1 /*
2 * Copyright (c) 2019, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <assert.h>
13 #include <float.h>
14 #include <stdint.h>
15
16 #include "config/aom_config.h"
17
18 #if CONFIG_THREE_PASS
19 #include "av1/encoder/thirdpass.h"
20 #endif
21 #include "config/aom_dsp_rtcd.h"
22 #include "config/aom_scale_rtcd.h"
23
24 #include "aom/aom_codec.h"
25 #include "aom_util/aom_pthread.h"
26
27 #include "av1/common/av1_common_int.h"
28 #include "av1/common/enums.h"
29 #include "av1/common/idct.h"
30 #include "av1/common/reconintra.h"
31
32 #include "av1/encoder/encoder.h"
33 #include "av1/encoder/ethread.h"
34 #include "av1/encoder/encodeframe_utils.h"
35 #include "av1/encoder/encode_strategy.h"
36 #include "av1/encoder/hybrid_fwd_txfm.h"
37 #include "av1/encoder/motion_search_facade.h"
38 #include "av1/encoder/rd.h"
39 #include "av1/encoder/rdopt.h"
40 #include "av1/encoder/reconinter_enc.h"
41 #include "av1/encoder/tpl_model.h"
42
exp_bounded(double v)43 static inline double exp_bounded(double v) {
44 // When v > 700 or <-700, the exp function will be close to overflow
45 // For details, see the "Notes" in the following link.
46 // https://en.cppreference.com/w/c/numeric/math/exp
47 if (v > 700) {
48 return DBL_MAX;
49 } else if (v < -700) {
50 return 0;
51 }
52 return exp(v);
53 }
54
av1_init_tpl_txfm_stats(TplTxfmStats * tpl_txfm_stats)55 void av1_init_tpl_txfm_stats(TplTxfmStats *tpl_txfm_stats) {
56 tpl_txfm_stats->ready = 0;
57 tpl_txfm_stats->coeff_num = 256;
58 tpl_txfm_stats->txfm_block_count = 0;
59 memset(tpl_txfm_stats->abs_coeff_sum, 0,
60 sizeof(tpl_txfm_stats->abs_coeff_sum[0]) * tpl_txfm_stats->coeff_num);
61 memset(tpl_txfm_stats->abs_coeff_mean, 0,
62 sizeof(tpl_txfm_stats->abs_coeff_mean[0]) * tpl_txfm_stats->coeff_num);
63 }
64
65 #if CONFIG_BITRATE_ACCURACY
av1_accumulate_tpl_txfm_stats(const TplTxfmStats * sub_stats,TplTxfmStats * accumulated_stats)66 void av1_accumulate_tpl_txfm_stats(const TplTxfmStats *sub_stats,
67 TplTxfmStats *accumulated_stats) {
68 accumulated_stats->txfm_block_count += sub_stats->txfm_block_count;
69 for (int i = 0; i < accumulated_stats->coeff_num; ++i) {
70 accumulated_stats->abs_coeff_sum[i] += sub_stats->abs_coeff_sum[i];
71 }
72 }
73
av1_record_tpl_txfm_block(TplTxfmStats * tpl_txfm_stats,const tran_low_t * coeff)74 void av1_record_tpl_txfm_block(TplTxfmStats *tpl_txfm_stats,
75 const tran_low_t *coeff) {
76 // For transform larger than 16x16, the scale of coeff need to be adjusted.
77 // It's not LOSSLESS_Q_STEP.
78 assert(tpl_txfm_stats->coeff_num <= 256);
79 for (int i = 0; i < tpl_txfm_stats->coeff_num; ++i) {
80 tpl_txfm_stats->abs_coeff_sum[i] += abs(coeff[i]) / (double)LOSSLESS_Q_STEP;
81 }
82 ++tpl_txfm_stats->txfm_block_count;
83 }
84
av1_tpl_txfm_stats_update_abs_coeff_mean(TplTxfmStats * txfm_stats)85 void av1_tpl_txfm_stats_update_abs_coeff_mean(TplTxfmStats *txfm_stats) {
86 if (txfm_stats->txfm_block_count > 0) {
87 for (int j = 0; j < txfm_stats->coeff_num; j++) {
88 txfm_stats->abs_coeff_mean[j] =
89 txfm_stats->abs_coeff_sum[j] / txfm_stats->txfm_block_count;
90 }
91 txfm_stats->ready = 1;
92 } else {
93 txfm_stats->ready = 0;
94 }
95 }
96
av1_tpl_store_txfm_stats(TplParams * tpl_data,const TplTxfmStats * tpl_txfm_stats,const int frame_index)97 static inline void av1_tpl_store_txfm_stats(TplParams *tpl_data,
98 const TplTxfmStats *tpl_txfm_stats,
99 const int frame_index) {
100 tpl_data->txfm_stats_list[frame_index] = *tpl_txfm_stats;
101 }
102 #endif // CONFIG_BITRATE_ACCURACY
103
get_quantize_error(const MACROBLOCK * x,int plane,const tran_low_t * coeff,tran_low_t * qcoeff,tran_low_t * dqcoeff,TX_SIZE tx_size,uint16_t * eob,int64_t * recon_error,int64_t * sse)104 static inline void get_quantize_error(const MACROBLOCK *x, int plane,
105 const tran_low_t *coeff,
106 tran_low_t *qcoeff, tran_low_t *dqcoeff,
107 TX_SIZE tx_size, uint16_t *eob,
108 int64_t *recon_error, int64_t *sse) {
109 const struct macroblock_plane *const p = &x->plane[plane];
110 const MACROBLOCKD *xd = &x->e_mbd;
111 const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
112 int pix_num = 1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]];
113 const int shift = tx_size == TX_32X32 ? 0 : 2;
114
115 QUANT_PARAM quant_param;
116 av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_FP, 0, &quant_param);
117
118 #if CONFIG_AV1_HIGHBITDEPTH
119 if (is_cur_buf_hbd(xd)) {
120 av1_highbd_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob,
121 scan_order, &quant_param);
122 *recon_error =
123 av1_highbd_block_error(coeff, dqcoeff, pix_num, sse, xd->bd) >> shift;
124 } else {
125 av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob, scan_order,
126 &quant_param);
127 *recon_error = av1_block_error(coeff, dqcoeff, pix_num, sse) >> shift;
128 }
129 #else
130 (void)xd;
131 av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob, scan_order,
132 &quant_param);
133 *recon_error = av1_block_error(coeff, dqcoeff, pix_num, sse) >> shift;
134 #endif // CONFIG_AV1_HIGHBITDEPTH
135
136 *recon_error = AOMMAX(*recon_error, 1);
137
138 *sse = (*sse) >> shift;
139 *sse = AOMMAX(*sse, 1);
140 }
141
set_tpl_stats_block_size(uint8_t * block_mis_log2,uint8_t * tpl_bsize_1d)142 static inline void set_tpl_stats_block_size(uint8_t *block_mis_log2,
143 uint8_t *tpl_bsize_1d) {
144 // tpl stats bsize: 2 means 16x16
145 *block_mis_log2 = 2;
146 // Block size used in tpl motion estimation
147 *tpl_bsize_1d = 16;
148 // MIN_TPL_BSIZE_1D = 16;
149 assert(*tpl_bsize_1d >= 16);
150 }
151
av1_setup_tpl_buffers(AV1_PRIMARY * const ppi,CommonModeInfoParams * const mi_params,int width,int height,int byte_alignment,int lag_in_frames)152 void av1_setup_tpl_buffers(AV1_PRIMARY *const ppi,
153 CommonModeInfoParams *const mi_params, int width,
154 int height, int byte_alignment, int lag_in_frames) {
155 SequenceHeader *const seq_params = &ppi->seq_params;
156 TplParams *const tpl_data = &ppi->tpl_data;
157 set_tpl_stats_block_size(&tpl_data->tpl_stats_block_mis_log2,
158 &tpl_data->tpl_bsize_1d);
159 const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
160 tpl_data->border_in_pixels =
161 ALIGN_POWER_OF_TWO(tpl_data->tpl_bsize_1d + 2 * AOM_INTERP_EXTEND, 5);
162
163 const int alloc_y_plane_only =
164 ppi->cpi->sf.tpl_sf.use_y_only_rate_distortion ? 1 : 0;
165 for (int frame = 0; frame < MAX_LENGTH_TPL_FRAME_STATS; ++frame) {
166 const int mi_cols =
167 ALIGN_POWER_OF_TWO(mi_params->mi_cols, MAX_MIB_SIZE_LOG2);
168 const int mi_rows =
169 ALIGN_POWER_OF_TWO(mi_params->mi_rows, MAX_MIB_SIZE_LOG2);
170 TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame];
171 tpl_frame->is_valid = 0;
172 tpl_frame->width = mi_cols >> block_mis_log2;
173 tpl_frame->height = mi_rows >> block_mis_log2;
174 tpl_frame->stride = tpl_data->tpl_stats_buffer[frame].width;
175 tpl_frame->mi_rows = mi_params->mi_rows;
176 tpl_frame->mi_cols = mi_params->mi_cols;
177 }
178 tpl_data->tpl_frame = &tpl_data->tpl_stats_buffer[REF_FRAMES + 1];
179
180 // If lag_in_frames <= 1, TPL module is not invoked. Hence dynamic memory
181 // allocations are avoided for buffers in tpl_data.
182 if (lag_in_frames <= 1) return;
183
184 AOM_CHECK_MEM_ERROR(&ppi->error, tpl_data->txfm_stats_list,
185 aom_calloc(MAX_LENGTH_TPL_FRAME_STATS,
186 sizeof(*tpl_data->txfm_stats_list)));
187
188 for (int frame = 0; frame < lag_in_frames; ++frame) {
189 AOM_CHECK_MEM_ERROR(
190 &ppi->error, tpl_data->tpl_stats_pool[frame],
191 aom_calloc(tpl_data->tpl_stats_buffer[frame].width *
192 tpl_data->tpl_stats_buffer[frame].height,
193 sizeof(*tpl_data->tpl_stats_buffer[frame].tpl_stats_ptr)));
194
195 if (aom_alloc_frame_buffer(
196 &tpl_data->tpl_rec_pool[frame], width, height,
197 seq_params->subsampling_x, seq_params->subsampling_y,
198 seq_params->use_highbitdepth, tpl_data->border_in_pixels,
199 byte_alignment, false, alloc_y_plane_only))
200 aom_internal_error(&ppi->error, AOM_CODEC_MEM_ERROR,
201 "Failed to allocate frame buffer");
202 }
203 }
204
tpl_get_satd_cost(BitDepthInfo bd_info,int16_t * src_diff,int diff_stride,const uint8_t * src,int src_stride,const uint8_t * dst,int dst_stride,tran_low_t * coeff,int bw,int bh,TX_SIZE tx_size)205 static inline int32_t tpl_get_satd_cost(BitDepthInfo bd_info, int16_t *src_diff,
206 int diff_stride, const uint8_t *src,
207 int src_stride, const uint8_t *dst,
208 int dst_stride, tran_low_t *coeff,
209 int bw, int bh, TX_SIZE tx_size) {
210 const int pix_num = bw * bh;
211
212 av1_subtract_block(bd_info, bh, bw, src_diff, diff_stride, src, src_stride,
213 dst, dst_stride);
214 av1_quick_txfm(/*use_hadamard=*/0, tx_size, bd_info, src_diff, bw, coeff);
215 return aom_satd(coeff, pix_num);
216 }
217
rate_estimator(const tran_low_t * qcoeff,int eob,TX_SIZE tx_size)218 static int rate_estimator(const tran_low_t *qcoeff, int eob, TX_SIZE tx_size) {
219 const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
220
221 assert((1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]]) >= eob);
222 int rate_cost = 1;
223
224 for (int idx = 0; idx < eob; ++idx) {
225 unsigned int abs_level = abs(qcoeff[scan_order->scan[idx]]);
226 rate_cost += get_msb(abs_level + 1) + 1 + (abs_level > 0);
227 }
228
229 return (rate_cost << AV1_PROB_COST_SHIFT);
230 }
231
txfm_quant_rdcost(const MACROBLOCK * x,int16_t * src_diff,int diff_stride,uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,tran_low_t * coeff,tran_low_t * qcoeff,tran_low_t * dqcoeff,int bw,int bh,TX_SIZE tx_size,int do_recon,int * rate_cost,int64_t * recon_error,int64_t * sse)232 static inline void txfm_quant_rdcost(
233 const MACROBLOCK *x, int16_t *src_diff, int diff_stride, uint8_t *src,
234 int src_stride, uint8_t *dst, int dst_stride, tran_low_t *coeff,
235 tran_low_t *qcoeff, tran_low_t *dqcoeff, int bw, int bh, TX_SIZE tx_size,
236 int do_recon, int *rate_cost, int64_t *recon_error, int64_t *sse) {
237 const MACROBLOCKD *xd = &x->e_mbd;
238 const BitDepthInfo bd_info = get_bit_depth_info(xd);
239 uint16_t eob;
240 av1_subtract_block(bd_info, bh, bw, src_diff, diff_stride, src, src_stride,
241 dst, dst_stride);
242 av1_quick_txfm(/*use_hadamard=*/0, tx_size, bd_info, src_diff, bw, coeff);
243
244 get_quantize_error(x, 0, coeff, qcoeff, dqcoeff, tx_size, &eob, recon_error,
245 sse);
246
247 *rate_cost = rate_estimator(qcoeff, eob, tx_size);
248
249 if (do_recon)
250 av1_inverse_transform_block(xd, dqcoeff, 0, DCT_DCT, tx_size, dst,
251 dst_stride, eob, 0);
252 }
253
motion_estimation(AV1_COMP * cpi,MACROBLOCK * x,uint8_t * cur_frame_buf,uint8_t * ref_frame_buf,int stride,int ref_stride,int width,int ref_width,BLOCK_SIZE bsize,MV center_mv,int_mv * best_mv)254 static uint32_t motion_estimation(AV1_COMP *cpi, MACROBLOCK *x,
255 uint8_t *cur_frame_buf,
256 uint8_t *ref_frame_buf, int stride,
257 int ref_stride, int width, int ref_width,
258 BLOCK_SIZE bsize, MV center_mv,
259 int_mv *best_mv) {
260 AV1_COMMON *cm = &cpi->common;
261 MACROBLOCKD *const xd = &x->e_mbd;
262 TPL_SPEED_FEATURES *tpl_sf = &cpi->sf.tpl_sf;
263 int step_param;
264 uint32_t bestsme = UINT_MAX;
265 FULLPEL_MV_STATS best_mv_stats;
266 int distortion;
267 uint32_t sse;
268 int cost_list[5];
269 FULLPEL_MV start_mv = get_fullmv_from_mv(¢er_mv);
270
271 // Setup frame pointers
272 x->plane[0].src.buf = cur_frame_buf;
273 x->plane[0].src.stride = stride;
274 x->plane[0].src.width = width;
275 xd->plane[0].pre[0].buf = ref_frame_buf;
276 xd->plane[0].pre[0].stride = ref_stride;
277 xd->plane[0].pre[0].width = ref_width;
278
279 step_param = tpl_sf->reduce_first_step_size;
280 step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 2);
281
282 const search_site_config *search_site_cfg =
283 cpi->mv_search_params.search_site_cfg[SS_CFG_SRC];
284 if (search_site_cfg->stride != ref_stride)
285 search_site_cfg = cpi->mv_search_params.search_site_cfg[SS_CFG_LOOKAHEAD];
286 assert(search_site_cfg->stride == ref_stride);
287
288 FULLPEL_MOTION_SEARCH_PARAMS full_ms_params;
289 av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize, ¢er_mv,
290 start_mv, search_site_cfg,
291 tpl_sf->search_method,
292 /*fine_search_interval=*/0);
293
294 bestsme = av1_full_pixel_search(start_mv, &full_ms_params, step_param,
295 cond_cost_list(cpi, cost_list),
296 &best_mv->as_fullmv, &best_mv_stats, NULL);
297
298 // When sub-pel motion search is skipped, populate sub-pel precision MV and
299 // return.
300 if (tpl_sf->subpel_force_stop == FULL_PEL) {
301 best_mv->as_mv = get_mv_from_fullmv(&best_mv->as_fullmv);
302 return bestsme;
303 }
304
305 SUBPEL_MOTION_SEARCH_PARAMS ms_params;
306 av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, ¢er_mv,
307 cost_list);
308 ms_params.forced_stop = tpl_sf->subpel_force_stop;
309 ms_params.var_params.subpel_search_type = USE_2_TAPS;
310 ms_params.mv_cost_params.mv_cost_type = MV_COST_NONE;
311 best_mv_stats.err_cost = 0;
312 MV subpel_start_mv = get_mv_from_fullmv(&best_mv->as_fullmv);
313 assert(av1_is_subpelmv_in_range(&ms_params.mv_limits, subpel_start_mv));
314 bestsme = cpi->mv_search_params.find_fractional_mv_step(
315 xd, cm, &ms_params, subpel_start_mv, &best_mv_stats, &best_mv->as_mv,
316 &distortion, &sse, NULL);
317
318 return bestsme;
319 }
320
321 typedef struct {
322 int_mv mv;
323 int sad;
324 } center_mv_t;
325
compare_sad(const void * a,const void * b)326 static int compare_sad(const void *a, const void *b) {
327 const int diff = ((center_mv_t *)a)->sad - ((center_mv_t *)b)->sad;
328 if (diff < 0)
329 return -1;
330 else if (diff > 0)
331 return 1;
332 return 0;
333 }
334
is_alike_mv(int_mv candidate_mv,center_mv_t * center_mvs,int center_mvs_count,int skip_alike_starting_mv)335 static int is_alike_mv(int_mv candidate_mv, center_mv_t *center_mvs,
336 int center_mvs_count, int skip_alike_starting_mv) {
337 // MV difference threshold is in 1/8 precision.
338 const int mv_diff_thr[3] = { 1, (8 << 3), (16 << 3) };
339 int thr = mv_diff_thr[skip_alike_starting_mv];
340 int i;
341
342 for (i = 0; i < center_mvs_count; i++) {
343 if (abs(center_mvs[i].mv.as_mv.col - candidate_mv.as_mv.col) < thr &&
344 abs(center_mvs[i].mv.as_mv.row - candidate_mv.as_mv.row) < thr)
345 return 1;
346 }
347
348 return 0;
349 }
350
get_rate_distortion(int * rate_cost,int64_t * recon_error,int64_t * pred_error,int16_t * src_diff,tran_low_t * coeff,tran_low_t * qcoeff,tran_low_t * dqcoeff,AV1_COMMON * cm,MACROBLOCK * x,const YV12_BUFFER_CONFIG * ref_frame_ptr[2],uint8_t * rec_buffer_pool[3],const int rec_stride_pool[3],TX_SIZE tx_size,PREDICTION_MODE best_mode,int mi_row,int mi_col,int use_y_only_rate_distortion,int do_recon,TplTxfmStats * tpl_txfm_stats)351 static void get_rate_distortion(
352 int *rate_cost, int64_t *recon_error, int64_t *pred_error,
353 int16_t *src_diff, tran_low_t *coeff, tran_low_t *qcoeff,
354 tran_low_t *dqcoeff, AV1_COMMON *cm, MACROBLOCK *x,
355 const YV12_BUFFER_CONFIG *ref_frame_ptr[2], uint8_t *rec_buffer_pool[3],
356 const int rec_stride_pool[3], TX_SIZE tx_size, PREDICTION_MODE best_mode,
357 int mi_row, int mi_col, int use_y_only_rate_distortion, int do_recon,
358 TplTxfmStats *tpl_txfm_stats) {
359 const SequenceHeader *seq_params = cm->seq_params;
360 *rate_cost = 0;
361 *recon_error = 1;
362 *pred_error = 1;
363
364 (void)tpl_txfm_stats;
365
366 MACROBLOCKD *xd = &x->e_mbd;
367 int is_compound = (best_mode == NEW_NEWMV);
368 int num_planes = use_y_only_rate_distortion ? 1 : MAX_MB_PLANE;
369
370 uint8_t *src_buffer_pool[MAX_MB_PLANE] = {
371 xd->cur_buf->y_buffer,
372 xd->cur_buf->u_buffer,
373 xd->cur_buf->v_buffer,
374 };
375 const int src_stride_pool[MAX_MB_PLANE] = {
376 xd->cur_buf->y_stride,
377 xd->cur_buf->uv_stride,
378 xd->cur_buf->uv_stride,
379 };
380
381 const int_interpfilters kernel =
382 av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
383
384 for (int plane = 0; plane < num_planes; ++plane) {
385 struct macroblockd_plane *pd = &xd->plane[plane];
386 BLOCK_SIZE bsize_plane =
387 av1_ss_size_lookup[txsize_to_bsize[tx_size]][pd->subsampling_x]
388 [pd->subsampling_y];
389
390 int dst_buffer_stride = rec_stride_pool[plane];
391 int dst_mb_offset =
392 ((mi_row * MI_SIZE * dst_buffer_stride) >> pd->subsampling_y) +
393 ((mi_col * MI_SIZE) >> pd->subsampling_x);
394 uint8_t *dst_buffer = rec_buffer_pool[plane] + dst_mb_offset;
395 for (int ref = 0; ref < 1 + is_compound; ++ref) {
396 if (!is_inter_mode(best_mode)) {
397 av1_predict_intra_block(
398 xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
399 block_size_wide[bsize_plane], block_size_high[bsize_plane],
400 max_txsize_rect_lookup[bsize_plane], best_mode, 0, 0,
401 FILTER_INTRA_MODES, dst_buffer, dst_buffer_stride, dst_buffer,
402 dst_buffer_stride, 0, 0, plane);
403 } else {
404 int_mv best_mv = xd->mi[0]->mv[ref];
405 uint8_t *ref_buffer_pool[MAX_MB_PLANE] = {
406 ref_frame_ptr[ref]->y_buffer,
407 ref_frame_ptr[ref]->u_buffer,
408 ref_frame_ptr[ref]->v_buffer,
409 };
410 InterPredParams inter_pred_params;
411 struct buf_2d ref_buf = {
412 NULL, ref_buffer_pool[plane],
413 plane ? ref_frame_ptr[ref]->uv_width : ref_frame_ptr[ref]->y_width,
414 plane ? ref_frame_ptr[ref]->uv_height : ref_frame_ptr[ref]->y_height,
415 plane ? ref_frame_ptr[ref]->uv_stride : ref_frame_ptr[ref]->y_stride
416 };
417 av1_init_inter_params(&inter_pred_params, block_size_wide[bsize_plane],
418 block_size_high[bsize_plane],
419 (mi_row * MI_SIZE) >> pd->subsampling_y,
420 (mi_col * MI_SIZE) >> pd->subsampling_x,
421 pd->subsampling_x, pd->subsampling_y, xd->bd,
422 is_cur_buf_hbd(xd), 0,
423 xd->block_ref_scale_factors[0], &ref_buf, kernel);
424 if (is_compound) av1_init_comp_mode(&inter_pred_params);
425 inter_pred_params.conv_params = get_conv_params_no_round(
426 ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
427
428 av1_enc_build_one_inter_predictor(dst_buffer, dst_buffer_stride,
429 &best_mv.as_mv, &inter_pred_params);
430 }
431 }
432
433 int src_stride = src_stride_pool[plane];
434 int src_mb_offset = ((mi_row * MI_SIZE * src_stride) >> pd->subsampling_y) +
435 ((mi_col * MI_SIZE) >> pd->subsampling_x);
436
437 int this_rate = 1;
438 int64_t this_recon_error = 1;
439 int64_t sse;
440 txfm_quant_rdcost(
441 x, src_diff, block_size_wide[bsize_plane],
442 src_buffer_pool[plane] + src_mb_offset, src_stride, dst_buffer,
443 dst_buffer_stride, coeff, qcoeff, dqcoeff, block_size_wide[bsize_plane],
444 block_size_high[bsize_plane], max_txsize_rect_lookup[bsize_plane],
445 do_recon, &this_rate, &this_recon_error, &sse);
446
447 #if CONFIG_BITRATE_ACCURACY
448 if (plane == 0 && tpl_txfm_stats) {
449 // We only collect Y plane's transform coefficient
450 av1_record_tpl_txfm_block(tpl_txfm_stats, coeff);
451 }
452 #endif // CONFIG_BITRATE_ACCURACY
453
454 *recon_error += this_recon_error;
455 *pred_error += sse;
456 *rate_cost += this_rate;
457 }
458 }
459
get_inter_cost(const AV1_COMP * cpi,MACROBLOCKD * xd,const uint8_t * src_mb_buffer,int src_stride,TplBuffers * tpl_tmp_buffers,BLOCK_SIZE bsize,TX_SIZE tx_size,int mi_row,int mi_col,int rf_idx,MV * rfidx_mv,int use_pred_sad)460 static inline int32_t get_inter_cost(const AV1_COMP *cpi, MACROBLOCKD *xd,
461 const uint8_t *src_mb_buffer,
462 int src_stride,
463 TplBuffers *tpl_tmp_buffers,
464 BLOCK_SIZE bsize, TX_SIZE tx_size,
465 int mi_row, int mi_col, int rf_idx,
466 MV *rfidx_mv, int use_pred_sad) {
467 const BitDepthInfo bd_info = get_bit_depth_info(xd);
468 TplParams *tpl_data = &cpi->ppi->tpl_data;
469 const YV12_BUFFER_CONFIG *const ref_frame_ptr =
470 tpl_data->src_ref_frame[rf_idx];
471 int16_t *src_diff = tpl_tmp_buffers->src_diff;
472 tran_low_t *coeff = tpl_tmp_buffers->coeff;
473 const int bw = 4 << mi_size_wide_log2[bsize];
474 const int bh = 4 << mi_size_high_log2[bsize];
475 int32_t inter_cost;
476
477 if (cpi->sf.tpl_sf.subpel_force_stop != FULL_PEL) {
478 const int_interpfilters kernel =
479 av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
480 uint8_t *predictor8 = tpl_tmp_buffers->predictor8;
481 uint8_t *predictor =
482 is_cur_buf_hbd(xd) ? CONVERT_TO_BYTEPTR(predictor8) : predictor8;
483 struct buf_2d ref_buf = { NULL, ref_frame_ptr->y_buffer,
484 ref_frame_ptr->y_width, ref_frame_ptr->y_height,
485 ref_frame_ptr->y_stride };
486 InterPredParams inter_pred_params;
487 av1_init_inter_params(&inter_pred_params, bw, bh, mi_row * MI_SIZE,
488 mi_col * MI_SIZE, 0, 0, xd->bd, is_cur_buf_hbd(xd), 0,
489 &tpl_data->sf, &ref_buf, kernel);
490 inter_pred_params.conv_params = get_conv_params(0, 0, xd->bd);
491
492 av1_enc_build_one_inter_predictor(predictor, bw, rfidx_mv,
493 &inter_pred_params);
494
495 if (use_pred_sad) {
496 inter_cost = (int)cpi->ppi->fn_ptr[bsize].sdf(src_mb_buffer, src_stride,
497 predictor, bw);
498 } else {
499 inter_cost =
500 tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
501 predictor, bw, coeff, bw, bh, tx_size);
502 }
503 } else {
504 int ref_mb_offset =
505 mi_row * MI_SIZE * ref_frame_ptr->y_stride + mi_col * MI_SIZE;
506 uint8_t *ref_mb = ref_frame_ptr->y_buffer + ref_mb_offset;
507 int ref_stride = ref_frame_ptr->y_stride;
508 const FULLPEL_MV fullmv = get_fullmv_from_mv(rfidx_mv);
509 // Since sub-pel motion search is not performed, use the prediction pixels
510 // directly from the reference block ref_mb
511 if (use_pred_sad) {
512 inter_cost = (int)cpi->ppi->fn_ptr[bsize].sdf(
513 src_mb_buffer, src_stride,
514 &ref_mb[fullmv.row * ref_stride + fullmv.col], ref_stride);
515 } else {
516 inter_cost =
517 tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
518 &ref_mb[fullmv.row * ref_stride + fullmv.col],
519 ref_stride, coeff, bw, bh, tx_size);
520 }
521 }
522 return inter_cost;
523 }
524
mode_estimation(AV1_COMP * cpi,TplTxfmStats * tpl_txfm_stats,TplBuffers * tpl_tmp_buffers,MACROBLOCK * x,int mi_row,int mi_col,BLOCK_SIZE bsize,TX_SIZE tx_size,TplDepStats * tpl_stats)525 static inline void mode_estimation(AV1_COMP *cpi, TplTxfmStats *tpl_txfm_stats,
526 TplBuffers *tpl_tmp_buffers, MACROBLOCK *x,
527 int mi_row, int mi_col, BLOCK_SIZE bsize,
528 TX_SIZE tx_size, TplDepStats *tpl_stats) {
529 AV1_COMMON *cm = &cpi->common;
530 const GF_GROUP *gf_group = &cpi->ppi->gf_group;
531 TPL_SPEED_FEATURES *tpl_sf = &cpi->sf.tpl_sf;
532
533 (void)gf_group;
534
535 MACROBLOCKD *xd = &x->e_mbd;
536 const BitDepthInfo bd_info = get_bit_depth_info(xd);
537 TplParams *tpl_data = &cpi->ppi->tpl_data;
538 TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_data->frame_idx];
539 const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
540
541 const int bw = 4 << mi_size_wide_log2[bsize];
542 const int bh = 4 << mi_size_high_log2[bsize];
543
544 int32_t best_intra_cost = INT32_MAX;
545 int32_t intra_cost;
546 PREDICTION_MODE best_mode = DC_PRED;
547
548 const int mb_y_offset =
549 mi_row * MI_SIZE * xd->cur_buf->y_stride + mi_col * MI_SIZE;
550 uint8_t *src_mb_buffer = xd->cur_buf->y_buffer + mb_y_offset;
551 const int src_stride = xd->cur_buf->y_stride;
552 const int src_width = xd->cur_buf->y_width;
553
554 int dst_mb_offset =
555 mi_row * MI_SIZE * tpl_frame->rec_picture->y_stride + mi_col * MI_SIZE;
556 uint8_t *dst_buffer = tpl_frame->rec_picture->y_buffer + dst_mb_offset;
557 int dst_buffer_stride = tpl_frame->rec_picture->y_stride;
558 int use_y_only_rate_distortion = tpl_sf->use_y_only_rate_distortion;
559
560 uint8_t *rec_buffer_pool[3] = {
561 tpl_frame->rec_picture->y_buffer,
562 tpl_frame->rec_picture->u_buffer,
563 tpl_frame->rec_picture->v_buffer,
564 };
565
566 const int rec_stride_pool[3] = {
567 tpl_frame->rec_picture->y_stride,
568 tpl_frame->rec_picture->uv_stride,
569 tpl_frame->rec_picture->uv_stride,
570 };
571
572 for (int plane = 1; plane < MAX_MB_PLANE; ++plane) {
573 struct macroblockd_plane *pd = &xd->plane[plane];
574 pd->subsampling_x = xd->cur_buf->subsampling_x;
575 pd->subsampling_y = xd->cur_buf->subsampling_y;
576 }
577
578 uint8_t *predictor8 = tpl_tmp_buffers->predictor8;
579 int16_t *src_diff = tpl_tmp_buffers->src_diff;
580 tran_low_t *coeff = tpl_tmp_buffers->coeff;
581 tran_low_t *qcoeff = tpl_tmp_buffers->qcoeff;
582 tran_low_t *dqcoeff = tpl_tmp_buffers->dqcoeff;
583 uint8_t *predictor =
584 is_cur_buf_hbd(xd) ? CONVERT_TO_BYTEPTR(predictor8) : predictor8;
585 int64_t recon_error = 1;
586 int64_t pred_error = 1;
587
588 memset(tpl_stats, 0, sizeof(*tpl_stats));
589 tpl_stats->ref_frame_index[0] = -1;
590 tpl_stats->ref_frame_index[1] = -1;
591
592 const int mi_width = mi_size_wide[bsize];
593 const int mi_height = mi_size_high[bsize];
594 set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd,
595 mi_row, mi_col);
596 set_mi_row_col(xd, &xd->tile, mi_row, mi_height, mi_col, mi_width,
597 cm->mi_params.mi_rows, cm->mi_params.mi_cols);
598 set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize],
599 av1_num_planes(cm));
600 xd->mi[0]->bsize = bsize;
601 xd->mi[0]->motion_mode = SIMPLE_TRANSLATION;
602
603 // Intra prediction search
604 xd->mi[0]->ref_frame[0] = INTRA_FRAME;
605
606 // Pre-load the bottom left line.
607 if (xd->left_available &&
608 mi_row + tx_size_high_unit[tx_size] < xd->tile.mi_row_end) {
609 if (is_cur_buf_hbd(xd)) {
610 uint16_t *dst = CONVERT_TO_SHORTPTR(dst_buffer);
611 for (int i = 0; i < bw; ++i)
612 dst[(bw + i) * dst_buffer_stride - 1] =
613 dst[(bw - 1) * dst_buffer_stride - 1];
614 } else {
615 for (int i = 0; i < bw; ++i)
616 dst_buffer[(bw + i) * dst_buffer_stride - 1] =
617 dst_buffer[(bw - 1) * dst_buffer_stride - 1];
618 }
619 }
620
621 // if cpi->sf.tpl_sf.prune_intra_modes is on, then search only DC_PRED,
622 // H_PRED, and V_PRED
623 const PREDICTION_MODE last_intra_mode =
624 tpl_sf->prune_intra_modes ? D45_PRED : INTRA_MODE_END;
625 const SequenceHeader *seq_params = cm->seq_params;
626 for (PREDICTION_MODE mode = INTRA_MODE_START; mode < last_intra_mode;
627 ++mode) {
628 av1_predict_intra_block(xd, seq_params->sb_size,
629 seq_params->enable_intra_edge_filter,
630 block_size_wide[bsize], block_size_high[bsize],
631 tx_size, mode, 0, 0, FILTER_INTRA_MODES, dst_buffer,
632 dst_buffer_stride, predictor, bw, 0, 0, 0);
633
634 if (tpl_frame->use_pred_sad) {
635 intra_cost = (int32_t)cpi->ppi->fn_ptr[bsize].sdf(
636 src_mb_buffer, src_stride, predictor, bw);
637 } else {
638 intra_cost =
639 tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
640 predictor, bw, coeff, bw, bh, tx_size);
641 }
642
643 if (intra_cost < best_intra_cost) {
644 best_intra_cost = intra_cost;
645 best_mode = mode;
646 }
647 }
648 // Calculate SATD of the best intra mode if SAD was used for mode decision
649 // as best_intra_cost is used in ML model to skip intra mode evaluation.
650 if (tpl_frame->use_pred_sad) {
651 av1_predict_intra_block(
652 xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
653 block_size_wide[bsize], block_size_high[bsize], tx_size, best_mode, 0,
654 0, FILTER_INTRA_MODES, dst_buffer, dst_buffer_stride, predictor, bw, 0,
655 0, 0);
656 best_intra_cost =
657 tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
658 predictor, bw, coeff, bw, bh, tx_size);
659 }
660
661 int rate_cost = 1;
662
663 if (cpi->use_ducky_encode) {
664 get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
665 qcoeff, dqcoeff, cm, x, NULL, rec_buffer_pool,
666 rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
667 use_y_only_rate_distortion, 1 /*do_recon*/, NULL);
668
669 tpl_stats->intra_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
670 tpl_stats->intra_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
671 tpl_stats->intra_rate = rate_cost;
672 }
673
674 #if CONFIG_THREE_PASS
675 const int frame_offset = tpl_data->frame_idx - cpi->gf_frame_index;
676
677 if (cpi->third_pass_ctx &&
678 frame_offset < cpi->third_pass_ctx->frame_info_count &&
679 tpl_data->frame_idx < gf_group->size) {
680 double ratio_h, ratio_w;
681 av1_get_third_pass_ratio(cpi->third_pass_ctx, frame_offset, cm->height,
682 cm->width, &ratio_h, &ratio_w);
683 THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi(
684 cpi->third_pass_ctx, frame_offset, mi_row, mi_col, ratio_h, ratio_w);
685
686 PREDICTION_MODE third_pass_mode = this_mi->pred_mode;
687
688 if (third_pass_mode >= last_intra_mode &&
689 third_pass_mode < INTRA_MODE_END) {
690 av1_predict_intra_block(
691 xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
692 block_size_wide[bsize], block_size_high[bsize], tx_size,
693 third_pass_mode, 0, 0, FILTER_INTRA_MODES, dst_buffer,
694 dst_buffer_stride, predictor, bw, 0, 0, 0);
695
696 intra_cost =
697 tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
698 predictor, bw, coeff, bw, bh, tx_size);
699
700 if (intra_cost < best_intra_cost) {
701 best_intra_cost = intra_cost;
702 best_mode = third_pass_mode;
703 }
704 }
705 }
706 #endif // CONFIG_THREE_PASS
707
708 // Motion compensated prediction
709 xd->mi[0]->ref_frame[0] = INTRA_FRAME;
710 xd->mi[0]->ref_frame[1] = NONE_FRAME;
711 xd->mi[0]->compound_idx = 1;
712
713 int best_rf_idx = -1;
714 int_mv best_mv[2];
715 int32_t inter_cost;
716 int32_t best_inter_cost = INT32_MAX;
717 int rf_idx;
718 int_mv single_mv[INTER_REFS_PER_FRAME];
719
720 best_mv[0].as_int = INVALID_MV;
721 best_mv[1].as_int = INVALID_MV;
722
723 for (rf_idx = 0; rf_idx < INTER_REFS_PER_FRAME; ++rf_idx) {
724 single_mv[rf_idx].as_int = INVALID_MV;
725 if (tpl_data->ref_frame[rf_idx] == NULL ||
726 tpl_data->src_ref_frame[rf_idx] == NULL) {
727 tpl_stats->mv[rf_idx].as_int = INVALID_MV;
728 continue;
729 }
730
731 const YV12_BUFFER_CONFIG *ref_frame_ptr = tpl_data->src_ref_frame[rf_idx];
732 const int ref_mb_offset =
733 mi_row * MI_SIZE * ref_frame_ptr->y_stride + mi_col * MI_SIZE;
734 uint8_t *ref_mb = ref_frame_ptr->y_buffer + ref_mb_offset;
735 const int ref_stride = ref_frame_ptr->y_stride;
736 const int ref_width = ref_frame_ptr->y_width;
737
738 int_mv best_rfidx_mv = { 0 };
739 uint32_t bestsme = UINT32_MAX;
740
741 center_mv_t center_mvs[4] = { { { 0 }, INT_MAX },
742 { { 0 }, INT_MAX },
743 { { 0 }, INT_MAX },
744 { { 0 }, INT_MAX } };
745 int refmv_count = 1;
746 int idx;
747
748 if (xd->up_available) {
749 TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
750 mi_row - mi_height, mi_col, tpl_frame->stride, block_mis_log2)];
751 if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count,
752 tpl_sf->skip_alike_starting_mv)) {
753 center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int;
754 ++refmv_count;
755 }
756 }
757
758 if (xd->left_available) {
759 TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
760 mi_row, mi_col - mi_width, tpl_frame->stride, block_mis_log2)];
761 if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count,
762 tpl_sf->skip_alike_starting_mv)) {
763 center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int;
764 ++refmv_count;
765 }
766 }
767
768 if (xd->up_available && mi_col + mi_width < xd->tile.mi_col_end) {
769 TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
770 mi_row - mi_height, mi_col + mi_width, tpl_frame->stride,
771 block_mis_log2)];
772 if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count,
773 tpl_sf->skip_alike_starting_mv)) {
774 center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int;
775 ++refmv_count;
776 }
777 }
778
779 #if CONFIG_THREE_PASS
780 if (cpi->third_pass_ctx &&
781 frame_offset < cpi->third_pass_ctx->frame_info_count &&
782 tpl_data->frame_idx < gf_group->size) {
783 double ratio_h, ratio_w;
784 av1_get_third_pass_ratio(cpi->third_pass_ctx, frame_offset, cm->height,
785 cm->width, &ratio_h, &ratio_w);
786 THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi(
787 cpi->third_pass_ctx, frame_offset, mi_row, mi_col, ratio_h, ratio_w);
788
789 int_mv tp_mv = av1_get_third_pass_adjusted_mv(this_mi, ratio_h, ratio_w,
790 rf_idx + LAST_FRAME);
791 if (tp_mv.as_int != INVALID_MV &&
792 !is_alike_mv(tp_mv, center_mvs + 1, refmv_count - 1,
793 tpl_sf->skip_alike_starting_mv)) {
794 center_mvs[0].mv = tp_mv;
795 }
796 }
797 #endif // CONFIG_THREE_PASS
798
799 // Prune starting mvs
800 if (tpl_sf->prune_starting_mv && refmv_count > 1) {
801 // Get each center mv's sad.
802 for (idx = 0; idx < refmv_count; ++idx) {
803 FULLPEL_MV mv = get_fullmv_from_mv(¢er_mvs[idx].mv.as_mv);
804 clamp_fullmv(&mv, &x->mv_limits);
805 center_mvs[idx].sad = (int)cpi->ppi->fn_ptr[bsize].sdf(
806 src_mb_buffer, src_stride, &ref_mb[mv.row * ref_stride + mv.col],
807 ref_stride);
808 }
809
810 // Rank center_mv using sad.
811 qsort(center_mvs, refmv_count, sizeof(center_mvs[0]), compare_sad);
812
813 refmv_count = AOMMIN(4 - tpl_sf->prune_starting_mv, refmv_count);
814 // Further reduce number of refmv based on sad difference.
815 if (refmv_count > 1) {
816 int last_sad = center_mvs[refmv_count - 1].sad;
817 int second_to_last_sad = center_mvs[refmv_count - 2].sad;
818 if ((last_sad - second_to_last_sad) * 5 > second_to_last_sad)
819 refmv_count--;
820 }
821 }
822
823 for (idx = 0; idx < refmv_count; ++idx) {
824 int_mv this_mv;
825 uint32_t thissme = motion_estimation(
826 cpi, x, src_mb_buffer, ref_mb, src_stride, ref_stride, src_width,
827 ref_width, bsize, center_mvs[idx].mv.as_mv, &this_mv);
828
829 if (thissme < bestsme) {
830 bestsme = thissme;
831 best_rfidx_mv = this_mv;
832 }
833 }
834
835 tpl_stats->mv[rf_idx].as_int = best_rfidx_mv.as_int;
836 single_mv[rf_idx] = best_rfidx_mv;
837
838 inter_cost = get_inter_cost(
839 cpi, xd, src_mb_buffer, src_stride, tpl_tmp_buffers, bsize, tx_size,
840 mi_row, mi_col, rf_idx, &best_rfidx_mv.as_mv, tpl_frame->use_pred_sad);
841 // Store inter cost for each ref frame. This is used to prune inter modes.
842 tpl_stats->pred_error[rf_idx] = AOMMAX(1, inter_cost);
843
844 if (inter_cost < best_inter_cost) {
845 best_rf_idx = rf_idx;
846
847 best_inter_cost = inter_cost;
848 best_mv[0].as_int = best_rfidx_mv.as_int;
849 }
850 }
851 // Calculate SATD of the best inter mode if SAD was used for mode decision
852 // as best_inter_cost is used in ML model to skip intra mode evaluation.
853 if (best_inter_cost < INT32_MAX && tpl_frame->use_pred_sad) {
854 assert(best_rf_idx != -1);
855 best_inter_cost = get_inter_cost(
856 cpi, xd, src_mb_buffer, src_stride, tpl_tmp_buffers, bsize, tx_size,
857 mi_row, mi_col, best_rf_idx, &best_mv[0].as_mv, 0 /* use_pred_sad */);
858 }
859
860 if (best_rf_idx != -1 && best_inter_cost < best_intra_cost) {
861 best_mode = NEWMV;
862 xd->mi[0]->ref_frame[0] = best_rf_idx + LAST_FRAME;
863 xd->mi[0]->mv[0].as_int = best_mv[0].as_int;
864 }
865
866 // Start compound predition search.
867 int comp_ref_frames[3][2] = {
868 { 0, 4 },
869 { 0, 6 },
870 { 3, 6 },
871 };
872
873 int start_rf = 0;
874 int end_rf = 3;
875 if (!tpl_sf->allow_compound_pred) end_rf = 0;
876 #if CONFIG_THREE_PASS
877 if (cpi->third_pass_ctx &&
878 frame_offset < cpi->third_pass_ctx->frame_info_count &&
879 tpl_data->frame_idx < gf_group->size) {
880 double ratio_h, ratio_w;
881 av1_get_third_pass_ratio(cpi->third_pass_ctx, frame_offset, cm->height,
882 cm->width, &ratio_h, &ratio_w);
883 THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi(
884 cpi->third_pass_ctx, frame_offset, mi_row, mi_col, ratio_h, ratio_w);
885
886 if (this_mi->ref_frame[0] >= LAST_FRAME &&
887 this_mi->ref_frame[1] >= LAST_FRAME) {
888 int found = 0;
889 for (int i = 0; i < 3; i++) {
890 if (comp_ref_frames[i][0] + LAST_FRAME == this_mi->ref_frame[0] &&
891 comp_ref_frames[i][1] + LAST_FRAME == this_mi->ref_frame[1]) {
892 found = 1;
893 break;
894 }
895 }
896 if (!found || !tpl_sf->allow_compound_pred) {
897 comp_ref_frames[2][0] = this_mi->ref_frame[0] - LAST_FRAME;
898 comp_ref_frames[2][1] = this_mi->ref_frame[1] - LAST_FRAME;
899 if (!tpl_sf->allow_compound_pred) {
900 start_rf = 2;
901 end_rf = 3;
902 }
903 }
904 }
905 }
906 #endif // CONFIG_THREE_PASS
907
908 xd->mi_row = mi_row;
909 xd->mi_col = mi_col;
910 int best_cmp_rf_idx = -1;
911 const int_interpfilters kernel =
912 av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
913 for (int cmp_rf_idx = start_rf; cmp_rf_idx < end_rf; ++cmp_rf_idx) {
914 int rf_idx0 = comp_ref_frames[cmp_rf_idx][0];
915 int rf_idx1 = comp_ref_frames[cmp_rf_idx][1];
916
917 if (tpl_data->ref_frame[rf_idx0] == NULL ||
918 tpl_data->src_ref_frame[rf_idx0] == NULL ||
919 tpl_data->ref_frame[rf_idx1] == NULL ||
920 tpl_data->src_ref_frame[rf_idx1] == NULL) {
921 continue;
922 }
923
924 const YV12_BUFFER_CONFIG *ref_frame_ptr[2] = {
925 tpl_data->src_ref_frame[rf_idx0],
926 tpl_data->src_ref_frame[rf_idx1],
927 };
928
929 xd->mi[0]->ref_frame[0] = rf_idx0 + LAST_FRAME;
930 xd->mi[0]->ref_frame[1] = rf_idx1 + LAST_FRAME;
931 xd->mi[0]->mode = NEW_NEWMV;
932 const int8_t ref_frame_type = av1_ref_frame_type(xd->mi[0]->ref_frame);
933 // Set up ref_mv for av1_joint_motion_search().
934 CANDIDATE_MV *this_ref_mv_stack = x->mbmi_ext.ref_mv_stack[ref_frame_type];
935 this_ref_mv_stack[xd->mi[0]->ref_mv_idx].this_mv = single_mv[rf_idx0];
936 this_ref_mv_stack[xd->mi[0]->ref_mv_idx].comp_mv = single_mv[rf_idx1];
937
938 struct buf_2d yv12_mb[2][MAX_MB_PLANE];
939 for (int i = 0; i < 2; ++i) {
940 av1_setup_pred_block(xd, yv12_mb[i], ref_frame_ptr[i],
941 xd->block_ref_scale_factors[i],
942 xd->block_ref_scale_factors[i], MAX_MB_PLANE);
943 for (int plane = 0; plane < MAX_MB_PLANE; ++plane) {
944 xd->plane[plane].pre[i] = yv12_mb[i][plane];
945 }
946 }
947
948 int_mv tmp_mv[2] = { single_mv[rf_idx0], single_mv[rf_idx1] };
949 int rate_mv;
950 av1_joint_motion_search(cpi, x, bsize, tmp_mv, NULL, 0, &rate_mv,
951 !cpi->sf.mv_sf.disable_second_mv,
952 NUM_JOINT_ME_REFINE_ITER);
953
954 for (int ref = 0; ref < 2; ++ref) {
955 struct buf_2d ref_buf = { NULL, ref_frame_ptr[ref]->y_buffer,
956 ref_frame_ptr[ref]->y_width,
957 ref_frame_ptr[ref]->y_height,
958 ref_frame_ptr[ref]->y_stride };
959 InterPredParams inter_pred_params;
960 av1_init_inter_params(&inter_pred_params, bw, bh, mi_row * MI_SIZE,
961 mi_col * MI_SIZE, 0, 0, xd->bd, is_cur_buf_hbd(xd),
962 0, &tpl_data->sf, &ref_buf, kernel);
963 av1_init_comp_mode(&inter_pred_params);
964
965 inter_pred_params.conv_params = get_conv_params_no_round(
966 ref, 0, xd->tmp_conv_dst, MAX_SB_SIZE, 1, xd->bd);
967
968 av1_enc_build_one_inter_predictor(predictor, bw, &tmp_mv[ref].as_mv,
969 &inter_pred_params);
970 }
971 inter_cost =
972 tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
973 predictor, bw, coeff, bw, bh, tx_size);
974 if (inter_cost < best_inter_cost) {
975 best_cmp_rf_idx = cmp_rf_idx;
976 best_inter_cost = inter_cost;
977 best_mv[0] = tmp_mv[0];
978 best_mv[1] = tmp_mv[1];
979 }
980 }
981
982 if (best_cmp_rf_idx != -1 && best_inter_cost < best_intra_cost) {
983 best_mode = NEW_NEWMV;
984 const int best_rf_idx0 = comp_ref_frames[best_cmp_rf_idx][0];
985 const int best_rf_idx1 = comp_ref_frames[best_cmp_rf_idx][1];
986 xd->mi[0]->ref_frame[0] = best_rf_idx0 + LAST_FRAME;
987 xd->mi[0]->ref_frame[1] = best_rf_idx1 + LAST_FRAME;
988 }
989
990 if (best_inter_cost < INT32_MAX && is_inter_mode(best_mode)) {
991 xd->mi[0]->mv[0].as_int = best_mv[0].as_int;
992 xd->mi[0]->mv[1].as_int = best_mv[1].as_int;
993 const YV12_BUFFER_CONFIG *ref_frame_ptr[2] = {
994 best_cmp_rf_idx >= 0
995 ? tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][0]]
996 : tpl_data->src_ref_frame[best_rf_idx],
997 best_cmp_rf_idx >= 0
998 ? tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][1]]
999 : NULL,
1000 };
1001 rate_cost = 1;
1002 get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
1003 qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
1004 rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
1005 use_y_only_rate_distortion, 0 /*do_recon*/, NULL);
1006 tpl_stats->srcrf_rate = rate_cost;
1007 }
1008
1009 best_intra_cost = AOMMAX(best_intra_cost, 1);
1010 best_inter_cost = AOMMIN(best_intra_cost, best_inter_cost);
1011 tpl_stats->inter_cost = best_inter_cost;
1012 tpl_stats->intra_cost = best_intra_cost;
1013
1014 tpl_stats->srcrf_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
1015 tpl_stats->srcrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
1016
1017 // Final encode
1018 rate_cost = 0;
1019 const YV12_BUFFER_CONFIG *ref_frame_ptr[2];
1020
1021 ref_frame_ptr[0] =
1022 best_mode == NEW_NEWMV
1023 ? tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][0]]
1024 : best_rf_idx >= 0 ? tpl_data->ref_frame[best_rf_idx]
1025 : NULL;
1026 ref_frame_ptr[1] =
1027 best_mode == NEW_NEWMV
1028 ? tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][1]]
1029 : NULL;
1030 get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
1031 qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
1032 rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
1033 use_y_only_rate_distortion, 1 /*do_recon*/,
1034 tpl_txfm_stats);
1035
1036 tpl_stats->recrf_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
1037 tpl_stats->recrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
1038 tpl_stats->recrf_rate = rate_cost;
1039
1040 if (!is_inter_mode(best_mode)) {
1041 tpl_stats->srcrf_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
1042 tpl_stats->srcrf_rate = rate_cost;
1043 tpl_stats->srcrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
1044 }
1045
1046 tpl_stats->recrf_dist = AOMMAX(tpl_stats->srcrf_dist, tpl_stats->recrf_dist);
1047 tpl_stats->recrf_rate = AOMMAX(tpl_stats->srcrf_rate, tpl_stats->recrf_rate);
1048
1049 if (best_mode == NEW_NEWMV) {
1050 ref_frame_ptr[0] = tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][0]];
1051 ref_frame_ptr[1] =
1052 tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][1]];
1053 get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
1054 qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
1055 rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
1056 use_y_only_rate_distortion, 1 /*do_recon*/, NULL);
1057 tpl_stats->cmp_recrf_dist[0] = recon_error << TPL_DEP_COST_SCALE_LOG2;
1058 tpl_stats->cmp_recrf_rate[0] = rate_cost;
1059
1060 tpl_stats->cmp_recrf_dist[0] =
1061 AOMMAX(tpl_stats->srcrf_dist, tpl_stats->cmp_recrf_dist[0]);
1062 tpl_stats->cmp_recrf_rate[0] =
1063 AOMMAX(tpl_stats->srcrf_rate, tpl_stats->cmp_recrf_rate[0]);
1064
1065 tpl_stats->cmp_recrf_dist[0] =
1066 AOMMIN(tpl_stats->recrf_dist, tpl_stats->cmp_recrf_dist[0]);
1067 tpl_stats->cmp_recrf_rate[0] =
1068 AOMMIN(tpl_stats->recrf_rate, tpl_stats->cmp_recrf_rate[0]);
1069
1070 rate_cost = 0;
1071 ref_frame_ptr[0] =
1072 tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][0]];
1073 ref_frame_ptr[1] = tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][1]];
1074 get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
1075 qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
1076 rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
1077 use_y_only_rate_distortion, 1 /*do_recon*/, NULL);
1078 tpl_stats->cmp_recrf_dist[1] = recon_error << TPL_DEP_COST_SCALE_LOG2;
1079 tpl_stats->cmp_recrf_rate[1] = rate_cost;
1080
1081 tpl_stats->cmp_recrf_dist[1] =
1082 AOMMAX(tpl_stats->srcrf_dist, tpl_stats->cmp_recrf_dist[1]);
1083 tpl_stats->cmp_recrf_rate[1] =
1084 AOMMAX(tpl_stats->srcrf_rate, tpl_stats->cmp_recrf_rate[1]);
1085
1086 tpl_stats->cmp_recrf_dist[1] =
1087 AOMMIN(tpl_stats->recrf_dist, tpl_stats->cmp_recrf_dist[1]);
1088 tpl_stats->cmp_recrf_rate[1] =
1089 AOMMIN(tpl_stats->recrf_rate, tpl_stats->cmp_recrf_rate[1]);
1090 }
1091
1092 if (best_mode == NEWMV) {
1093 tpl_stats->mv[best_rf_idx] = best_mv[0];
1094 tpl_stats->ref_frame_index[0] = best_rf_idx;
1095 tpl_stats->ref_frame_index[1] = NONE_FRAME;
1096 } else if (best_mode == NEW_NEWMV) {
1097 tpl_stats->ref_frame_index[0] = comp_ref_frames[best_cmp_rf_idx][0];
1098 tpl_stats->ref_frame_index[1] = comp_ref_frames[best_cmp_rf_idx][1];
1099 tpl_stats->mv[tpl_stats->ref_frame_index[0]] = best_mv[0];
1100 tpl_stats->mv[tpl_stats->ref_frame_index[1]] = best_mv[1];
1101 }
1102
1103 for (int idy = 0; idy < mi_height; ++idy) {
1104 for (int idx = 0; idx < mi_width; ++idx) {
1105 if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > idx &&
1106 (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > idy) {
1107 xd->mi[idx + idy * cm->mi_params.mi_stride] = xd->mi[0];
1108 }
1109 }
1110 }
1111 }
1112
round_floor(int ref_pos,int bsize_pix)1113 static int round_floor(int ref_pos, int bsize_pix) {
1114 int round;
1115 if (ref_pos < 0)
1116 round = -(1 + (-ref_pos - 1) / bsize_pix);
1117 else
1118 round = ref_pos / bsize_pix;
1119
1120 return round;
1121 }
1122
av1_get_overlap_area(int row_a,int col_a,int row_b,int col_b,int width,int height)1123 int av1_get_overlap_area(int row_a, int col_a, int row_b, int col_b, int width,
1124 int height) {
1125 int min_row = AOMMAX(row_a, row_b);
1126 int max_row = AOMMIN(row_a + height, row_b + height);
1127 int min_col = AOMMAX(col_a, col_b);
1128 int max_col = AOMMIN(col_a + width, col_b + width);
1129 if (min_row < max_row && min_col < max_col) {
1130 return (max_row - min_row) * (max_col - min_col);
1131 }
1132 return 0;
1133 }
1134
av1_tpl_ptr_pos(int mi_row,int mi_col,int stride,uint8_t right_shift)1135 int av1_tpl_ptr_pos(int mi_row, int mi_col, int stride, uint8_t right_shift) {
1136 return (mi_row >> right_shift) * stride + (mi_col >> right_shift);
1137 }
1138
av1_delta_rate_cost(int64_t delta_rate,int64_t recrf_dist,int64_t srcrf_dist,int pix_num)1139 int64_t av1_delta_rate_cost(int64_t delta_rate, int64_t recrf_dist,
1140 int64_t srcrf_dist, int pix_num) {
1141 double beta = (double)srcrf_dist / recrf_dist;
1142 int64_t rate_cost = delta_rate;
1143
1144 if (srcrf_dist <= 128) return rate_cost;
1145
1146 double dr =
1147 (double)(delta_rate >> (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT)) /
1148 pix_num;
1149
1150 double log_den = log(beta) / log(2.0) + 2.0 * dr;
1151
1152 if (log_den > log(10.0) / log(2.0)) {
1153 rate_cost = (int64_t)((log(1.0 / beta) * pix_num) / log(2.0) / 2.0);
1154 rate_cost <<= (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT);
1155 return rate_cost;
1156 }
1157
1158 double num = pow(2.0, log_den);
1159 double den = num * beta + (1 - beta) * beta;
1160
1161 rate_cost = (int64_t)((pix_num * log(num / den)) / log(2.0) / 2.0);
1162
1163 rate_cost <<= (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT);
1164
1165 return rate_cost;
1166 }
1167
tpl_model_update_b(TplParams * const tpl_data,int mi_row,int mi_col,const BLOCK_SIZE bsize,int frame_idx,int ref)1168 static inline void tpl_model_update_b(TplParams *const tpl_data, int mi_row,
1169 int mi_col, const BLOCK_SIZE bsize,
1170 int frame_idx, int ref) {
1171 TplDepFrame *tpl_frame_ptr = &tpl_data->tpl_frame[frame_idx];
1172 TplDepStats *tpl_ptr = tpl_frame_ptr->tpl_stats_ptr;
1173 TplDepFrame *tpl_frame = tpl_data->tpl_frame;
1174 const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
1175 TplDepStats *tpl_stats_ptr = &tpl_ptr[av1_tpl_ptr_pos(
1176 mi_row, mi_col, tpl_frame->stride, block_mis_log2)];
1177
1178 int is_compound = tpl_stats_ptr->ref_frame_index[1] >= 0;
1179
1180 if (tpl_stats_ptr->ref_frame_index[ref] < 0) return;
1181 const int ref_frame_index = tpl_stats_ptr->ref_frame_index[ref];
1182 TplDepFrame *ref_tpl_frame =
1183 &tpl_frame[tpl_frame[frame_idx].ref_map_index[ref_frame_index]];
1184 TplDepStats *ref_stats_ptr = ref_tpl_frame->tpl_stats_ptr;
1185
1186 if (tpl_frame[frame_idx].ref_map_index[ref_frame_index] < 0) return;
1187
1188 const FULLPEL_MV full_mv =
1189 get_fullmv_from_mv(&tpl_stats_ptr->mv[ref_frame_index].as_mv);
1190 const int ref_pos_row = mi_row * MI_SIZE + full_mv.row;
1191 const int ref_pos_col = mi_col * MI_SIZE + full_mv.col;
1192
1193 const int bw = 4 << mi_size_wide_log2[bsize];
1194 const int bh = 4 << mi_size_high_log2[bsize];
1195 const int mi_height = mi_size_high[bsize];
1196 const int mi_width = mi_size_wide[bsize];
1197 const int pix_num = bw * bh;
1198
1199 // top-left on grid block location in pixel
1200 int grid_pos_row_base = round_floor(ref_pos_row, bh) * bh;
1201 int grid_pos_col_base = round_floor(ref_pos_col, bw) * bw;
1202 int block;
1203
1204 int64_t srcrf_dist = is_compound ? tpl_stats_ptr->cmp_recrf_dist[!ref]
1205 : tpl_stats_ptr->srcrf_dist;
1206 int64_t srcrf_rate =
1207 is_compound
1208 ? (tpl_stats_ptr->cmp_recrf_rate[!ref] << TPL_DEP_COST_SCALE_LOG2)
1209 : (tpl_stats_ptr->srcrf_rate << TPL_DEP_COST_SCALE_LOG2);
1210
1211 int64_t cur_dep_dist = tpl_stats_ptr->recrf_dist - srcrf_dist;
1212 int64_t mc_dep_dist =
1213 (int64_t)(tpl_stats_ptr->mc_dep_dist *
1214 ((double)(tpl_stats_ptr->recrf_dist - srcrf_dist) /
1215 tpl_stats_ptr->recrf_dist));
1216 int64_t delta_rate =
1217 (tpl_stats_ptr->recrf_rate << TPL_DEP_COST_SCALE_LOG2) - srcrf_rate;
1218 int64_t mc_dep_rate =
1219 av1_delta_rate_cost(tpl_stats_ptr->mc_dep_rate, tpl_stats_ptr->recrf_dist,
1220 srcrf_dist, pix_num);
1221
1222 for (block = 0; block < 4; ++block) {
1223 int grid_pos_row = grid_pos_row_base + bh * (block >> 1);
1224 int grid_pos_col = grid_pos_col_base + bw * (block & 0x01);
1225
1226 if (grid_pos_row >= 0 && grid_pos_row < ref_tpl_frame->mi_rows * MI_SIZE &&
1227 grid_pos_col >= 0 && grid_pos_col < ref_tpl_frame->mi_cols * MI_SIZE) {
1228 int overlap_area = av1_get_overlap_area(grid_pos_row, grid_pos_col,
1229 ref_pos_row, ref_pos_col, bw, bh);
1230 int ref_mi_row = round_floor(grid_pos_row, bh) * mi_height;
1231 int ref_mi_col = round_floor(grid_pos_col, bw) * mi_width;
1232 assert((1 << block_mis_log2) == mi_height);
1233 assert((1 << block_mis_log2) == mi_width);
1234 TplDepStats *des_stats = &ref_stats_ptr[av1_tpl_ptr_pos(
1235 ref_mi_row, ref_mi_col, ref_tpl_frame->stride, block_mis_log2)];
1236 des_stats->mc_dep_dist +=
1237 ((cur_dep_dist + mc_dep_dist) * overlap_area) / pix_num;
1238 des_stats->mc_dep_rate +=
1239 ((delta_rate + mc_dep_rate) * overlap_area) / pix_num;
1240 }
1241 }
1242 }
1243
tpl_model_update(TplParams * const tpl_data,int mi_row,int mi_col,int frame_idx)1244 static inline void tpl_model_update(TplParams *const tpl_data, int mi_row,
1245 int mi_col, int frame_idx) {
1246 const BLOCK_SIZE tpl_stats_block_size =
1247 convert_length_to_bsize(MI_SIZE << tpl_data->tpl_stats_block_mis_log2);
1248 tpl_model_update_b(tpl_data, mi_row, mi_col, tpl_stats_block_size, frame_idx,
1249 0);
1250 tpl_model_update_b(tpl_data, mi_row, mi_col, tpl_stats_block_size, frame_idx,
1251 1);
1252 }
1253
tpl_model_store(TplDepStats * tpl_stats_ptr,int mi_row,int mi_col,int stride,const TplDepStats * src_stats,uint8_t block_mis_log2)1254 static inline void tpl_model_store(TplDepStats *tpl_stats_ptr, int mi_row,
1255 int mi_col, int stride,
1256 const TplDepStats *src_stats,
1257 uint8_t block_mis_log2) {
1258 int index = av1_tpl_ptr_pos(mi_row, mi_col, stride, block_mis_log2);
1259 TplDepStats *tpl_ptr = &tpl_stats_ptr[index];
1260 *tpl_ptr = *src_stats;
1261 tpl_ptr->intra_cost = AOMMAX(1, tpl_ptr->intra_cost);
1262 tpl_ptr->inter_cost = AOMMAX(1, tpl_ptr->inter_cost);
1263 tpl_ptr->srcrf_dist = AOMMAX(1, tpl_ptr->srcrf_dist);
1264 tpl_ptr->srcrf_sse = AOMMAX(1, tpl_ptr->srcrf_sse);
1265 tpl_ptr->recrf_dist = AOMMAX(1, tpl_ptr->recrf_dist);
1266 tpl_ptr->srcrf_rate = AOMMAX(1, tpl_ptr->srcrf_rate);
1267 tpl_ptr->recrf_rate = AOMMAX(1, tpl_ptr->recrf_rate);
1268 tpl_ptr->cmp_recrf_dist[0] = AOMMAX(1, tpl_ptr->cmp_recrf_dist[0]);
1269 tpl_ptr->cmp_recrf_dist[1] = AOMMAX(1, tpl_ptr->cmp_recrf_dist[1]);
1270 tpl_ptr->cmp_recrf_rate[0] = AOMMAX(1, tpl_ptr->cmp_recrf_rate[0]);
1271 tpl_ptr->cmp_recrf_rate[1] = AOMMAX(1, tpl_ptr->cmp_recrf_rate[1]);
1272 }
1273
1274 // Reset the ref and source frame pointers of tpl_data.
tpl_reset_src_ref_frames(TplParams * tpl_data)1275 static inline void tpl_reset_src_ref_frames(TplParams *tpl_data) {
1276 for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
1277 tpl_data->ref_frame[i] = NULL;
1278 tpl_data->src_ref_frame[i] = NULL;
1279 }
1280 }
1281
get_gop_length(const GF_GROUP * gf_group)1282 static inline int get_gop_length(const GF_GROUP *gf_group) {
1283 int gop_length = AOMMIN(gf_group->size, MAX_TPL_FRAME_IDX - 1);
1284 return gop_length;
1285 }
1286
1287 // Initialize the mc_flow parameters used in computing tpl data.
init_mc_flow_dispenser(AV1_COMP * cpi,int frame_idx,int pframe_qindex)1288 static inline void init_mc_flow_dispenser(AV1_COMP *cpi, int frame_idx,
1289 int pframe_qindex) {
1290 TplParams *const tpl_data = &cpi->ppi->tpl_data;
1291 TplDepFrame *tpl_frame = &tpl_data->tpl_frame[frame_idx];
1292 const YV12_BUFFER_CONFIG *this_frame = tpl_frame->gf_picture;
1293 const YV12_BUFFER_CONFIG *ref_frames_ordered[INTER_REFS_PER_FRAME];
1294 uint32_t ref_frame_display_indices[INTER_REFS_PER_FRAME];
1295 const GF_GROUP *gf_group = &cpi->ppi->gf_group;
1296 TPL_SPEED_FEATURES *tpl_sf = &cpi->sf.tpl_sf;
1297 int ref_pruning_enabled = is_frame_eligible_for_ref_pruning(
1298 gf_group, cpi->sf.inter_sf.selective_ref_frame,
1299 tpl_sf->prune_ref_frames_in_tpl, frame_idx);
1300 int gop_length = get_gop_length(gf_group);
1301 int ref_frame_flags;
1302 AV1_COMMON *cm = &cpi->common;
1303 int rdmult, idx;
1304 ThreadData *td = &cpi->td;
1305 MACROBLOCK *x = &td->mb;
1306 MACROBLOCKD *xd = &x->e_mbd;
1307 TplTxfmStats *tpl_txfm_stats = &td->tpl_txfm_stats;
1308 tpl_data->frame_idx = frame_idx;
1309 tpl_reset_src_ref_frames(tpl_data);
1310 av1_tile_init(&xd->tile, cm, 0, 0);
1311
1312 const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100));
1313 const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6);
1314 const FRAME_TYPE frame_type = cm->current_frame.frame_type;
1315
1316 // Setup scaling factor
1317 av1_setup_scale_factors_for_frame(
1318 &tpl_data->sf, this_frame->y_crop_width, this_frame->y_crop_height,
1319 this_frame->y_crop_width, this_frame->y_crop_height);
1320
1321 xd->cur_buf = this_frame;
1322
1323 for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) {
1324 TplDepFrame *tpl_ref_frame =
1325 &tpl_data->tpl_frame[tpl_frame->ref_map_index[idx]];
1326 tpl_data->ref_frame[idx] = tpl_ref_frame->rec_picture;
1327 tpl_data->src_ref_frame[idx] = tpl_ref_frame->gf_picture;
1328 ref_frame_display_indices[idx] = tpl_ref_frame->frame_display_index;
1329 }
1330
1331 // Store the reference frames based on priority order
1332 for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
1333 ref_frames_ordered[i] =
1334 tpl_data->ref_frame[ref_frame_priority_order[i] - 1];
1335 }
1336
1337 // Work out which reference frame slots may be used.
1338 ref_frame_flags =
1339 get_ref_frame_flags(&cpi->sf, is_one_pass_rt_params(cpi),
1340 ref_frames_ordered, cpi->ext_flags.ref_frame_flags);
1341
1342 enforce_max_ref_frames(cpi, &ref_frame_flags, ref_frame_display_indices,
1343 tpl_frame->frame_display_index);
1344
1345 // Prune reference frames
1346 for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) {
1347 if ((ref_frame_flags & (1 << idx)) == 0) {
1348 tpl_data->ref_frame[idx] = NULL;
1349 }
1350 }
1351
1352 // Skip motion estimation w.r.t. reference frames which are not
1353 // considered in RD search, using "selective_ref_frame" speed feature.
1354 // The reference frame pruning is not enabled for frames beyond the gop
1355 // length, as there are fewer reference frames and the reference frames
1356 // differ from the frames considered during RD search.
1357 if (ref_pruning_enabled && (frame_idx < gop_length)) {
1358 for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) {
1359 const MV_REFERENCE_FRAME refs[2] = { idx + 1, NONE_FRAME };
1360 if (prune_ref_by_selective_ref_frame(cpi, NULL, refs,
1361 ref_frame_display_indices)) {
1362 tpl_data->ref_frame[idx] = NULL;
1363 }
1364 }
1365 }
1366
1367 // Make a temporary mbmi for tpl model
1368 MB_MODE_INFO mbmi;
1369 memset(&mbmi, 0, sizeof(mbmi));
1370 MB_MODE_INFO *mbmi_ptr = &mbmi;
1371 xd->mi = &mbmi_ptr;
1372
1373 xd->block_ref_scale_factors[0] = &tpl_data->sf;
1374 xd->block_ref_scale_factors[1] = &tpl_data->sf;
1375
1376 const int base_qindex =
1377 cpi->use_ducky_encode ? gf_group->q_val[frame_idx] : pframe_qindex;
1378 // Get rd multiplier set up.
1379 rdmult = (int)av1_compute_rd_mult(
1380 base_qindex, cm->seq_params->bit_depth,
1381 cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
1382 boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
1383 is_stat_consumption_stage(cpi));
1384
1385 if (rdmult < 1) rdmult = 1;
1386 av1_set_error_per_bit(&x->errorperbit, rdmult);
1387 av1_set_sad_per_bit(cpi, &x->sadperbit, base_qindex);
1388
1389 tpl_frame->is_valid = 1;
1390
1391 cm->quant_params.base_qindex = base_qindex;
1392 av1_frame_init_quantizer(cpi);
1393
1394 const BitDepthInfo bd_info = get_bit_depth_info(xd);
1395 const FRAME_UPDATE_TYPE update_type =
1396 gf_group->update_type[cpi->gf_frame_index];
1397 tpl_frame->base_rdmult = av1_compute_rd_mult_based_on_qindex(
1398 bd_info.bit_depth, update_type, base_qindex) /
1399 6;
1400
1401 if (cpi->use_ducky_encode)
1402 tpl_frame->base_rdmult = gf_group->rdmult_val[frame_idx];
1403
1404 av1_init_tpl_txfm_stats(tpl_txfm_stats);
1405
1406 // Initialize x->mbmi_ext when compound predictions are enabled.
1407 if (tpl_sf->allow_compound_pred) av1_zero(x->mbmi_ext);
1408
1409 // Set the pointer to null since mbmi is only allocated inside this function.
1410 assert(xd->mi == &mbmi_ptr);
1411 xd->mi = NULL;
1412
1413 // Tpl module is called before the setting of speed features at frame level.
1414 // Thus, turning off this speed feature for key frame is done here and not
1415 // integrated into the speed feature setting itself.
1416 const int layer_depth_th = (tpl_sf->use_sad_for_mode_decision == 1) ? 5 : 0;
1417 tpl_frame->use_pred_sad =
1418 tpl_sf->use_sad_for_mode_decision &&
1419 gf_group->update_type[cpi->gf_frame_index] != KF_UPDATE &&
1420 gf_group->layer_depth[frame_idx] >= layer_depth_th;
1421 }
1422
1423 // This function stores the motion estimation dependencies of all the blocks in
1424 // a row
av1_mc_flow_dispenser_row(AV1_COMP * cpi,TplTxfmStats * tpl_txfm_stats,TplBuffers * tpl_tmp_buffers,MACROBLOCK * x,int mi_row,BLOCK_SIZE bsize,TX_SIZE tx_size)1425 void av1_mc_flow_dispenser_row(AV1_COMP *cpi, TplTxfmStats *tpl_txfm_stats,
1426 TplBuffers *tpl_tmp_buffers, MACROBLOCK *x,
1427 int mi_row, BLOCK_SIZE bsize, TX_SIZE tx_size) {
1428 AV1_COMMON *const cm = &cpi->common;
1429 MultiThreadInfo *const mt_info = &cpi->mt_info;
1430 AV1TplRowMultiThreadInfo *const tpl_row_mt = &mt_info->tpl_row_mt;
1431 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1432 const int mi_width = mi_size_wide[bsize];
1433 TplParams *const tpl_data = &cpi->ppi->tpl_data;
1434 TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_data->frame_idx];
1435 MACROBLOCKD *xd = &x->e_mbd;
1436
1437 const int tplb_cols_in_tile =
1438 ROUND_POWER_OF_TWO(mi_params->mi_cols, mi_size_wide_log2[bsize]);
1439 const int tplb_row = ROUND_POWER_OF_TWO(mi_row, mi_size_high_log2[bsize]);
1440 assert(mi_size_high[bsize] == (1 << tpl_data->tpl_stats_block_mis_log2));
1441 assert(mi_size_wide[bsize] == (1 << tpl_data->tpl_stats_block_mis_log2));
1442
1443 for (int mi_col = 0, tplb_col_in_tile = 0; mi_col < mi_params->mi_cols;
1444 mi_col += mi_width, tplb_col_in_tile++) {
1445 (*tpl_row_mt->sync_read_ptr)(&tpl_data->tpl_mt_sync, tplb_row,
1446 tplb_col_in_tile);
1447
1448 #if CONFIG_MULTITHREAD
1449 if (mt_info->num_workers > 1) {
1450 pthread_mutex_lock(tpl_row_mt->mutex_);
1451 const bool tpl_mt_exit = tpl_row_mt->tpl_mt_exit;
1452 pthread_mutex_unlock(tpl_row_mt->mutex_);
1453 // Exit in case any worker has encountered an error.
1454 if (tpl_mt_exit) return;
1455 }
1456 #endif
1457
1458 TplDepStats tpl_stats;
1459
1460 // Motion estimation column boundary
1461 av1_set_mv_col_limits(mi_params, &x->mv_limits, mi_col, mi_width,
1462 tpl_data->border_in_pixels);
1463 xd->mb_to_left_edge = -GET_MV_SUBPEL(mi_col * MI_SIZE);
1464 xd->mb_to_right_edge =
1465 GET_MV_SUBPEL(mi_params->mi_cols - mi_width - mi_col);
1466 mode_estimation(cpi, tpl_txfm_stats, tpl_tmp_buffers, x, mi_row, mi_col,
1467 bsize, tx_size, &tpl_stats);
1468
1469 // Motion flow dependency dispenser.
1470 tpl_model_store(tpl_frame->tpl_stats_ptr, mi_row, mi_col, tpl_frame->stride,
1471 &tpl_stats, tpl_data->tpl_stats_block_mis_log2);
1472 (*tpl_row_mt->sync_write_ptr)(&tpl_data->tpl_mt_sync, tplb_row,
1473 tplb_col_in_tile, tplb_cols_in_tile);
1474 }
1475 }
1476
mc_flow_dispenser(AV1_COMP * cpi)1477 static inline void mc_flow_dispenser(AV1_COMP *cpi) {
1478 AV1_COMMON *cm = &cpi->common;
1479 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1480 ThreadData *td = &cpi->td;
1481 MACROBLOCK *x = &td->mb;
1482 MACROBLOCKD *xd = &x->e_mbd;
1483 const BLOCK_SIZE bsize =
1484 convert_length_to_bsize(cpi->ppi->tpl_data.tpl_bsize_1d);
1485 const TX_SIZE tx_size = max_txsize_lookup[bsize];
1486 const int mi_height = mi_size_high[bsize];
1487 for (int mi_row = 0; mi_row < mi_params->mi_rows; mi_row += mi_height) {
1488 // Motion estimation row boundary
1489 av1_set_mv_row_limits(mi_params, &x->mv_limits, mi_row, mi_height,
1490 cpi->ppi->tpl_data.border_in_pixels);
1491 xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
1492 xd->mb_to_bottom_edge =
1493 GET_MV_SUBPEL((mi_params->mi_rows - mi_height - mi_row) * MI_SIZE);
1494 av1_mc_flow_dispenser_row(cpi, &td->tpl_txfm_stats, &td->tpl_tmp_buffers, x,
1495 mi_row, bsize, tx_size);
1496 }
1497 }
1498
mc_flow_synthesizer(TplParams * tpl_data,int frame_idx,int mi_rows,int mi_cols)1499 static void mc_flow_synthesizer(TplParams *tpl_data, int frame_idx, int mi_rows,
1500 int mi_cols) {
1501 if (!frame_idx) {
1502 return;
1503 }
1504 const BLOCK_SIZE bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d);
1505 const int mi_height = mi_size_high[bsize];
1506 const int mi_width = mi_size_wide[bsize];
1507 assert(mi_height == (1 << tpl_data->tpl_stats_block_mis_log2));
1508 assert(mi_width == (1 << tpl_data->tpl_stats_block_mis_log2));
1509
1510 for (int mi_row = 0; mi_row < mi_rows; mi_row += mi_height) {
1511 for (int mi_col = 0; mi_col < mi_cols; mi_col += mi_width) {
1512 tpl_model_update(tpl_data, mi_row, mi_col, frame_idx);
1513 }
1514 }
1515 }
1516
init_gop_frames_for_tpl(AV1_COMP * cpi,const EncodeFrameParams * const init_frame_params,GF_GROUP * gf_group,int * tpl_group_frames,int * pframe_qindex)1517 static inline void init_gop_frames_for_tpl(
1518 AV1_COMP *cpi, const EncodeFrameParams *const init_frame_params,
1519 GF_GROUP *gf_group, int *tpl_group_frames, int *pframe_qindex) {
1520 AV1_COMMON *cm = &cpi->common;
1521 assert(cpi->gf_frame_index == 0);
1522 *pframe_qindex = 0;
1523
1524 RefFrameMapPair ref_frame_map_pairs[REF_FRAMES];
1525 init_ref_map_pair(cpi, ref_frame_map_pairs);
1526
1527 int remapped_ref_idx[REF_FRAMES];
1528
1529 EncodeFrameParams frame_params = *init_frame_params;
1530 TplParams *const tpl_data = &cpi->ppi->tpl_data;
1531
1532 int ref_picture_map[REF_FRAMES];
1533
1534 for (int i = 0; i < REF_FRAMES; ++i) {
1535 if (frame_params.frame_type == KEY_FRAME) {
1536 tpl_data->tpl_frame[-i - 1].gf_picture = NULL;
1537 tpl_data->tpl_frame[-i - 1].rec_picture = NULL;
1538 tpl_data->tpl_frame[-i - 1].frame_display_index = 0;
1539 } else {
1540 tpl_data->tpl_frame[-i - 1].gf_picture = &cm->ref_frame_map[i]->buf;
1541 tpl_data->tpl_frame[-i - 1].rec_picture = &cm->ref_frame_map[i]->buf;
1542 tpl_data->tpl_frame[-i - 1].frame_display_index =
1543 cm->ref_frame_map[i]->display_order_hint;
1544 }
1545
1546 ref_picture_map[i] = -i - 1;
1547 }
1548
1549 *tpl_group_frames = 0;
1550
1551 int gf_index;
1552 int process_frame_count = 0;
1553 const int gop_length = get_gop_length(gf_group);
1554
1555 for (gf_index = 0; gf_index < gop_length; ++gf_index) {
1556 TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_index];
1557 FRAME_UPDATE_TYPE frame_update_type = gf_group->update_type[gf_index];
1558 int lookahead_index =
1559 gf_group->cur_frame_idx[gf_index] + gf_group->arf_src_offset[gf_index];
1560 frame_params.show_frame = frame_update_type != ARF_UPDATE &&
1561 frame_update_type != INTNL_ARF_UPDATE;
1562 frame_params.show_existing_frame =
1563 frame_update_type == INTNL_OVERLAY_UPDATE ||
1564 frame_update_type == OVERLAY_UPDATE;
1565 frame_params.frame_type = gf_group->frame_type[gf_index];
1566
1567 if (frame_update_type == LF_UPDATE)
1568 *pframe_qindex = gf_group->q_val[gf_index];
1569
1570 const struct lookahead_entry *buf = av1_lookahead_peek(
1571 cpi->ppi->lookahead, lookahead_index, cpi->compressor_stage);
1572 if (buf == NULL) break;
1573 tpl_frame->gf_picture = &buf->img;
1574
1575 // Use filtered frame buffer if available. This will make tpl stats more
1576 // precise.
1577 FRAME_DIFF frame_diff;
1578 const YV12_BUFFER_CONFIG *tf_buf =
1579 av1_tf_info_get_filtered_buf(&cpi->ppi->tf_info, gf_index, &frame_diff);
1580 if (tf_buf != NULL) {
1581 tpl_frame->gf_picture = tf_buf;
1582 }
1583
1584 // 'cm->current_frame.frame_number' is the display number
1585 // of the current frame.
1586 // 'lookahead_index' is frame offset within the gf group.
1587 // 'lookahead_index + cm->current_frame.frame_number'
1588 // is the display index of the frame.
1589 tpl_frame->frame_display_index =
1590 lookahead_index + cm->current_frame.frame_number;
1591 assert(buf->display_idx ==
1592 cpi->frame_index_set.show_frame_count + lookahead_index);
1593
1594 if (frame_update_type != OVERLAY_UPDATE &&
1595 frame_update_type != INTNL_OVERLAY_UPDATE) {
1596 tpl_frame->rec_picture = &tpl_data->tpl_rec_pool[process_frame_count];
1597 tpl_frame->tpl_stats_ptr = tpl_data->tpl_stats_pool[process_frame_count];
1598 ++process_frame_count;
1599 }
1600 const int true_disp = (int)(tpl_frame->frame_display_index);
1601
1602 av1_get_ref_frames(ref_frame_map_pairs, true_disp, cpi, gf_index, 0,
1603 remapped_ref_idx);
1604
1605 int refresh_mask =
1606 av1_get_refresh_frame_flags(cpi, &frame_params, frame_update_type,
1607 gf_index, true_disp, ref_frame_map_pairs);
1608
1609 // Make the frames marked as is_frame_non_ref to non-reference frames.
1610 if (cpi->ppi->gf_group.is_frame_non_ref[gf_index]) refresh_mask = 0;
1611
1612 int refresh_frame_map_index = av1_get_refresh_ref_frame_map(refresh_mask);
1613
1614 if (refresh_frame_map_index < REF_FRAMES &&
1615 refresh_frame_map_index != INVALID_IDX) {
1616 ref_frame_map_pairs[refresh_frame_map_index].disp_order =
1617 AOMMAX(0, true_disp);
1618 ref_frame_map_pairs[refresh_frame_map_index].pyr_level =
1619 get_true_pyr_level(gf_group->layer_depth[gf_index], true_disp,
1620 cpi->ppi->gf_group.max_layer_depth);
1621 }
1622
1623 for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i)
1624 tpl_frame->ref_map_index[i - LAST_FRAME] =
1625 ref_picture_map[remapped_ref_idx[i - LAST_FRAME]];
1626
1627 if (refresh_mask) ref_picture_map[refresh_frame_map_index] = gf_index;
1628
1629 ++*tpl_group_frames;
1630 }
1631
1632 const int tpl_extend = cpi->oxcf.gf_cfg.lag_in_frames - MAX_GF_INTERVAL;
1633 int extend_frame_count = 0;
1634 int extend_frame_length = AOMMIN(
1635 tpl_extend, cpi->rc.frames_to_key - cpi->ppi->p_rc.baseline_gf_interval);
1636
1637 int frame_display_index = gf_group->cur_frame_idx[gop_length - 1] +
1638 gf_group->arf_src_offset[gop_length - 1] + 1;
1639
1640 for (;
1641 gf_index < MAX_TPL_FRAME_IDX && extend_frame_count < extend_frame_length;
1642 ++gf_index) {
1643 TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_index];
1644 FRAME_UPDATE_TYPE frame_update_type = LF_UPDATE;
1645 frame_params.show_frame = frame_update_type != ARF_UPDATE &&
1646 frame_update_type != INTNL_ARF_UPDATE;
1647 frame_params.show_existing_frame =
1648 frame_update_type == INTNL_OVERLAY_UPDATE;
1649 frame_params.frame_type = INTER_FRAME;
1650
1651 int lookahead_index = frame_display_index;
1652 struct lookahead_entry *buf = av1_lookahead_peek(
1653 cpi->ppi->lookahead, lookahead_index, cpi->compressor_stage);
1654
1655 if (buf == NULL) break;
1656
1657 tpl_frame->gf_picture = &buf->img;
1658 tpl_frame->rec_picture = &tpl_data->tpl_rec_pool[process_frame_count];
1659 tpl_frame->tpl_stats_ptr = tpl_data->tpl_stats_pool[process_frame_count];
1660 // 'cm->current_frame.frame_number' is the display number
1661 // of the current frame.
1662 // 'frame_display_index' is frame offset within the gf group.
1663 // 'frame_display_index + cm->current_frame.frame_number'
1664 // is the display index of the frame.
1665 tpl_frame->frame_display_index =
1666 frame_display_index + cm->current_frame.frame_number;
1667
1668 ++process_frame_count;
1669
1670 gf_group->update_type[gf_index] = LF_UPDATE;
1671
1672 #if CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS
1673 if (cpi->oxcf.pass == AOM_RC_SECOND_PASS) {
1674 if (cpi->oxcf.rc_cfg.mode == AOM_Q) {
1675 *pframe_qindex = cpi->oxcf.rc_cfg.cq_level;
1676 } else if (cpi->oxcf.rc_cfg.mode == AOM_VBR) {
1677 // TODO(angiebird): Find a more adaptive method to decide pframe_qindex
1678 // override the pframe_qindex in the second pass when bitrate accuracy
1679 // is on. We found that setting this pframe_qindex make the tpl stats
1680 // more stable.
1681 *pframe_qindex = 128;
1682 }
1683 }
1684 #endif // CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS
1685 gf_group->q_val[gf_index] = *pframe_qindex;
1686 const int true_disp = (int)(tpl_frame->frame_display_index);
1687 av1_get_ref_frames(ref_frame_map_pairs, true_disp, cpi, gf_index, 0,
1688 remapped_ref_idx);
1689 int refresh_mask =
1690 av1_get_refresh_frame_flags(cpi, &frame_params, frame_update_type,
1691 gf_index, true_disp, ref_frame_map_pairs);
1692 int refresh_frame_map_index = av1_get_refresh_ref_frame_map(refresh_mask);
1693
1694 if (refresh_frame_map_index < REF_FRAMES &&
1695 refresh_frame_map_index != INVALID_IDX) {
1696 ref_frame_map_pairs[refresh_frame_map_index].disp_order =
1697 AOMMAX(0, true_disp);
1698 ref_frame_map_pairs[refresh_frame_map_index].pyr_level =
1699 get_true_pyr_level(gf_group->layer_depth[gf_index], true_disp,
1700 cpi->ppi->gf_group.max_layer_depth);
1701 }
1702
1703 for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i)
1704 tpl_frame->ref_map_index[i - LAST_FRAME] =
1705 ref_picture_map[remapped_ref_idx[i - LAST_FRAME]];
1706
1707 tpl_frame->ref_map_index[ALTREF_FRAME - LAST_FRAME] = -1;
1708 tpl_frame->ref_map_index[LAST3_FRAME - LAST_FRAME] = -1;
1709 tpl_frame->ref_map_index[BWDREF_FRAME - LAST_FRAME] = -1;
1710 tpl_frame->ref_map_index[ALTREF2_FRAME - LAST_FRAME] = -1;
1711
1712 if (refresh_mask) ref_picture_map[refresh_frame_map_index] = gf_index;
1713
1714 ++*tpl_group_frames;
1715 ++extend_frame_count;
1716 ++frame_display_index;
1717 }
1718 }
1719
av1_init_tpl_stats(TplParams * const tpl_data)1720 void av1_init_tpl_stats(TplParams *const tpl_data) {
1721 tpl_data->ready = 0;
1722 set_tpl_stats_block_size(&tpl_data->tpl_stats_block_mis_log2,
1723 &tpl_data->tpl_bsize_1d);
1724 for (int frame_idx = 0; frame_idx < MAX_LENGTH_TPL_FRAME_STATS; ++frame_idx) {
1725 TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame_idx];
1726 tpl_frame->is_valid = 0;
1727 }
1728 for (int frame_idx = 0; frame_idx < MAX_LAG_BUFFERS; ++frame_idx) {
1729 TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame_idx];
1730 if (tpl_data->tpl_stats_pool[frame_idx] == NULL) continue;
1731 memset(tpl_data->tpl_stats_pool[frame_idx], 0,
1732 tpl_frame->height * tpl_frame->width *
1733 sizeof(*tpl_frame->tpl_stats_ptr));
1734 }
1735 }
1736
av1_tpl_stats_ready(const TplParams * tpl_data,int gf_frame_index)1737 int av1_tpl_stats_ready(const TplParams *tpl_data, int gf_frame_index) {
1738 if (tpl_data->ready == 0) {
1739 return 0;
1740 }
1741 if (gf_frame_index >= MAX_TPL_FRAME_IDX) {
1742 // The sub-GOP length exceeds the TPL buffer capacity.
1743 // Hence the TPL related functions are disabled hereafter.
1744 return 0;
1745 }
1746 return tpl_data->tpl_frame[gf_frame_index].is_valid;
1747 }
1748
eval_gop_length(double * beta,int gop_eval)1749 static inline int eval_gop_length(double *beta, int gop_eval) {
1750 switch (gop_eval) {
1751 case 1:
1752 // Allow larger GOP size if the base layer ARF has higher dependency
1753 // factor than the intermediate ARF and both ARFs have reasonably high
1754 // dependency factors.
1755 return (beta[0] >= beta[1] + 0.7) && beta[0] > 3.0;
1756 case 2:
1757 if ((beta[0] >= beta[1] + 0.4) && beta[0] > 1.6)
1758 return 1; // Don't shorten the gf interval
1759 else if ((beta[0] < beta[1] + 0.1) || beta[0] <= 1.4)
1760 return 0; // Shorten the gf interval
1761 else
1762 return 2; // Cannot decide the gf interval, so redo the
1763 // tpl stats calculation.
1764 case 3: return beta[0] > 1.1;
1765 default: return 2;
1766 }
1767 }
1768
1769 // TODO(jingning): Restructure av1_rc_pick_q_and_bounds() to narrow down
1770 // the scope of input arguments.
av1_tpl_preload_rc_estimate(AV1_COMP * cpi,const EncodeFrameParams * const frame_params)1771 void av1_tpl_preload_rc_estimate(AV1_COMP *cpi,
1772 const EncodeFrameParams *const frame_params) {
1773 AV1_COMMON *cm = &cpi->common;
1774 GF_GROUP *gf_group = &cpi->ppi->gf_group;
1775 int bottom_index, top_index;
1776 if (cpi->use_ducky_encode) return;
1777
1778 cm->current_frame.frame_type = frame_params->frame_type;
1779 for (int gf_index = cpi->gf_frame_index; gf_index < gf_group->size;
1780 ++gf_index) {
1781 cm->current_frame.frame_type = gf_group->frame_type[gf_index];
1782 cm->show_frame = gf_group->update_type[gf_index] != ARF_UPDATE &&
1783 gf_group->update_type[gf_index] != INTNL_ARF_UPDATE;
1784 gf_group->q_val[gf_index] = av1_rc_pick_q_and_bounds(
1785 cpi, cm->width, cm->height, gf_index, &bottom_index, &top_index);
1786 }
1787 }
1788
skip_tpl_for_frame(const GF_GROUP * gf_group,int frame_idx,int gop_eval,int approx_gop_eval,int reduce_num_frames)1789 static inline int skip_tpl_for_frame(const GF_GROUP *gf_group, int frame_idx,
1790 int gop_eval, int approx_gop_eval,
1791 int reduce_num_frames) {
1792 // When gop_eval is set to 2, tpl stats calculation is done for ARFs from base
1793 // layer, (base+1) layer and (base+2) layer. When gop_eval is set to 3,
1794 // tpl stats calculation is limited to ARFs from base layer and (base+1)
1795 // layer.
1796 const int num_arf_layers = (gop_eval == 2) ? 3 : 2;
1797 const int gop_length = get_gop_length(gf_group);
1798
1799 if (gf_group->update_type[frame_idx] == INTNL_OVERLAY_UPDATE ||
1800 gf_group->update_type[frame_idx] == OVERLAY_UPDATE)
1801 return 1;
1802
1803 // When approx_gop_eval = 1, skip tpl stats calculation for higher layer
1804 // frames and for frames beyond gop length.
1805 if (approx_gop_eval && (gf_group->layer_depth[frame_idx] > num_arf_layers ||
1806 frame_idx >= gop_length))
1807 return 1;
1808
1809 if (reduce_num_frames && gf_group->update_type[frame_idx] == LF_UPDATE &&
1810 frame_idx < gop_length)
1811 return 1;
1812
1813 return 0;
1814 }
1815
av1_tpl_setup_stats(AV1_COMP * cpi,int gop_eval,const EncodeFrameParams * const frame_params)1816 int av1_tpl_setup_stats(AV1_COMP *cpi, int gop_eval,
1817 const EncodeFrameParams *const frame_params) {
1818 #if CONFIG_COLLECT_COMPONENT_TIMING
1819 start_timing(cpi, av1_tpl_setup_stats_time);
1820 #endif
1821 assert(cpi->gf_frame_index == 0);
1822 AV1_COMMON *cm = &cpi->common;
1823 MultiThreadInfo *const mt_info = &cpi->mt_info;
1824 AV1TplRowMultiThreadInfo *const tpl_row_mt = &mt_info->tpl_row_mt;
1825 GF_GROUP *gf_group = &cpi->ppi->gf_group;
1826 EncodeFrameParams this_frame_params = *frame_params;
1827 TplParams *const tpl_data = &cpi->ppi->tpl_data;
1828 int approx_gop_eval = (gop_eval > 1);
1829
1830 if (cpi->superres_mode != AOM_SUPERRES_NONE) {
1831 assert(cpi->superres_mode != AOM_SUPERRES_AUTO);
1832 av1_init_tpl_stats(tpl_data);
1833 return 0;
1834 }
1835
1836 cm->current_frame.frame_type = frame_params->frame_type;
1837 for (int gf_index = cpi->gf_frame_index; gf_index < gf_group->size;
1838 ++gf_index) {
1839 cm->current_frame.frame_type = gf_group->frame_type[gf_index];
1840 av1_configure_buffer_updates(cpi, &this_frame_params.refresh_frame,
1841 gf_group->update_type[gf_index],
1842 gf_group->refbuf_state[gf_index], 0);
1843
1844 memcpy(&cpi->refresh_frame, &this_frame_params.refresh_frame,
1845 sizeof(cpi->refresh_frame));
1846 }
1847
1848 int pframe_qindex;
1849 int tpl_gf_group_frames;
1850 init_gop_frames_for_tpl(cpi, frame_params, gf_group, &tpl_gf_group_frames,
1851 &pframe_qindex);
1852
1853 cpi->ppi->p_rc.base_layer_qp = pframe_qindex;
1854
1855 av1_init_tpl_stats(tpl_data);
1856
1857 TplBuffers *tpl_tmp_buffers = &cpi->td.tpl_tmp_buffers;
1858 if (!tpl_alloc_temp_buffers(tpl_tmp_buffers, tpl_data->tpl_bsize_1d)) {
1859 aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR,
1860 "Error allocating tpl data");
1861 }
1862
1863 tpl_row_mt->sync_read_ptr = av1_tpl_row_mt_sync_read_dummy;
1864 tpl_row_mt->sync_write_ptr = av1_tpl_row_mt_sync_write_dummy;
1865
1866 av1_setup_scale_factors_for_frame(&cm->sf_identity, cm->width, cm->height,
1867 cm->width, cm->height);
1868
1869 if (frame_params->frame_type == KEY_FRAME) {
1870 av1_init_mv_probs(cm);
1871 }
1872 av1_fill_mv_costs(&cm->fc->nmvc, cm->features.cur_frame_force_integer_mv,
1873 cm->features.allow_high_precision_mv, cpi->td.mb.mv_costs);
1874
1875 const int num_planes =
1876 cpi->sf.tpl_sf.use_y_only_rate_distortion ? 1 : av1_num_planes(cm);
1877 // As tpl module is called before the setting of speed features at frame
1878 // level, turning off this speed feature for the first GF group of the
1879 // key-frame interval is done here.
1880 int reduce_num_frames =
1881 cpi->sf.tpl_sf.reduce_num_frames &&
1882 gf_group->update_type[cpi->gf_frame_index] != KF_UPDATE &&
1883 gf_group->max_layer_depth > 2;
1884 // TPL processing is skipped for frames of type LF_UPDATE when
1885 // 'reduce_num_frames' is 1, which affects the r0 calcuation. Thus, a factor
1886 // to adjust r0 is used. The value of 1.6 corresponds to using ~60% of the
1887 // frames in the gf group on an average.
1888 tpl_data->r0_adjust_factor = reduce_num_frames ? 1.6 : 1.0;
1889
1890 // Backward propagation from tpl_group_frames to 1.
1891 for (int frame_idx = cpi->gf_frame_index; frame_idx < tpl_gf_group_frames;
1892 ++frame_idx) {
1893 if (skip_tpl_for_frame(gf_group, frame_idx, gop_eval, approx_gop_eval,
1894 reduce_num_frames))
1895 continue;
1896
1897 init_mc_flow_dispenser(cpi, frame_idx, pframe_qindex);
1898 if (mt_info->num_workers > 1) {
1899 tpl_row_mt->sync_read_ptr = av1_tpl_row_mt_sync_read;
1900 tpl_row_mt->sync_write_ptr = av1_tpl_row_mt_sync_write;
1901 av1_mc_flow_dispenser_mt(cpi);
1902 } else {
1903 mc_flow_dispenser(cpi);
1904 }
1905 #if CONFIG_BITRATE_ACCURACY
1906 av1_tpl_txfm_stats_update_abs_coeff_mean(&cpi->td.tpl_txfm_stats);
1907 av1_tpl_store_txfm_stats(tpl_data, &cpi->td.tpl_txfm_stats, frame_idx);
1908 #endif // CONFIG_BITRATE_ACCURACY
1909 #if CONFIG_RATECTRL_LOG && CONFIG_THREE_PASS && CONFIG_BITRATE_ACCURACY
1910 if (cpi->oxcf.pass == AOM_RC_THIRD_PASS) {
1911 int frame_coding_idx =
1912 av1_vbr_rc_frame_coding_idx(&cpi->vbr_rc_info, frame_idx);
1913 rc_log_frame_stats(&cpi->rc_log, frame_coding_idx,
1914 &cpi->td.tpl_txfm_stats);
1915 }
1916 #endif // CONFIG_RATECTRL_LOG
1917
1918 aom_extend_frame_borders(tpl_data->tpl_frame[frame_idx].rec_picture,
1919 num_planes);
1920 }
1921
1922 for (int frame_idx = tpl_gf_group_frames - 1;
1923 frame_idx >= cpi->gf_frame_index; --frame_idx) {
1924 if (skip_tpl_for_frame(gf_group, frame_idx, gop_eval, approx_gop_eval,
1925 reduce_num_frames))
1926 continue;
1927
1928 mc_flow_synthesizer(tpl_data, frame_idx, cm->mi_params.mi_rows,
1929 cm->mi_params.mi_cols);
1930 }
1931
1932 av1_configure_buffer_updates(cpi, &this_frame_params.refresh_frame,
1933 gf_group->update_type[cpi->gf_frame_index],
1934 gf_group->update_type[cpi->gf_frame_index], 0);
1935 cm->current_frame.frame_type = frame_params->frame_type;
1936 cm->show_frame = frame_params->show_frame;
1937
1938 #if CONFIG_COLLECT_COMPONENT_TIMING
1939 // Record the time if the function returns.
1940 if (cpi->common.tiles.large_scale || gf_group->max_layer_depth_allowed == 0 ||
1941 !gop_eval)
1942 end_timing(cpi, av1_tpl_setup_stats_time);
1943 #endif
1944
1945 tpl_dealloc_temp_buffers(tpl_tmp_buffers);
1946
1947 if (!approx_gop_eval) {
1948 tpl_data->ready = 1;
1949 }
1950 if (cpi->common.tiles.large_scale) return 0;
1951 if (gf_group->max_layer_depth_allowed == 0) return 1;
1952 if (!gop_eval) return 0;
1953 assert(gf_group->arf_index >= 0);
1954
1955 double beta[2] = { 0.0 };
1956 const int frame_idx_0 = gf_group->arf_index;
1957 const int frame_idx_1 =
1958 AOMMIN(tpl_gf_group_frames - 1, gf_group->arf_index + 1);
1959 beta[0] = av1_tpl_get_frame_importance(tpl_data, frame_idx_0);
1960 beta[1] = av1_tpl_get_frame_importance(tpl_data, frame_idx_1);
1961 #if CONFIG_COLLECT_COMPONENT_TIMING
1962 end_timing(cpi, av1_tpl_setup_stats_time);
1963 #endif
1964 return eval_gop_length(beta, gop_eval);
1965 }
1966
av1_tpl_rdmult_setup(AV1_COMP * cpi)1967 void av1_tpl_rdmult_setup(AV1_COMP *cpi) {
1968 const AV1_COMMON *const cm = &cpi->common;
1969 const int tpl_idx = cpi->gf_frame_index;
1970
1971 assert(
1972 IMPLIES(cpi->ppi->gf_group.size > 0, tpl_idx < cpi->ppi->gf_group.size));
1973
1974 TplParams *const tpl_data = &cpi->ppi->tpl_data;
1975 const TplDepFrame *const tpl_frame = &tpl_data->tpl_frame[tpl_idx];
1976
1977 if (!tpl_frame->is_valid) return;
1978
1979 const TplDepStats *const tpl_stats = tpl_frame->tpl_stats_ptr;
1980 const int tpl_stride = tpl_frame->stride;
1981 const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
1982
1983 const int block_size = BLOCK_16X16;
1984 const int num_mi_w = mi_size_wide[block_size];
1985 const int num_mi_h = mi_size_high[block_size];
1986 const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w;
1987 const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
1988 const double c = 1.2;
1989 const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
1990
1991 // Loop through each 'block_size' X 'block_size' block.
1992 for (int row = 0; row < num_rows; row++) {
1993 for (int col = 0; col < num_cols; col++) {
1994 double intra_cost = 0.0, mc_dep_cost = 0.0;
1995 // Loop through each mi block.
1996 for (int mi_row = row * num_mi_h; mi_row < (row + 1) * num_mi_h;
1997 mi_row += step) {
1998 for (int mi_col = col * num_mi_w; mi_col < (col + 1) * num_mi_w;
1999 mi_col += step) {
2000 if (mi_row >= cm->mi_params.mi_rows || mi_col >= mi_cols_sr) continue;
2001 const TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
2002 mi_row, mi_col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
2003 int64_t mc_dep_delta =
2004 RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
2005 this_stats->mc_dep_dist);
2006 intra_cost += (double)(this_stats->recrf_dist << RDDIV_BITS);
2007 mc_dep_cost +=
2008 (double)(this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
2009 }
2010 }
2011 const double rk = intra_cost / mc_dep_cost;
2012 const int index = row * num_cols + col;
2013 cpi->tpl_rdmult_scaling_factors[index] = rk / cpi->rd.r0 + c;
2014 }
2015 }
2016 }
2017
av1_tpl_rdmult_setup_sb(AV1_COMP * cpi,MACROBLOCK * const x,BLOCK_SIZE sb_size,int mi_row,int mi_col)2018 void av1_tpl_rdmult_setup_sb(AV1_COMP *cpi, MACROBLOCK *const x,
2019 BLOCK_SIZE sb_size, int mi_row, int mi_col) {
2020 AV1_COMMON *const cm = &cpi->common;
2021 GF_GROUP *gf_group = &cpi->ppi->gf_group;
2022 assert(IMPLIES(cpi->ppi->gf_group.size > 0,
2023 cpi->gf_frame_index < cpi->ppi->gf_group.size));
2024 const int tpl_idx = cpi->gf_frame_index;
2025
2026 const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100));
2027 const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6);
2028 const FRAME_TYPE frame_type = cm->current_frame.frame_type;
2029
2030 if (tpl_idx >= MAX_TPL_FRAME_IDX) return;
2031 TplDepFrame *tpl_frame = &cpi->ppi->tpl_data.tpl_frame[tpl_idx];
2032 if (!tpl_frame->is_valid) return;
2033 if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) return;
2034 if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return;
2035
2036 const int mi_col_sr =
2037 coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
2038 const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
2039 const int sb_mi_width_sr = coded_to_superres_mi(
2040 mi_size_wide[sb_size], cm->superres_scale_denominator);
2041
2042 const int bsize_base = BLOCK_16X16;
2043 const int num_mi_w = mi_size_wide[bsize_base];
2044 const int num_mi_h = mi_size_high[bsize_base];
2045 const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w;
2046 const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
2047 const int num_bcols = (sb_mi_width_sr + num_mi_w - 1) / num_mi_w;
2048 const int num_brows = (mi_size_high[sb_size] + num_mi_h - 1) / num_mi_h;
2049 int row, col;
2050
2051 double base_block_count = 0.0;
2052 double log_sum = 0.0;
2053
2054 for (row = mi_row / num_mi_w;
2055 row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
2056 for (col = mi_col_sr / num_mi_h;
2057 col < num_cols && col < mi_col_sr / num_mi_h + num_bcols; ++col) {
2058 const int index = row * num_cols + col;
2059 log_sum += log(cpi->tpl_rdmult_scaling_factors[index]);
2060 base_block_count += 1.0;
2061 }
2062 }
2063
2064 const CommonQuantParams *quant_params = &cm->quant_params;
2065
2066 const int orig_qindex_rdmult =
2067 quant_params->base_qindex + quant_params->y_dc_delta_q;
2068 const int orig_rdmult = av1_compute_rd_mult(
2069 orig_qindex_rdmult, cm->seq_params->bit_depth,
2070 cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
2071 boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
2072 is_stat_consumption_stage(cpi));
2073
2074 const int new_qindex_rdmult = quant_params->base_qindex +
2075 x->rdmult_delta_qindex +
2076 quant_params->y_dc_delta_q;
2077 const int new_rdmult = av1_compute_rd_mult(
2078 new_qindex_rdmult, cm->seq_params->bit_depth,
2079 cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
2080 boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
2081 is_stat_consumption_stage(cpi));
2082
2083 const double scaling_factor = (double)new_rdmult / (double)orig_rdmult;
2084
2085 double scale_adj = log(scaling_factor) - log_sum / base_block_count;
2086 scale_adj = exp_bounded(scale_adj);
2087
2088 for (row = mi_row / num_mi_w;
2089 row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
2090 for (col = mi_col_sr / num_mi_h;
2091 col < num_cols && col < mi_col_sr / num_mi_h + num_bcols; ++col) {
2092 const int index = row * num_cols + col;
2093 cpi->ppi->tpl_sb_rdmult_scaling_factors[index] =
2094 scale_adj * cpi->tpl_rdmult_scaling_factors[index];
2095 }
2096 }
2097 }
2098
av1_exponential_entropy(double q_step,double b)2099 double av1_exponential_entropy(double q_step, double b) {
2100 b = AOMMAX(b, TPL_EPSILON);
2101 double z = fmax(exp_bounded(-q_step / b), TPL_EPSILON);
2102 return -log2(1 - z) - z * log2(z) / (1 - z);
2103 }
2104
av1_laplace_entropy(double q_step,double b,double zero_bin_ratio)2105 double av1_laplace_entropy(double q_step, double b, double zero_bin_ratio) {
2106 // zero bin's size is zero_bin_ratio * q_step
2107 // non-zero bin's size is q_step
2108 b = AOMMAX(b, TPL_EPSILON);
2109 double z = fmax(exp_bounded(-zero_bin_ratio / 2 * q_step / b), TPL_EPSILON);
2110 double h = av1_exponential_entropy(q_step, b);
2111 double r = -(1 - z) * log2(1 - z) - z * log2(z) + z * (h + 1);
2112 return r;
2113 }
2114
av1_laplace_estimate_frame_rate(int q_index,int block_count,const double * abs_coeff_mean,int coeff_num)2115 double av1_laplace_estimate_frame_rate(int q_index, int block_count,
2116 const double *abs_coeff_mean,
2117 int coeff_num) {
2118 double zero_bin_ratio = 2;
2119 double dc_q_step = av1_dc_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
2120 double ac_q_step = av1_ac_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
2121 double est_rate = 0;
2122 // dc coeff
2123 est_rate += av1_laplace_entropy(dc_q_step, abs_coeff_mean[0], zero_bin_ratio);
2124 // ac coeff
2125 for (int i = 1; i < coeff_num; ++i) {
2126 est_rate +=
2127 av1_laplace_entropy(ac_q_step, abs_coeff_mean[i], zero_bin_ratio);
2128 }
2129 est_rate *= block_count;
2130 return est_rate;
2131 }
2132
av1_estimate_coeff_entropy(double q_step,double b,double zero_bin_ratio,int qcoeff)2133 double av1_estimate_coeff_entropy(double q_step, double b,
2134 double zero_bin_ratio, int qcoeff) {
2135 b = AOMMAX(b, TPL_EPSILON);
2136 int abs_qcoeff = abs(qcoeff);
2137 double z0 = fmax(exp_bounded(-zero_bin_ratio / 2 * q_step / b), TPL_EPSILON);
2138 if (abs_qcoeff == 0) {
2139 double r = -log2(1 - z0);
2140 return r;
2141 } else {
2142 double z = fmax(exp_bounded(-q_step / b), TPL_EPSILON);
2143 double r = 1 - log2(z0) - log2(1 - z) - (abs_qcoeff - 1) * log2(z);
2144 return r;
2145 }
2146 }
2147
2148 #if CONFIG_RD_COMMAND
av1_read_rd_command(const char * filepath,RD_COMMAND * rd_command)2149 void av1_read_rd_command(const char *filepath, RD_COMMAND *rd_command) {
2150 FILE *fptr = fopen(filepath, "r");
2151 fscanf(fptr, "%d", &rd_command->frame_count);
2152 rd_command->frame_index = 0;
2153 for (int i = 0; i < rd_command->frame_count; ++i) {
2154 int option;
2155 fscanf(fptr, "%d", &option);
2156 rd_command->option_ls[i] = (RD_OPTION)option;
2157 if (option == RD_OPTION_SET_Q) {
2158 fscanf(fptr, "%d", &rd_command->q_index_ls[i]);
2159 } else if (option == RD_OPTION_SET_Q_RDMULT) {
2160 fscanf(fptr, "%d", &rd_command->q_index_ls[i]);
2161 fscanf(fptr, "%d", &rd_command->rdmult_ls[i]);
2162 }
2163 }
2164 fclose(fptr);
2165 }
2166 #endif // CONFIG_RD_COMMAND
2167
av1_tpl_get_frame_importance(const TplParams * tpl_data,int gf_frame_index)2168 double av1_tpl_get_frame_importance(const TplParams *tpl_data,
2169 int gf_frame_index) {
2170 const TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_frame_index];
2171 const TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
2172
2173 const int tpl_stride = tpl_frame->stride;
2174 double intra_cost_base = 0;
2175 double mc_dep_cost_base = 0;
2176 double cbcmp_base = 1;
2177 const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
2178
2179 for (int row = 0; row < tpl_frame->mi_rows; row += step) {
2180 for (int col = 0; col < tpl_frame->mi_cols; col += step) {
2181 const TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
2182 row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
2183 double cbcmp = (double)this_stats->srcrf_dist;
2184 const int64_t mc_dep_delta =
2185 RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
2186 this_stats->mc_dep_dist);
2187 double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS);
2188 dist_scaled = AOMMAX(dist_scaled, 1);
2189 intra_cost_base += log(dist_scaled) * cbcmp;
2190 mc_dep_cost_base += log(dist_scaled + mc_dep_delta) * cbcmp;
2191 cbcmp_base += cbcmp;
2192 }
2193 }
2194 return exp((mc_dep_cost_base - intra_cost_base) / cbcmp_base);
2195 }
2196
av1_tpl_get_qstep_ratio(const TplParams * tpl_data,int gf_frame_index)2197 double av1_tpl_get_qstep_ratio(const TplParams *tpl_data, int gf_frame_index) {
2198 if (!av1_tpl_stats_ready(tpl_data, gf_frame_index)) {
2199 return 1;
2200 }
2201 const double frame_importance =
2202 av1_tpl_get_frame_importance(tpl_data, gf_frame_index);
2203 return sqrt(1 / frame_importance);
2204 }
2205
av1_get_q_index_from_qstep_ratio(int leaf_qindex,double qstep_ratio,aom_bit_depth_t bit_depth)2206 int av1_get_q_index_from_qstep_ratio(int leaf_qindex, double qstep_ratio,
2207 aom_bit_depth_t bit_depth) {
2208 const double leaf_qstep = av1_dc_quant_QTX(leaf_qindex, 0, bit_depth);
2209 const double target_qstep = leaf_qstep * qstep_ratio;
2210 int qindex = leaf_qindex;
2211 if (qstep_ratio < 1.0) {
2212 for (qindex = leaf_qindex; qindex > 0; --qindex) {
2213 const double qstep = av1_dc_quant_QTX(qindex, 0, bit_depth);
2214 if (qstep <= target_qstep) break;
2215 }
2216 } else {
2217 for (qindex = leaf_qindex; qindex <= MAXQ; ++qindex) {
2218 const double qstep = av1_dc_quant_QTX(qindex, 0, bit_depth);
2219 if (qstep >= target_qstep) break;
2220 }
2221 }
2222 return qindex;
2223 }
2224
av1_tpl_get_q_index(const TplParams * tpl_data,int gf_frame_index,int leaf_qindex,aom_bit_depth_t bit_depth)2225 int av1_tpl_get_q_index(const TplParams *tpl_data, int gf_frame_index,
2226 int leaf_qindex, aom_bit_depth_t bit_depth) {
2227 const double qstep_ratio = av1_tpl_get_qstep_ratio(tpl_data, gf_frame_index);
2228 return av1_get_q_index_from_qstep_ratio(leaf_qindex, qstep_ratio, bit_depth);
2229 }
2230
2231 #if CONFIG_BITRATE_ACCURACY
av1_vbr_rc_init(VBR_RATECTRL_INFO * vbr_rc_info,double total_bit_budget,int show_frame_count)2232 void av1_vbr_rc_init(VBR_RATECTRL_INFO *vbr_rc_info, double total_bit_budget,
2233 int show_frame_count) {
2234 av1_zero(*vbr_rc_info);
2235 vbr_rc_info->ready = 0;
2236 vbr_rc_info->total_bit_budget = total_bit_budget;
2237 vbr_rc_info->show_frame_count = show_frame_count;
2238 const double scale_factors[FRAME_UPDATE_TYPES] = { 0.94559, 0.94559, 1,
2239 0.94559, 1, 1,
2240 0.94559 };
2241
2242 // TODO(angiebird): Based on the previous code, only the scale factor 0.94559
2243 // will be used in most of the cases with --limi=17. Figure out if the
2244 // following scale factors works better.
2245 // const double scale_factors[FRAME_UPDATE_TYPES] = { 0.94559, 0.12040, 1,
2246 // 1.10199, 1, 1,
2247 // 0.16393 };
2248
2249 const double mv_scale_factors[FRAME_UPDATE_TYPES] = { 3, 3, 3, 3, 3, 3, 3 };
2250 memcpy(vbr_rc_info->scale_factors, scale_factors,
2251 sizeof(scale_factors[0]) * FRAME_UPDATE_TYPES);
2252 memcpy(vbr_rc_info->mv_scale_factors, mv_scale_factors,
2253 sizeof(mv_scale_factors[0]) * FRAME_UPDATE_TYPES);
2254
2255 vbr_rc_reset_gop_data(vbr_rc_info);
2256 #if CONFIG_THREE_PASS
2257 // TODO(angiebird): Explain why we use -1 here
2258 vbr_rc_info->cur_gop_idx = -1;
2259 vbr_rc_info->gop_count = 0;
2260 vbr_rc_info->total_frame_count = 0;
2261 #endif // CONFIG_THREE_PASS
2262 }
2263
2264 #if CONFIG_THREE_PASS
av1_vbr_rc_frame_coding_idx(const VBR_RATECTRL_INFO * vbr_rc_info,int gf_frame_index)2265 int av1_vbr_rc_frame_coding_idx(const VBR_RATECTRL_INFO *vbr_rc_info,
2266 int gf_frame_index) {
2267 int gop_idx = vbr_rc_info->cur_gop_idx;
2268 int gop_start_idx = vbr_rc_info->gop_start_idx_list[gop_idx];
2269 return gop_start_idx + gf_frame_index;
2270 }
2271
av1_vbr_rc_append_tpl_info(VBR_RATECTRL_INFO * vbr_rc_info,const TPL_INFO * tpl_info)2272 void av1_vbr_rc_append_tpl_info(VBR_RATECTRL_INFO *vbr_rc_info,
2273 const TPL_INFO *tpl_info) {
2274 int gop_start_idx = vbr_rc_info->total_frame_count;
2275 vbr_rc_info->gop_start_idx_list[vbr_rc_info->gop_count] = gop_start_idx;
2276 vbr_rc_info->gop_length_list[vbr_rc_info->gop_count] = tpl_info->gf_length;
2277 assert(gop_start_idx + tpl_info->gf_length <= VBR_RC_INFO_MAX_FRAMES);
2278 for (int i = 0; i < tpl_info->gf_length; ++i) {
2279 vbr_rc_info->txfm_stats_list[gop_start_idx + i] =
2280 tpl_info->txfm_stats_list[i];
2281 vbr_rc_info->qstep_ratio_list[gop_start_idx + i] =
2282 tpl_info->qstep_ratio_ls[i];
2283 vbr_rc_info->update_type_list[gop_start_idx + i] =
2284 tpl_info->update_type_list[i];
2285 }
2286 vbr_rc_info->total_frame_count += tpl_info->gf_length;
2287 vbr_rc_info->gop_count++;
2288 }
2289 #endif // CONFIG_THREE_PASS
2290
av1_vbr_rc_set_gop_bit_budget(VBR_RATECTRL_INFO * vbr_rc_info,int gop_showframe_count)2291 void av1_vbr_rc_set_gop_bit_budget(VBR_RATECTRL_INFO *vbr_rc_info,
2292 int gop_showframe_count) {
2293 vbr_rc_info->gop_showframe_count = gop_showframe_count;
2294 vbr_rc_info->gop_bit_budget = vbr_rc_info->total_bit_budget *
2295 gop_showframe_count /
2296 vbr_rc_info->show_frame_count;
2297 }
2298
av1_vbr_rc_compute_q_indices(int base_q_index,int frame_count,const double * qstep_ratio_list,aom_bit_depth_t bit_depth,int * q_index_list)2299 void av1_vbr_rc_compute_q_indices(int base_q_index, int frame_count,
2300 const double *qstep_ratio_list,
2301 aom_bit_depth_t bit_depth,
2302 int *q_index_list) {
2303 for (int i = 0; i < frame_count; ++i) {
2304 q_index_list[i] = av1_get_q_index_from_qstep_ratio(
2305 base_q_index, qstep_ratio_list[i], bit_depth);
2306 }
2307 }
2308
av1_vbr_rc_info_estimate_gop_bitrate(int base_q_index,aom_bit_depth_t bit_depth,const double * update_type_scale_factors,int frame_count,const FRAME_UPDATE_TYPE * update_type_list,const double * qstep_ratio_list,const TplTxfmStats * stats_list,int * q_index_list,double * estimated_bitrate_byframe)2309 double av1_vbr_rc_info_estimate_gop_bitrate(
2310 int base_q_index, aom_bit_depth_t bit_depth,
2311 const double *update_type_scale_factors, int frame_count,
2312 const FRAME_UPDATE_TYPE *update_type_list, const double *qstep_ratio_list,
2313 const TplTxfmStats *stats_list, int *q_index_list,
2314 double *estimated_bitrate_byframe) {
2315 av1_vbr_rc_compute_q_indices(base_q_index, frame_count, qstep_ratio_list,
2316 bit_depth, q_index_list);
2317 double estimated_gop_bitrate = 0;
2318 for (int frame_index = 0; frame_index < frame_count; frame_index++) {
2319 const TplTxfmStats *frame_stats = &stats_list[frame_index];
2320 double frame_bitrate = 0;
2321 if (frame_stats->ready) {
2322 int q_index = q_index_list[frame_index];
2323
2324 frame_bitrate = av1_laplace_estimate_frame_rate(
2325 q_index, frame_stats->txfm_block_count, frame_stats->abs_coeff_mean,
2326 frame_stats->coeff_num);
2327 }
2328 FRAME_UPDATE_TYPE update_type = update_type_list[frame_index];
2329 estimated_gop_bitrate +=
2330 frame_bitrate * update_type_scale_factors[update_type];
2331 if (estimated_bitrate_byframe != NULL) {
2332 estimated_bitrate_byframe[frame_index] = frame_bitrate;
2333 }
2334 }
2335 return estimated_gop_bitrate;
2336 }
2337
av1_vbr_rc_info_estimate_base_q(double bit_budget,aom_bit_depth_t bit_depth,const double * update_type_scale_factors,int frame_count,const FRAME_UPDATE_TYPE * update_type_list,const double * qstep_ratio_list,const TplTxfmStats * stats_list,int * q_index_list,double * estimated_bitrate_byframe)2338 int av1_vbr_rc_info_estimate_base_q(
2339 double bit_budget, aom_bit_depth_t bit_depth,
2340 const double *update_type_scale_factors, int frame_count,
2341 const FRAME_UPDATE_TYPE *update_type_list, const double *qstep_ratio_list,
2342 const TplTxfmStats *stats_list, int *q_index_list,
2343 double *estimated_bitrate_byframe) {
2344 int q_max = 255; // Maximum q value.
2345 int q_min = 0; // Minimum q value.
2346 int q = (q_max + q_min) / 2;
2347
2348 double q_max_estimate = av1_vbr_rc_info_estimate_gop_bitrate(
2349 q_max, bit_depth, update_type_scale_factors, frame_count,
2350 update_type_list, qstep_ratio_list, stats_list, q_index_list,
2351 estimated_bitrate_byframe);
2352
2353 double q_min_estimate = av1_vbr_rc_info_estimate_gop_bitrate(
2354 q_min, bit_depth, update_type_scale_factors, frame_count,
2355 update_type_list, qstep_ratio_list, stats_list, q_index_list,
2356 estimated_bitrate_byframe);
2357 while (q_min + 1 < q_max) {
2358 double estimate = av1_vbr_rc_info_estimate_gop_bitrate(
2359 q, bit_depth, update_type_scale_factors, frame_count, update_type_list,
2360 qstep_ratio_list, stats_list, q_index_list, estimated_bitrate_byframe);
2361 if (estimate > bit_budget) {
2362 q_min = q;
2363 q_min_estimate = estimate;
2364 } else {
2365 q_max = q;
2366 q_max_estimate = estimate;
2367 }
2368 q = (q_max + q_min) / 2;
2369 }
2370 // Pick the estimate that lands closest to the budget.
2371 if (fabs(q_max_estimate - bit_budget) < fabs(q_min_estimate - bit_budget)) {
2372 q = q_max;
2373 } else {
2374 q = q_min;
2375 }
2376 // Update q_index_list and vbr_rc_info.
2377 av1_vbr_rc_info_estimate_gop_bitrate(
2378 q, bit_depth, update_type_scale_factors, frame_count, update_type_list,
2379 qstep_ratio_list, stats_list, q_index_list, estimated_bitrate_byframe);
2380 return q;
2381 }
av1_vbr_rc_update_q_index_list(VBR_RATECTRL_INFO * vbr_rc_info,const TplParams * tpl_data,const GF_GROUP * gf_group,aom_bit_depth_t bit_depth)2382 void av1_vbr_rc_update_q_index_list(VBR_RATECTRL_INFO *vbr_rc_info,
2383 const TplParams *tpl_data,
2384 const GF_GROUP *gf_group,
2385 aom_bit_depth_t bit_depth) {
2386 vbr_rc_info->q_index_list_ready = 1;
2387 double gop_bit_budget = vbr_rc_info->gop_bit_budget;
2388
2389 for (int i = 0; i < gf_group->size; i++) {
2390 vbr_rc_info->qstep_ratio_list[i] = av1_tpl_get_qstep_ratio(tpl_data, i);
2391 }
2392
2393 double mv_bits = 0;
2394 for (int i = 0; i < gf_group->size; i++) {
2395 double frame_mv_bits = 0;
2396 if (av1_tpl_stats_ready(tpl_data, i)) {
2397 TplDepFrame *tpl_frame = &tpl_data->tpl_frame[i];
2398 frame_mv_bits = av1_tpl_compute_frame_mv_entropy(
2399 tpl_frame, tpl_data->tpl_stats_block_mis_log2);
2400 FRAME_UPDATE_TYPE updae_type = gf_group->update_type[i];
2401 mv_bits += frame_mv_bits * vbr_rc_info->mv_scale_factors[updae_type];
2402 }
2403 }
2404
2405 mv_bits = AOMMIN(mv_bits, 0.6 * gop_bit_budget);
2406 gop_bit_budget -= mv_bits;
2407
2408 vbr_rc_info->base_q_index = av1_vbr_rc_info_estimate_base_q(
2409 gop_bit_budget, bit_depth, vbr_rc_info->scale_factors, gf_group->size,
2410 gf_group->update_type, vbr_rc_info->qstep_ratio_list,
2411 tpl_data->txfm_stats_list, vbr_rc_info->q_index_list, NULL);
2412 }
2413
2414 #endif // CONFIG_BITRATE_ACCURACY
2415
2416 // Use upper and left neighbor block as the reference MVs.
2417 // Compute the minimum difference between current MV and reference MV.
av1_compute_mv_difference(const TplDepFrame * tpl_frame,int row,int col,int step,int tpl_stride,int right_shift)2418 int_mv av1_compute_mv_difference(const TplDepFrame *tpl_frame, int row, int col,
2419 int step, int tpl_stride, int right_shift) {
2420 const TplDepStats *tpl_stats =
2421 &tpl_frame
2422 ->tpl_stats_ptr[av1_tpl_ptr_pos(row, col, tpl_stride, right_shift)];
2423 int_mv current_mv = tpl_stats->mv[tpl_stats->ref_frame_index[0]];
2424 int current_mv_magnitude =
2425 abs(current_mv.as_mv.row) + abs(current_mv.as_mv.col);
2426
2427 // Retrieve the up and left neighbors.
2428 int up_error = INT_MAX;
2429 int_mv up_mv_diff;
2430 if (row - step >= 0) {
2431 tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
2432 row - step, col, tpl_stride, right_shift)];
2433 up_mv_diff = tpl_stats->mv[tpl_stats->ref_frame_index[0]];
2434 up_mv_diff.as_mv.row = current_mv.as_mv.row - up_mv_diff.as_mv.row;
2435 up_mv_diff.as_mv.col = current_mv.as_mv.col - up_mv_diff.as_mv.col;
2436 up_error = abs(up_mv_diff.as_mv.row) + abs(up_mv_diff.as_mv.col);
2437 }
2438
2439 int left_error = INT_MAX;
2440 int_mv left_mv_diff;
2441 if (col - step >= 0) {
2442 tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
2443 row, col - step, tpl_stride, right_shift)];
2444 left_mv_diff = tpl_stats->mv[tpl_stats->ref_frame_index[0]];
2445 left_mv_diff.as_mv.row = current_mv.as_mv.row - left_mv_diff.as_mv.row;
2446 left_mv_diff.as_mv.col = current_mv.as_mv.col - left_mv_diff.as_mv.col;
2447 left_error = abs(left_mv_diff.as_mv.row) + abs(left_mv_diff.as_mv.col);
2448 }
2449
2450 // Return the MV with the minimum distance from current.
2451 if (up_error < left_error && up_error < current_mv_magnitude) {
2452 return up_mv_diff;
2453 } else if (left_error < up_error && left_error < current_mv_magnitude) {
2454 return left_mv_diff;
2455 }
2456 return current_mv;
2457 }
2458
2459 /* Compute the entropy of motion vectors for a single frame. */
av1_tpl_compute_frame_mv_entropy(const TplDepFrame * tpl_frame,uint8_t right_shift)2460 double av1_tpl_compute_frame_mv_entropy(const TplDepFrame *tpl_frame,
2461 uint8_t right_shift) {
2462 if (!tpl_frame->is_valid) {
2463 return 0;
2464 }
2465
2466 int count_row[500] = { 0 };
2467 int count_col[500] = { 0 };
2468 int n = 0; // number of MVs to process
2469
2470 const int tpl_stride = tpl_frame->stride;
2471 const int step = 1 << right_shift;
2472
2473 for (int row = 0; row < tpl_frame->mi_rows; row += step) {
2474 for (int col = 0; col < tpl_frame->mi_cols; col += step) {
2475 int_mv mv = av1_compute_mv_difference(tpl_frame, row, col, step,
2476 tpl_stride, right_shift);
2477 count_row[clamp(mv.as_mv.row, 0, 499)] += 1;
2478 count_col[clamp(mv.as_mv.row, 0, 499)] += 1;
2479 n += 1;
2480 }
2481 }
2482
2483 // Estimate the bits used using the entropy formula.
2484 double rate_row = 0;
2485 double rate_col = 0;
2486 for (int i = 0; i < 500; i++) {
2487 if (count_row[i] != 0) {
2488 double p = count_row[i] / (double)n;
2489 rate_row += count_row[i] * -log2(p);
2490 }
2491 if (count_col[i] != 0) {
2492 double p = count_col[i] / (double)n;
2493 rate_col += count_col[i] * -log2(p);
2494 }
2495 }
2496
2497 return rate_row + rate_col;
2498 }
2499