->use_arf_in_this_kf_group && (i < gf_cfg->lag_in_frames) &&
2541 (i >= MIN_GF_INTERVAL);
2542 } else {
2543 use_alt_ref = p_rc->use_arf_in_this_kf_group &&
2544 (i < gf_cfg->lag_in_frames) && (i > 2);
2545 }
2546 if (use_alt_ref) {
2547 gf_group->max_layer_depth_allowed = gf_cfg->gf_max_pyr_height;
2548 } else {
2549 gf_group->max_layer_depth_allowed = 0;
2550 }
2551
2552 int alt_offset = 0;
2553 // The length reduction strategy is tweaked for certain cases, and doesn't
2554 // work well for certain other cases.
2555 const int allow_gf_length_reduction =
2556 ((rc_cfg->mode == AOM_Q && rc_cfg->cq_level <= 128) ||
2557 !cpi->ppi->internal_altref_allowed) &&
2558 !is_lossless_requested(rc_cfg);
2559
2560 if (allow_gf_length_reduction && use_alt_ref) {
2561 // adjust length of this gf group if one of the following condition met
2562 // 1: only one overlay frame left and this gf is too long
2563 // 2: next gf group is too short to have arf compared to the current gf
2564
2565 // maximum length of next gf group
2566 const int next_gf_len = rc->frames_to_key - i;
2567 const int single_overlay_left =
2568 next_gf_len == 0 && i > REDUCE_GF_LENGTH_THRESH;
2569 // the next gf is probably going to have a ARF but it will be shorter than
2570 // this gf
2571 const int unbalanced_gf =
2572 i > REDUCE_GF_LENGTH_TO_KEY_THRESH &&
2573 next_gf_len + 1 < REDUCE_GF_LENGTH_TO_KEY_THRESH &&
2574 next_gf_len + 1 >= rc->min_gf_interval;
2575
2576 if (single_overlay_left || unbalanced_gf) {
2577 const int roll_back = REDUCE_GF_LENGTH_BY;
2578 // Reduce length only if active_min_gf_interval will be respected later.
2579 if (i - roll_back >= active_min_gf_interval + 1) {
2580 alt_offset = -roll_back;
2581 i -= roll_back;
2582 if (is_final_pass) rc->intervals_till_gf_calculate_due = 0;
2583 p_rc->gf_intervals[p_rc->cur_gf_index] -= roll_back;
2584 reset_fpf_position(&cpi->twopass_frame, start_pos);
2585 accumulate_gop_stats(cpi, is_intra_only, f_w, f_h, &next_frame,
2586 start_pos, &gf_stats, &i);
2587 }
2588 }
2589 }
2590
2591 update_gop_length(rc, p_rc, i, is_final_pass);
2592
2593 // Set up the structure of this Group-Of-Pictures (same as GF_GROUP)
2594 av1_gop_setup_structure(cpi);
2595
2596 set_gop_bits_boost(cpi, i, is_intra_only, is_final_pass, use_alt_ref,
2597 alt_offset, start_pos, &gf_stats);
2598
2599 frame_params->frame_type =
2600 rc->frames_since_key == 0 ? KEY_FRAME : INTER_FRAME;
2601 frame_params->show_frame =
2602 !(gf_group->update_type[cpi->gf_frame_index] == ARF_UPDATE ||
2603 gf_group->update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE);
2604 }
2605
2606 #if CONFIG_THREE_PASS
2607 /*!\brief Define a GF group for the third apss.
2608 *
2609 * \ingroup gf_group_algo
2610 * This function defines the structure of a GF group for the third pass, along
2611 * with various parameters regarding bit-allocation and quality setup based on
2612 * the two-pass bitstream.
2613 * Much of the function still uses the strategies used for the second pass and
2614 * relies on first pass statistics. It is expected that over time these portions
2615 * would be replaced with strategies specific to the third pass.
2616 *
2617 * \param[in] cpi Top-level encoder structure
2618 * \param[in] frame_params Structure with frame parameters
2619 * \param[in] is_final_pass Whether this is the final pass for the
2620 * GF group, or a trial (non-zero)
2621 *
2622 * \return 0: Success;
2623 * -1: There are conflicts between the bitstream and current config
2624 * The values in cpi->ppi->gf_group are also changed.
2625 */
define_gf_group_pass3(AV1_COMP * cpi,EncodeFrameParams * frame_params,int is_final_pass)2626 static int define_gf_group_pass3(AV1_COMP *cpi, EncodeFrameParams *frame_params,
2627 int is_final_pass) {
2628 if (!cpi->third_pass_ctx) return -1;
2629 AV1_COMMON *const cm = &cpi->common;
2630 RATE_CONTROL *const rc = &cpi->rc;
2631 PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
2632 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
2633 FIRSTPASS_STATS next_frame;
2634 const FIRSTPASS_STATS *const start_pos = cpi->twopass_frame.stats_in;
2635 GF_GROUP *gf_group = &cpi->ppi->gf_group;
2636 const GFConfig *const gf_cfg = &oxcf->gf_cfg;
2637 const int f_w = cm->width;
2638 const int f_h = cm->height;
2639 int i;
2640 const int is_intra_only = rc->frames_since_key == 0;
2641
2642 cpi->ppi->internal_altref_allowed = (gf_cfg->gf_max_pyr_height > 1);
2643
2644 // Reset the GF group data structures unless this is a key
2645 // frame in which case it will already have been done.
2646 if (!is_intra_only) {
2647 av1_zero(cpi->ppi->gf_group);
2648 cpi->gf_frame_index = 0;
2649 }
2650
2651 GF_GROUP_STATS gf_stats;
2652 accumulate_gop_stats(cpi, is_intra_only, f_w, f_h, &next_frame, start_pos,
2653 &gf_stats, &i);
2654
2655 const int can_disable_arf = !gf_cfg->gf_min_pyr_height;
2656
2657 // TODO(any): set cpi->ppi->internal_altref_allowed accordingly;
2658
2659 int use_alt_ref = av1_check_use_arf(cpi->third_pass_ctx);
2660 if (use_alt_ref == 0 && !can_disable_arf) return -1;
2661 if (use_alt_ref) {
2662 gf_group->max_layer_depth_allowed = gf_cfg->gf_max_pyr_height;
2663 } else {
2664 gf_group->max_layer_depth_allowed = 0;
2665 }
2666
2667 update_gop_length(rc, p_rc, i, is_final_pass);
2668
2669 // Set up the structure of this Group-Of-Pictures (same as GF_GROUP)
2670 av1_gop_setup_structure(cpi);
2671
2672 set_gop_bits_boost(cpi, i, is_intra_only, is_final_pass, use_alt_ref, 0,
2673 start_pos, &gf_stats);
2674
2675 frame_params->frame_type = cpi->third_pass_ctx->frame_info[0].frame_type;
2676 frame_params->show_frame = cpi->third_pass_ctx->frame_info[0].is_show_frame;
2677 return 0;
2678 }
2679 #endif // CONFIG_THREE_PASS
2680
2681 // #define FIXED_ARF_BITS
2682 #ifdef FIXED_ARF_BITS
2683 #define ARF_BITS_FRACTION 0.75
2684 #endif
av1_gop_bit_allocation(const AV1_COMP * cpi,RATE_CONTROL * const rc,GF_GROUP * gf_group,int is_key_frame,int use_arf,int64_t gf_group_bits)2685 void av1_gop_bit_allocation(const AV1_COMP *cpi, RATE_CONTROL *const rc,
2686 GF_GROUP *gf_group, int is_key_frame, int use_arf,
2687 int64_t gf_group_bits) {
2688 PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
2689 // Calculate the extra bits to be used for boosted frame(s)
2690 #ifdef FIXED_ARF_BITS
2691 int gf_arf_bits = (int)(ARF_BITS_FRACTION * gf_group_bits);
2692 #else
2693 int gf_arf_bits = calculate_boost_bits(
2694 p_rc->baseline_gf_interval - (rc->frames_since_key == 0), p_rc->gfu_boost,
2695 gf_group_bits);
2696 #endif
2697
2698 gf_arf_bits = adjust_boost_bits_for_target_level(cpi, rc, gf_arf_bits,
2699 gf_group_bits, 1);
2700
2701 // Allocate bits to each of the frames in the GF group.
2702 allocate_gf_group_bits(gf_group, p_rc, rc, gf_group_bits, gf_arf_bits,
2703 is_key_frame, use_arf);
2704 }
2705
2706 // Minimum % intra coding observed in first pass (1.0 = 100%)
2707 #define MIN_INTRA_LEVEL 0.25
2708 // Minimum ratio between the % of intra coding and inter coding in the first
2709 // pass after discounting neutral blocks (discounting neutral blocks in this
2710 // way helps catch scene cuts in clips with very flat areas or letter box
2711 // format clips with image padding.
2712 #define INTRA_VS_INTER_THRESH 2.0
2713 // Hard threshold where the first pass chooses intra for almost all blocks.
2714 // In such a case even if the frame is not a scene cut coding a key frame
2715 // may be a good option.
2716 #define VERY_LOW_INTER_THRESH 0.05
2717 // Maximum threshold for the relative ratio of intra error score vs best
2718 // inter error score.
2719 #define KF_II_ERR_THRESHOLD 1.9
2720 // In real scene cuts there is almost always a sharp change in the intra
2721 // or inter error score.
2722 #define ERR_CHANGE_THRESHOLD 0.4
2723 // For real scene cuts we expect an improvment in the intra inter error
2724 // ratio in the next frame.
2725 #define II_IMPROVEMENT_THRESHOLD 3.5
2726 #define KF_II_MAX 128.0
2727 // Intra / Inter threshold very low
2728 #define VERY_LOW_II 1.5
2729 // Clean slide transitions we expect a sharp single frame spike in error.
2730 #define ERROR_SPIKE 5.0
2731
2732 // Slide show transition detection.
2733 // Tests for case where there is very low error either side of the current frame
2734 // but much higher just for this frame. This can help detect key frames in
2735 // slide shows even where the slides are pictures of different sizes.
2736 // Also requires that intra and inter errors are very similar to help eliminate
2737 // harmful false positives.
2738 // It will not help if the transition is a fade or other multi-frame effect.
slide_transition(const FIRSTPASS_STATS * this_frame,const FIRSTPASS_STATS * last_frame,const FIRSTPASS_STATS * next_frame)2739 static int slide_transition(const FIRSTPASS_STATS *this_frame,
2740 const FIRSTPASS_STATS *last_frame,
2741 const FIRSTPASS_STATS *next_frame) {
2742 return (this_frame->intra_error < (this_frame->coded_error * VERY_LOW_II)) &&
2743 (this_frame->coded_error > (last_frame->coded_error * ERROR_SPIKE)) &&
2744 (this_frame->coded_error > (next_frame->coded_error * ERROR_SPIKE));
2745 }
2746
2747 // Threshold for use of the lagging second reference frame. High second ref
2748 // usage may point to a transient event like a flash or occlusion rather than
2749 // a real scene cut.
2750 // We adapt the threshold based on number of frames in this key-frame group so
2751 // far.
get_second_ref_usage_thresh(int frame_count_so_far)2752 static double get_second_ref_usage_thresh(int frame_count_so_far) {
2753 const int adapt_upto = 32;
2754 const double min_second_ref_usage_thresh = 0.085;
2755 const double second_ref_usage_thresh_max_delta = 0.035;
2756 if (frame_count_so_far >= adapt_upto) {
2757 return min_second_ref_usage_thresh + second_ref_usage_thresh_max_delta;
2758 }
2759 return min_second_ref_usage_thresh +
2760 ((double)frame_count_so_far / (adapt_upto - 1)) *
2761 second_ref_usage_thresh_max_delta;
2762 }
2763
test_candidate_kf(const FIRSTPASS_INFO * firstpass_info,int this_stats_index,int frame_count_so_far,enum aom_rc_mode rc_mode,int scenecut_mode,int num_mbs)2764 static int test_candidate_kf(const FIRSTPASS_INFO *firstpass_info,
2765 int this_stats_index, int frame_count_so_far,
2766 enum aom_rc_mode rc_mode, int scenecut_mode,
2767 int num_mbs) {
2768 const FIRSTPASS_STATS *last_stats =
2769 av1_firstpass_info_peek(firstpass_info, this_stats_index - 1);
2770 const FIRSTPASS_STATS *this_stats =
2771 av1_firstpass_info_peek(firstpass_info, this_stats_index);
2772 const FIRSTPASS_STATS *next_stats =
2773 av1_firstpass_info_peek(firstpass_info, this_stats_index + 1);
2774 if (last_stats == NULL || this_stats == NULL || next_stats == NULL) {
2775 return 0;
2776 }
2777
2778 int is_viable_kf = 0;
2779 double pcnt_intra = 1.0 - this_stats->pcnt_inter;
2780 double modified_pcnt_inter =
2781 this_stats->pcnt_inter - this_stats->pcnt_neutral;
2782 const double second_ref_usage_thresh =
2783 get_second_ref_usage_thresh(frame_count_so_far);
2784 int frames_to_test_after_candidate_key = SCENE_CUT_KEY_TEST_INTERVAL;
2785 int count_for_tolerable_prediction = 3;
2786
2787 // We do "-1" because the candidate key is not counted.
2788 int stats_after_this_stats =
2789 av1_firstpass_info_future_count(firstpass_info, this_stats_index) - 1;
2790
2791 if (scenecut_mode == ENABLE_SCENECUT_MODE_1) {
2792 if (stats_after_this_stats < 3) {
2793 return 0;
2794 } else {
2795 frames_to_test_after_candidate_key = 3;
2796 count_for_tolerable_prediction = 1;
2797 }
2798 }
2799 // Make sure we have enough stats after the candidate key.
2800 frames_to_test_after_candidate_key =
2801 AOMMIN(frames_to_test_after_candidate_key, stats_after_this_stats);
2802
2803 // Does the frame satisfy the primary criteria of a key frame?
2804 // See above for an explanation of the test criteria.
2805 // If so, then examine how well it predicts subsequent frames.
2806 if (IMPLIES(rc_mode == AOM_Q, frame_count_so_far >= 3) &&
2807 (this_stats->pcnt_second_ref < second_ref_usage_thresh) &&
2808 (next_stats->pcnt_second_ref < second_ref_usage_thresh) &&
2809 ((this_stats->pcnt_inter < VERY_LOW_INTER_THRESH) ||
2810 slide_transition(this_stats, last_stats, next_stats) ||
2811 ((pcnt_intra > MIN_INTRA_LEVEL) &&
2812 (pcnt_intra > (INTRA_VS_INTER_THRESH * modified_pcnt_inter)) &&
2813 ((this_stats->intra_error /
2814 DOUBLE_DIVIDE_CHECK(this_stats->coded_error)) <
2815 KF_II_ERR_THRESHOLD) &&
2816 ((fabs(last_stats->coded_error - this_stats->coded_error) /
2817 DOUBLE_DIVIDE_CHECK(this_stats->coded_error) >
2818 ERR_CHANGE_THRESHOLD) ||
2819 (fabs(last_stats->intra_error - this_stats->intra_error) /
2820 DOUBLE_DIVIDE_CHECK(this_stats->intra_error) >
2821 ERR_CHANGE_THRESHOLD) ||
2822 ((next_stats->intra_error /
2823 DOUBLE_DIVIDE_CHECK(next_stats->coded_error)) >
2824 II_IMPROVEMENT_THRESHOLD))))) {
2825 int i;
2826 double boost_score = 0.0;
2827 double old_boost_score = 0.0;
2828 double decay_accumulator = 1.0;
2829
2830 // Examine how well the key frame predicts subsequent frames.
2831 for (i = 1; i <= frames_to_test_after_candidate_key; ++i) {
2832 // Get the next frame details
2833 const FIRSTPASS_STATS *local_next_frame =
2834 av1_firstpass_info_peek(firstpass_info, this_stats_index + i);
2835 double next_iiratio =
2836 (BOOST_FACTOR * local_next_frame->intra_error /
2837 DOUBLE_DIVIDE_CHECK(local_next_frame->coded_error));
2838
2839 if (next_iiratio > KF_II_MAX) next_iiratio = KF_II_MAX;
2840
2841 // Cumulative effect of decay in prediction quality.
2842 if (local_next_frame->pcnt_inter > 0.85)
2843 decay_accumulator *= local_next_frame->pcnt_inter;
2844 else
2845 decay_accumulator *= (0.85 + local_next_frame->pcnt_inter) / 2.0;
2846
2847 // Keep a running total.
2848 boost_score += (decay_accumulator * next_iiratio);
2849
2850 // Test various breakout clauses.
2851 // TODO(any): Test of intra error should be normalized to an MB.
2852 if ((local_next_frame->pcnt_inter < 0.05) || (next_iiratio < 1.5) ||
2853 (((local_next_frame->pcnt_inter - local_next_frame->pcnt_neutral) <
2854 0.20) &&
2855 (next_iiratio < 3.0)) ||
2856 ((boost_score - old_boost_score) < 3.0) ||
2857 (local_next_frame->intra_error < (200.0 / (double)num_mbs))) {
2858 break;
2859 }
2860
2861 old_boost_score = boost_score;
2862 }
2863
2864 // If there is tolerable prediction for at least the next 3 frames then
2865 // break out else discard this potential key frame and move on
2866 if (boost_score > 30.0 && (i > count_for_tolerable_prediction)) {
2867 is_viable_kf = 1;
2868 } else {
2869 is_viable_kf = 0;
2870 }
2871 }
2872 return is_viable_kf;
2873 }
2874
2875 #define FRAMES_TO_CHECK_DECAY 8
2876 #define KF_MIN_FRAME_BOOST 80.0
2877 #define KF_MAX_FRAME_BOOST 128.0
2878 #define MIN_KF_BOOST 600 // Minimum boost for non-static KF interval
2879 #define MAX_KF_BOOST 3200
2880 #define MIN_STATIC_KF_BOOST 5400 // Minimum boost for static KF interval
2881
detect_app_forced_key(AV1_COMP * cpi)2882 static int detect_app_forced_key(AV1_COMP *cpi) {
2883 int num_frames_to_app_forced_key = is_forced_keyframe_pending(
2884 cpi->ppi->lookahead, cpi->ppi->lookahead->max_sz, cpi->compressor_stage);
2885 return num_frames_to_app_forced_key;
2886 }
2887
get_projected_kf_boost(AV1_COMP * cpi)2888 static int get_projected_kf_boost(AV1_COMP *cpi) {
2889 /*
2890 * If num_stats_used_for_kf_boost >= frames_to_key, then
2891 * all stats needed for prior boost calculation are available.
2892 * Hence projecting the prior boost is not needed in this cases.
2893 */
2894 if (cpi->ppi->p_rc.num_stats_used_for_kf_boost >= cpi->rc.frames_to_key)
2895 return cpi->ppi->p_rc.kf_boost;
2896
2897 // Get the current tpl factor (number of frames = frames_to_key).
2898 double tpl_factor = av1_get_kf_boost_projection_factor(cpi->rc.frames_to_key);
2899 // Get the tpl factor when number of frames = num_stats_used_for_kf_boost.
2900 double tpl_factor_num_stats = av1_get_kf_boost_projection_factor(
2901 cpi->ppi->p_rc.num_stats_used_for_kf_boost);
2902 int projected_kf_boost =
2903 (int)rint((tpl_factor * cpi->ppi->p_rc.kf_boost) / tpl_factor_num_stats);
2904 return projected_kf_boost;
2905 }
2906
2907 /*!\brief Determine the location of the next key frame
2908 *
2909 * \ingroup gf_group_algo
2910 * This function decides the placement of the next key frame when a
2911 * scenecut is detected or the maximum key frame distance is reached.
2912 *
2913 * \param[in] cpi Top-level encoder structure
2914 * \param[in] firstpass_info struct for firstpass info
2915 * \param[in] num_frames_to_detect_scenecut Maximum lookahead frames.
2916 * \param[in] search_start_idx the start index for searching key frame.
2917 * Set it to one if we already know the
2918 * current frame is key frame. Otherwise,
2919 * set it to zero.
2920 *
2921 * \return Number of frames to the next key including the current frame.
2922 */
define_kf_interval(AV1_COMP * cpi,const FIRSTPASS_INFO * firstpass_info,int num_frames_to_detect_scenecut,int search_start_idx)2923 static int define_kf_interval(AV1_COMP *cpi,
2924 const FIRSTPASS_INFO *firstpass_info,
2925 int num_frames_to_detect_scenecut,
2926 int search_start_idx) {
2927 const TWO_PASS *const twopass = &cpi->ppi->twopass;
2928 const RATE_CONTROL *const rc = &cpi->rc;
2929 PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
2930 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
2931 const KeyFrameCfg *const kf_cfg = &oxcf->kf_cfg;
2932 double recent_loop_decay[FRAMES_TO_CHECK_DECAY];
2933 double decay_accumulator = 1.0;
2934 int i = 0, j;
2935 int frames_to_key = search_start_idx;
2936 int frames_since_key = rc->frames_since_key + 1;
2937 int scenecut_detected = 0;
2938
2939 int num_frames_to_next_key = detect_app_forced_key(cpi);
2940
2941 if (num_frames_to_detect_scenecut == 0) {
2942 if (num_frames_to_next_key != -1)
2943 return num_frames_to_next_key;
2944 else
2945 return rc->frames_to_key;
2946 }
2947
2948 if (num_frames_to_next_key != -1)
2949 num_frames_to_detect_scenecut =
2950 AOMMIN(num_frames_to_detect_scenecut, num_frames_to_next_key);
2951
2952 // Initialize the decay rates for the recent frames to check
2953 for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) recent_loop_decay[j] = 1.0;
2954
2955 i = 0;
2956 const int num_mbs = (oxcf->resize_cfg.resize_mode != RESIZE_NONE)
2957 ? cpi->initial_mbs
2958 : cpi->common.mi_params.MBs;
2959 const int future_stats_count =
2960 av1_firstpass_info_future_count(firstpass_info, 0);
2961 while (frames_to_key < future_stats_count &&
2962 frames_to_key < num_frames_to_detect_scenecut) {
2963 // Provided that we are not at the end of the file...
2964 if ((cpi->ppi->p_rc.enable_scenecut_detection > 0) && kf_cfg->auto_key &&
2965 frames_to_key + 1 < future_stats_count) {
2966 double loop_decay_rate;
2967
2968 // Check for a scene cut.
2969 if (frames_since_key >= kf_cfg->key_freq_min) {
2970 scenecut_detected = test_candidate_kf(
2971 &twopass->firstpass_info, frames_to_key, frames_since_key,
2972 oxcf->rc_cfg.mode, cpi->ppi->p_rc.enable_scenecut_detection,
2973 num_mbs);
2974 if (scenecut_detected) {
2975 break;
2976 }
2977 }
2978
2979 // How fast is the prediction quality decaying?
2980 const FIRSTPASS_STATS *next_stats =
2981 av1_firstpass_info_peek(firstpass_info, frames_to_key + 1);
2982 loop_decay_rate = get_prediction_decay_rate(next_stats);
2983
2984 // We want to know something about the recent past... rather than
2985 // as used elsewhere where we are concerned with decay in prediction
2986 // quality since the last GF or KF.
2987 recent_loop_decay[i % FRAMES_TO_CHECK_DECAY] = loop_decay_rate;
2988 decay_accumulator = 1.0;
2989 for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j)
2990 decay_accumulator *= recent_loop_decay[j];
2991
2992 // Special check for transition or high motion followed by a
2993 // static scene.
2994 if (frames_since_key >= kf_cfg->key_freq_min) {
2995 scenecut_detected = detect_transition_to_still(
2996 firstpass_info, frames_to_key + 1, rc->min_gf_interval, i,
2997 kf_cfg->key_freq_max - i, loop_decay_rate, decay_accumulator);
2998 if (scenecut_detected) {
2999 // In the case of transition followed by a static scene, the key frame
3000 // could be a good predictor for the following frames, therefore we
3001 // do not use an arf.
3002 p_rc->use_arf_in_this_kf_group = 0;
3003 break;
3004 }
3005 }
3006
3007 // Step on to the next frame.
3008 ++frames_to_key;
3009 ++frames_since_key;
3010
3011 // If we don't have a real key frame within the next two
3012 // key_freq_max intervals then break out of the loop.
3013 if (frames_to_key >= 2 * kf_cfg->key_freq_max) {
3014 break;
3015 }
3016 } else {
3017 ++frames_to_key;
3018 ++frames_since_key;
3019 }
3020 ++i;
3021 }
3022 if (cpi->ppi->lap_enabled && !scenecut_detected)
3023 frames_to_key = num_frames_to_next_key;
3024
3025 return frames_to_key;
3026 }
3027
get_kf_group_avg_error(TWO_PASS * twopass,TWO_PASS_FRAME * twopass_frame,const FIRSTPASS_STATS * first_frame,const FIRSTPASS_STATS * start_position,int frames_to_key)3028 static double get_kf_group_avg_error(TWO_PASS *twopass,
3029 TWO_PASS_FRAME *twopass_frame,
3030 const FIRSTPASS_STATS *first_frame,
3031 const FIRSTPASS_STATS *start_position,
3032 int frames_to_key) {
3033 FIRSTPASS_STATS cur_frame = *first_frame;
3034 int num_frames, i;
3035 double kf_group_avg_error = 0.0;
3036
3037 reset_fpf_position(twopass_frame, start_position);
3038
3039 for (i = 0; i < frames_to_key; ++i) {
3040 kf_group_avg_error += cur_frame.coded_error;
3041 if (EOF == input_stats(twopass, twopass_frame, &cur_frame)) break;
3042 }
3043 num_frames = i + 1;
3044 num_frames = AOMMIN(num_frames, frames_to_key);
3045 kf_group_avg_error = kf_group_avg_error / num_frames;
3046
3047 return (kf_group_avg_error);
3048 }
3049
get_kf_group_bits(AV1_COMP * cpi,double kf_group_err,double kf_group_avg_error)3050 static int64_t get_kf_group_bits(AV1_COMP *cpi, double kf_group_err,
3051 double kf_group_avg_error) {
3052 RATE_CONTROL *const rc = &cpi->rc;
3053 TWO_PASS *const twopass = &cpi->ppi->twopass;
3054 int64_t kf_group_bits;
3055 if (cpi->ppi->lap_enabled) {
3056 kf_group_bits = (int64_t)rc->frames_to_key * rc->avg_frame_bandwidth;
3057 if (cpi->oxcf.rc_cfg.vbr_corpus_complexity_lap) {
3058 double vbr_corpus_complexity_lap =
3059 cpi->oxcf.rc_cfg.vbr_corpus_complexity_lap / 10.0;
3060 /* Get the average corpus complexity of the frame */
3061 kf_group_bits = (int64_t)(kf_group_bits * (kf_group_avg_error /
3062 vbr_corpus_complexity_lap));
3063 }
3064 } else {
3065 kf_group_bits = (int64_t)(twopass->bits_left *
3066 (kf_group_err / twopass->modified_error_left));
3067 }
3068
3069 return kf_group_bits;
3070 }
3071
calc_avg_stats(AV1_COMP * cpi,FIRSTPASS_STATS * avg_frame_stat)3072 static int calc_avg_stats(AV1_COMP *cpi, FIRSTPASS_STATS *avg_frame_stat) {
3073 RATE_CONTROL *const rc = &cpi->rc;
3074 TWO_PASS *const twopass = &cpi->ppi->twopass;
3075 FIRSTPASS_STATS cur_frame;
3076 av1_zero(cur_frame);
3077 int num_frames = 0;
3078 // Accumulate total stat using available number of stats.
3079 for (num_frames = 0; num_frames < (rc->frames_to_key - 1); ++num_frames) {
3080 if (EOF == input_stats(twopass, &cpi->twopass_frame, &cur_frame)) break;
3081 av1_accumulate_stats(avg_frame_stat, &cur_frame);
3082 }
3083
3084 if (num_frames < 2) {
3085 return num_frames;
3086 }
3087 // Average the total stat
3088 avg_frame_stat->weight = avg_frame_stat->weight / num_frames;
3089 avg_frame_stat->intra_error = avg_frame_stat->intra_error / num_frames;
3090 avg_frame_stat->frame_avg_wavelet_energy =
3091 avg_frame_stat->frame_avg_wavelet_energy / num_frames;
3092 avg_frame_stat->coded_error = avg_frame_stat->coded_error / num_frames;
3093 avg_frame_stat->sr_coded_error = avg_frame_stat->sr_coded_error / num_frames;
3094 avg_frame_stat->pcnt_inter = avg_frame_stat->pcnt_inter / num_frames;
3095 avg_frame_stat->pcnt_motion = avg_frame_stat->pcnt_motion / num_frames;
3096 avg_frame_stat->pcnt_second_ref =
3097 avg_frame_stat->pcnt_second_ref / num_frames;
3098 avg_frame_stat->pcnt_neutral = avg_frame_stat->pcnt_neutral / num_frames;
3099 avg_frame_stat->intra_skip_pct = avg_frame_stat->intra_skip_pct / num_frames;
3100 avg_frame_stat->inactive_zone_rows =
3101 avg_frame_stat->inactive_zone_rows / num_frames;
3102 avg_frame_stat->inactive_zone_cols =
3103 avg_frame_stat->inactive_zone_cols / num_frames;
3104 avg_frame_stat->MVr = avg_frame_stat->MVr / num_frames;
3105 avg_frame_stat->mvr_abs = avg_frame_stat->mvr_abs / num_frames;
3106 avg_frame_stat->MVc = avg_frame_stat->MVc / num_frames;
3107 avg_frame_stat->mvc_abs = avg_frame_stat->mvc_abs / num_frames;
3108 avg_frame_stat->MVrv = avg_frame_stat->MVrv / num_frames;
3109 avg_frame_stat->MVcv = avg_frame_stat->MVcv / num_frames;
3110 avg_frame_stat->mv_in_out_count =
3111 avg_frame_stat->mv_in_out_count / num_frames;
3112 avg_frame_stat->new_mv_count = avg_frame_stat->new_mv_count / num_frames;
3113 avg_frame_stat->count = avg_frame_stat->count / num_frames;
3114 avg_frame_stat->duration = avg_frame_stat->duration / num_frames;
3115
3116 return num_frames;
3117 }
3118
get_kf_boost_score(AV1_COMP * cpi,double kf_raw_err,double * zero_motion_accumulator,double * sr_accumulator,int use_avg_stat)3119 static double get_kf_boost_score(AV1_COMP *cpi, double kf_raw_err,
3120 double *zero_motion_accumulator,
3121 double *sr_accumulator, int use_avg_stat) {
3122 RATE_CONTROL *const rc = &cpi->rc;
3123 TWO_PASS *const twopass = &cpi->ppi->twopass;
3124 FRAME_INFO *const frame_info = &cpi->frame_info;
3125 FIRSTPASS_STATS frame_stat;
3126 av1_zero(frame_stat);
3127 int i = 0, num_stat_used = 0;
3128 double boost_score = 0.0;
3129 const double kf_max_boost =
3130 cpi->oxcf.rc_cfg.mode == AOM_Q
3131 ? AOMMIN(AOMMAX(rc->frames_to_key * 2.0, KF_MIN_FRAME_BOOST),
3132 KF_MAX_FRAME_BOOST)
3133 : KF_MAX_FRAME_BOOST;
3134
3135 // Calculate the average using available number of stats.
3136 if (use_avg_stat) num_stat_used = calc_avg_stats(cpi, &frame_stat);
3137
3138 for (i = num_stat_used; i < (rc->frames_to_key - 1); ++i) {
3139 if (!use_avg_stat &&
3140 EOF == input_stats(twopass, &cpi->twopass_frame, &frame_stat))
3141 break;
3142
3143 // Monitor for static sections.
3144 // For the first frame in kf group, the second ref indicator is invalid.
3145 if (i > 0) {
3146 *zero_motion_accumulator =
3147 AOMMIN(*zero_motion_accumulator, get_zero_motion_factor(&frame_stat));
3148 } else {
3149 *zero_motion_accumulator = frame_stat.pcnt_inter - frame_stat.pcnt_motion;
3150 }
3151
3152 // Not all frames in the group are necessarily used in calculating boost.
3153 if ((*sr_accumulator < (kf_raw_err * 1.50)) &&
3154 (i <= rc->max_gf_interval * 2)) {
3155 double frame_boost;
3156 double zm_factor;
3157
3158 // Factor 0.75-1.25 based on how much of frame is static.
3159 zm_factor = (0.75 + (*zero_motion_accumulator / 2.0));
3160
3161 if (i < 2) *sr_accumulator = 0.0;
3162 frame_boost =
3163 calc_kf_frame_boost(&cpi->ppi->p_rc, frame_info, &frame_stat,
3164 sr_accumulator, kf_max_boost);
3165 boost_score += frame_boost * zm_factor;
3166 }
3167 }
3168 return boost_score;
3169 }
3170
3171 /*!\brief Interval(in seconds) to clip key-frame distance to in LAP.
3172 */
3173 #define MAX_KF_BITS_INTERVAL_SINGLE_PASS 5
3174
3175 /*!\brief Determine the next key frame group
3176 *
3177 * \ingroup gf_group_algo
3178 * This function decides the placement of the next key frame, and
3179 * calculates the bit allocation of the KF group and the keyframe itself.
3180 *
3181 * \param[in] cpi Top-level encoder structure
3182 * \param[in] this_frame Pointer to first pass stats
3183 */
find_next_key_frame(AV1_COMP * cpi,FIRSTPASS_STATS * this_frame)3184 static void find_next_key_frame(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame) {
3185 RATE_CONTROL *const rc = &cpi->rc;
3186 PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
3187 TWO_PASS *const twopass = &cpi->ppi->twopass;
3188 GF_GROUP *const gf_group = &cpi->ppi->gf_group;
3189 FRAME_INFO *const frame_info = &cpi->frame_info;
3190 AV1_COMMON *const cm = &cpi->common;
3191 CurrentFrame *const current_frame = &cm->current_frame;
3192 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
3193 const KeyFrameCfg *const kf_cfg = &oxcf->kf_cfg;
3194 const FIRSTPASS_STATS first_frame = *this_frame;
3195 FIRSTPASS_STATS next_frame;
3196 const FIRSTPASS_INFO *firstpass_info = &twopass->firstpass_info;
3197 av1_zero(next_frame);
3198
3199 rc->frames_since_key = 0;
3200 // Use arfs if possible.
3201 p_rc->use_arf_in_this_kf_group = is_altref_enabled(
3202 oxcf->gf_cfg.lag_in_frames, oxcf->gf_cfg.enable_auto_arf);
3203
3204 // Reset the GF group data structures.
3205 av1_zero(*gf_group);
3206 cpi->gf_frame_index = 0;
3207
3208 // KF is always a GF so clear frames till next gf counter.
3209 rc->frames_till_gf_update_due = 0;
3210
3211 if (has_no_stats_stage(cpi)) {
3212 int num_frames_to_app_forced_key = detect_app_forced_key(cpi);
3213 p_rc->this_key_frame_forced =
3214 current_frame->frame_number != 0 && rc->frames_to_key == 0;
3215 if (num_frames_to_app_forced_key != -1)
3216 rc->frames_to_key = num_frames_to_app_forced_key;
3217 else
3218 rc->frames_to_key = AOMMAX(1, kf_cfg->key_freq_max);
3219 correct_frames_to_key(cpi);
3220 p_rc->kf_boost = DEFAULT_KF_BOOST;
3221 gf_group->update_type[0] = KF_UPDATE;
3222 return;
3223 }
3224 int i;
3225 const FIRSTPASS_STATS *const start_position = cpi->twopass_frame.stats_in;
3226 int kf_bits = 0;
3227 double zero_motion_accumulator = 1.0;
3228 double boost_score = 0.0;
3229 double kf_raw_err = 0.0;
3230 double kf_mod_err = 0.0;
3231 double sr_accumulator = 0.0;
3232 double kf_group_avg_error = 0.0;
3233 int frames_to_key, frames_to_key_clipped = INT_MAX;
3234 int64_t kf_group_bits_clipped = INT64_MAX;
3235
3236 // Is this a forced key frame by interval.
3237 p_rc->this_key_frame_forced = p_rc->next_key_frame_forced;
3238
3239 twopass->kf_group_bits = 0; // Total bits available to kf group
3240 twopass->kf_group_error_left = 0; // Group modified error score.
3241
3242 kf_raw_err = this_frame->intra_error;
3243 kf_mod_err = calculate_modified_err(frame_info, twopass, oxcf, this_frame);
3244
3245 // We assume the current frame is a key frame and we are looking for the next
3246 // key frame. Therefore search_start_idx = 1
3247 frames_to_key = define_kf_interval(cpi, firstpass_info, kf_cfg->key_freq_max,
3248 /*search_start_idx=*/1);
3249
3250 if (frames_to_key != -1) {
3251 rc->frames_to_key = AOMMIN(kf_cfg->key_freq_max, frames_to_key);
3252 } else {
3253 rc->frames_to_key = kf_cfg->key_freq_max;
3254 }
3255
3256 if (cpi->ppi->lap_enabled) correct_frames_to_key(cpi);
3257
3258 // If there is a max kf interval set by the user we must obey it.
3259 // We already breakout of the loop above at 2x max.
3260 // This code centers the extra kf if the actual natural interval
3261 // is between 1x and 2x.
3262 if (kf_cfg->auto_key && rc->frames_to_key > kf_cfg->key_freq_max) {
3263 FIRSTPASS_STATS tmp_frame = first_frame;
3264
3265 rc->frames_to_key /= 2;
3266
3267 // Reset to the start of the group.
3268 reset_fpf_position(&cpi->twopass_frame, start_position);
3269 // Rescan to get the correct error data for the forced kf group.
3270 for (i = 0; i < rc->frames_to_key; ++i) {
3271 if (EOF == input_stats(twopass, &cpi->twopass_frame, &tmp_frame)) break;
3272 }
3273 p_rc->next_key_frame_forced = 1;
3274 } else if ((cpi->twopass_frame.stats_in ==
3275 twopass->stats_buf_ctx->stats_in_end &&
3276 is_stat_consumption_stage_twopass(cpi)) ||
3277 rc->frames_to_key >= kf_cfg->key_freq_max) {
3278 p_rc->next_key_frame_forced = 1;
3279 } else {
3280 p_rc->next_key_frame_forced = 0;
3281 }
3282
3283 double kf_group_err = 0;
3284 for (i = 0; i < rc->frames_to_key; ++i) {
3285 const FIRSTPASS_STATS *this_stats =
3286 av1_firstpass_info_peek(&twopass->firstpass_info, i);
3287 if (this_stats != NULL) {
3288 // Accumulate kf group error.
3289 kf_group_err += calculate_modified_err_new(
3290 frame_info, &firstpass_info->total_stats, this_stats,
3291 oxcf->rc_cfg.vbrbias, twopass->modified_error_min,
3292 twopass->modified_error_max);
3293 ++p_rc->num_stats_used_for_kf_boost;
3294 }
3295 }
3296
3297 // Calculate the number of bits that should be assigned to the kf group.
3298 if ((twopass->bits_left > 0 && twopass->modified_error_left > 0.0) ||
3299 (cpi->ppi->lap_enabled && oxcf->rc_cfg.mode != AOM_Q)) {
3300 // Maximum number of bits for a single normal frame (not key frame).
3301 const int max_bits = frame_max_bits(rc, oxcf);
3302
3303 // Maximum number of bits allocated to the key frame group.
3304 int64_t max_grp_bits;
3305
3306 if (oxcf->rc_cfg.vbr_corpus_complexity_lap) {
3307 kf_group_avg_error =
3308 get_kf_group_avg_error(twopass, &cpi->twopass_frame, &first_frame,
3309 start_position, rc->frames_to_key);
3310 }
3311
3312 // Default allocation based on bits left and relative
3313 // complexity of the section.
3314 twopass->kf_group_bits =
3315 get_kf_group_bits(cpi, kf_group_err, kf_group_avg_error);
3316 // Clip based on maximum per frame rate defined by the user.
3317 max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key;
3318 if (twopass->kf_group_bits > max_grp_bits)
3319 twopass->kf_group_bits = max_grp_bits;
3320 } else {
3321 twopass->kf_group_bits = 0;
3322 }
3323 twopass->kf_group_bits = AOMMAX(0, twopass->kf_group_bits);
3324
3325 if (cpi->ppi->lap_enabled) {
3326 // In the case of single pass based on LAP, frames to key may have an
3327 // inaccurate value, and hence should be clipped to an appropriate
3328 // interval.
3329 frames_to_key_clipped =
3330 (int)(MAX_KF_BITS_INTERVAL_SINGLE_PASS * cpi->framerate);
3331
3332 // This variable calculates the bits allocated to kf_group with a clipped
3333 // frames_to_key.
3334 if (rc->frames_to_key > frames_to_key_clipped) {
3335 kf_group_bits_clipped =
3336 (int64_t)((double)twopass->kf_group_bits * frames_to_key_clipped /
3337 rc->frames_to_key);
3338 }
3339 }
3340
3341 // Reset the first pass file position.
3342 reset_fpf_position(&cpi->twopass_frame, start_position);
3343
3344 // Scan through the kf group collating various stats used to determine
3345 // how many bits to spend on it.
3346 boost_score = get_kf_boost_score(cpi, kf_raw_err, &zero_motion_accumulator,
3347 &sr_accumulator, 0);
3348 reset_fpf_position(&cpi->twopass_frame, start_position);
3349 // Store the zero motion percentage
3350 twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0);
3351
3352 // Calculate a section intra ratio used in setting max loop filter.
3353 twopass->section_intra_rating = calculate_section_intra_ratio(
3354 start_position, twopass->stats_buf_ctx->stats_in_end, rc->frames_to_key);
3355
3356 p_rc->kf_boost = (int)boost_score;
3357
3358 if (cpi->ppi->lap_enabled) {
3359 if (oxcf->rc_cfg.mode == AOM_Q) {
3360 p_rc->kf_boost = get_projected_kf_boost(cpi);
3361 } else {
3362 // TODO(any): Explore using average frame stats for AOM_Q as well.
3363 boost_score = get_kf_boost_score(
3364 cpi, kf_raw_err, &zero_motion_accumulator, &sr_accumulator, 1);
3365 reset_fpf_position(&cpi->twopass_frame, start_position);
3366 p_rc->kf_boost += (int)boost_score;
3367 }
3368 }
3369
3370 // Special case for static / slide show content but don't apply
3371 // if the kf group is very short.
3372 if ((zero_motion_accumulator > STATIC_KF_GROUP_FLOAT_THRESH) &&
3373 (rc->frames_to_key > 8)) {
3374 p_rc->kf_boost = AOMMAX(p_rc->kf_boost, MIN_STATIC_KF_BOOST);
3375 } else {
3376 // Apply various clamps for min and max boost
3377 p_rc->kf_boost = AOMMAX(p_rc->kf_boost, (rc->frames_to_key * 3));
3378 p_rc->kf_boost = AOMMAX(p_rc->kf_boost, MIN_KF_BOOST);
3379 #ifdef STRICT_RC
3380 p_rc->kf_boost = AOMMIN(p_rc->kf_boost, MAX_KF_BOOST);
3381 #endif
3382 }
3383
3384 // Work out how many bits to allocate for the key frame itself.
3385 // In case of LAP enabled for VBR, if the frames_to_key value is
3386 // very high, we calculate the bits based on a clipped value of
3387 // frames_to_key.
3388 kf_bits = calculate_boost_bits(
3389 AOMMIN(rc->frames_to_key, frames_to_key_clipped) - 1, p_rc->kf_boost,
3390 AOMMIN(twopass->kf_group_bits, kf_group_bits_clipped));
3391 // printf("kf boost = %d kf_bits = %d kf_zeromotion_pct = %d\n",
3392 // p_rc->kf_boost,
3393 // kf_bits, twopass->kf_zeromotion_pct);
3394 kf_bits = adjust_boost_bits_for_target_level(cpi, rc, kf_bits,
3395 twopass->kf_group_bits, 0);
3396
3397 twopass->kf_group_bits -= kf_bits;
3398
3399 // Save the bits to spend on the key frame.
3400 gf_group->bit_allocation[0] = kf_bits;
3401 gf_group->update_type[0] = KF_UPDATE;
3402
3403 // Note the total error score of the kf group minus the key frame itself.
3404 if (cpi->ppi->lap_enabled)
3405 // As we don't have enough stats to know the actual error of the group,
3406 // we assume the complexity of each frame to be equal to 1, and set the
3407 // error as the number of frames in the group(minus the keyframe).
3408 twopass->kf_group_error_left = (double)(rc->frames_to_key - 1);
3409 else
3410 twopass->kf_group_error_left = kf_group_err - kf_mod_err;
3411
3412 // Adjust the count of total modified error left.
3413 // The count of bits left is adjusted elsewhere based on real coded frame
3414 // sizes.
3415 twopass->modified_error_left -= kf_group_err;
3416 }
3417
3418 #define ARF_STATS_OUTPUT 0
3419 #if ARF_STATS_OUTPUT
3420 unsigned int arf_count = 0;
3421 #endif
3422
get_section_target_bandwidth(AV1_COMP * cpi)3423 static int get_section_target_bandwidth(AV1_COMP *cpi) {
3424 AV1_COMMON *const cm = &cpi->common;
3425 CurrentFrame *const current_frame = &cm->current_frame;
3426 RATE_CONTROL *const rc = &cpi->rc;
3427 TWO_PASS *const twopass = &cpi->ppi->twopass;
3428 int64_t section_target_bandwidth;
3429 const int frames_left = (int)(twopass->stats_buf_ctx->total_stats->count -
3430 current_frame->frame_number);
3431 if (cpi->ppi->lap_enabled)
3432 section_target_bandwidth = rc->avg_frame_bandwidth;
3433 else {
3434 section_target_bandwidth = twopass->bits_left / frames_left;
3435 section_target_bandwidth = AOMMIN(section_target_bandwidth, INT_MAX);
3436 }
3437 return (int)section_target_bandwidth;
3438 }
3439
set_twopass_params_based_on_fp_stats(AV1_COMP * cpi,const FIRSTPASS_STATS * this_frame_ptr)3440 static inline void set_twopass_params_based_on_fp_stats(
3441 AV1_COMP *cpi, const FIRSTPASS_STATS *this_frame_ptr) {
3442 if (this_frame_ptr == NULL) return;
3443
3444 TWO_PASS_FRAME *twopass_frame = &cpi->twopass_frame;
3445 // The multiplication by 256 reverses a scaling factor of (>> 8)
3446 // applied when combining MB error values for the frame.
3447 twopass_frame->mb_av_energy = log1p(this_frame_ptr->intra_error);
3448
3449 const FIRSTPASS_STATS *const total_stats =
3450 cpi->ppi->twopass.stats_buf_ctx->total_stats;
3451 if (is_fp_wavelet_energy_invalid(total_stats) == 0) {
3452 twopass_frame->frame_avg_haar_energy =
3453 log1p(this_frame_ptr->frame_avg_wavelet_energy);
3454 }
3455
3456 // Set the frame content type flag.
3457 if (this_frame_ptr->intra_skip_pct >= FC_ANIMATION_THRESH)
3458 twopass_frame->fr_content_type = FC_GRAPHICS_ANIMATION;
3459 else
3460 twopass_frame->fr_content_type = FC_NORMAL;
3461 }
3462
process_first_pass_stats(AV1_COMP * cpi,FIRSTPASS_STATS * this_frame)3463 static void process_first_pass_stats(AV1_COMP *cpi,
3464 FIRSTPASS_STATS *this_frame) {
3465 AV1_COMMON *const cm = &cpi->common;
3466 CurrentFrame *const current_frame = &cm->current_frame;
3467 RATE_CONTROL *const rc = &cpi->rc;
3468 PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
3469 TWO_PASS *const twopass = &cpi->ppi->twopass;
3470 FIRSTPASS_STATS *total_stats = twopass->stats_buf_ctx->total_stats;
3471
3472 if (cpi->oxcf.rc_cfg.mode != AOM_Q && current_frame->frame_number == 0 &&
3473 cpi->gf_frame_index == 0 && total_stats &&
3474 twopass->stats_buf_ctx->total_left_stats) {
3475 if (cpi->ppi->lap_enabled) {
3476 /*
3477 * Accumulate total_stats using available limited number of stats,
3478 * and assign it to total_left_stats.
3479 */
3480 *twopass->stats_buf_ctx->total_left_stats = *total_stats;
3481 }
3482 // Special case code for first frame.
3483 const int section_target_bandwidth = get_section_target_bandwidth(cpi);
3484 const double section_length =
3485 twopass->stats_buf_ctx->total_left_stats->count;
3486 const double section_error =
3487 twopass->stats_buf_ctx->total_left_stats->coded_error / section_length;
3488 const double section_intra_skip =
3489 twopass->stats_buf_ctx->total_left_stats->intra_skip_pct /
3490 section_length;
3491 const double section_inactive_zone =
3492 (twopass->stats_buf_ctx->total_left_stats->inactive_zone_rows * 2) /
3493 ((double)cm->mi_params.mb_rows * section_length);
3494 const int tmp_q = get_twopass_worst_quality(
3495 cpi, section_error, section_intra_skip + section_inactive_zone,
3496 section_target_bandwidth);
3497
3498 rc->active_worst_quality = tmp_q;
3499 rc->ni_av_qi = tmp_q;
3500 p_rc->last_q[INTER_FRAME] = tmp_q;
3501 p_rc->avg_q = av1_convert_qindex_to_q(tmp_q, cm->seq_params->bit_depth);
3502 p_rc->avg_frame_qindex[INTER_FRAME] = tmp_q;
3503 p_rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.rc_cfg.best_allowed_q) / 2;
3504 p_rc->avg_frame_qindex[KEY_FRAME] = p_rc->last_q[KEY_FRAME];
3505 }
3506
3507 if (cpi->twopass_frame.stats_in < twopass->stats_buf_ctx->stats_in_end) {
3508 *this_frame = *cpi->twopass_frame.stats_in;
3509 ++cpi->twopass_frame.stats_in;
3510 }
3511 set_twopass_params_based_on_fp_stats(cpi, this_frame);
3512 }
3513
setup_target_rate(AV1_COMP * cpi)3514 static void setup_target_rate(AV1_COMP *cpi) {
3515 RATE_CONTROL *const rc = &cpi->rc;
3516 GF_GROUP *const gf_group = &cpi->ppi->gf_group;
3517
3518 int target_rate = gf_group->bit_allocation[cpi->gf_frame_index];
3519
3520 if (has_no_stats_stage(cpi)) {
3521 av1_rc_set_frame_target(cpi, target_rate, cpi->common.width,
3522 cpi->common.height);
3523 }
3524
3525 rc->base_frame_target = target_rate;
3526 }
3527
av1_mark_flashes(FIRSTPASS_STATS * first_stats,FIRSTPASS_STATS * last_stats)3528 void av1_mark_flashes(FIRSTPASS_STATS *first_stats,
3529 FIRSTPASS_STATS *last_stats) {
3530 FIRSTPASS_STATS *this_stats = first_stats, *next_stats;
3531 while (this_stats < last_stats - 1) {
3532 next_stats = this_stats + 1;
3533 if (next_stats->pcnt_second_ref > next_stats->pcnt_inter &&
3534 next_stats->pcnt_second_ref >= 0.5) {
3535 this_stats->is_flash = 1;
3536 } else {
3537 this_stats->is_flash = 0;
3538 }
3539 this_stats = next_stats;
3540 }
3541 // We always treat the last one as none flash.
3542 if (last_stats - 1 >= first_stats) {
3543 (last_stats - 1)->is_flash = 0;
3544 }
3545 }
3546
3547 // Smooth-out the noise variance so it is more stable
3548 // Returns 0 on success, -1 on memory allocation failure.
3549 // TODO(bohanli): Use a better low-pass filter than averaging
smooth_filter_noise(FIRSTPASS_STATS * first_stats,FIRSTPASS_STATS * last_stats)3550 static int smooth_filter_noise(FIRSTPASS_STATS *first_stats,
3551 FIRSTPASS_STATS *last_stats) {
3552 int len = (int)(last_stats - first_stats);
3553 double *smooth_noise = aom_malloc(len * sizeof(*smooth_noise));
3554 if (!smooth_noise) return -1;
3555
3556 for (int i = 0; i < len; i++) {
3557 double total_noise = 0;
3558 double total_wt = 0;
3559 for (int j = -HALF_FILT_LEN; j <= HALF_FILT_LEN; j++) {
3560 int idx = AOMMIN(AOMMAX(i + j, 0), len - 1);
3561 if (first_stats[idx].is_flash) continue;
3562
3563 total_noise += first_stats[idx].noise_var;
3564 total_wt += 1.0;
3565 }
3566 if (total_wt > 0.01) {
3567 total_noise /= total_wt;
3568 } else {
3569 total_noise = first_stats[i].noise_var;
3570 }
3571 smooth_noise[i] = total_noise;
3572 }
3573
3574 for (int i = 0; i < len; i++) {
3575 first_stats[i].noise_var = smooth_noise[i];
3576 }
3577
3578 aom_free(smooth_noise);
3579 return 0;
3580 }
3581
3582 // Estimate the noise variance of each frame from the first pass stats
av1_estimate_noise(FIRSTPASS_STATS * first_stats,FIRSTPASS_STATS * last_stats,struct aom_internal_error_info * error_info)3583 void av1_estimate_noise(FIRSTPASS_STATS *first_stats,
3584 FIRSTPASS_STATS *last_stats,
3585 struct aom_internal_error_info *error_info) {
3586 FIRSTPASS_STATS *this_stats, *next_stats;
3587 double C1, C2, C3, noise;
3588 for (this_stats = first_stats + 2; this_stats < last_stats; this_stats++) {
3589 this_stats->noise_var = 0.0;
3590 // flashes tend to have high correlation of innovations, so ignore them.
3591 if (this_stats->is_flash || (this_stats - 1)->is_flash ||
3592 (this_stats - 2)->is_flash)
3593 continue;
3594
3595 C1 = (this_stats - 1)->intra_error *
3596 (this_stats->intra_error - this_stats->coded_error);
3597 C2 = (this_stats - 2)->intra_error *
3598 ((this_stats - 1)->intra_error - (this_stats - 1)->coded_error);
3599 C3 = (this_stats - 2)->intra_error *
3600 (this_stats->intra_error - this_stats->sr_coded_error);
3601 if (C1 <= 0 || C2 <= 0 || C3 <= 0) continue;
3602 C1 = sqrt(C1);
3603 C2 = sqrt(C2);
3604 C3 = sqrt(C3);
3605
3606 noise = (this_stats - 1)->intra_error - C1 * C2 / C3;
3607 noise = AOMMAX(noise, 0.01);
3608 this_stats->noise_var = noise;
3609 }
3610
3611 // Copy noise from the neighbor if the noise value is not trustworthy
3612 for (this_stats = first_stats + 2; this_stats < last_stats; this_stats++) {
3613 if (this_stats->is_flash || (this_stats - 1)->is_flash ||
3614 (this_stats - 2)->is_flash)
3615 continue;
3616 if (this_stats->noise_var < 1.0) {
3617 int found = 0;
3618 // TODO(bohanli): consider expanding to two directions at the same time
3619 for (next_stats = this_stats + 1; next_stats < last_stats; next_stats++) {
3620 if (next_stats->is_flash || (next_stats - 1)->is_flash ||
3621 (next_stats - 2)->is_flash || next_stats->noise_var < 1.0)
3622 continue;
3623 found = 1;
3624 this_stats->noise_var = next_stats->noise_var;
3625 break;
3626 }
3627 if (found) continue;
3628 for (next_stats = this_stats - 1; next_stats >= first_stats + 2;
3629 next_stats--) {
3630 if (next_stats->is_flash || (next_stats - 1)->is_flash ||
3631 (next_stats - 2)->is_flash || next_stats->noise_var < 1.0)
3632 continue;
3633 this_stats->noise_var = next_stats->noise_var;
3634 break;
3635 }
3636 }
3637 }
3638
3639 // copy the noise if this is a flash
3640 for (this_stats = first_stats + 2; this_stats < last_stats; this_stats++) {
3641 if (this_stats->is_flash || (this_stats - 1)->is_flash ||
3642 (this_stats - 2)->is_flash) {
3643 int found = 0;
3644 for (next_stats = this_stats + 1; next_stats < last_stats; next_stats++) {
3645 if (next_stats->is_flash || (next_stats - 1)->is_flash ||
3646 (next_stats - 2)->is_flash)
3647 continue;
3648 found = 1;
3649 this_stats->noise_var = next_stats->noise_var;
3650 break;
3651 }
3652 if (found) continue;
3653 for (next_stats = this_stats - 1; next_stats >= first_stats + 2;
3654 next_stats--) {
3655 if (next_stats->is_flash || (next_stats - 1)->is_flash ||
3656 (next_stats - 2)->is_flash)
3657 continue;
3658 this_stats->noise_var = next_stats->noise_var;
3659 break;
3660 }
3661 }
3662 }
3663
3664 // if we are at the first 2 frames, copy the noise
3665 for (this_stats = first_stats;
3666 this_stats < first_stats + 2 && (first_stats + 2) < last_stats;
3667 this_stats++) {
3668 this_stats->noise_var = (first_stats + 2)->noise_var;
3669 }
3670
3671 if (smooth_filter_noise(first_stats, last_stats) == -1) {
3672 aom_internal_error(error_info, AOM_CODEC_MEM_ERROR,
3673 "Error allocating buffers in smooth_filter_noise()");
3674 }
3675 }
3676
3677 // Estimate correlation coefficient of each frame with its previous frame.
av1_estimate_coeff(FIRSTPASS_STATS * first_stats,FIRSTPASS_STATS * last_stats)3678 void av1_estimate_coeff(FIRSTPASS_STATS *first_stats,
3679 FIRSTPASS_STATS *last_stats) {
3680 FIRSTPASS_STATS *this_stats;
3681 for (this_stats = first_stats + 1; this_stats < last_stats; this_stats++) {
3682 const double C =
3683 sqrt(AOMMAX((this_stats - 1)->intra_error *
3684 (this_stats->intra_error - this_stats->coded_error),
3685 0.001));
3686 const double cor_coeff =
3687 C /
3688 AOMMAX((this_stats - 1)->intra_error - this_stats->noise_var, 0.001);
3689
3690 this_stats->cor_coeff =
3691 cor_coeff *
3692 sqrt(AOMMAX((this_stats - 1)->intra_error - this_stats->noise_var,
3693 0.001) /
3694 AOMMAX(this_stats->intra_error - this_stats->noise_var, 0.001));
3695 // clip correlation coefficient.
3696 this_stats->cor_coeff = AOMMIN(AOMMAX(this_stats->cor_coeff, 0), 1);
3697 }
3698 first_stats->cor_coeff = 1.0;
3699 }
3700
av1_get_second_pass_params(AV1_COMP * cpi,EncodeFrameParams * const frame_params,unsigned int frame_flags)3701 void av1_get_second_pass_params(AV1_COMP *cpi,
3702 EncodeFrameParams *const frame_params,
3703 unsigned int frame_flags) {
3704 RATE_CONTROL *const rc = &cpi->rc;
3705 PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
3706 TWO_PASS *const twopass = &cpi->ppi->twopass;
3707 GF_GROUP *const gf_group = &cpi->ppi->gf_group;
3708 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
3709
3710 if (cpi->use_ducky_encode &&
3711 cpi->ducky_encode_info.frame_info.gop_mode == DUCKY_ENCODE_GOP_MODE_RCL) {
3712 frame_params->frame_type = gf_group->frame_type[cpi->gf_frame_index];
3713 frame_params->show_frame =
3714 !(gf_group->update_type[cpi->gf_frame_index] == ARF_UPDATE ||
3715 gf_group->update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE);
3716 if (cpi->gf_frame_index == 0) {
3717 av1_tf_info_reset(&cpi->ppi->tf_info);
3718 av1_tf_info_filtering(&cpi->ppi->tf_info, cpi, gf_group);
3719 }
3720 return;
3721 }
3722
3723 const FIRSTPASS_STATS *const start_pos = cpi->twopass_frame.stats_in;
3724 int update_total_stats = 0;
3725
3726 if (is_stat_consumption_stage(cpi) && !cpi->twopass_frame.stats_in) return;
3727
3728 // Check forced key frames.
3729 const int frames_to_next_forced_key = detect_app_forced_key(cpi);
3730 if (frames_to_next_forced_key == 0) {
3731 rc->frames_to_key = 0;
3732 frame_flags &= FRAMEFLAGS_KEY;
3733 } else if (frames_to_next_forced_key > 0 &&
3734 frames_to_next_forced_key < rc->frames_to_key) {
3735 rc->frames_to_key = frames_to_next_forced_key;
3736 }
3737
3738 assert(cpi->twopass_frame.stats_in != NULL);
3739 const int update_type = gf_group->update_type[cpi->gf_frame_index];
3740 frame_params->frame_type = gf_group->frame_type[cpi->gf_frame_index];
3741
3742 if (cpi->gf_frame_index < gf_group->size && !(frame_flags & FRAMEFLAGS_KEY)) {
3743 assert(cpi->gf_frame_index < gf_group->size);
3744
3745 setup_target_rate(cpi);
3746
3747 // If this is an arf frame then we dont want to read the stats file or
3748 // advance the input pointer as we already have what we need.
3749 if (update_type == ARF_UPDATE || update_type == INTNL_ARF_UPDATE) {
3750 const FIRSTPASS_STATS *const this_frame_ptr =
3751 read_frame_stats(twopass, &cpi->twopass_frame,
3752 gf_group->arf_src_offset[cpi->gf_frame_index]);
3753 set_twopass_params_based_on_fp_stats(cpi, this_frame_ptr);
3754 return;
3755 }
3756 }
3757
3758 if (oxcf->rc_cfg.mode == AOM_Q)
3759 rc->active_worst_quality = oxcf->rc_cfg.cq_level;
3760
3761 if (cpi->gf_frame_index == gf_group->size) {
3762 if (cpi->ppi->lap_enabled && cpi->ppi->p_rc.enable_scenecut_detection) {
3763 const int num_frames_to_detect_scenecut = MAX_GF_LENGTH_LAP + 1;
3764 const int frames_to_key = define_kf_interval(
3765 cpi, &twopass->firstpass_info, num_frames_to_detect_scenecut,
3766 /*search_start_idx=*/0);
3767 if (frames_to_key != -1)
3768 rc->frames_to_key = AOMMIN(rc->frames_to_key, frames_to_key);
3769 }
3770 }
3771
3772 FIRSTPASS_STATS this_frame;
3773 av1_zero(this_frame);
3774 // call above fn
3775 if (is_stat_consumption_stage(cpi)) {
3776 if (cpi->gf_frame_index < gf_group->size || rc->frames_to_key == 0) {
3777 process_first_pass_stats(cpi, &this_frame);
3778 update_total_stats = 1;
3779 }
3780 } else {
3781 rc->active_worst_quality = oxcf->rc_cfg.cq_level;
3782 }
3783
3784 // Keyframe and section processing.
3785 FIRSTPASS_STATS this_frame_copy;
3786 this_frame_copy = this_frame;
3787 if (rc->frames_to_key <= 0) {
3788 assert(rc->frames_to_key == 0);
3789 // Define next KF group and assign bits to it.
3790 frame_params->frame_type = KEY_FRAME;
3791 find_next_key_frame(cpi, &this_frame);
3792 this_frame = this_frame_copy;
3793 }
3794
3795 if (rc->frames_to_fwd_kf <= 0)
3796 rc->frames_to_fwd_kf = oxcf->kf_cfg.fwd_kf_dist;
3797
3798 // Define a new GF/ARF group. (Should always enter here for key frames).
3799 if (cpi->gf_frame_index == gf_group->size) {
3800 av1_tf_info_reset(&cpi->ppi->tf_info);
3801 #if CONFIG_BITRATE_ACCURACY && !CONFIG_THREE_PASS
3802 vbr_rc_reset_gop_data(&cpi->vbr_rc_info);
3803 #endif // CONFIG_BITRATE_ACCURACY
3804 int max_gop_length =
3805 (oxcf->gf_cfg.lag_in_frames >= 32)
3806 ? AOMMIN(MAX_GF_INTERVAL, oxcf->gf_cfg.lag_in_frames -
3807 oxcf->algo_cfg.arnr_max_frames / 2)
3808 : MAX_GF_LENGTH_LAP;
3809
3810 // Handle forward key frame when enabled.
3811 if (oxcf->kf_cfg.fwd_kf_dist > 0)
3812 max_gop_length = AOMMIN(rc->frames_to_fwd_kf + 1, max_gop_length);
3813
3814 // Use the provided gop size in low delay setting
3815 if (oxcf->gf_cfg.lag_in_frames == 0) max_gop_length = rc->max_gf_interval;
3816
3817 // Limit the max gop length for the last gop in 1 pass setting.
3818 max_gop_length = AOMMIN(max_gop_length, rc->frames_to_key);
3819
3820 // Identify regions if needed.
3821 // TODO(bohanli): identify regions for all stats available.
3822 if (rc->frames_since_key == 0 || rc->frames_since_key == 1 ||
3823 (p_rc->frames_till_regions_update - rc->frames_since_key <
3824 rc->frames_to_key &&
3825 p_rc->frames_till_regions_update - rc->frames_since_key <
3826 max_gop_length + 1)) {
3827 // how many frames we can analyze from this frame
3828 int rest_frames =
3829 AOMMIN(rc->frames_to_key, MAX_FIRSTPASS_ANALYSIS_FRAMES);
3830 rest_frames =
3831 AOMMIN(rest_frames, (int)(twopass->stats_buf_ctx->stats_in_end -
3832 cpi->twopass_frame.stats_in +
3833 (rc->frames_since_key == 0)));
3834 p_rc->frames_till_regions_update = rest_frames;
3835
3836 int ret;
3837 if (cpi->ppi->lap_enabled) {
3838 av1_mark_flashes(twopass->stats_buf_ctx->stats_in_start,
3839 twopass->stats_buf_ctx->stats_in_end);
3840 av1_estimate_noise(twopass->stats_buf_ctx->stats_in_start,
3841 twopass->stats_buf_ctx->stats_in_end,
3842 cpi->common.error);
3843 av1_estimate_coeff(twopass->stats_buf_ctx->stats_in_start,
3844 twopass->stats_buf_ctx->stats_in_end);
3845 ret = identify_regions(cpi->twopass_frame.stats_in, rest_frames,
3846 (rc->frames_since_key == 0), p_rc->regions,
3847 &p_rc->num_regions);
3848 } else {
3849 ret = identify_regions(
3850 cpi->twopass_frame.stats_in - (rc->frames_since_key == 0),
3851 rest_frames, 0, p_rc->regions, &p_rc->num_regions);
3852 }
3853 if (ret == -1) {
3854 aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR,
3855 "Error allocating buffers in identify_regions");
3856 }
3857 }
3858
3859 int cur_region_idx =
3860 find_regions_index(p_rc->regions, p_rc->num_regions,
3861 rc->frames_since_key - p_rc->regions_offset);
3862 if ((cur_region_idx >= 0 &&
3863 p_rc->regions[cur_region_idx].type == SCENECUT_REGION) ||
3864 rc->frames_since_key == 0) {
3865 // If we start from a scenecut, then the last GOP's arf boost is not
3866 // needed for this GOP.
3867 cpi->ppi->gf_state.arf_gf_boost_lst = 0;
3868 }
3869
3870 int need_gf_len = 1;
3871 #if CONFIG_THREE_PASS
3872 if (cpi->third_pass_ctx && oxcf->pass == AOM_RC_THIRD_PASS) {
3873 // set up bitstream to read
3874 if (!cpi->third_pass_ctx->input_file_name && oxcf->two_pass_output) {
3875 cpi->third_pass_ctx->input_file_name = oxcf->two_pass_output;
3876 }
3877 av1_open_second_pass_log(cpi, 1);
3878 THIRD_PASS_GOP_INFO *gop_info = &cpi->third_pass_ctx->gop_info;
3879 // Read in GOP information from the second pass file.
3880 av1_read_second_pass_gop_info(cpi->second_pass_log_stream, gop_info,
3881 cpi->common.error);
3882 #if CONFIG_BITRATE_ACCURACY
3883 TPL_INFO *tpl_info;
3884 AOM_CHECK_MEM_ERROR(cpi->common.error, tpl_info,
3885 aom_malloc(sizeof(*tpl_info)));
3886 av1_read_tpl_info(tpl_info, cpi->second_pass_log_stream,
3887 cpi->common.error);
3888 aom_free(tpl_info);
3889 #if CONFIG_THREE_PASS
3890 // TODO(angiebird): Put this part into a func
3891 cpi->vbr_rc_info.cur_gop_idx++;
3892 #endif // CONFIG_THREE_PASS
3893 #endif // CONFIG_BITRATE_ACCURACY
3894 // Read in third_pass_info from the bitstream.
3895 av1_set_gop_third_pass(cpi->third_pass_ctx);
3896 // Read in per-frame info from second-pass encoding
3897 av1_read_second_pass_per_frame_info(
3898 cpi->second_pass_log_stream, cpi->third_pass_ctx->frame_info,
3899 gop_info->num_frames, cpi->common.error);
3900
3901 p_rc->cur_gf_index = 0;
3902 p_rc->gf_intervals[0] = cpi->third_pass_ctx->gop_info.gf_length;
3903 need_gf_len = 0;
3904 }
3905 #endif // CONFIG_THREE_PASS
3906
3907 if (need_gf_len) {
3908 // If we cannot obtain GF group length from second_pass_file
3909 // TODO(jingning): Resolve the redundant calls here.
3910 if (rc->intervals_till_gf_calculate_due == 0 || 1) {
3911 calculate_gf_length(cpi, max_gop_length, MAX_NUM_GF_INTERVALS);
3912 }
3913
3914 if (max_gop_length > 16 && oxcf->algo_cfg.enable_tpl_model &&
3915 oxcf->gf_cfg.lag_in_frames >= 32 &&
3916 cpi->sf.tpl_sf.gop_length_decision_method != 3) {
3917 int this_idx = rc->frames_since_key +
3918 p_rc->gf_intervals[p_rc->cur_gf_index] -
3919 p_rc->regions_offset - 1;
3920 int this_region =
3921 find_regions_index(p_rc->regions, p_rc->num_regions, this_idx);
3922 int next_region =
3923 find_regions_index(p_rc->regions, p_rc->num_regions, this_idx + 1);
3924 // TODO(angiebird): Figure out why this_region and next_region are -1 in
3925 // unit test like AltRefFramePresenceTestLarge (aomedia:3134)
3926 int is_last_scenecut =
3927 p_rc->gf_intervals[p_rc->cur_gf_index] >= rc->frames_to_key ||
3928 (this_region != -1 &&
3929 p_rc->regions[this_region].type == SCENECUT_REGION) ||
3930 (next_region != -1 &&
3931 p_rc->regions[next_region].type == SCENECUT_REGION);
3932
3933 int ori_gf_int = p_rc->gf_intervals[p_rc->cur_gf_index];
3934
3935 if (p_rc->gf_intervals[p_rc->cur_gf_index] > 16 &&
3936 rc->min_gf_interval <= 16) {
3937 // The calculate_gf_length function is previously used with
3938 // max_gop_length = 32 with look-ahead gf intervals.
3939 define_gf_group(cpi, frame_params, 0);
3940 av1_tf_info_filtering(&cpi->ppi->tf_info, cpi, gf_group);
3941 this_frame = this_frame_copy;
3942
3943 if (is_shorter_gf_interval_better(cpi, frame_params)) {
3944 // A shorter gf interval is better.
3945 // TODO(jingning): Remove redundant computations here.
3946 max_gop_length = 16;
3947 calculate_gf_length(cpi, max_gop_length, 1);
3948 if (is_last_scenecut &&
3949 (ori_gf_int - p_rc->gf_intervals[p_rc->cur_gf_index] < 4)) {
3950 p_rc->gf_intervals[p_rc->cur_gf_index] = ori_gf_int;
3951 }
3952 }
3953 }
3954 }
3955 }
3956
3957 define_gf_group(cpi, frame_params, 0);
3958
3959 if (gf_group->update_type[cpi->gf_frame_index] != ARF_UPDATE &&
3960 rc->frames_since_key > 0)
3961 process_first_pass_stats(cpi, &this_frame);
3962
3963 define_gf_group(cpi, frame_params, 1);
3964
3965 #if CONFIG_THREE_PASS
3966 // write gop info if needed for third pass. Per-frame info is written after
3967 // each frame is encoded.
3968 av1_write_second_pass_gop_info(cpi);
3969 #endif // CONFIG_THREE_PASS
3970
3971 av1_tf_info_filtering(&cpi->ppi->tf_info, cpi, gf_group);
3972
3973 rc->frames_till_gf_update_due = p_rc->baseline_gf_interval;
3974 assert(cpi->gf_frame_index == 0);
3975 #if ARF_STATS_OUTPUT
3976 {
3977 FILE *fpfile;
3978 fpfile = fopen("arf.stt", "a");
3979 ++arf_count;
3980 fprintf(fpfile, "%10d %10d %10d %10d %10d\n",
3981 cpi->common.current_frame.frame_number,
3982 rc->frames_till_gf_update_due, cpi->ppi->p_rc.kf_boost, arf_count,
3983 p_rc->gfu_boost);
3984
3985 fclose(fpfile);
3986 }
3987 #endif
3988 }
3989 assert(cpi->gf_frame_index < gf_group->size);
3990
3991 if (gf_group->update_type[cpi->gf_frame_index] == ARF_UPDATE ||
3992 gf_group->update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE) {
3993 reset_fpf_position(&cpi->twopass_frame, start_pos);
3994
3995 const FIRSTPASS_STATS *const this_frame_ptr =
3996 read_frame_stats(twopass, &cpi->twopass_frame,
3997 gf_group->arf_src_offset[cpi->gf_frame_index]);
3998 set_twopass_params_based_on_fp_stats(cpi, this_frame_ptr);
3999 } else {
4000 // Back up this frame's stats for updating total stats during post encode.
4001 cpi->twopass_frame.this_frame = update_total_stats ? start_pos : NULL;
4002 }
4003
4004 frame_params->frame_type = gf_group->frame_type[cpi->gf_frame_index];
4005 setup_target_rate(cpi);
4006 }
4007
av1_init_second_pass(AV1_COMP * cpi)4008 void av1_init_second_pass(AV1_COMP *cpi) {
4009 const AV1EncoderConfig *const oxcf = &cpi->oxcf;
4010 TWO_PASS *const twopass = &cpi->ppi->twopass;
4011 FRAME_INFO *const frame_info = &cpi->frame_info;
4012 double frame_rate;
4013 FIRSTPASS_STATS *stats;
4014
4015 if (!twopass->stats_buf_ctx->stats_in_end) return;
4016
4017 av1_mark_flashes(twopass->stats_buf_ctx->stats_in_start,
4018 twopass->stats_buf_ctx->stats_in_end);
4019 av1_estimate_noise(twopass->stats_buf_ctx->stats_in_start,
4020 twopass->stats_buf_ctx->stats_in_end, cpi->common.error);
4021 av1_estimate_coeff(twopass->stats_buf_ctx->stats_in_start,
4022 twopass->stats_buf_ctx->stats_in_end);
4023
4024 stats = twopass->stats_buf_ctx->total_stats;
4025
4026 *stats = *twopass->stats_buf_ctx->stats_in_end;
4027 *twopass->stats_buf_ctx->total_left_stats = *stats;
4028
4029 frame_rate = 10000000.0 * stats->count / stats->duration;
4030 // Each frame can have a different duration, as the frame rate in the source
4031 // isn't guaranteed to be constant. The frame rate prior to the first frame
4032 // encoded in the second pass is a guess. However, the sum duration is not.
4033 // It is calculated based on the actual durations of all frames from the
4034 // first pass.
4035 av1_new_framerate(cpi, frame_rate);
4036 twopass->bits_left =
4037 (int64_t)(stats->duration * oxcf->rc_cfg.target_bandwidth / 10000000.0);
4038
4039 #if CONFIG_BITRATE_ACCURACY
4040 av1_vbr_rc_init(&cpi->vbr_rc_info, twopass->bits_left,
4041 (int)round(stats->count));
4042 #endif
4043
4044 #if CONFIG_RATECTRL_LOG
4045 rc_log_init(&cpi->rc_log);
4046 #endif
4047
4048 // This variable monitors how far behind the second ref update is lagging.
4049 twopass->sr_update_lag = 1;
4050
4051 // Scan the first pass file and calculate a modified total error based upon
4052 // the bias/power function used to allocate bits.
4053 {
4054 const double avg_error =
4055 stats->coded_error / DOUBLE_DIVIDE_CHECK(stats->count);
4056 const FIRSTPASS_STATS *s = cpi->twopass_frame.stats_in;
4057 double modified_error_total = 0.0;
4058 twopass->modified_error_min =
4059 (avg_error * oxcf->rc_cfg.vbrmin_section) / 100;
4060 twopass->modified_error_max =
4061 (avg_error * oxcf->rc_cfg.vbrmax_section) / 100;
4062 while (s < twopass->stats_buf_ctx->stats_in_end) {
4063 modified_error_total +=
4064 calculate_modified_err(frame_info, twopass, oxcf, s);
4065 ++s;
4066 }
4067 twopass->modified_error_left = modified_error_total;
4068 }
4069
4070 // Reset the vbr bits off target counters
4071 cpi->ppi->p_rc.vbr_bits_off_target = 0;
4072 cpi->ppi->p_rc.vbr_bits_off_target_fast = 0;
4073
4074 cpi->ppi->p_rc.rate_error_estimate = 0;
4075
4076 // Static sequence monitor variables.
4077 twopass->kf_zeromotion_pct = 100;
4078 twopass->last_kfgroup_zeromotion_pct = 100;
4079
4080 // Initialize bits per macro_block estimate correction factor.
4081 twopass->bpm_factor = 1.0;
4082 // Initialize actual and target bits counters for ARF groups so that
4083 // at the start we have a neutral bpm adjustment.
4084 twopass->rolling_arf_group_target_bits = 1;
4085 twopass->rolling_arf_group_actual_bits = 1;
4086 }
4087
av1_init_single_pass_lap(AV1_COMP * cpi)4088 void av1_init_single_pass_lap(AV1_COMP *cpi) {
4089 TWO_PASS *const twopass = &cpi->ppi->twopass;
4090
4091 if (!twopass->stats_buf_ctx->stats_in_end) return;
4092
4093 // This variable monitors how far behind the second ref update is lagging.
4094 twopass->sr_update_lag = 1;
4095
4096 twopass->bits_left = 0;
4097 twopass->modified_error_min = 0.0;
4098 twopass->modified_error_max = 0.0;
4099 twopass->modified_error_left = 0.0;
4100
4101 // Reset the vbr bits off target counters
4102 cpi->ppi->p_rc.vbr_bits_off_target = 0;
4103 cpi->ppi->p_rc.vbr_bits_off_target_fast = 0;
4104
4105 cpi->ppi->p_rc.rate_error_estimate = 0;
4106
4107 // Static sequence monitor variables.
4108 twopass->kf_zeromotion_pct = 100;
4109 twopass->last_kfgroup_zeromotion_pct = 100;
4110
4111 // Initialize bits per macro_block estimate correction factor.
4112 twopass->bpm_factor = 1.0;
4113 // Initialize actual and target bits counters for ARF groups so that
4114 // at the start we have a neutral bpm adjustment.
4115 twopass->rolling_arf_group_target_bits = 1;
4116 twopass->rolling_arf_group_actual_bits = 1;
4117 }
4118
4119 #define MINQ_ADJ_LIMIT 48
4120 #define MINQ_ADJ_LIMIT_CQ 20
4121 #define HIGH_UNDERSHOOT_RATIO 2
av1_twopass_postencode_update(AV1_COMP * cpi)4122 void av1_twopass_postencode_update(AV1_COMP *cpi) {
4123 TWO_PASS *const twopass = &cpi->ppi->twopass;
4124 RATE_CONTROL *const rc = &cpi->rc;
4125 PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
4126 const RateControlCfg *const rc_cfg = &cpi->oxcf.rc_cfg;
4127
4128 // Increment the stats_in pointer.
4129 if (is_stat_consumption_stage(cpi) &&
4130 !(cpi->use_ducky_encode && cpi->ducky_encode_info.frame_info.gop_mode ==
4131 DUCKY_ENCODE_GOP_MODE_RCL) &&
4132 (cpi->gf_frame_index < cpi->ppi->gf_group.size ||
4133 rc->frames_to_key == 0)) {
4134 const int update_type = cpi->ppi->gf_group.update_type[cpi->gf_frame_index];
4135 if (update_type != ARF_UPDATE && update_type != INTNL_ARF_UPDATE) {
4136 FIRSTPASS_STATS this_frame;
4137 assert(cpi->twopass_frame.stats_in >
4138 twopass->stats_buf_ctx->stats_in_start);
4139 --cpi->twopass_frame.stats_in;
4140 if (cpi->ppi->lap_enabled) {
4141 input_stats_lap(twopass, &cpi->twopass_frame, &this_frame);
4142 } else {
4143 input_stats(twopass, &cpi->twopass_frame, &this_frame);
4144 }
4145 } else if (cpi->ppi->lap_enabled) {
4146 cpi->twopass_frame.stats_in = twopass->stats_buf_ctx->stats_in_start;
4147 }
4148 }
4149
4150 // VBR correction is done through rc->vbr_bits_off_target. Based on the
4151 // sign of this value, a limited % adjustment is made to the target rate
4152 // of subsequent frames, to try and push it back towards 0. This method
4153 // is designed to prevent extreme behaviour at the end of a clip
4154 // or group of frames.
4155 p_rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size;
4156 twopass->bits_left = AOMMAX(twopass->bits_left - rc->base_frame_target, 0);
4157
4158 if (cpi->do_update_vbr_bits_off_target_fast) {
4159 // Subtract current frame's fast_extra_bits.
4160 p_rc->vbr_bits_off_target_fast -= rc->frame_level_fast_extra_bits;
4161 rc->frame_level_fast_extra_bits = 0;
4162 }
4163
4164 // Target vs actual bits for this arf group.
4165 if (twopass->rolling_arf_group_target_bits >
4166 INT_MAX - rc->base_frame_target) {
4167 twopass->rolling_arf_group_target_bits = INT_MAX;
4168 } else {
4169 twopass->rolling_arf_group_target_bits += rc->base_frame_target;
4170 }
4171 twopass->rolling_arf_group_actual_bits += rc->projected_frame_size;
4172
4173 // Calculate the pct rc error.
4174 if (p_rc->total_actual_bits) {
4175 p_rc->rate_error_estimate =
4176 (int)((p_rc->vbr_bits_off_target * 100) / p_rc->total_actual_bits);
4177 p_rc->rate_error_estimate = clamp(p_rc->rate_error_estimate, -100, 100);
4178 } else {
4179 p_rc->rate_error_estimate = 0;
4180 }
4181
4182 #if CONFIG_FPMT_TEST
4183 /* The variables temp_vbr_bits_off_target, temp_bits_left,
4184 * temp_rolling_arf_group_target_bits, temp_rolling_arf_group_actual_bits
4185 * temp_rate_error_estimate are introduced for quality simulation purpose,
4186 * it retains the value previous to the parallel encode frames. The
4187 * variables are updated based on the update flag.
4188 *
4189 * If there exist show_existing_frames between parallel frames, then to
4190 * retain the temp state do not update it. */
4191 const int simulate_parallel_frame =
4192 cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE;
4193 int show_existing_between_parallel_frames =
4194 (cpi->ppi->gf_group.update_type[cpi->gf_frame_index] ==
4195 INTNL_OVERLAY_UPDATE &&
4196 cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index + 1] == 2);
4197
4198 if (cpi->do_frame_data_update && !show_existing_between_parallel_frames &&
4199 simulate_parallel_frame) {
4200 cpi->ppi->p_rc.temp_vbr_bits_off_target = p_rc->vbr_bits_off_target;
4201 cpi->ppi->p_rc.temp_bits_left = twopass->bits_left;
4202 cpi->ppi->p_rc.temp_rolling_arf_group_target_bits =
4203 twopass->rolling_arf_group_target_bits;
4204 cpi->ppi->p_rc.temp_rolling_arf_group_actual_bits =
4205 twopass->rolling_arf_group_actual_bits;
4206 cpi->ppi->p_rc.temp_rate_error_estimate = p_rc->rate_error_estimate;
4207 }
4208 #endif
4209 // Update the active best quality pyramid.
4210 if (!rc->is_src_frame_alt_ref) {
4211 const int pyramid_level =
4212 cpi->ppi->gf_group.layer_depth[cpi->gf_frame_index];
4213 int i;
4214 for (i = pyramid_level; i <= MAX_ARF_LAYERS; ++i) {
4215 p_rc->active_best_quality[i] = cpi->common.quant_params.base_qindex;
4216 #if CONFIG_TUNE_VMAF
4217 if (cpi->vmaf_info.original_qindex != -1 &&
4218 (cpi->oxcf.tune_cfg.tuning >= AOM_TUNE_VMAF_WITH_PREPROCESSING &&
4219 cpi->oxcf.tune_cfg.tuning <= AOM_TUNE_VMAF_NEG_MAX_GAIN)) {
4220 p_rc->active_best_quality[i] = cpi->vmaf_info.original_qindex;
4221 }
4222 #endif
4223 }
4224 }
4225
4226 #if 0
4227 {
4228 AV1_COMMON *cm = &cpi->common;
4229 FILE *fpfile;
4230 fpfile = fopen("details.stt", "a");
4231 fprintf(fpfile,
4232 "%10d %10d %10d %10" PRId64 " %10" PRId64
4233 " %10d %10d %10d %10.4lf %10.4lf %10.4lf %10.4lf\n",
4234 cm->current_frame.frame_number, rc->base_frame_target,
4235 rc->projected_frame_size, rc->total_actual_bits,
4236 rc->vbr_bits_off_target, p_rc->rate_error_estimate,
4237 twopass->rolling_arf_group_target_bits,
4238 twopass->rolling_arf_group_actual_bits,
4239 (double)twopass->rolling_arf_group_actual_bits /
4240 (double)twopass->rolling_arf_group_target_bits,
4241 twopass->bpm_factor,
4242 av1_convert_qindex_to_q(cpi->common.quant_params.base_qindex,
4243 cm->seq_params->bit_depth),
4244 av1_convert_qindex_to_q(rc->active_worst_quality,
4245 cm->seq_params->bit_depth));
4246 fclose(fpfile);
4247 }
4248 #endif
4249
4250 if (cpi->common.current_frame.frame_type != KEY_FRAME) {
4251 twopass->kf_group_bits -= rc->base_frame_target;
4252 twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct;
4253 }
4254 twopass->kf_group_bits = AOMMAX(twopass->kf_group_bits, 0);
4255
4256 // If the rate control is drifting consider adjustment to min or maxq.
4257 if ((rc_cfg->mode != AOM_Q) && !cpi->rc.is_src_frame_alt_ref &&
4258 (p_rc->rolling_target_bits > 0)) {
4259 int minq_adj_limit;
4260 int maxq_adj_limit;
4261 minq_adj_limit =
4262 (rc_cfg->mode == AOM_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT);
4263 maxq_adj_limit = (rc->worst_quality - rc->active_worst_quality);
4264
4265 // Undershoot
4266 if ((rc_cfg->under_shoot_pct < 100) &&
4267 (p_rc->rolling_actual_bits < p_rc->rolling_target_bits)) {
4268 int pct_error =
4269 ((p_rc->rolling_target_bits - p_rc->rolling_actual_bits) * 100) /
4270 p_rc->rolling_target_bits;
4271
4272 if ((pct_error >= rc_cfg->under_shoot_pct) &&
4273 (p_rc->rate_error_estimate > 0)) {
4274 twopass->extend_minq += 1;
4275 twopass->extend_maxq -= 1;
4276 }
4277
4278 // Overshoot
4279 } else if ((rc_cfg->over_shoot_pct < 100) &&
4280 (p_rc->rolling_actual_bits > p_rc->rolling_target_bits)) {
4281 int pct_error =
4282 ((p_rc->rolling_actual_bits - p_rc->rolling_target_bits) * 100) /
4283 p_rc->rolling_target_bits;
4284
4285 pct_error = clamp(pct_error, 0, 100);
4286 if ((pct_error >= rc_cfg->over_shoot_pct) &&
4287 (p_rc->rate_error_estimate < 0)) {
4288 twopass->extend_maxq += 1;
4289 twopass->extend_minq -= 1;
4290 }
4291 }
4292 twopass->extend_minq =
4293 clamp(twopass->extend_minq, -minq_adj_limit, minq_adj_limit);
4294 twopass->extend_maxq = clamp(twopass->extend_maxq, 0, maxq_adj_limit);
4295
4296 // If there is a big and undexpected undershoot then feed the extra
4297 // bits back in quickly. One situation where this may happen is if a
4298 // frame is unexpectedly almost perfectly predicted by the ARF or GF
4299 // but not very well predcited by the previous frame.
4300 if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) {
4301 int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO;
4302 if (rc->projected_frame_size < fast_extra_thresh) {
4303 p_rc->vbr_bits_off_target_fast +=
4304 fast_extra_thresh - rc->projected_frame_size;
4305 p_rc->vbr_bits_off_target_fast =
4306 AOMMIN(p_rc->vbr_bits_off_target_fast,
4307 (4 * (int64_t)rc->avg_frame_bandwidth));
4308 }
4309 }
4310
4311 #if CONFIG_FPMT_TEST
4312 if (cpi->do_frame_data_update && !show_existing_between_parallel_frames &&
4313 simulate_parallel_frame) {
4314 cpi->ppi->p_rc.temp_vbr_bits_off_target_fast =
4315 p_rc->vbr_bits_off_target_fast;
4316 cpi->ppi->p_rc.temp_extend_minq = twopass->extend_minq;
4317 cpi->ppi->p_rc.temp_extend_maxq = twopass->extend_maxq;
4318 }
4319 #endif
4320 }
4321
4322 // Update the frame probabilities obtained from parallel encode frames
4323 FrameProbInfo *const frame_probs = &cpi->ppi->frame_probs;
4324 #if CONFIG_FPMT_TEST
4325 /* The variable temp_active_best_quality is introduced only for quality
4326 * simulation purpose, it retains the value previous to the parallel
4327 * encode frames. The variable is updated based on the update flag.
4328 *
4329 * If there exist show_existing_frames between parallel frames, then to
4330 * retain the temp state do not update it. */
4331 if (cpi->do_frame_data_update && !show_existing_between_parallel_frames &&
4332 simulate_parallel_frame) {
4333 int i;
4334 const int pyramid_level =
4335 cpi->ppi->gf_group.layer_depth[cpi->gf_frame_index];
4336 if (!rc->is_src_frame_alt_ref) {
4337 for (i = pyramid_level; i <= MAX_ARF_LAYERS; ++i)
4338 cpi->ppi->p_rc.temp_active_best_quality[i] =
4339 p_rc->active_best_quality[i];
4340 }
4341 }
4342
4343 // Update the frame probabilities obtained from parallel encode frames
4344 FrameProbInfo *const temp_frame_probs_simulation =
4345 simulate_parallel_frame ? &cpi->ppi->temp_frame_probs_simulation
4346 : frame_probs;
4347 FrameProbInfo *const temp_frame_probs =
4348 simulate_parallel_frame ? &cpi->ppi->temp_frame_probs : NULL;
4349 #endif
4350 int i, j, loop;
4351 // Sequentially do average on temp_frame_probs_simulation which holds
4352 // probabilities of last frame before parallel encode
4353 for (loop = 0; loop <= cpi->num_frame_recode; loop++) {
4354 // Sequentially update tx_type_probs
4355 if (cpi->do_update_frame_probs_txtype[loop] &&
4356 (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0)) {
4357 const FRAME_UPDATE_TYPE update_type =
4358 get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
4359 for (i = 0; i < TX_SIZES_ALL; i++) {
4360 int left = 1024;
4361
4362 for (j = TX_TYPES - 1; j >= 0; j--) {
4363 const int new_prob =
4364 cpi->frame_new_probs[loop].tx_type_probs[update_type][i][j];
4365 #if CONFIG_FPMT_TEST
4366 int prob =
4367 (temp_frame_probs_simulation->tx_type_probs[update_type][i][j] +
4368 new_prob) >>
4369 1;
4370 left -= prob;
4371 if (j == 0) prob += left;
4372 temp_frame_probs_simulation->tx_type_probs[update_type][i][j] = prob;
4373 #else
4374 int prob =
4375 (frame_probs->tx_type_probs[update_type][i][j] + new_prob) >> 1;
4376 left -= prob;
4377 if (j == 0) prob += left;
4378 frame_probs->tx_type_probs[update_type][i][j] = prob;
4379 #endif
4380 }
4381 }
4382 }
4383
4384 // Sequentially update obmc_probs
4385 if (cpi->do_update_frame_probs_obmc[loop] &&
4386 cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) {
4387 const FRAME_UPDATE_TYPE update_type =
4388 get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
4389
4390 for (i = 0; i < BLOCK_SIZES_ALL; i++) {
4391 const int new_prob =
4392 cpi->frame_new_probs[loop].obmc_probs[update_type][i];
4393 #if CONFIG_FPMT_TEST
4394 temp_frame_probs_simulation->obmc_probs[update_type][i] =
4395 (temp_frame_probs_simulation->obmc_probs[update_type][i] +
4396 new_prob) >>
4397 1;
4398 #else
4399 frame_probs->obmc_probs[update_type][i] =
4400 (frame_probs->obmc_probs[update_type][i] + new_prob) >> 1;
4401 #endif
4402 }
4403 }
4404
4405 // Sequentially update warped_probs
4406 if (cpi->do_update_frame_probs_warp[loop] &&
4407 cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) {
4408 const FRAME_UPDATE_TYPE update_type =
4409 get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
4410 const int new_prob = cpi->frame_new_probs[loop].warped_probs[update_type];
4411 #if CONFIG_FPMT_TEST
4412 temp_frame_probs_simulation->warped_probs[update_type] =
4413 (temp_frame_probs_simulation->warped_probs[update_type] + new_prob) >>
4414 1;
4415 #else
4416 frame_probs->warped_probs[update_type] =
4417 (frame_probs->warped_probs[update_type] + new_prob) >> 1;
4418 #endif
4419 }
4420
4421 // Sequentially update switchable_interp_probs
4422 if (cpi->do_update_frame_probs_interpfilter[loop] &&
4423 cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) {
4424 const FRAME_UPDATE_TYPE update_type =
4425 get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
4426
4427 for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
4428 int left = 1536;
4429
4430 for (j = SWITCHABLE_FILTERS - 1; j >= 0; j--) {
4431 const int new_prob = cpi->frame_new_probs[loop]
4432 .switchable_interp_probs[update_type][i][j];
4433 #if CONFIG_FPMT_TEST
4434 int prob = (temp_frame_probs_simulation
4435 ->switchable_interp_probs[update_type][i][j] +
4436 new_prob) >>
4437 1;
4438 left -= prob;
4439 if (j == 0) prob += left;
4440
4441 temp_frame_probs_simulation
4442 ->switchable_interp_probs[update_type][i][j] = prob;
4443 #else
4444 int prob = (frame_probs->switchable_interp_probs[update_type][i][j] +
4445 new_prob) >>
4446 1;
4447 left -= prob;
4448 if (j == 0) prob += left;
4449 frame_probs->switchable_interp_probs[update_type][i][j] = prob;
4450 #endif
4451 }
4452 }
4453 }
4454 }
4455
4456 #if CONFIG_FPMT_TEST
4457 // Copying temp_frame_probs_simulation to temp_frame_probs based on
4458 // the flag
4459 if (cpi->do_frame_data_update &&
4460 cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 &&
4461 simulate_parallel_frame) {
4462 for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES;
4463 update_type_idx++) {
4464 for (i = 0; i < BLOCK_SIZES_ALL; i++) {
4465 temp_frame_probs->obmc_probs[update_type_idx][i] =
4466 temp_frame_probs_simulation->obmc_probs[update_type_idx][i];
4467 }
4468 temp_frame_probs->warped_probs[update_type_idx] =
4469 temp_frame_probs_simulation->warped_probs[update_type_idx];
4470 for (i = 0; i < TX_SIZES_ALL; i++) {
4471 for (j = 0; j < TX_TYPES; j++) {
4472 temp_frame_probs->tx_type_probs[update_type_idx][i][j] =
4473 temp_frame_probs_simulation->tx_type_probs[update_type_idx][i][j];
4474 }
4475 }
4476 for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
4477 for (j = 0; j < SWITCHABLE_FILTERS; j++) {
4478 temp_frame_probs->switchable_interp_probs[update_type_idx][i][j] =
4479 temp_frame_probs_simulation
4480 ->switchable_interp_probs[update_type_idx][i][j];
4481 }
4482 }
4483 }
4484 }
4485 #endif
4486 // Update framerate obtained from parallel encode frames
4487 if (cpi->common.show_frame &&
4488 cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0)
4489 cpi->framerate = cpi->new_framerate;
4490 #if CONFIG_FPMT_TEST
4491 // SIMULATION PURPOSE
4492 int show_existing_between_parallel_frames_cndn =
4493 (cpi->ppi->gf_group.update_type[cpi->gf_frame_index] ==
4494 INTNL_OVERLAY_UPDATE &&
4495 cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index + 1] == 2);
4496 if (cpi->common.show_frame && !show_existing_between_parallel_frames_cndn &&
4497 cpi->do_frame_data_update && simulate_parallel_frame)
4498 cpi->temp_framerate = cpi->framerate;
4499 #endif
4500 }
4501