1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <assert.h>
13 #include <float.h>
14 #include <limits.h>
15 #include <math.h>
16
17 #include "config/aom_scale_rtcd.h"
18 #include "config/av1_rtcd.h"
19
20 #include "aom_dsp/aom_dsp_common.h"
21 #include "aom_dsp/binary_codes_writer.h"
22 #include "aom_dsp/mathutils.h"
23 #include "aom_dsp/psnr.h"
24 #include "aom_mem/aom_mem.h"
25 #include "aom_ports/mem.h"
26 #include "av1/common/av1_common_int.h"
27 #include "av1/common/quant_common.h"
28 #include "av1/common/restoration.h"
29
30 #include "av1/encoder/av1_quantize.h"
31 #include "av1/encoder/encoder.h"
32 #include "av1/encoder/picklpf.h"
33 #include "av1/encoder/pickrst.h"
34
35 // Number of Wiener iterations
36 #define NUM_WIENER_ITERS 5
37
38 // Penalty factor for use of dual sgr
39 #define DUAL_SGR_PENALTY_MULT 0.01
40
41 // Working precision for Wiener filter coefficients
42 #define WIENER_TAP_SCALE_FACTOR ((int64_t)1 << 16)
43
44 #define SGRPROJ_EP_GRP1_START_IDX 0
45 #define SGRPROJ_EP_GRP1_END_IDX 9
46 #define SGRPROJ_EP_GRP1_SEARCH_COUNT 4
47 #define SGRPROJ_EP_GRP2_3_SEARCH_COUNT 2
48 static const int sgproj_ep_grp1_seed[SGRPROJ_EP_GRP1_SEARCH_COUNT] = { 0, 3, 6,
49 9 };
50 static const int sgproj_ep_grp2_3[SGRPROJ_EP_GRP2_3_SEARCH_COUNT][14] = {
51 { 10, 10, 11, 11, 12, 12, 13, 13, 13, 13, -1, -1, -1, -1 },
52 { 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15 }
53 };
54
55 #if DEBUG_LR_COSTING
56 RestorationUnitInfo lr_ref_params[RESTORE_TYPES][MAX_MB_PLANE]
57 [MAX_LR_UNITS_W * MAX_LR_UNITS_H];
58 #endif // DEBUG_LR_COSTING
59
60 typedef int64_t (*sse_extractor_type)(const YV12_BUFFER_CONFIG *a,
61 const YV12_BUFFER_CONFIG *b);
62 typedef int64_t (*sse_part_extractor_type)(const YV12_BUFFER_CONFIG *a,
63 const YV12_BUFFER_CONFIG *b,
64 int hstart, int width, int vstart,
65 int height);
66 typedef uint64_t (*var_part_extractor_type)(const YV12_BUFFER_CONFIG *a,
67 int hstart, int width, int vstart,
68 int height);
69
70 #if CONFIG_AV1_HIGHBITDEPTH
71 #define NUM_EXTRACTORS (3 * (1 + 1))
72 #else
73 #define NUM_EXTRACTORS 3
74 #endif
75 static const sse_part_extractor_type sse_part_extractors[NUM_EXTRACTORS] = {
76 aom_get_y_sse_part, aom_get_u_sse_part,
77 aom_get_v_sse_part,
78 #if CONFIG_AV1_HIGHBITDEPTH
79 aom_highbd_get_y_sse_part, aom_highbd_get_u_sse_part,
80 aom_highbd_get_v_sse_part,
81 #endif
82 };
83 static const var_part_extractor_type var_part_extractors[NUM_EXTRACTORS] = {
84 aom_get_y_var, aom_get_u_var, aom_get_v_var,
85 #if CONFIG_AV1_HIGHBITDEPTH
86 aom_highbd_get_y_var, aom_highbd_get_u_var, aom_highbd_get_v_var,
87 #endif
88 };
89
sse_restoration_unit(const RestorationTileLimits * limits,const YV12_BUFFER_CONFIG * src,const YV12_BUFFER_CONFIG * dst,int plane,int highbd)90 static int64_t sse_restoration_unit(const RestorationTileLimits *limits,
91 const YV12_BUFFER_CONFIG *src,
92 const YV12_BUFFER_CONFIG *dst, int plane,
93 int highbd) {
94 return sse_part_extractors[3 * highbd + plane](
95 src, dst, limits->h_start, limits->h_end - limits->h_start,
96 limits->v_start, limits->v_end - limits->v_start);
97 }
98
var_restoration_unit(const RestorationTileLimits * limits,const YV12_BUFFER_CONFIG * src,int plane,int highbd)99 static uint64_t var_restoration_unit(const RestorationTileLimits *limits,
100 const YV12_BUFFER_CONFIG *src, int plane,
101 int highbd) {
102 return var_part_extractors[3 * highbd + plane](
103 src, limits->h_start, limits->h_end - limits->h_start, limits->v_start,
104 limits->v_end - limits->v_start);
105 }
106
107 typedef struct {
108 const YV12_BUFFER_CONFIG *src;
109 YV12_BUFFER_CONFIG *dst;
110
111 const AV1_COMMON *cm;
112 const MACROBLOCK *x;
113 int plane;
114 int plane_w;
115 int plane_h;
116 RestUnitSearchInfo *rusi;
117
118 // Speed features
119 const LOOP_FILTER_SPEED_FEATURES *lpf_sf;
120
121 uint8_t *dgd_buffer;
122 int dgd_stride;
123 const uint8_t *src_buffer;
124 int src_stride;
125
126 // SSE values for each restoration mode for the current RU
127 // These are saved by each search function for use in search_switchable()
128 int64_t sse[RESTORE_SWITCHABLE_TYPES];
129
130 // This flag will be set based on the speed feature
131 // 'prune_sgr_based_on_wiener'. 0 implies no pruning and 1 implies pruning.
132 uint8_t skip_sgr_eval;
133
134 // Total rate and distortion so far for each restoration type
135 // These are initialised by reset_rsc in search_rest_type
136 int64_t total_sse[RESTORE_TYPES];
137 int64_t total_bits[RESTORE_TYPES];
138
139 // Reference parameters for delta-coding
140 //
141 // For each restoration type, we need to store the latest parameter set which
142 // has been used, so that we can properly cost up the next parameter set.
143 // Note that we have two sets of these - one for the single-restoration-mode
144 // search (ie, frame_restoration_type = RESTORE_WIENER or RESTORE_SGRPROJ)
145 // and one for the switchable mode. This is because these two cases can lead
146 // to different sets of parameters being signaled, but we don't know which
147 // we will pick for sure until the end of the search process.
148 WienerInfo ref_wiener;
149 SgrprojInfo ref_sgrproj;
150 WienerInfo switchable_ref_wiener;
151 SgrprojInfo switchable_ref_sgrproj;
152
153 // Buffers used to hold dgd-avg and src-avg data respectively during SIMD
154 // call of Wiener filter.
155 int16_t *dgd_avg;
156 int16_t *src_avg;
157 } RestSearchCtxt;
158
rsc_on_tile(void * priv)159 static inline void rsc_on_tile(void *priv) {
160 RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
161 set_default_wiener(&rsc->ref_wiener);
162 set_default_sgrproj(&rsc->ref_sgrproj);
163 set_default_wiener(&rsc->switchable_ref_wiener);
164 set_default_sgrproj(&rsc->switchable_ref_sgrproj);
165 }
166
reset_rsc(RestSearchCtxt * rsc)167 static inline void reset_rsc(RestSearchCtxt *rsc) {
168 memset(rsc->total_sse, 0, sizeof(rsc->total_sse));
169 memset(rsc->total_bits, 0, sizeof(rsc->total_bits));
170 }
171
init_rsc(const YV12_BUFFER_CONFIG * src,const AV1_COMMON * cm,const MACROBLOCK * x,const LOOP_FILTER_SPEED_FEATURES * lpf_sf,int plane,RestUnitSearchInfo * rusi,YV12_BUFFER_CONFIG * dst,RestSearchCtxt * rsc)172 static inline void init_rsc(const YV12_BUFFER_CONFIG *src, const AV1_COMMON *cm,
173 const MACROBLOCK *x,
174 const LOOP_FILTER_SPEED_FEATURES *lpf_sf, int plane,
175 RestUnitSearchInfo *rusi, YV12_BUFFER_CONFIG *dst,
176 RestSearchCtxt *rsc) {
177 rsc->src = src;
178 rsc->dst = dst;
179 rsc->cm = cm;
180 rsc->x = x;
181 rsc->plane = plane;
182 rsc->rusi = rusi;
183 rsc->lpf_sf = lpf_sf;
184
185 const YV12_BUFFER_CONFIG *dgd = &cm->cur_frame->buf;
186 const int is_uv = plane != AOM_PLANE_Y;
187 int plane_w, plane_h;
188 av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
189 assert(plane_w == src->crop_widths[is_uv]);
190 assert(plane_h == src->crop_heights[is_uv]);
191 assert(src->crop_widths[is_uv] == dgd->crop_widths[is_uv]);
192 assert(src->crop_heights[is_uv] == dgd->crop_heights[is_uv]);
193
194 rsc->plane_w = plane_w;
195 rsc->plane_h = plane_h;
196 rsc->src_buffer = src->buffers[plane];
197 rsc->src_stride = src->strides[is_uv];
198 rsc->dgd_buffer = dgd->buffers[plane];
199 rsc->dgd_stride = dgd->strides[is_uv];
200 }
201
try_restoration_unit(const RestSearchCtxt * rsc,const RestorationTileLimits * limits,const RestorationUnitInfo * rui)202 static int64_t try_restoration_unit(const RestSearchCtxt *rsc,
203 const RestorationTileLimits *limits,
204 const RestorationUnitInfo *rui) {
205 const AV1_COMMON *const cm = rsc->cm;
206 const int plane = rsc->plane;
207 const int is_uv = plane > 0;
208 const RestorationInfo *rsi = &cm->rst_info[plane];
209 RestorationLineBuffers rlbs;
210 const int bit_depth = cm->seq_params->bit_depth;
211 const int highbd = cm->seq_params->use_highbitdepth;
212
213 const YV12_BUFFER_CONFIG *fts = &cm->cur_frame->buf;
214 // TODO(yunqing): For now, only use optimized LR filter in decoder. Can be
215 // also used in encoder.
216 const int optimized_lr = 0;
217
218 av1_loop_restoration_filter_unit(
219 limits, rui, &rsi->boundaries, &rlbs, rsc->plane_w, rsc->plane_h,
220 is_uv && cm->seq_params->subsampling_x,
221 is_uv && cm->seq_params->subsampling_y, highbd, bit_depth,
222 fts->buffers[plane], fts->strides[is_uv], rsc->dst->buffers[plane],
223 rsc->dst->strides[is_uv], cm->rst_tmpbuf, optimized_lr, cm->error);
224
225 return sse_restoration_unit(limits, rsc->src, rsc->dst, plane, highbd);
226 }
227
av1_lowbd_pixel_proj_error_c(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int xq[2],const sgr_params_type * params)228 int64_t av1_lowbd_pixel_proj_error_c(const uint8_t *src8, int width, int height,
229 int src_stride, const uint8_t *dat8,
230 int dat_stride, int32_t *flt0,
231 int flt0_stride, int32_t *flt1,
232 int flt1_stride, int xq[2],
233 const sgr_params_type *params) {
234 int i, j;
235 const uint8_t *src = src8;
236 const uint8_t *dat = dat8;
237 int64_t err = 0;
238 if (params->r[0] > 0 && params->r[1] > 0) {
239 for (i = 0; i < height; ++i) {
240 for (j = 0; j < width; ++j) {
241 assert(flt1[j] < (1 << 15) && flt1[j] > -(1 << 15));
242 assert(flt0[j] < (1 << 15) && flt0[j] > -(1 << 15));
243 const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS);
244 int32_t v = u << SGRPROJ_PRJ_BITS;
245 v += xq[0] * (flt0[j] - u) + xq[1] * (flt1[j] - u);
246 const int32_t e =
247 ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j];
248 err += ((int64_t)e * e);
249 }
250 dat += dat_stride;
251 src += src_stride;
252 flt0 += flt0_stride;
253 flt1 += flt1_stride;
254 }
255 } else if (params->r[0] > 0) {
256 for (i = 0; i < height; ++i) {
257 for (j = 0; j < width; ++j) {
258 assert(flt0[j] < (1 << 15) && flt0[j] > -(1 << 15));
259 const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS);
260 int32_t v = u << SGRPROJ_PRJ_BITS;
261 v += xq[0] * (flt0[j] - u);
262 const int32_t e =
263 ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j];
264 err += ((int64_t)e * e);
265 }
266 dat += dat_stride;
267 src += src_stride;
268 flt0 += flt0_stride;
269 }
270 } else if (params->r[1] > 0) {
271 for (i = 0; i < height; ++i) {
272 for (j = 0; j < width; ++j) {
273 assert(flt1[j] < (1 << 15) && flt1[j] > -(1 << 15));
274 const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS);
275 int32_t v = u << SGRPROJ_PRJ_BITS;
276 v += xq[1] * (flt1[j] - u);
277 const int32_t e =
278 ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j];
279 err += ((int64_t)e * e);
280 }
281 dat += dat_stride;
282 src += src_stride;
283 flt1 += flt1_stride;
284 }
285 } else {
286 for (i = 0; i < height; ++i) {
287 for (j = 0; j < width; ++j) {
288 const int32_t e = (int32_t)(dat[j]) - src[j];
289 err += ((int64_t)e * e);
290 }
291 dat += dat_stride;
292 src += src_stride;
293 }
294 }
295
296 return err;
297 }
298
299 #if CONFIG_AV1_HIGHBITDEPTH
av1_highbd_pixel_proj_error_c(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int xq[2],const sgr_params_type * params)300 int64_t av1_highbd_pixel_proj_error_c(const uint8_t *src8, int width,
301 int height, int src_stride,
302 const uint8_t *dat8, int dat_stride,
303 int32_t *flt0, int flt0_stride,
304 int32_t *flt1, int flt1_stride, int xq[2],
305 const sgr_params_type *params) {
306 const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
307 const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
308 int i, j;
309 int64_t err = 0;
310 const int32_t half = 1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS - 1);
311 if (params->r[0] > 0 && params->r[1] > 0) {
312 int xq0 = xq[0];
313 int xq1 = xq[1];
314 for (i = 0; i < height; ++i) {
315 for (j = 0; j < width; ++j) {
316 const int32_t d = dat[j];
317 const int32_t s = src[j];
318 const int32_t u = (int32_t)(d << SGRPROJ_RST_BITS);
319 int32_t v0 = flt0[j] - u;
320 int32_t v1 = flt1[j] - u;
321 int32_t v = half;
322 v += xq0 * v0;
323 v += xq1 * v1;
324 const int32_t e = (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + d - s;
325 err += ((int64_t)e * e);
326 }
327 dat += dat_stride;
328 flt0 += flt0_stride;
329 flt1 += flt1_stride;
330 src += src_stride;
331 }
332 } else if (params->r[0] > 0 || params->r[1] > 0) {
333 int exq;
334 int32_t *flt;
335 int flt_stride;
336 if (params->r[0] > 0) {
337 exq = xq[0];
338 flt = flt0;
339 flt_stride = flt0_stride;
340 } else {
341 exq = xq[1];
342 flt = flt1;
343 flt_stride = flt1_stride;
344 }
345 for (i = 0; i < height; ++i) {
346 for (j = 0; j < width; ++j) {
347 const int32_t d = dat[j];
348 const int32_t s = src[j];
349 const int32_t u = (int32_t)(d << SGRPROJ_RST_BITS);
350 int32_t v = half;
351 v += exq * (flt[j] - u);
352 const int32_t e = (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + d - s;
353 err += ((int64_t)e * e);
354 }
355 dat += dat_stride;
356 flt += flt_stride;
357 src += src_stride;
358 }
359 } else {
360 for (i = 0; i < height; ++i) {
361 for (j = 0; j < width; ++j) {
362 const int32_t d = dat[j];
363 const int32_t s = src[j];
364 const int32_t e = d - s;
365 err += ((int64_t)e * e);
366 }
367 dat += dat_stride;
368 src += src_stride;
369 }
370 }
371 return err;
372 }
373 #endif // CONFIG_AV1_HIGHBITDEPTH
374
get_pixel_proj_error(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int use_highbitdepth,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int * xqd,const sgr_params_type * params)375 static int64_t get_pixel_proj_error(const uint8_t *src8, int width, int height,
376 int src_stride, const uint8_t *dat8,
377 int dat_stride, int use_highbitdepth,
378 int32_t *flt0, int flt0_stride,
379 int32_t *flt1, int flt1_stride, int *xqd,
380 const sgr_params_type *params) {
381 int xq[2];
382 av1_decode_xq(xqd, xq, params);
383
384 #if CONFIG_AV1_HIGHBITDEPTH
385 if (use_highbitdepth) {
386 return av1_highbd_pixel_proj_error(src8, width, height, src_stride, dat8,
387 dat_stride, flt0, flt0_stride, flt1,
388 flt1_stride, xq, params);
389
390 } else {
391 return av1_lowbd_pixel_proj_error(src8, width, height, src_stride, dat8,
392 dat_stride, flt0, flt0_stride, flt1,
393 flt1_stride, xq, params);
394 }
395 #else
396 (void)use_highbitdepth;
397 return av1_lowbd_pixel_proj_error(src8, width, height, src_stride, dat8,
398 dat_stride, flt0, flt0_stride, flt1,
399 flt1_stride, xq, params);
400 #endif
401 }
402
403 #define USE_SGRPROJ_REFINEMENT_SEARCH 1
finer_search_pixel_proj_error(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int use_highbitdepth,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int start_step,int * xqd,const sgr_params_type * params)404 static int64_t finer_search_pixel_proj_error(
405 const uint8_t *src8, int width, int height, int src_stride,
406 const uint8_t *dat8, int dat_stride, int use_highbitdepth, int32_t *flt0,
407 int flt0_stride, int32_t *flt1, int flt1_stride, int start_step, int *xqd,
408 const sgr_params_type *params) {
409 int64_t err = get_pixel_proj_error(
410 src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt0,
411 flt0_stride, flt1, flt1_stride, xqd, params);
412 (void)start_step;
413 #if USE_SGRPROJ_REFINEMENT_SEARCH
414 int64_t err2;
415 int tap_min[] = { SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MIN1 };
416 int tap_max[] = { SGRPROJ_PRJ_MAX0, SGRPROJ_PRJ_MAX1 };
417 for (int s = start_step; s >= 1; s >>= 1) {
418 for (int p = 0; p < 2; ++p) {
419 if ((params->r[0] == 0 && p == 0) || (params->r[1] == 0 && p == 1)) {
420 continue;
421 }
422 int skip = 0;
423 do {
424 if (xqd[p] - s >= tap_min[p]) {
425 xqd[p] -= s;
426 err2 =
427 get_pixel_proj_error(src8, width, height, src_stride, dat8,
428 dat_stride, use_highbitdepth, flt0,
429 flt0_stride, flt1, flt1_stride, xqd, params);
430 if (err2 > err) {
431 xqd[p] += s;
432 } else {
433 err = err2;
434 skip = 1;
435 // At the highest step size continue moving in the same direction
436 if (s == start_step) continue;
437 }
438 }
439 break;
440 } while (1);
441 if (skip) break;
442 do {
443 if (xqd[p] + s <= tap_max[p]) {
444 xqd[p] += s;
445 err2 =
446 get_pixel_proj_error(src8, width, height, src_stride, dat8,
447 dat_stride, use_highbitdepth, flt0,
448 flt0_stride, flt1, flt1_stride, xqd, params);
449 if (err2 > err) {
450 xqd[p] -= s;
451 } else {
452 err = err2;
453 // At the highest step size continue moving in the same direction
454 if (s == start_step) continue;
455 }
456 }
457 break;
458 } while (1);
459 }
460 }
461 #endif // USE_SGRPROJ_REFINEMENT_SEARCH
462 return err;
463 }
464
signed_rounded_divide(int64_t dividend,int64_t divisor)465 static int64_t signed_rounded_divide(int64_t dividend, int64_t divisor) {
466 if (dividend < 0)
467 return (dividend - divisor / 2) / divisor;
468 else
469 return (dividend + divisor / 2) / divisor;
470 }
471
calc_proj_params_r0_r1_c(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])472 static inline void calc_proj_params_r0_r1_c(const uint8_t *src8, int width,
473 int height, int src_stride,
474 const uint8_t *dat8, int dat_stride,
475 int32_t *flt0, int flt0_stride,
476 int32_t *flt1, int flt1_stride,
477 int64_t H[2][2], int64_t C[2]) {
478 const int size = width * height;
479 const uint8_t *src = src8;
480 const uint8_t *dat = dat8;
481 for (int i = 0; i < height; ++i) {
482 for (int j = 0; j < width; ++j) {
483 const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
484 const int32_t s =
485 (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
486 const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u;
487 const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u;
488 H[0][0] += (int64_t)f1 * f1;
489 H[1][1] += (int64_t)f2 * f2;
490 H[0][1] += (int64_t)f1 * f2;
491 C[0] += (int64_t)f1 * s;
492 C[1] += (int64_t)f2 * s;
493 }
494 }
495 H[0][0] /= size;
496 H[0][1] /= size;
497 H[1][1] /= size;
498 H[1][0] = H[0][1];
499 C[0] /= size;
500 C[1] /= size;
501 }
502
503 #if CONFIG_AV1_HIGHBITDEPTH
calc_proj_params_r0_r1_high_bd_c(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])504 static inline void calc_proj_params_r0_r1_high_bd_c(
505 const uint8_t *src8, int width, int height, int src_stride,
506 const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
507 int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
508 const int size = width * height;
509 const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
510 const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
511 for (int i = 0; i < height; ++i) {
512 for (int j = 0; j < width; ++j) {
513 const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
514 const int32_t s =
515 (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
516 const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u;
517 const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u;
518 H[0][0] += (int64_t)f1 * f1;
519 H[1][1] += (int64_t)f2 * f2;
520 H[0][1] += (int64_t)f1 * f2;
521 C[0] += (int64_t)f1 * s;
522 C[1] += (int64_t)f2 * s;
523 }
524 }
525 H[0][0] /= size;
526 H[0][1] /= size;
527 H[1][1] /= size;
528 H[1][0] = H[0][1];
529 C[0] /= size;
530 C[1] /= size;
531 }
532 #endif // CONFIG_AV1_HIGHBITDEPTH
533
calc_proj_params_r0_c(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int64_t H[2][2],int64_t C[2])534 static inline void calc_proj_params_r0_c(const uint8_t *src8, int width,
535 int height, int src_stride,
536 const uint8_t *dat8, int dat_stride,
537 int32_t *flt0, int flt0_stride,
538 int64_t H[2][2], int64_t C[2]) {
539 const int size = width * height;
540 const uint8_t *src = src8;
541 const uint8_t *dat = dat8;
542 for (int i = 0; i < height; ++i) {
543 for (int j = 0; j < width; ++j) {
544 const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
545 const int32_t s =
546 (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
547 const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u;
548 H[0][0] += (int64_t)f1 * f1;
549 C[0] += (int64_t)f1 * s;
550 }
551 }
552 H[0][0] /= size;
553 C[0] /= size;
554 }
555
556 #if CONFIG_AV1_HIGHBITDEPTH
calc_proj_params_r0_high_bd_c(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int64_t H[2][2],int64_t C[2])557 static inline void calc_proj_params_r0_high_bd_c(
558 const uint8_t *src8, int width, int height, int src_stride,
559 const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
560 int64_t H[2][2], int64_t C[2]) {
561 const int size = width * height;
562 const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
563 const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
564 for (int i = 0; i < height; ++i) {
565 for (int j = 0; j < width; ++j) {
566 const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
567 const int32_t s =
568 (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
569 const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u;
570 H[0][0] += (int64_t)f1 * f1;
571 C[0] += (int64_t)f1 * s;
572 }
573 }
574 H[0][0] /= size;
575 C[0] /= size;
576 }
577 #endif // CONFIG_AV1_HIGHBITDEPTH
578
calc_proj_params_r1_c(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])579 static inline void calc_proj_params_r1_c(const uint8_t *src8, int width,
580 int height, int src_stride,
581 const uint8_t *dat8, int dat_stride,
582 int32_t *flt1, int flt1_stride,
583 int64_t H[2][2], int64_t C[2]) {
584 const int size = width * height;
585 const uint8_t *src = src8;
586 const uint8_t *dat = dat8;
587 for (int i = 0; i < height; ++i) {
588 for (int j = 0; j < width; ++j) {
589 const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
590 const int32_t s =
591 (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
592 const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u;
593 H[1][1] += (int64_t)f2 * f2;
594 C[1] += (int64_t)f2 * s;
595 }
596 }
597 H[1][1] /= size;
598 C[1] /= size;
599 }
600
601 #if CONFIG_AV1_HIGHBITDEPTH
calc_proj_params_r1_high_bd_c(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])602 static inline void calc_proj_params_r1_high_bd_c(
603 const uint8_t *src8, int width, int height, int src_stride,
604 const uint8_t *dat8, int dat_stride, int32_t *flt1, int flt1_stride,
605 int64_t H[2][2], int64_t C[2]) {
606 const int size = width * height;
607 const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
608 const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
609 for (int i = 0; i < height; ++i) {
610 for (int j = 0; j < width; ++j) {
611 const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
612 const int32_t s =
613 (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
614 const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u;
615 H[1][1] += (int64_t)f2 * f2;
616 C[1] += (int64_t)f2 * s;
617 }
618 }
619 H[1][1] /= size;
620 C[1] /= size;
621 }
622 #endif // CONFIG_AV1_HIGHBITDEPTH
623
624 // The function calls 3 subfunctions for the following cases :
625 // 1) When params->r[0] > 0 and params->r[1] > 0. In this case all elements
626 // of C and H need to be computed.
627 // 2) When only params->r[0] > 0. In this case only H[0][0] and C[0] are
628 // non-zero and need to be computed.
629 // 3) When only params->r[1] > 0. In this case only H[1][1] and C[1] are
630 // non-zero and need to be computed.
av1_calc_proj_params_c(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2],const sgr_params_type * params)631 void av1_calc_proj_params_c(const uint8_t *src8, int width, int height,
632 int src_stride, const uint8_t *dat8, int dat_stride,
633 int32_t *flt0, int flt0_stride, int32_t *flt1,
634 int flt1_stride, int64_t H[2][2], int64_t C[2],
635 const sgr_params_type *params) {
636 if ((params->r[0] > 0) && (params->r[1] > 0)) {
637 calc_proj_params_r0_r1_c(src8, width, height, src_stride, dat8, dat_stride,
638 flt0, flt0_stride, flt1, flt1_stride, H, C);
639 } else if (params->r[0] > 0) {
640 calc_proj_params_r0_c(src8, width, height, src_stride, dat8, dat_stride,
641 flt0, flt0_stride, H, C);
642 } else if (params->r[1] > 0) {
643 calc_proj_params_r1_c(src8, width, height, src_stride, dat8, dat_stride,
644 flt1, flt1_stride, H, C);
645 }
646 }
647
648 #if CONFIG_AV1_HIGHBITDEPTH
av1_calc_proj_params_high_bd_c(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2],const sgr_params_type * params)649 void av1_calc_proj_params_high_bd_c(const uint8_t *src8, int width, int height,
650 int src_stride, const uint8_t *dat8,
651 int dat_stride, int32_t *flt0,
652 int flt0_stride, int32_t *flt1,
653 int flt1_stride, int64_t H[2][2],
654 int64_t C[2],
655 const sgr_params_type *params) {
656 if ((params->r[0] > 0) && (params->r[1] > 0)) {
657 calc_proj_params_r0_r1_high_bd_c(src8, width, height, src_stride, dat8,
658 dat_stride, flt0, flt0_stride, flt1,
659 flt1_stride, H, C);
660 } else if (params->r[0] > 0) {
661 calc_proj_params_r0_high_bd_c(src8, width, height, src_stride, dat8,
662 dat_stride, flt0, flt0_stride, H, C);
663 } else if (params->r[1] > 0) {
664 calc_proj_params_r1_high_bd_c(src8, width, height, src_stride, dat8,
665 dat_stride, flt1, flt1_stride, H, C);
666 }
667 }
668 #endif // CONFIG_AV1_HIGHBITDEPTH
669
get_proj_subspace(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int use_highbitdepth,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int * xq,const sgr_params_type * params)670 static inline void get_proj_subspace(const uint8_t *src8, int width, int height,
671 int src_stride, const uint8_t *dat8,
672 int dat_stride, int use_highbitdepth,
673 int32_t *flt0, int flt0_stride,
674 int32_t *flt1, int flt1_stride, int *xq,
675 const sgr_params_type *params) {
676 int64_t H[2][2] = { { 0, 0 }, { 0, 0 } };
677 int64_t C[2] = { 0, 0 };
678
679 // Default values to be returned if the problem becomes ill-posed
680 xq[0] = 0;
681 xq[1] = 0;
682
683 if (!use_highbitdepth) {
684 if ((width & 0x7) == 0) {
685 av1_calc_proj_params(src8, width, height, src_stride, dat8, dat_stride,
686 flt0, flt0_stride, flt1, flt1_stride, H, C, params);
687 } else {
688 av1_calc_proj_params_c(src8, width, height, src_stride, dat8, dat_stride,
689 flt0, flt0_stride, flt1, flt1_stride, H, C,
690 params);
691 }
692 }
693 #if CONFIG_AV1_HIGHBITDEPTH
694 else { // NOLINT
695 if ((width & 0x7) == 0) {
696 av1_calc_proj_params_high_bd(src8, width, height, src_stride, dat8,
697 dat_stride, flt0, flt0_stride, flt1,
698 flt1_stride, H, C, params);
699 } else {
700 av1_calc_proj_params_high_bd_c(src8, width, height, src_stride, dat8,
701 dat_stride, flt0, flt0_stride, flt1,
702 flt1_stride, H, C, params);
703 }
704 }
705 #endif
706
707 if (params->r[0] == 0) {
708 // H matrix is now only the scalar H[1][1]
709 // C vector is now only the scalar C[1]
710 const int64_t Det = H[1][1];
711 if (Det == 0) return; // ill-posed, return default values
712 xq[0] = 0;
713 xq[1] = (int)signed_rounded_divide(C[1] * (1 << SGRPROJ_PRJ_BITS), Det);
714 } else if (params->r[1] == 0) {
715 // H matrix is now only the scalar H[0][0]
716 // C vector is now only the scalar C[0]
717 const int64_t Det = H[0][0];
718 if (Det == 0) return; // ill-posed, return default values
719 xq[0] = (int)signed_rounded_divide(C[0] * (1 << SGRPROJ_PRJ_BITS), Det);
720 xq[1] = 0;
721 } else {
722 const int64_t Det = H[0][0] * H[1][1] - H[0][1] * H[1][0];
723 if (Det == 0) return; // ill-posed, return default values
724
725 // If scaling up dividend would overflow, instead scale down the divisor
726 const int64_t div1 = H[1][1] * C[0] - H[0][1] * C[1];
727 if ((div1 > 0 && INT64_MAX / (1 << SGRPROJ_PRJ_BITS) < div1) ||
728 (div1 < 0 && INT64_MIN / (1 << SGRPROJ_PRJ_BITS) > div1))
729 xq[0] = (int)signed_rounded_divide(div1, Det / (1 << SGRPROJ_PRJ_BITS));
730 else
731 xq[0] = (int)signed_rounded_divide(div1 * (1 << SGRPROJ_PRJ_BITS), Det);
732
733 const int64_t div2 = H[0][0] * C[1] - H[1][0] * C[0];
734 if ((div2 > 0 && INT64_MAX / (1 << SGRPROJ_PRJ_BITS) < div2) ||
735 (div2 < 0 && INT64_MIN / (1 << SGRPROJ_PRJ_BITS) > div2))
736 xq[1] = (int)signed_rounded_divide(div2, Det / (1 << SGRPROJ_PRJ_BITS));
737 else
738 xq[1] = (int)signed_rounded_divide(div2 * (1 << SGRPROJ_PRJ_BITS), Det);
739 }
740 }
741
encode_xq(int * xq,int * xqd,const sgr_params_type * params)742 static inline void encode_xq(int *xq, int *xqd, const sgr_params_type *params) {
743 if (params->r[0] == 0) {
744 xqd[0] = 0;
745 xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xq[1], SGRPROJ_PRJ_MIN1,
746 SGRPROJ_PRJ_MAX1);
747 } else if (params->r[1] == 0) {
748 xqd[0] = clamp(xq[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0);
749 xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xqd[0], SGRPROJ_PRJ_MIN1,
750 SGRPROJ_PRJ_MAX1);
751 } else {
752 xqd[0] = clamp(xq[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0);
753 xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xqd[0] - xq[1], SGRPROJ_PRJ_MIN1,
754 SGRPROJ_PRJ_MAX1);
755 }
756 }
757
758 // Apply the self-guided filter across an entire restoration unit.
apply_sgr(int sgr_params_idx,const uint8_t * dat8,int width,int height,int dat_stride,int use_highbd,int bit_depth,int pu_width,int pu_height,int32_t * flt0,int32_t * flt1,int flt_stride,struct aom_internal_error_info * error_info)759 static inline void apply_sgr(int sgr_params_idx, const uint8_t *dat8, int width,
760 int height, int dat_stride, int use_highbd,
761 int bit_depth, int pu_width, int pu_height,
762 int32_t *flt0, int32_t *flt1, int flt_stride,
763 struct aom_internal_error_info *error_info) {
764 for (int i = 0; i < height; i += pu_height) {
765 const int h = AOMMIN(pu_height, height - i);
766 int32_t *flt0_row = flt0 + i * flt_stride;
767 int32_t *flt1_row = flt1 + i * flt_stride;
768 const uint8_t *dat8_row = dat8 + i * dat_stride;
769
770 // Iterate over the stripe in blocks of width pu_width
771 for (int j = 0; j < width; j += pu_width) {
772 const int w = AOMMIN(pu_width, width - j);
773 if (av1_selfguided_restoration(
774 dat8_row + j, w, h, dat_stride, flt0_row + j, flt1_row + j,
775 flt_stride, sgr_params_idx, bit_depth, use_highbd) != 0) {
776 aom_internal_error(
777 error_info, AOM_CODEC_MEM_ERROR,
778 "Error allocating buffer in av1_selfguided_restoration");
779 }
780 }
781 }
782 }
783
compute_sgrproj_err(const uint8_t * dat8,const int width,const int height,const int dat_stride,const uint8_t * src8,const int src_stride,const int use_highbitdepth,const int bit_depth,const int pu_width,const int pu_height,const int ep,int32_t * flt0,int32_t * flt1,const int flt_stride,int * exqd,int64_t * err,struct aom_internal_error_info * error_info)784 static inline void compute_sgrproj_err(
785 const uint8_t *dat8, const int width, const int height,
786 const int dat_stride, const uint8_t *src8, const int src_stride,
787 const int use_highbitdepth, const int bit_depth, const int pu_width,
788 const int pu_height, const int ep, int32_t *flt0, int32_t *flt1,
789 const int flt_stride, int *exqd, int64_t *err,
790 struct aom_internal_error_info *error_info) {
791 int exq[2];
792 apply_sgr(ep, dat8, width, height, dat_stride, use_highbitdepth, bit_depth,
793 pu_width, pu_height, flt0, flt1, flt_stride, error_info);
794 const sgr_params_type *const params = &av1_sgr_params[ep];
795 get_proj_subspace(src8, width, height, src_stride, dat8, dat_stride,
796 use_highbitdepth, flt0, flt_stride, flt1, flt_stride, exq,
797 params);
798 encode_xq(exq, exqd, params);
799 *err = finer_search_pixel_proj_error(
800 src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt0,
801 flt_stride, flt1, flt_stride, 2, exqd, params);
802 }
803
get_best_error(int64_t * besterr,const int64_t err,const int * exqd,int * bestxqd,int * bestep,const int ep)804 static inline void get_best_error(int64_t *besterr, const int64_t err,
805 const int *exqd, int *bestxqd, int *bestep,
806 const int ep) {
807 if (*besterr == -1 || err < *besterr) {
808 *bestep = ep;
809 *besterr = err;
810 bestxqd[0] = exqd[0];
811 bestxqd[1] = exqd[1];
812 }
813 }
814
search_selfguided_restoration(const uint8_t * dat8,int width,int height,int dat_stride,const uint8_t * src8,int src_stride,int use_highbitdepth,int bit_depth,int pu_width,int pu_height,int32_t * rstbuf,int enable_sgr_ep_pruning,struct aom_internal_error_info * error_info)815 static SgrprojInfo search_selfguided_restoration(
816 const uint8_t *dat8, int width, int height, int dat_stride,
817 const uint8_t *src8, int src_stride, int use_highbitdepth, int bit_depth,
818 int pu_width, int pu_height, int32_t *rstbuf, int enable_sgr_ep_pruning,
819 struct aom_internal_error_info *error_info) {
820 int32_t *flt0 = rstbuf;
821 int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX;
822 int ep, idx, bestep = 0;
823 int64_t besterr = -1;
824 int exqd[2], bestxqd[2] = { 0, 0 };
825 int flt_stride = ((width + 7) & ~7) + 8;
826 assert(pu_width == (RESTORATION_PROC_UNIT_SIZE >> 1) ||
827 pu_width == RESTORATION_PROC_UNIT_SIZE);
828 assert(pu_height == (RESTORATION_PROC_UNIT_SIZE >> 1) ||
829 pu_height == RESTORATION_PROC_UNIT_SIZE);
830 if (!enable_sgr_ep_pruning) {
831 for (ep = 0; ep < SGRPROJ_PARAMS; ep++) {
832 int64_t err;
833 compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride,
834 use_highbitdepth, bit_depth, pu_width, pu_height, ep,
835 flt0, flt1, flt_stride, exqd, &err, error_info);
836 get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep);
837 }
838 } else {
839 // evaluate first four seed ep in first group
840 for (idx = 0; idx < SGRPROJ_EP_GRP1_SEARCH_COUNT; idx++) {
841 ep = sgproj_ep_grp1_seed[idx];
842 int64_t err;
843 compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride,
844 use_highbitdepth, bit_depth, pu_width, pu_height, ep,
845 flt0, flt1, flt_stride, exqd, &err, error_info);
846 get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep);
847 }
848 // evaluate left and right ep of winner in seed ep
849 int bestep_ref = bestep;
850 for (ep = bestep_ref - 1; ep < bestep_ref + 2; ep += 2) {
851 if (ep < SGRPROJ_EP_GRP1_START_IDX || ep > SGRPROJ_EP_GRP1_END_IDX)
852 continue;
853 int64_t err;
854 compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride,
855 use_highbitdepth, bit_depth, pu_width, pu_height, ep,
856 flt0, flt1, flt_stride, exqd, &err, error_info);
857 get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep);
858 }
859 // evaluate last two group
860 for (idx = 0; idx < SGRPROJ_EP_GRP2_3_SEARCH_COUNT; idx++) {
861 ep = sgproj_ep_grp2_3[idx][bestep];
862 int64_t err;
863 compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride,
864 use_highbitdepth, bit_depth, pu_width, pu_height, ep,
865 flt0, flt1, flt_stride, exqd, &err, error_info);
866 get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep);
867 }
868 }
869
870 SgrprojInfo ret;
871 ret.ep = bestep;
872 ret.xqd[0] = bestxqd[0];
873 ret.xqd[1] = bestxqd[1];
874 return ret;
875 }
876
count_sgrproj_bits(SgrprojInfo * sgrproj_info,SgrprojInfo * ref_sgrproj_info)877 static int count_sgrproj_bits(SgrprojInfo *sgrproj_info,
878 SgrprojInfo *ref_sgrproj_info) {
879 int bits = SGRPROJ_PARAMS_BITS;
880 const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep];
881 if (params->r[0] > 0)
882 bits += aom_count_primitive_refsubexpfin(
883 SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
884 ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
885 sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
886 if (params->r[1] > 0)
887 bits += aom_count_primitive_refsubexpfin(
888 SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
889 ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
890 sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
891 return bits;
892 }
893
search_sgrproj(const RestorationTileLimits * limits,int rest_unit_idx,void * priv,int32_t * tmpbuf,RestorationLineBuffers * rlbs,struct aom_internal_error_info * error_info)894 static inline void search_sgrproj(const RestorationTileLimits *limits,
895 int rest_unit_idx, void *priv,
896 int32_t *tmpbuf, RestorationLineBuffers *rlbs,
897 struct aom_internal_error_info *error_info) {
898 (void)rlbs;
899 RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
900 RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx];
901
902 const MACROBLOCK *const x = rsc->x;
903 const AV1_COMMON *const cm = rsc->cm;
904 const int highbd = cm->seq_params->use_highbitdepth;
905 const int bit_depth = cm->seq_params->bit_depth;
906
907 const int64_t bits_none = x->mode_costs.sgrproj_restore_cost[0];
908 // Prune evaluation of RESTORE_SGRPROJ if 'skip_sgr_eval' is set
909 if (rsc->skip_sgr_eval) {
910 rsc->total_bits[RESTORE_SGRPROJ] += bits_none;
911 rsc->total_sse[RESTORE_SGRPROJ] += rsc->sse[RESTORE_NONE];
912 rusi->best_rtype[RESTORE_SGRPROJ - 1] = RESTORE_NONE;
913 rsc->sse[RESTORE_SGRPROJ] = INT64_MAX;
914 return;
915 }
916
917 uint8_t *dgd_start =
918 rsc->dgd_buffer + limits->v_start * rsc->dgd_stride + limits->h_start;
919 const uint8_t *src_start =
920 rsc->src_buffer + limits->v_start * rsc->src_stride + limits->h_start;
921
922 const int is_uv = rsc->plane > 0;
923 const int ss_x = is_uv && cm->seq_params->subsampling_x;
924 const int ss_y = is_uv && cm->seq_params->subsampling_y;
925 const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x;
926 const int procunit_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
927
928 rusi->sgrproj = search_selfguided_restoration(
929 dgd_start, limits->h_end - limits->h_start,
930 limits->v_end - limits->v_start, rsc->dgd_stride, src_start,
931 rsc->src_stride, highbd, bit_depth, procunit_width, procunit_height,
932 tmpbuf, rsc->lpf_sf->enable_sgr_ep_pruning, error_info);
933
934 RestorationUnitInfo rui;
935 rui.restoration_type = RESTORE_SGRPROJ;
936 rui.sgrproj_info = rusi->sgrproj;
937
938 rsc->sse[RESTORE_SGRPROJ] = try_restoration_unit(rsc, limits, &rui);
939
940 const int64_t bits_sgr =
941 x->mode_costs.sgrproj_restore_cost[1] +
942 (count_sgrproj_bits(&rusi->sgrproj, &rsc->ref_sgrproj)
943 << AV1_PROB_COST_SHIFT);
944 double cost_none = RDCOST_DBL_WITH_NATIVE_BD_DIST(
945 x->rdmult, bits_none >> 4, rsc->sse[RESTORE_NONE], bit_depth);
946 double cost_sgr = RDCOST_DBL_WITH_NATIVE_BD_DIST(
947 x->rdmult, bits_sgr >> 4, rsc->sse[RESTORE_SGRPROJ], bit_depth);
948 if (rusi->sgrproj.ep < 10)
949 cost_sgr *=
950 (1 + DUAL_SGR_PENALTY_MULT * rsc->lpf_sf->dual_sgr_penalty_level);
951
952 RestorationType rtype =
953 (cost_sgr < cost_none) ? RESTORE_SGRPROJ : RESTORE_NONE;
954 rusi->best_rtype[RESTORE_SGRPROJ - 1] = rtype;
955
956 #if DEBUG_LR_COSTING
957 // Store ref params for later checking
958 lr_ref_params[RESTORE_SGRPROJ][rsc->plane][rest_unit_idx].sgrproj_info =
959 rsc->ref_sgrproj;
960 #endif // DEBUG_LR_COSTING
961
962 rsc->total_sse[RESTORE_SGRPROJ] += rsc->sse[rtype];
963 rsc->total_bits[RESTORE_SGRPROJ] +=
964 (cost_sgr < cost_none) ? bits_sgr : bits_none;
965 if (cost_sgr < cost_none) rsc->ref_sgrproj = rusi->sgrproj;
966 }
967
acc_stat_one_line(const uint8_t * dgd,const uint8_t * src,int dgd_stride,int h_start,int h_end,uint8_t avg,const int wiener_halfwin,const int wiener_win2,int32_t * M_int32,int32_t * H_int32,int count)968 static void acc_stat_one_line(const uint8_t *dgd, const uint8_t *src,
969 int dgd_stride, int h_start, int h_end,
970 uint8_t avg, const int wiener_halfwin,
971 const int wiener_win2, int32_t *M_int32,
972 int32_t *H_int32, int count) {
973 int j, k, l;
974 int16_t Y[WIENER_WIN2];
975
976 for (j = h_start; j < h_end; j++) {
977 const int16_t X = (int16_t)src[j] - (int16_t)avg;
978 int idx = 0;
979 for (k = -wiener_halfwin; k <= wiener_halfwin; k++) {
980 for (l = -wiener_halfwin; l <= wiener_halfwin; l++) {
981 Y[idx] =
982 (int16_t)dgd[(count + l) * dgd_stride + (j + k)] - (int16_t)avg;
983 idx++;
984 }
985 }
986 assert(idx == wiener_win2);
987 for (k = 0; k < wiener_win2; ++k) {
988 M_int32[k] += (int32_t)Y[k] * X;
989 for (l = k; l < wiener_win2; ++l) {
990 // H is a symmetric matrix, so we only need to fill out the upper
991 // triangle here. We can copy it down to the lower triangle outside
992 // the (i, j) loops.
993 H_int32[k * wiener_win2 + l] += (int32_t)Y[k] * Y[l];
994 }
995 }
996 }
997 }
998
av1_compute_stats_c(int wiener_win,const uint8_t * dgd,const uint8_t * src,int16_t * dgd_avg,int16_t * src_avg,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,int use_downsampled_wiener_stats)999 void av1_compute_stats_c(int wiener_win, const uint8_t *dgd, const uint8_t *src,
1000 int16_t *dgd_avg, int16_t *src_avg, int h_start,
1001 int h_end, int v_start, int v_end, int dgd_stride,
1002 int src_stride, int64_t *M, int64_t *H,
1003 int use_downsampled_wiener_stats) {
1004 (void)dgd_avg;
1005 (void)src_avg;
1006 int i, k, l;
1007 const int wiener_win2 = wiener_win * wiener_win;
1008 const int wiener_halfwin = (wiener_win >> 1);
1009 uint8_t avg = find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
1010 int32_t M_row[WIENER_WIN2] = { 0 };
1011 int32_t H_row[WIENER_WIN2 * WIENER_WIN2] = { 0 };
1012 int downsample_factor =
1013 use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
1014
1015 memset(M, 0, sizeof(*M) * wiener_win2);
1016 memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2);
1017
1018 for (i = v_start; i < v_end; i = i + downsample_factor) {
1019 if (use_downsampled_wiener_stats &&
1020 (v_end - i < WIENER_STATS_DOWNSAMPLE_FACTOR)) {
1021 downsample_factor = v_end - i;
1022 }
1023
1024 memset(M_row, 0, sizeof(int32_t) * WIENER_WIN2);
1025 memset(H_row, 0, sizeof(int32_t) * WIENER_WIN2 * WIENER_WIN2);
1026 acc_stat_one_line(dgd, src + i * src_stride, dgd_stride, h_start, h_end,
1027 avg, wiener_halfwin, wiener_win2, M_row, H_row, i);
1028
1029 for (k = 0; k < wiener_win2; ++k) {
1030 // Scale M matrix based on the downsampling factor
1031 M[k] += ((int64_t)M_row[k] * downsample_factor);
1032 for (l = k; l < wiener_win2; ++l) {
1033 // H is a symmetric matrix, so we only need to fill out the upper
1034 // triangle here. We can copy it down to the lower triangle outside
1035 // the (i, j) loops.
1036 // Scale H Matrix based on the downsampling factor
1037 H[k * wiener_win2 + l] +=
1038 ((int64_t)H_row[k * wiener_win2 + l] * downsample_factor);
1039 }
1040 }
1041 }
1042
1043 for (k = 0; k < wiener_win2; ++k) {
1044 for (l = k + 1; l < wiener_win2; ++l) {
1045 H[l * wiener_win2 + k] = H[k * wiener_win2 + l];
1046 }
1047 }
1048 }
1049
1050 #if CONFIG_AV1_HIGHBITDEPTH
av1_compute_stats_highbd_c(int wiener_win,const uint8_t * dgd8,const uint8_t * src8,int16_t * dgd_avg,int16_t * src_avg,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,aom_bit_depth_t bit_depth)1051 void av1_compute_stats_highbd_c(int wiener_win, const uint8_t *dgd8,
1052 const uint8_t *src8, int16_t *dgd_avg,
1053 int16_t *src_avg, int h_start, int h_end,
1054 int v_start, int v_end, int dgd_stride,
1055 int src_stride, int64_t *M, int64_t *H,
1056 aom_bit_depth_t bit_depth) {
1057 (void)dgd_avg;
1058 (void)src_avg;
1059 int i, j, k, l;
1060 int32_t Y[WIENER_WIN2];
1061 const int wiener_win2 = wiener_win * wiener_win;
1062 const int wiener_halfwin = (wiener_win >> 1);
1063 const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
1064 const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
1065 uint16_t avg =
1066 find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
1067
1068 uint8_t bit_depth_divider = 1;
1069 if (bit_depth == AOM_BITS_12)
1070 bit_depth_divider = 16;
1071 else if (bit_depth == AOM_BITS_10)
1072 bit_depth_divider = 4;
1073
1074 memset(M, 0, sizeof(*M) * wiener_win2);
1075 memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2);
1076 for (i = v_start; i < v_end; i++) {
1077 for (j = h_start; j < h_end; j++) {
1078 const int32_t X = (int32_t)src[i * src_stride + j] - (int32_t)avg;
1079 int idx = 0;
1080 for (k = -wiener_halfwin; k <= wiener_halfwin; k++) {
1081 for (l = -wiener_halfwin; l <= wiener_halfwin; l++) {
1082 Y[idx] = (int32_t)dgd[(i + l) * dgd_stride + (j + k)] - (int32_t)avg;
1083 idx++;
1084 }
1085 }
1086 assert(idx == wiener_win2);
1087 for (k = 0; k < wiener_win2; ++k) {
1088 M[k] += (int64_t)Y[k] * X;
1089 for (l = k; l < wiener_win2; ++l) {
1090 // H is a symmetric matrix, so we only need to fill out the upper
1091 // triangle here. We can copy it down to the lower triangle outside
1092 // the (i, j) loops.
1093 H[k * wiener_win2 + l] += (int64_t)Y[k] * Y[l];
1094 }
1095 }
1096 }
1097 }
1098 for (k = 0; k < wiener_win2; ++k) {
1099 M[k] /= bit_depth_divider;
1100 H[k * wiener_win2 + k] /= bit_depth_divider;
1101 for (l = k + 1; l < wiener_win2; ++l) {
1102 H[k * wiener_win2 + l] /= bit_depth_divider;
1103 H[l * wiener_win2 + k] = H[k * wiener_win2 + l];
1104 }
1105 }
1106 }
1107 #endif // CONFIG_AV1_HIGHBITDEPTH
1108
wrap_index(int i,int wiener_win)1109 static inline int wrap_index(int i, int wiener_win) {
1110 const int wiener_halfwin1 = (wiener_win >> 1) + 1;
1111 return (i >= wiener_halfwin1 ? wiener_win - 1 - i : i);
1112 }
1113
1114 // Splits each w[i] into smaller components w1[i] and w2[i] such that
1115 // w[i] = w1[i] * WIENER_TAP_SCALE_FACTOR + w2[i].
split_wiener_filter_coefficients(int wiener_win,const int32_t * w,int32_t * w1,int32_t * w2)1116 static inline void split_wiener_filter_coefficients(int wiener_win,
1117 const int32_t *w,
1118 int32_t *w1, int32_t *w2) {
1119 for (int i = 0; i < wiener_win; i++) {
1120 w1[i] = w[i] / WIENER_TAP_SCALE_FACTOR;
1121 w2[i] = w[i] - w1[i] * WIENER_TAP_SCALE_FACTOR;
1122 assert(w[i] == w1[i] * WIENER_TAP_SCALE_FACTOR + w2[i]);
1123 }
1124 }
1125
1126 // Calculates x * w / WIENER_TAP_SCALE_FACTOR, where
1127 // w = w1 * WIENER_TAP_SCALE_FACTOR + w2.
1128 //
1129 // The multiplication x * w may overflow, so we multiply x by the components of
1130 // w (w1 and w2) and combine the multiplication with the division.
multiply_and_scale(int64_t x,int32_t w1,int32_t w2)1131 static inline int64_t multiply_and_scale(int64_t x, int32_t w1, int32_t w2) {
1132 // Let y = x * w / WIENER_TAP_SCALE_FACTOR
1133 // = x * (w1 * WIENER_TAP_SCALE_FACTOR + w2) / WIENER_TAP_SCALE_FACTOR
1134 const int64_t y = x * w1 + x * w2 / WIENER_TAP_SCALE_FACTOR;
1135 return y;
1136 }
1137
1138 // Solve linear equations to find Wiener filter tap values
1139 // Taps are output scaled by WIENER_FILT_STEP
linsolve_wiener(int n,int64_t * A,int stride,int64_t * b,int64_t * x)1140 static int linsolve_wiener(int n, int64_t *A, int stride, int64_t *b,
1141 int64_t *x) {
1142 for (int k = 0; k < n - 1; k++) {
1143 // Partial pivoting: bring the row with the largest pivot to the top
1144 for (int i = n - 1; i > k; i--) {
1145 // If row i has a better (bigger) pivot than row (i-1), swap them
1146 if (llabs(A[(i - 1) * stride + k]) < llabs(A[i * stride + k])) {
1147 for (int j = 0; j < n; j++) {
1148 const int64_t c = A[i * stride + j];
1149 A[i * stride + j] = A[(i - 1) * stride + j];
1150 A[(i - 1) * stride + j] = c;
1151 }
1152 const int64_t c = b[i];
1153 b[i] = b[i - 1];
1154 b[i - 1] = c;
1155 }
1156 }
1157
1158 // b/278065963: The multiplies
1159 // c / 256 * A[k * stride + j] / cd * 256
1160 // and
1161 // c / 256 * b[k] / cd * 256
1162 // within Gaussian elimination can cause a signed integer overflow. Rework
1163 // the multiplies so that larger scaling is used without significantly
1164 // impacting the overall precision.
1165 //
1166 // Precision guidance:
1167 // scale_threshold: Pick as high as possible.
1168 // For max_abs_akj >= scale_threshold scenario:
1169 // scaler_A: Pick as low as possible. Needed for A[(i + 1) * stride + j].
1170 // scaler_c: Pick as low as possible while maintaining scaler_c >=
1171 // (1 << 7). Needed for A[(i + 1) * stride + j] and b[i + 1].
1172 int64_t max_abs_akj = 0;
1173 for (int j = 0; j < n; j++) {
1174 const int64_t abs_akj = llabs(A[k * stride + j]);
1175 if (abs_akj > max_abs_akj) max_abs_akj = abs_akj;
1176 }
1177 const int scale_threshold = 1 << 22;
1178 const int scaler_A = max_abs_akj < scale_threshold ? 1 : (1 << 6);
1179 const int scaler_c = max_abs_akj < scale_threshold ? 1 : (1 << 7);
1180 const int scaler = scaler_c * scaler_A;
1181
1182 // Forward elimination (convert A to row-echelon form)
1183 for (int i = k; i < n - 1; i++) {
1184 if (A[k * stride + k] == 0) return 0;
1185 const int64_t c = A[(i + 1) * stride + k] / scaler_c;
1186 const int64_t cd = A[k * stride + k];
1187 for (int j = 0; j < n; j++) {
1188 A[(i + 1) * stride + j] -=
1189 A[k * stride + j] / scaler_A * c / cd * scaler;
1190 }
1191 b[i + 1] -= c * b[k] / cd * scaler_c;
1192 }
1193 }
1194 // Back-substitution
1195 for (int i = n - 1; i >= 0; i--) {
1196 if (A[i * stride + i] == 0) return 0;
1197 int64_t c = 0;
1198 for (int j = i + 1; j <= n - 1; j++) {
1199 c += A[i * stride + j] * x[j] / WIENER_TAP_SCALE_FACTOR;
1200 }
1201 // Store filter taps x in scaled form.
1202 x[i] = WIENER_TAP_SCALE_FACTOR * (b[i] - c) / A[i * stride + i];
1203 }
1204
1205 return 1;
1206 }
1207
1208 // Fix vector b, update vector a
update_a_sep_sym(int wiener_win,int64_t ** Mc,int64_t ** Hc,int32_t * a,const int32_t * b)1209 static inline void update_a_sep_sym(int wiener_win, int64_t **Mc, int64_t **Hc,
1210 int32_t *a, const int32_t *b) {
1211 int i, j;
1212 int64_t S[WIENER_WIN];
1213 int64_t A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1];
1214 int32_t b1[WIENER_WIN], b2[WIENER_WIN];
1215 const int wiener_win2 = wiener_win * wiener_win;
1216 const int wiener_halfwin1 = (wiener_win >> 1) + 1;
1217 memset(A, 0, sizeof(A));
1218 memset(B, 0, sizeof(B));
1219 for (i = 0; i < wiener_win; i++) {
1220 for (j = 0; j < wiener_win; ++j) {
1221 const int jj = wrap_index(j, wiener_win);
1222 A[jj] += Mc[i][j] * b[i] / WIENER_TAP_SCALE_FACTOR;
1223 }
1224 }
1225 split_wiener_filter_coefficients(wiener_win, b, b1, b2);
1226
1227 for (i = 0; i < wiener_win; i++) {
1228 for (j = 0; j < wiener_win; j++) {
1229 int k, l;
1230 for (k = 0; k < wiener_win; ++k) {
1231 const int kk = wrap_index(k, wiener_win);
1232 for (l = 0; l < wiener_win; ++l) {
1233 const int ll = wrap_index(l, wiener_win);
1234 // Calculate
1235 // B[ll * wiener_halfwin1 + kk] +=
1236 // Hc[j * wiener_win + i][k * wiener_win2 + l] * b[i] /
1237 // WIENER_TAP_SCALE_FACTOR * b[j] / WIENER_TAP_SCALE_FACTOR;
1238 //
1239 // The last multiplication may overflow, so we combine the last
1240 // multiplication with the last division.
1241 const int64_t x = Hc[j * wiener_win + i][k * wiener_win2 + l] * b[i] /
1242 WIENER_TAP_SCALE_FACTOR;
1243 // b[j] = b1[j] * WIENER_TAP_SCALE_FACTOR + b2[j]
1244 B[ll * wiener_halfwin1 + kk] += multiply_and_scale(x, b1[j], b2[j]);
1245 }
1246 }
1247 }
1248 }
1249 // Normalization enforcement in the system of equations itself
1250 for (i = 0; i < wiener_halfwin1 - 1; ++i) {
1251 A[i] -=
1252 A[wiener_halfwin1 - 1] * 2 +
1253 B[i * wiener_halfwin1 + wiener_halfwin1 - 1] -
1254 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)];
1255 }
1256 for (i = 0; i < wiener_halfwin1 - 1; ++i) {
1257 for (j = 0; j < wiener_halfwin1 - 1; ++j) {
1258 B[i * wiener_halfwin1 + j] -=
1259 2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] +
1260 B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] -
1261 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 +
1262 (wiener_halfwin1 - 1)]);
1263 }
1264 }
1265 if (linsolve_wiener(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) {
1266 S[wiener_halfwin1 - 1] = WIENER_TAP_SCALE_FACTOR;
1267 for (i = wiener_halfwin1; i < wiener_win; ++i) {
1268 S[i] = S[wiener_win - 1 - i];
1269 S[wiener_halfwin1 - 1] -= 2 * S[i];
1270 }
1271 for (i = 0; i < wiener_win; ++i) {
1272 a[i] = (int32_t)CLIP(S[i], -(1 << (WIENER_FILT_BITS - 1)),
1273 (1 << (WIENER_FILT_BITS - 1)) - 1);
1274 }
1275 }
1276 }
1277
1278 // Fix vector a, update vector b
update_b_sep_sym(int wiener_win,int64_t ** Mc,int64_t ** Hc,const int32_t * a,int32_t * b)1279 static inline void update_b_sep_sym(int wiener_win, int64_t **Mc, int64_t **Hc,
1280 const int32_t *a, int32_t *b) {
1281 int i, j;
1282 int64_t S[WIENER_WIN];
1283 int64_t A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1];
1284 int32_t a1[WIENER_WIN], a2[WIENER_WIN];
1285 const int wiener_win2 = wiener_win * wiener_win;
1286 const int wiener_halfwin1 = (wiener_win >> 1) + 1;
1287 memset(A, 0, sizeof(A));
1288 memset(B, 0, sizeof(B));
1289 for (i = 0; i < wiener_win; i++) {
1290 const int ii = wrap_index(i, wiener_win);
1291 for (j = 0; j < wiener_win; j++) {
1292 A[ii] += Mc[i][j] * a[j] / WIENER_TAP_SCALE_FACTOR;
1293 }
1294 }
1295 split_wiener_filter_coefficients(wiener_win, a, a1, a2);
1296
1297 for (i = 0; i < wiener_win; i++) {
1298 const int ii = wrap_index(i, wiener_win);
1299 for (j = 0; j < wiener_win; j++) {
1300 const int jj = wrap_index(j, wiener_win);
1301 int k, l;
1302 for (k = 0; k < wiener_win; ++k) {
1303 for (l = 0; l < wiener_win; ++l) {
1304 // Calculate
1305 // B[jj * wiener_halfwin1 + ii] +=
1306 // Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] /
1307 // WIENER_TAP_SCALE_FACTOR * a[l] / WIENER_TAP_SCALE_FACTOR;
1308 //
1309 // The last multiplication may overflow, so we combine the last
1310 // multiplication with the last division.
1311 const int64_t x = Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] /
1312 WIENER_TAP_SCALE_FACTOR;
1313 // a[l] = a1[l] * WIENER_TAP_SCALE_FACTOR + a2[l]
1314 B[jj * wiener_halfwin1 + ii] += multiply_and_scale(x, a1[l], a2[l]);
1315 }
1316 }
1317 }
1318 }
1319 // Normalization enforcement in the system of equations itself
1320 for (i = 0; i < wiener_halfwin1 - 1; ++i) {
1321 A[i] -=
1322 A[wiener_halfwin1 - 1] * 2 +
1323 B[i * wiener_halfwin1 + wiener_halfwin1 - 1] -
1324 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)];
1325 }
1326 for (i = 0; i < wiener_halfwin1 - 1; ++i) {
1327 for (j = 0; j < wiener_halfwin1 - 1; ++j) {
1328 B[i * wiener_halfwin1 + j] -=
1329 2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] +
1330 B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] -
1331 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 +
1332 (wiener_halfwin1 - 1)]);
1333 }
1334 }
1335 if (linsolve_wiener(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) {
1336 S[wiener_halfwin1 - 1] = WIENER_TAP_SCALE_FACTOR;
1337 for (i = wiener_halfwin1; i < wiener_win; ++i) {
1338 S[i] = S[wiener_win - 1 - i];
1339 S[wiener_halfwin1 - 1] -= 2 * S[i];
1340 }
1341 for (i = 0; i < wiener_win; ++i) {
1342 b[i] = (int32_t)CLIP(S[i], -(1 << (WIENER_FILT_BITS - 1)),
1343 (1 << (WIENER_FILT_BITS - 1)) - 1);
1344 }
1345 }
1346 }
1347
wiener_decompose_sep_sym(int wiener_win,int64_t * M,int64_t * H,int32_t * a,int32_t * b)1348 static void wiener_decompose_sep_sym(int wiener_win, int64_t *M, int64_t *H,
1349 int32_t *a, int32_t *b) {
1350 static const int32_t init_filt[WIENER_WIN] = {
1351 WIENER_FILT_TAP0_MIDV, WIENER_FILT_TAP1_MIDV, WIENER_FILT_TAP2_MIDV,
1352 WIENER_FILT_TAP3_MIDV, WIENER_FILT_TAP2_MIDV, WIENER_FILT_TAP1_MIDV,
1353 WIENER_FILT_TAP0_MIDV,
1354 };
1355 int64_t *Hc[WIENER_WIN2];
1356 int64_t *Mc[WIENER_WIN];
1357 int i, j, iter;
1358 const int plane_off = (WIENER_WIN - wiener_win) >> 1;
1359 const int wiener_win2 = wiener_win * wiener_win;
1360 for (i = 0; i < wiener_win; i++) {
1361 a[i] = b[i] =
1362 WIENER_TAP_SCALE_FACTOR / WIENER_FILT_STEP * init_filt[i + plane_off];
1363 }
1364 for (i = 0; i < wiener_win; i++) {
1365 Mc[i] = M + i * wiener_win;
1366 for (j = 0; j < wiener_win; j++) {
1367 Hc[i * wiener_win + j] =
1368 H + i * wiener_win * wiener_win2 + j * wiener_win;
1369 }
1370 }
1371
1372 iter = 1;
1373 while (iter < NUM_WIENER_ITERS) {
1374 update_a_sep_sym(wiener_win, Mc, Hc, a, b);
1375 update_b_sep_sym(wiener_win, Mc, Hc, a, b);
1376 iter++;
1377 }
1378 }
1379
1380 // Computes the function x'*H*x - x'*M for the learned 2D filter x, and compares
1381 // against identity filters; Final score is defined as the difference between
1382 // the function values
compute_score(int wiener_win,int64_t * M,int64_t * H,InterpKernel vfilt,InterpKernel hfilt)1383 static int64_t compute_score(int wiener_win, int64_t *M, int64_t *H,
1384 InterpKernel vfilt, InterpKernel hfilt) {
1385 int32_t ab[WIENER_WIN * WIENER_WIN];
1386 int16_t a[WIENER_WIN], b[WIENER_WIN];
1387 int64_t P = 0, Q = 0;
1388 int64_t iP = 0, iQ = 0;
1389 int64_t Score, iScore;
1390 int i, k, l;
1391 const int plane_off = (WIENER_WIN - wiener_win) >> 1;
1392 const int wiener_win2 = wiener_win * wiener_win;
1393
1394 a[WIENER_HALFWIN] = b[WIENER_HALFWIN] = WIENER_FILT_STEP;
1395 for (i = 0; i < WIENER_HALFWIN; ++i) {
1396 a[i] = a[WIENER_WIN - i - 1] = vfilt[i];
1397 b[i] = b[WIENER_WIN - i - 1] = hfilt[i];
1398 a[WIENER_HALFWIN] -= 2 * a[i];
1399 b[WIENER_HALFWIN] -= 2 * b[i];
1400 }
1401 memset(ab, 0, sizeof(ab));
1402 for (k = 0; k < wiener_win; ++k) {
1403 for (l = 0; l < wiener_win; ++l)
1404 ab[k * wiener_win + l] = a[l + plane_off] * b[k + plane_off];
1405 }
1406 for (k = 0; k < wiener_win2; ++k) {
1407 P += ab[k] * M[k] / WIENER_FILT_STEP / WIENER_FILT_STEP;
1408 for (l = 0; l < wiener_win2; ++l) {
1409 Q += ab[k] * H[k * wiener_win2 + l] * ab[l] / WIENER_FILT_STEP /
1410 WIENER_FILT_STEP / WIENER_FILT_STEP / WIENER_FILT_STEP;
1411 }
1412 }
1413 Score = Q - 2 * P;
1414
1415 iP = M[wiener_win2 >> 1];
1416 iQ = H[(wiener_win2 >> 1) * wiener_win2 + (wiener_win2 >> 1)];
1417 iScore = iQ - 2 * iP;
1418
1419 return Score - iScore;
1420 }
1421
finalize_sym_filter(int wiener_win,int32_t * f,InterpKernel fi)1422 static inline void finalize_sym_filter(int wiener_win, int32_t *f,
1423 InterpKernel fi) {
1424 int i;
1425 const int wiener_halfwin = (wiener_win >> 1);
1426
1427 for (i = 0; i < wiener_halfwin; ++i) {
1428 const int64_t dividend = (int64_t)f[i] * WIENER_FILT_STEP;
1429 const int64_t divisor = WIENER_TAP_SCALE_FACTOR;
1430 // Perform this division with proper rounding rather than truncation
1431 if (dividend < 0) {
1432 fi[i] = (int16_t)((dividend - (divisor / 2)) / divisor);
1433 } else {
1434 fi[i] = (int16_t)((dividend + (divisor / 2)) / divisor);
1435 }
1436 }
1437 // Specialize for 7-tap filter
1438 if (wiener_win == WIENER_WIN) {
1439 fi[0] = CLIP(fi[0], WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_MAXV);
1440 fi[1] = CLIP(fi[1], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV);
1441 fi[2] = CLIP(fi[2], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV);
1442 } else {
1443 fi[2] = CLIP(fi[1], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV);
1444 fi[1] = CLIP(fi[0], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV);
1445 fi[0] = 0;
1446 }
1447 // Satisfy filter constraints
1448 fi[WIENER_WIN - 1] = fi[0];
1449 fi[WIENER_WIN - 2] = fi[1];
1450 fi[WIENER_WIN - 3] = fi[2];
1451 // The central element has an implicit +WIENER_FILT_STEP
1452 fi[3] = -2 * (fi[0] + fi[1] + fi[2]);
1453 }
1454
count_wiener_bits(int wiener_win,WienerInfo * wiener_info,WienerInfo * ref_wiener_info)1455 static int count_wiener_bits(int wiener_win, WienerInfo *wiener_info,
1456 WienerInfo *ref_wiener_info) {
1457 int bits = 0;
1458 if (wiener_win == WIENER_WIN)
1459 bits += aom_count_primitive_refsubexpfin(
1460 WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
1461 WIENER_FILT_TAP0_SUBEXP_K,
1462 ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV,
1463 wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV);
1464 bits += aom_count_primitive_refsubexpfin(
1465 WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
1466 WIENER_FILT_TAP1_SUBEXP_K,
1467 ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV,
1468 wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV);
1469 bits += aom_count_primitive_refsubexpfin(
1470 WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
1471 WIENER_FILT_TAP2_SUBEXP_K,
1472 ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV,
1473 wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV);
1474 if (wiener_win == WIENER_WIN)
1475 bits += aom_count_primitive_refsubexpfin(
1476 WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
1477 WIENER_FILT_TAP0_SUBEXP_K,
1478 ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV,
1479 wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV);
1480 bits += aom_count_primitive_refsubexpfin(
1481 WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
1482 WIENER_FILT_TAP1_SUBEXP_K,
1483 ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV,
1484 wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV);
1485 bits += aom_count_primitive_refsubexpfin(
1486 WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
1487 WIENER_FILT_TAP2_SUBEXP_K,
1488 ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV,
1489 wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV);
1490 return bits;
1491 }
1492
finer_search_wiener(const RestSearchCtxt * rsc,const RestorationTileLimits * limits,RestorationUnitInfo * rui,int wiener_win)1493 static int64_t finer_search_wiener(const RestSearchCtxt *rsc,
1494 const RestorationTileLimits *limits,
1495 RestorationUnitInfo *rui, int wiener_win) {
1496 const int plane_off = (WIENER_WIN - wiener_win) >> 1;
1497 int64_t err = try_restoration_unit(rsc, limits, rui);
1498
1499 if (rsc->lpf_sf->disable_wiener_coeff_refine_search) return err;
1500
1501 // Refinement search around the wiener filter coefficients.
1502 int64_t err2;
1503 int tap_min[] = { WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP1_MINV,
1504 WIENER_FILT_TAP2_MINV };
1505 int tap_max[] = { WIENER_FILT_TAP0_MAXV, WIENER_FILT_TAP1_MAXV,
1506 WIENER_FILT_TAP2_MAXV };
1507
1508 WienerInfo *plane_wiener = &rui->wiener_info;
1509
1510 // printf("err pre = %"PRId64"\n", err);
1511 const int start_step = 4;
1512 for (int s = start_step; s >= 1; s >>= 1) {
1513 for (int p = plane_off; p < WIENER_HALFWIN; ++p) {
1514 int skip = 0;
1515 do {
1516 if (plane_wiener->hfilter[p] - s >= tap_min[p]) {
1517 plane_wiener->hfilter[p] -= s;
1518 plane_wiener->hfilter[WIENER_WIN - p - 1] -= s;
1519 plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s;
1520 err2 = try_restoration_unit(rsc, limits, rui);
1521 if (err2 > err) {
1522 plane_wiener->hfilter[p] += s;
1523 plane_wiener->hfilter[WIENER_WIN - p - 1] += s;
1524 plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s;
1525 } else {
1526 err = err2;
1527 skip = 1;
1528 // At the highest step size continue moving in the same direction
1529 if (s == start_step) continue;
1530 }
1531 }
1532 break;
1533 } while (1);
1534 if (skip) break;
1535 do {
1536 if (plane_wiener->hfilter[p] + s <= tap_max[p]) {
1537 plane_wiener->hfilter[p] += s;
1538 plane_wiener->hfilter[WIENER_WIN - p - 1] += s;
1539 plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s;
1540 err2 = try_restoration_unit(rsc, limits, rui);
1541 if (err2 > err) {
1542 plane_wiener->hfilter[p] -= s;
1543 plane_wiener->hfilter[WIENER_WIN - p - 1] -= s;
1544 plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s;
1545 } else {
1546 err = err2;
1547 // At the highest step size continue moving in the same direction
1548 if (s == start_step) continue;
1549 }
1550 }
1551 break;
1552 } while (1);
1553 }
1554 for (int p = plane_off; p < WIENER_HALFWIN; ++p) {
1555 int skip = 0;
1556 do {
1557 if (plane_wiener->vfilter[p] - s >= tap_min[p]) {
1558 plane_wiener->vfilter[p] -= s;
1559 plane_wiener->vfilter[WIENER_WIN - p - 1] -= s;
1560 plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s;
1561 err2 = try_restoration_unit(rsc, limits, rui);
1562 if (err2 > err) {
1563 plane_wiener->vfilter[p] += s;
1564 plane_wiener->vfilter[WIENER_WIN - p - 1] += s;
1565 plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s;
1566 } else {
1567 err = err2;
1568 skip = 1;
1569 // At the highest step size continue moving in the same direction
1570 if (s == start_step) continue;
1571 }
1572 }
1573 break;
1574 } while (1);
1575 if (skip) break;
1576 do {
1577 if (plane_wiener->vfilter[p] + s <= tap_max[p]) {
1578 plane_wiener->vfilter[p] += s;
1579 plane_wiener->vfilter[WIENER_WIN - p - 1] += s;
1580 plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s;
1581 err2 = try_restoration_unit(rsc, limits, rui);
1582 if (err2 > err) {
1583 plane_wiener->vfilter[p] -= s;
1584 plane_wiener->vfilter[WIENER_WIN - p - 1] -= s;
1585 plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s;
1586 } else {
1587 err = err2;
1588 // At the highest step size continue moving in the same direction
1589 if (s == start_step) continue;
1590 }
1591 }
1592 break;
1593 } while (1);
1594 }
1595 }
1596 // printf("err post = %"PRId64"\n", err);
1597 return err;
1598 }
1599
search_wiener(const RestorationTileLimits * limits,int rest_unit_idx,void * priv,int32_t * tmpbuf,RestorationLineBuffers * rlbs,struct aom_internal_error_info * error_info)1600 static inline void search_wiener(const RestorationTileLimits *limits,
1601 int rest_unit_idx, void *priv, int32_t *tmpbuf,
1602 RestorationLineBuffers *rlbs,
1603 struct aom_internal_error_info *error_info) {
1604 (void)tmpbuf;
1605 (void)rlbs;
1606 (void)error_info;
1607 RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
1608 RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx];
1609
1610 const MACROBLOCK *const x = rsc->x;
1611 const int64_t bits_none = x->mode_costs.wiener_restore_cost[0];
1612
1613 // Skip Wiener search for low variance contents
1614 if (rsc->lpf_sf->prune_wiener_based_on_src_var) {
1615 const int scale[3] = { 0, 1, 2 };
1616 // Obtain the normalized Qscale
1617 const int qs = av1_dc_quant_QTX(rsc->cm->quant_params.base_qindex, 0,
1618 rsc->cm->seq_params->bit_depth) >>
1619 3;
1620 // Derive threshold as sqr(normalized Qscale) * scale / 16,
1621 const uint64_t thresh =
1622 (qs * qs * scale[rsc->lpf_sf->prune_wiener_based_on_src_var]) >> 4;
1623 const int highbd = rsc->cm->seq_params->use_highbitdepth;
1624 const uint64_t src_var =
1625 var_restoration_unit(limits, rsc->src, rsc->plane, highbd);
1626 // Do not perform Wiener search if source variance is lower than threshold
1627 // or if the reconstruction error is zero
1628 int prune_wiener = (src_var < thresh) || (rsc->sse[RESTORE_NONE] == 0);
1629 if (prune_wiener) {
1630 rsc->total_bits[RESTORE_WIENER] += bits_none;
1631 rsc->total_sse[RESTORE_WIENER] += rsc->sse[RESTORE_NONE];
1632 rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE;
1633 rsc->sse[RESTORE_WIENER] = INT64_MAX;
1634 if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) rsc->skip_sgr_eval = 1;
1635 return;
1636 }
1637 }
1638
1639 const int wiener_win =
1640 (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA;
1641
1642 int reduced_wiener_win = wiener_win;
1643 if (rsc->lpf_sf->reduce_wiener_window_size) {
1644 reduced_wiener_win =
1645 (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN_REDUCED : WIENER_WIN_CHROMA;
1646 }
1647
1648 int64_t M[WIENER_WIN2];
1649 int64_t H[WIENER_WIN2 * WIENER_WIN2];
1650 int32_t vfilter[WIENER_WIN], hfilter[WIENER_WIN];
1651
1652 #if CONFIG_AV1_HIGHBITDEPTH
1653 const AV1_COMMON *const cm = rsc->cm;
1654 if (cm->seq_params->use_highbitdepth) {
1655 // TODO(any) : Add support for use_downsampled_wiener_stats SF in HBD
1656 // functions. Optimize intrinsics of HBD design similar to LBD (i.e.,
1657 // pre-calculate d and s buffers and avoid most of the C operations).
1658 av1_compute_stats_highbd(reduced_wiener_win, rsc->dgd_buffer,
1659 rsc->src_buffer, rsc->dgd_avg, rsc->src_avg,
1660 limits->h_start, limits->h_end, limits->v_start,
1661 limits->v_end, rsc->dgd_stride, rsc->src_stride, M,
1662 H, cm->seq_params->bit_depth);
1663 } else {
1664 av1_compute_stats(reduced_wiener_win, rsc->dgd_buffer, rsc->src_buffer,
1665 rsc->dgd_avg, rsc->src_avg, limits->h_start,
1666 limits->h_end, limits->v_start, limits->v_end,
1667 rsc->dgd_stride, rsc->src_stride, M, H,
1668 rsc->lpf_sf->use_downsampled_wiener_stats);
1669 }
1670 #else
1671 av1_compute_stats(reduced_wiener_win, rsc->dgd_buffer, rsc->src_buffer,
1672 rsc->dgd_avg, rsc->src_avg, limits->h_start, limits->h_end,
1673 limits->v_start, limits->v_end, rsc->dgd_stride,
1674 rsc->src_stride, M, H,
1675 rsc->lpf_sf->use_downsampled_wiener_stats);
1676 #endif
1677
1678 wiener_decompose_sep_sym(reduced_wiener_win, M, H, vfilter, hfilter);
1679
1680 RestorationUnitInfo rui;
1681 memset(&rui, 0, sizeof(rui));
1682 rui.restoration_type = RESTORE_WIENER;
1683 finalize_sym_filter(reduced_wiener_win, vfilter, rui.wiener_info.vfilter);
1684 finalize_sym_filter(reduced_wiener_win, hfilter, rui.wiener_info.hfilter);
1685
1686 // Filter score computes the value of the function x'*A*x - x'*b for the
1687 // learned filter and compares it against identity filer. If there is no
1688 // reduction in the function, the filter is reverted back to identity
1689 if (compute_score(reduced_wiener_win, M, H, rui.wiener_info.vfilter,
1690 rui.wiener_info.hfilter) > 0) {
1691 rsc->total_bits[RESTORE_WIENER] += bits_none;
1692 rsc->total_sse[RESTORE_WIENER] += rsc->sse[RESTORE_NONE];
1693 rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE;
1694 rsc->sse[RESTORE_WIENER] = INT64_MAX;
1695 if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) rsc->skip_sgr_eval = 1;
1696 return;
1697 }
1698
1699 rsc->sse[RESTORE_WIENER] =
1700 finer_search_wiener(rsc, limits, &rui, reduced_wiener_win);
1701 rusi->wiener = rui.wiener_info;
1702
1703 if (reduced_wiener_win != WIENER_WIN) {
1704 assert(rui.wiener_info.vfilter[0] == 0 &&
1705 rui.wiener_info.vfilter[WIENER_WIN - 1] == 0);
1706 assert(rui.wiener_info.hfilter[0] == 0 &&
1707 rui.wiener_info.hfilter[WIENER_WIN - 1] == 0);
1708 }
1709
1710 const int64_t bits_wiener =
1711 x->mode_costs.wiener_restore_cost[1] +
1712 (count_wiener_bits(wiener_win, &rusi->wiener, &rsc->ref_wiener)
1713 << AV1_PROB_COST_SHIFT);
1714
1715 double cost_none = RDCOST_DBL_WITH_NATIVE_BD_DIST(
1716 x->rdmult, bits_none >> 4, rsc->sse[RESTORE_NONE],
1717 rsc->cm->seq_params->bit_depth);
1718 double cost_wiener = RDCOST_DBL_WITH_NATIVE_BD_DIST(
1719 x->rdmult, bits_wiener >> 4, rsc->sse[RESTORE_WIENER],
1720 rsc->cm->seq_params->bit_depth);
1721
1722 RestorationType rtype =
1723 (cost_wiener < cost_none) ? RESTORE_WIENER : RESTORE_NONE;
1724 rusi->best_rtype[RESTORE_WIENER - 1] = rtype;
1725
1726 // Set 'skip_sgr_eval' based on rdcost ratio of RESTORE_WIENER and
1727 // RESTORE_NONE or based on best_rtype
1728 if (rsc->lpf_sf->prune_sgr_based_on_wiener == 1) {
1729 rsc->skip_sgr_eval = cost_wiener > (1.01 * cost_none);
1730 } else if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) {
1731 rsc->skip_sgr_eval = rusi->best_rtype[RESTORE_WIENER - 1] == RESTORE_NONE;
1732 }
1733
1734 #if DEBUG_LR_COSTING
1735 // Store ref params for later checking
1736 lr_ref_params[RESTORE_WIENER][rsc->plane][rest_unit_idx].wiener_info =
1737 rsc->ref_wiener;
1738 #endif // DEBUG_LR_COSTING
1739
1740 rsc->total_sse[RESTORE_WIENER] += rsc->sse[rtype];
1741 rsc->total_bits[RESTORE_WIENER] +=
1742 (cost_wiener < cost_none) ? bits_wiener : bits_none;
1743 if (cost_wiener < cost_none) rsc->ref_wiener = rusi->wiener;
1744 }
1745
search_norestore(const RestorationTileLimits * limits,int rest_unit_idx,void * priv,int32_t * tmpbuf,RestorationLineBuffers * rlbs,struct aom_internal_error_info * error_info)1746 static inline void search_norestore(
1747 const RestorationTileLimits *limits, int rest_unit_idx, void *priv,
1748 int32_t *tmpbuf, RestorationLineBuffers *rlbs,
1749 struct aom_internal_error_info *error_info) {
1750 (void)rest_unit_idx;
1751 (void)tmpbuf;
1752 (void)rlbs;
1753 (void)error_info;
1754
1755 RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
1756
1757 const int highbd = rsc->cm->seq_params->use_highbitdepth;
1758 rsc->sse[RESTORE_NONE] = sse_restoration_unit(
1759 limits, rsc->src, &rsc->cm->cur_frame->buf, rsc->plane, highbd);
1760
1761 rsc->total_sse[RESTORE_NONE] += rsc->sse[RESTORE_NONE];
1762 }
1763
search_switchable(const RestorationTileLimits * limits,int rest_unit_idx,void * priv,int32_t * tmpbuf,RestorationLineBuffers * rlbs,struct aom_internal_error_info * error_info)1764 static inline void search_switchable(
1765 const RestorationTileLimits *limits, int rest_unit_idx, void *priv,
1766 int32_t *tmpbuf, RestorationLineBuffers *rlbs,
1767 struct aom_internal_error_info *error_info) {
1768 (void)limits;
1769 (void)tmpbuf;
1770 (void)rlbs;
1771 (void)error_info;
1772 RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
1773 RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx];
1774
1775 const MACROBLOCK *const x = rsc->x;
1776
1777 const int wiener_win =
1778 (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA;
1779
1780 double best_cost = 0;
1781 int64_t best_bits = 0;
1782 RestorationType best_rtype = RESTORE_NONE;
1783
1784 for (RestorationType r = 0; r < RESTORE_SWITCHABLE_TYPES; ++r) {
1785 // If this restoration mode was skipped, or could not find a solution
1786 // that was better than RESTORE_NONE, then we can't select it here either.
1787 //
1788 // Note: It is possible for the restoration search functions to find a
1789 // filter which is better than RESTORE_NONE when looking purely at SSE, but
1790 // for it to be rejected overall due to its rate cost. In this case, there
1791 // is a chance that it may be have a lower rate cost when looking at
1792 // RESTORE_SWITCHABLE, and so it might be acceptable here.
1793 //
1794 // Therefore we prune based on SSE, rather than on whether or not the
1795 // previous search function selected this mode.
1796 if (r > RESTORE_NONE) {
1797 if (rsc->sse[r] > rsc->sse[RESTORE_NONE]) continue;
1798 }
1799
1800 const int64_t sse = rsc->sse[r];
1801 int64_t coeff_pcost = 0;
1802 switch (r) {
1803 case RESTORE_NONE: coeff_pcost = 0; break;
1804 case RESTORE_WIENER:
1805 coeff_pcost = count_wiener_bits(wiener_win, &rusi->wiener,
1806 &rsc->switchable_ref_wiener);
1807 break;
1808 case RESTORE_SGRPROJ:
1809 coeff_pcost =
1810 count_sgrproj_bits(&rusi->sgrproj, &rsc->switchable_ref_sgrproj);
1811 break;
1812 default: assert(0); break;
1813 }
1814 const int64_t coeff_bits = coeff_pcost << AV1_PROB_COST_SHIFT;
1815 const int64_t bits = x->mode_costs.switchable_restore_cost[r] + coeff_bits;
1816 double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST(
1817 x->rdmult, bits >> 4, sse, rsc->cm->seq_params->bit_depth);
1818 if (r == RESTORE_SGRPROJ && rusi->sgrproj.ep < 10)
1819 cost *= (1 + DUAL_SGR_PENALTY_MULT * rsc->lpf_sf->dual_sgr_penalty_level);
1820 if (r == 0 || cost < best_cost) {
1821 best_cost = cost;
1822 best_bits = bits;
1823 best_rtype = r;
1824 }
1825 }
1826
1827 rusi->best_rtype[RESTORE_SWITCHABLE - 1] = best_rtype;
1828
1829 #if DEBUG_LR_COSTING
1830 // Store ref params for later checking
1831 lr_ref_params[RESTORE_SWITCHABLE][rsc->plane][rest_unit_idx].wiener_info =
1832 rsc->switchable_ref_wiener;
1833 lr_ref_params[RESTORE_SWITCHABLE][rsc->plane][rest_unit_idx].sgrproj_info =
1834 rsc->switchable_ref_sgrproj;
1835 #endif // DEBUG_LR_COSTING
1836
1837 rsc->total_sse[RESTORE_SWITCHABLE] += rsc->sse[best_rtype];
1838 rsc->total_bits[RESTORE_SWITCHABLE] += best_bits;
1839 if (best_rtype == RESTORE_WIENER) rsc->switchable_ref_wiener = rusi->wiener;
1840 if (best_rtype == RESTORE_SGRPROJ)
1841 rsc->switchable_ref_sgrproj = rusi->sgrproj;
1842 }
1843
copy_unit_info(RestorationType frame_rtype,const RestUnitSearchInfo * rusi,RestorationUnitInfo * rui)1844 static inline void copy_unit_info(RestorationType frame_rtype,
1845 const RestUnitSearchInfo *rusi,
1846 RestorationUnitInfo *rui) {
1847 assert(frame_rtype > 0);
1848 rui->restoration_type = rusi->best_rtype[frame_rtype - 1];
1849 if (rui->restoration_type == RESTORE_WIENER)
1850 rui->wiener_info = rusi->wiener;
1851 else
1852 rui->sgrproj_info = rusi->sgrproj;
1853 }
1854
restoration_search(AV1_COMMON * cm,int plane,RestSearchCtxt * rsc,bool * disable_lr_filter)1855 static void restoration_search(AV1_COMMON *cm, int plane, RestSearchCtxt *rsc,
1856 bool *disable_lr_filter) {
1857 const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
1858 const int mib_size_log2 = cm->seq_params->mib_size_log2;
1859 const CommonTileParams *tiles = &cm->tiles;
1860 const int is_uv = plane > 0;
1861 const int ss_y = is_uv && cm->seq_params->subsampling_y;
1862 RestorationInfo *rsi = &cm->rst_info[plane];
1863 const int ru_size = rsi->restoration_unit_size;
1864 const int ext_size = ru_size * 3 / 2;
1865
1866 int plane_w, plane_h;
1867 av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
1868
1869 static const rest_unit_visitor_t funs[RESTORE_TYPES] = {
1870 search_norestore, search_wiener, search_sgrproj, search_switchable
1871 };
1872
1873 const int plane_num_units = rsi->num_rest_units;
1874 const RestorationType num_rtypes =
1875 (plane_num_units > 1) ? RESTORE_TYPES : RESTORE_SWITCHABLE_TYPES;
1876
1877 reset_rsc(rsc);
1878
1879 // Iterate over restoration units in encoding order, so that each RU gets
1880 // the correct reference parameters when we cost it up. This is effectively
1881 // a nested iteration over:
1882 // * Each tile, order does not matter
1883 // * Each superblock within that tile, in raster order
1884 // * Each LR unit which is coded within that superblock, in raster order
1885 for (int tile_row = 0; tile_row < tiles->rows; tile_row++) {
1886 int sb_row_start = tiles->row_start_sb[tile_row];
1887 int sb_row_end = tiles->row_start_sb[tile_row + 1];
1888 for (int tile_col = 0; tile_col < tiles->cols; tile_col++) {
1889 int sb_col_start = tiles->col_start_sb[tile_col];
1890 int sb_col_end = tiles->col_start_sb[tile_col + 1];
1891
1892 // Reset reference parameters for delta-coding at the start of each tile
1893 rsc_on_tile(rsc);
1894
1895 for (int sb_row = sb_row_start; sb_row < sb_row_end; sb_row++) {
1896 int mi_row = sb_row << mib_size_log2;
1897 for (int sb_col = sb_col_start; sb_col < sb_col_end; sb_col++) {
1898 int mi_col = sb_col << mib_size_log2;
1899
1900 int rcol0, rcol1, rrow0, rrow1;
1901 int has_lr_info = av1_loop_restoration_corners_in_sb(
1902 cm, plane, mi_row, mi_col, sb_size, &rcol0, &rcol1, &rrow0,
1903 &rrow1);
1904
1905 if (!has_lr_info) continue;
1906
1907 RestorationTileLimits limits;
1908 for (int rrow = rrow0; rrow < rrow1; rrow++) {
1909 int y0 = rrow * ru_size;
1910 int remaining_h = plane_h - y0;
1911 int h = (remaining_h < ext_size) ? remaining_h : ru_size;
1912
1913 limits.v_start = y0;
1914 limits.v_end = y0 + h;
1915 assert(limits.v_end <= plane_h);
1916 // Offset upwards to align with the restoration processing stripe
1917 const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
1918 limits.v_start = AOMMAX(0, limits.v_start - voffset);
1919 if (limits.v_end < plane_h) limits.v_end -= voffset;
1920
1921 for (int rcol = rcol0; rcol < rcol1; rcol++) {
1922 int x0 = rcol * ru_size;
1923 int remaining_w = plane_w - x0;
1924 int w = (remaining_w < ext_size) ? remaining_w : ru_size;
1925
1926 limits.h_start = x0;
1927 limits.h_end = x0 + w;
1928 assert(limits.h_end <= plane_w);
1929
1930 const int unit_idx = rrow * rsi->horz_units + rcol;
1931
1932 rsc->skip_sgr_eval = 0;
1933 for (RestorationType r = RESTORE_NONE; r < num_rtypes; r++) {
1934 if (disable_lr_filter[r]) continue;
1935
1936 funs[r](&limits, unit_idx, rsc, rsc->cm->rst_tmpbuf, NULL,
1937 cm->error);
1938 }
1939 }
1940 }
1941 }
1942 }
1943 }
1944 }
1945 }
1946
av1_derive_flags_for_lr_processing(const LOOP_FILTER_SPEED_FEATURES * lpf_sf,bool * disable_lr_filter)1947 static inline void av1_derive_flags_for_lr_processing(
1948 const LOOP_FILTER_SPEED_FEATURES *lpf_sf, bool *disable_lr_filter) {
1949 const bool is_wiener_disabled = lpf_sf->disable_wiener_filter;
1950 const bool is_sgr_disabled = lpf_sf->disable_sgr_filter;
1951
1952 // Enable None Loop restoration filter if either of Wiener or Self-guided is
1953 // enabled.
1954 disable_lr_filter[RESTORE_NONE] = (is_wiener_disabled && is_sgr_disabled);
1955
1956 disable_lr_filter[RESTORE_WIENER] = is_wiener_disabled;
1957 disable_lr_filter[RESTORE_SGRPROJ] = is_sgr_disabled;
1958
1959 // Enable Swicthable Loop restoration filter if both of the Wiener and
1960 // Self-guided are enabled.
1961 disable_lr_filter[RESTORE_SWITCHABLE] =
1962 (is_wiener_disabled || is_sgr_disabled);
1963 }
1964
1965 #define COUPLED_CHROMA_FROM_LUMA_RESTORATION 0
1966 // Allocate both decoder-side and encoder-side info structs for a single plane.
1967 // The unit size passed in should be the minimum size which we are going to
1968 // search; before each search, set_restoration_unit_size() must be called to
1969 // configure the actual size.
allocate_search_structs(AV1_COMMON * cm,RestorationInfo * rsi,int is_uv,int min_luma_unit_size)1970 static RestUnitSearchInfo *allocate_search_structs(AV1_COMMON *cm,
1971 RestorationInfo *rsi,
1972 int is_uv,
1973 int min_luma_unit_size) {
1974 #if COUPLED_CHROMA_FROM_LUMA_RESTORATION
1975 int sx = cm->seq_params.subsampling_x;
1976 int sy = cm->seq_params.subsampling_y;
1977 int s = (p > 0) ? AOMMIN(sx, sy) : 0;
1978 #else
1979 int s = 0;
1980 #endif // !COUPLED_CHROMA_FROM_LUMA_RESTORATION
1981 int min_unit_size = min_luma_unit_size >> s;
1982
1983 int plane_w, plane_h;
1984 av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
1985
1986 const int max_horz_units = av1_lr_count_units(min_unit_size, plane_w);
1987 const int max_vert_units = av1_lr_count_units(min_unit_size, plane_h);
1988 const int max_num_units = max_horz_units * max_vert_units;
1989
1990 aom_free(rsi->unit_info);
1991 CHECK_MEM_ERROR(cm, rsi->unit_info,
1992 (RestorationUnitInfo *)aom_memalign(
1993 16, sizeof(*rsi->unit_info) * max_num_units));
1994
1995 RestUnitSearchInfo *rusi;
1996 CHECK_MEM_ERROR(
1997 cm, rusi,
1998 (RestUnitSearchInfo *)aom_memalign(16, sizeof(*rusi) * max_num_units));
1999
2000 // If the restoration unit dimensions are not multiples of
2001 // rsi->restoration_unit_size then some elements of the rusi array may be
2002 // left uninitialised when we reach copy_unit_info(...). This is not a
2003 // problem, as these elements are ignored later, but in order to quiet
2004 // Valgrind's warnings we initialise the array below.
2005 memset(rusi, 0, sizeof(*rusi) * max_num_units);
2006
2007 return rusi;
2008 }
2009
set_restoration_unit_size(AV1_COMMON * cm,RestorationInfo * rsi,int is_uv,int luma_unit_size)2010 static void set_restoration_unit_size(AV1_COMMON *cm, RestorationInfo *rsi,
2011 int is_uv, int luma_unit_size) {
2012 #if COUPLED_CHROMA_FROM_LUMA_RESTORATION
2013 int sx = cm->seq_params.subsampling_x;
2014 int sy = cm->seq_params.subsampling_y;
2015 int s = (p > 0) ? AOMMIN(sx, sy) : 0;
2016 #else
2017 int s = 0;
2018 #endif // !COUPLED_CHROMA_FROM_LUMA_RESTORATION
2019 int unit_size = luma_unit_size >> s;
2020
2021 int plane_w, plane_h;
2022 av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
2023
2024 const int horz_units = av1_lr_count_units(unit_size, plane_w);
2025 const int vert_units = av1_lr_count_units(unit_size, plane_h);
2026
2027 rsi->restoration_unit_size = unit_size;
2028 rsi->num_rest_units = horz_units * vert_units;
2029 rsi->horz_units = horz_units;
2030 rsi->vert_units = vert_units;
2031 }
2032
av1_pick_filter_restoration(const YV12_BUFFER_CONFIG * src,AV1_COMP * cpi)2033 void av1_pick_filter_restoration(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi) {
2034 AV1_COMMON *const cm = &cpi->common;
2035 MACROBLOCK *const x = &cpi->td.mb;
2036 const SequenceHeader *const seq_params = cm->seq_params;
2037 const LOOP_FILTER_SPEED_FEATURES *lpf_sf = &cpi->sf.lpf_sf;
2038 const int num_planes = av1_num_planes(cm);
2039 const int highbd = cm->seq_params->use_highbitdepth;
2040 assert(!cm->features.all_lossless);
2041
2042 av1_fill_lr_rates(&x->mode_costs, x->e_mbd.tile_ctx);
2043
2044 // Select unit size based on speed feature settings, and allocate
2045 // rui structs based on this size
2046 int min_lr_unit_size = cpi->sf.lpf_sf.min_lr_unit_size;
2047 int max_lr_unit_size = cpi->sf.lpf_sf.max_lr_unit_size;
2048
2049 // The minimum allowed unit size at a syntax level is 1 superblock.
2050 // Apply this constraint here so that the speed features code which sets
2051 // cpi->sf.lpf_sf.min_lr_unit_size does not need to know the superblock size
2052 min_lr_unit_size =
2053 AOMMAX(min_lr_unit_size, block_size_wide[cm->seq_params->sb_size]);
2054
2055 for (int plane = 0; plane < num_planes; ++plane) {
2056 cpi->pick_lr_ctxt.rusi[plane] = allocate_search_structs(
2057 cm, &cm->rst_info[plane], plane > 0, min_lr_unit_size);
2058 }
2059
2060 x->rdmult = cpi->rd.RDMULT;
2061
2062 // Allocate the frame buffer trial_frame_rst, which is used to temporarily
2063 // store the loop restored frame.
2064 if (aom_realloc_frame_buffer(
2065 &cpi->trial_frame_rst, cm->superres_upscaled_width,
2066 cm->superres_upscaled_height, seq_params->subsampling_x,
2067 seq_params->subsampling_y, highbd, AOM_RESTORATION_FRAME_BORDER,
2068 cm->features.byte_alignment, NULL, NULL, NULL, false, 0))
2069 aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
2070 "Failed to allocate trial restored frame buffer");
2071
2072 RestSearchCtxt rsc;
2073
2074 // The buffers 'src_avg' and 'dgd_avg' are used to compute H and M buffers.
2075 // These buffers are only required for the AVX2 and NEON implementations of
2076 // av1_compute_stats. The buffer size required is calculated based on maximum
2077 // width and height of the LRU (i.e., from foreach_rest_unit_in_plane() 1.5
2078 // times the RESTORATION_UNITSIZE_MAX) allowed for Wiener filtering. The width
2079 // and height aligned to multiple of 16 is considered for intrinsic purpose.
2080 rsc.dgd_avg = NULL;
2081 rsc.src_avg = NULL;
2082 #if HAVE_AVX2 || HAVE_NEON || HAVE_SVE
2083 // The buffers allocated below are used during Wiener filter processing.
2084 // Hence, allocate the same when Wiener filter is enabled. Make sure to
2085 // allocate these buffers only for the SIMD extensions that make use of them
2086 // (i.e. AVX2 for low bitdepth and NEON and SVE for low and high bitdepth).
2087 #if HAVE_AVX2
2088 bool allocate_buffers = !cpi->sf.lpf_sf.disable_wiener_filter && !highbd;
2089 #elif HAVE_NEON || HAVE_SVE
2090 bool allocate_buffers = !cpi->sf.lpf_sf.disable_wiener_filter;
2091 #endif
2092 if (allocate_buffers) {
2093 const int buf_size = sizeof(*cpi->pick_lr_ctxt.dgd_avg) * 6 *
2094 RESTORATION_UNITSIZE_MAX * RESTORATION_UNITSIZE_MAX;
2095 CHECK_MEM_ERROR(cm, cpi->pick_lr_ctxt.dgd_avg,
2096 (int16_t *)aom_memalign(32, buf_size));
2097
2098 rsc.dgd_avg = cpi->pick_lr_ctxt.dgd_avg;
2099 // When LRU width isn't multiple of 16, the 256 bits load instruction used
2100 // in AVX2 intrinsic can read data beyond valid LRU. Hence, in order to
2101 // silence Valgrind warning this buffer is initialized with zero. Overhead
2102 // due to this initialization is negligible since it is done at frame level.
2103 memset(rsc.dgd_avg, 0, buf_size);
2104 rsc.src_avg =
2105 rsc.dgd_avg + 3 * RESTORATION_UNITSIZE_MAX * RESTORATION_UNITSIZE_MAX;
2106 // Asserts the starting address of src_avg is always 32-bytes aligned.
2107 assert(!((intptr_t)rsc.src_avg % 32));
2108 }
2109 #endif
2110
2111 // Initialize all planes, so that any planes we skip searching will still have
2112 // valid data
2113 for (int plane = 0; plane < num_planes; plane++) {
2114 cm->rst_info[plane].frame_restoration_type = RESTORE_NONE;
2115 }
2116
2117 // Decide which planes to search
2118 int plane_start, plane_end;
2119
2120 if (lpf_sf->disable_loop_restoration_luma) {
2121 plane_start = AOM_PLANE_U;
2122 } else {
2123 plane_start = AOM_PLANE_Y;
2124 }
2125
2126 if (num_planes == 1 || lpf_sf->disable_loop_restoration_chroma) {
2127 plane_end = AOM_PLANE_Y;
2128 } else {
2129 plane_end = AOM_PLANE_V;
2130 }
2131
2132 // Derive the flags to enable/disable Loop restoration filters based on the
2133 // speed features 'disable_wiener_filter' and 'disable_sgr_filter'.
2134 bool disable_lr_filter[RESTORE_TYPES] = { false };
2135 av1_derive_flags_for_lr_processing(lpf_sf, disable_lr_filter);
2136
2137 for (int plane = plane_start; plane <= plane_end; plane++) {
2138 const YV12_BUFFER_CONFIG *dgd = &cm->cur_frame->buf;
2139 const int is_uv = plane != AOM_PLANE_Y;
2140 int plane_w, plane_h;
2141 av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h);
2142 av1_extend_frame(dgd->buffers[plane], plane_w, plane_h, dgd->strides[is_uv],
2143 RESTORATION_BORDER, RESTORATION_BORDER, highbd);
2144 }
2145
2146 double best_cost = DBL_MAX;
2147 int best_luma_unit_size = max_lr_unit_size;
2148 for (int luma_unit_size = max_lr_unit_size;
2149 luma_unit_size >= min_lr_unit_size; luma_unit_size >>= 1) {
2150 int64_t bits_this_size = 0;
2151 int64_t sse_this_size = 0;
2152 RestorationType best_rtype[MAX_MB_PLANE] = { RESTORE_NONE, RESTORE_NONE,
2153 RESTORE_NONE };
2154 for (int plane = plane_start; plane <= plane_end; ++plane) {
2155 set_restoration_unit_size(cm, &cm->rst_info[plane], plane > 0,
2156 luma_unit_size);
2157 init_rsc(src, &cpi->common, x, lpf_sf, plane,
2158 cpi->pick_lr_ctxt.rusi[plane], &cpi->trial_frame_rst, &rsc);
2159
2160 restoration_search(cm, plane, &rsc, disable_lr_filter);
2161
2162 const int plane_num_units = cm->rst_info[plane].num_rest_units;
2163 const RestorationType num_rtypes =
2164 (plane_num_units > 1) ? RESTORE_TYPES : RESTORE_SWITCHABLE_TYPES;
2165 double best_cost_this_plane = DBL_MAX;
2166 for (RestorationType r = 0; r < num_rtypes; ++r) {
2167 // Disable Loop restoration filter based on the flags set using speed
2168 // feature 'disable_wiener_filter' and 'disable_sgr_filter'.
2169 if (disable_lr_filter[r]) continue;
2170
2171 double cost_this_plane = RDCOST_DBL_WITH_NATIVE_BD_DIST(
2172 x->rdmult, rsc.total_bits[r] >> 4, rsc.total_sse[r],
2173 cm->seq_params->bit_depth);
2174
2175 if (cost_this_plane < best_cost_this_plane) {
2176 best_cost_this_plane = cost_this_plane;
2177 best_rtype[plane] = r;
2178 }
2179 }
2180
2181 bits_this_size += rsc.total_bits[best_rtype[plane]];
2182 sse_this_size += rsc.total_sse[best_rtype[plane]];
2183 }
2184
2185 double cost_this_size = RDCOST_DBL_WITH_NATIVE_BD_DIST(
2186 x->rdmult, bits_this_size >> 4, sse_this_size,
2187 cm->seq_params->bit_depth);
2188
2189 if (cost_this_size < best_cost) {
2190 best_cost = cost_this_size;
2191 best_luma_unit_size = luma_unit_size;
2192 // Copy parameters out of rusi struct, before we overwrite it at
2193 // the start of the next iteration
2194 bool all_none = true;
2195 for (int plane = plane_start; plane <= plane_end; ++plane) {
2196 cm->rst_info[plane].frame_restoration_type = best_rtype[plane];
2197 if (best_rtype[plane] != RESTORE_NONE) {
2198 all_none = false;
2199 const int plane_num_units = cm->rst_info[plane].num_rest_units;
2200 for (int u = 0; u < plane_num_units; ++u) {
2201 copy_unit_info(best_rtype[plane], &cpi->pick_lr_ctxt.rusi[plane][u],
2202 &cm->rst_info[plane].unit_info[u]);
2203 }
2204 }
2205 }
2206 // Heuristic: If all best_rtype entries are RESTORE_NONE, this means we
2207 // couldn't find any good filters at this size. So we likely won't find
2208 // any good filters at a smaller size either, so skip
2209 if (all_none) {
2210 break;
2211 }
2212 } else {
2213 // Heuristic: If this size is worse than the previous (larger) size, then
2214 // the next size down will likely be even worse, so skip
2215 break;
2216 }
2217 }
2218
2219 // Final fixup to set the correct unit size
2220 // We set this for all planes, even ones we have skipped searching,
2221 // so that other code does not need to care which planes were and weren't
2222 // searched
2223 for (int plane = 0; plane < num_planes; ++plane) {
2224 set_restoration_unit_size(cm, &cm->rst_info[plane], plane > 0,
2225 best_luma_unit_size);
2226 }
2227
2228 #if HAVE_AVX2 || HAVE_NEON || HAVE_SVE
2229 #if HAVE_AVX2
2230 bool free_buffers = !cpi->sf.lpf_sf.disable_wiener_filter && !highbd;
2231 #elif HAVE_NEON || HAVE_SVE
2232 bool free_buffers = !cpi->sf.lpf_sf.disable_wiener_filter;
2233 #endif
2234 if (free_buffers) {
2235 aom_free(cpi->pick_lr_ctxt.dgd_avg);
2236 cpi->pick_lr_ctxt.dgd_avg = NULL;
2237 }
2238 #endif
2239 for (int plane = 0; plane < num_planes; plane++) {
2240 aom_free(cpi->pick_lr_ctxt.rusi[plane]);
2241 cpi->pick_lr_ctxt.rusi[plane] = NULL;
2242 }
2243 }
2244