xref: /aosp_15_r20/external/libaom/av1/encoder/tpl_model.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2019, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <assert.h>
13 #include <float.h>
14 #include <stdint.h>
15 
16 #include "config/aom_config.h"
17 
18 #if CONFIG_THREE_PASS
19 #include "av1/encoder/thirdpass.h"
20 #endif
21 #include "config/aom_dsp_rtcd.h"
22 #include "config/aom_scale_rtcd.h"
23 
24 #include "aom/aom_codec.h"
25 #include "aom_util/aom_pthread.h"
26 
27 #include "av1/common/av1_common_int.h"
28 #include "av1/common/enums.h"
29 #include "av1/common/idct.h"
30 #include "av1/common/reconintra.h"
31 
32 #include "av1/encoder/encoder.h"
33 #include "av1/encoder/ethread.h"
34 #include "av1/encoder/encodeframe_utils.h"
35 #include "av1/encoder/encode_strategy.h"
36 #include "av1/encoder/hybrid_fwd_txfm.h"
37 #include "av1/encoder/motion_search_facade.h"
38 #include "av1/encoder/rd.h"
39 #include "av1/encoder/rdopt.h"
40 #include "av1/encoder/reconinter_enc.h"
41 #include "av1/encoder/tpl_model.h"
42 
exp_bounded(double v)43 static inline double exp_bounded(double v) {
44   // When v > 700 or <-700, the exp function will be close to overflow
45   // For details, see the "Notes" in the following link.
46   // https://en.cppreference.com/w/c/numeric/math/exp
47   if (v > 700) {
48     return DBL_MAX;
49   } else if (v < -700) {
50     return 0;
51   }
52   return exp(v);
53 }
54 
av1_init_tpl_txfm_stats(TplTxfmStats * tpl_txfm_stats)55 void av1_init_tpl_txfm_stats(TplTxfmStats *tpl_txfm_stats) {
56   tpl_txfm_stats->ready = 0;
57   tpl_txfm_stats->coeff_num = 256;
58   tpl_txfm_stats->txfm_block_count = 0;
59   memset(tpl_txfm_stats->abs_coeff_sum, 0,
60          sizeof(tpl_txfm_stats->abs_coeff_sum[0]) * tpl_txfm_stats->coeff_num);
61   memset(tpl_txfm_stats->abs_coeff_mean, 0,
62          sizeof(tpl_txfm_stats->abs_coeff_mean[0]) * tpl_txfm_stats->coeff_num);
63 }
64 
65 #if CONFIG_BITRATE_ACCURACY
av1_accumulate_tpl_txfm_stats(const TplTxfmStats * sub_stats,TplTxfmStats * accumulated_stats)66 void av1_accumulate_tpl_txfm_stats(const TplTxfmStats *sub_stats,
67                                    TplTxfmStats *accumulated_stats) {
68   accumulated_stats->txfm_block_count += sub_stats->txfm_block_count;
69   for (int i = 0; i < accumulated_stats->coeff_num; ++i) {
70     accumulated_stats->abs_coeff_sum[i] += sub_stats->abs_coeff_sum[i];
71   }
72 }
73 
av1_record_tpl_txfm_block(TplTxfmStats * tpl_txfm_stats,const tran_low_t * coeff)74 void av1_record_tpl_txfm_block(TplTxfmStats *tpl_txfm_stats,
75                                const tran_low_t *coeff) {
76   // For transform larger than 16x16, the scale of coeff need to be adjusted.
77   // It's not LOSSLESS_Q_STEP.
78   assert(tpl_txfm_stats->coeff_num <= 256);
79   for (int i = 0; i < tpl_txfm_stats->coeff_num; ++i) {
80     tpl_txfm_stats->abs_coeff_sum[i] += abs(coeff[i]) / (double)LOSSLESS_Q_STEP;
81   }
82   ++tpl_txfm_stats->txfm_block_count;
83 }
84 
av1_tpl_txfm_stats_update_abs_coeff_mean(TplTxfmStats * txfm_stats)85 void av1_tpl_txfm_stats_update_abs_coeff_mean(TplTxfmStats *txfm_stats) {
86   if (txfm_stats->txfm_block_count > 0) {
87     for (int j = 0; j < txfm_stats->coeff_num; j++) {
88       txfm_stats->abs_coeff_mean[j] =
89           txfm_stats->abs_coeff_sum[j] / txfm_stats->txfm_block_count;
90     }
91     txfm_stats->ready = 1;
92   } else {
93     txfm_stats->ready = 0;
94   }
95 }
96 
av1_tpl_store_txfm_stats(TplParams * tpl_data,const TplTxfmStats * tpl_txfm_stats,const int frame_index)97 static inline void av1_tpl_store_txfm_stats(TplParams *tpl_data,
98                                             const TplTxfmStats *tpl_txfm_stats,
99                                             const int frame_index) {
100   tpl_data->txfm_stats_list[frame_index] = *tpl_txfm_stats;
101 }
102 #endif  // CONFIG_BITRATE_ACCURACY
103 
get_quantize_error(const MACROBLOCK * x,int plane,const tran_low_t * coeff,tran_low_t * qcoeff,tran_low_t * dqcoeff,TX_SIZE tx_size,uint16_t * eob,int64_t * recon_error,int64_t * sse)104 static inline void get_quantize_error(const MACROBLOCK *x, int plane,
105                                       const tran_low_t *coeff,
106                                       tran_low_t *qcoeff, tran_low_t *dqcoeff,
107                                       TX_SIZE tx_size, uint16_t *eob,
108                                       int64_t *recon_error, int64_t *sse) {
109   const struct macroblock_plane *const p = &x->plane[plane];
110   const MACROBLOCKD *xd = &x->e_mbd;
111   const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
112   int pix_num = 1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]];
113   const int shift = tx_size == TX_32X32 ? 0 : 2;
114 
115   QUANT_PARAM quant_param;
116   av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_FP, 0, &quant_param);
117 
118 #if CONFIG_AV1_HIGHBITDEPTH
119   if (is_cur_buf_hbd(xd)) {
120     av1_highbd_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob,
121                                   scan_order, &quant_param);
122     *recon_error =
123         av1_highbd_block_error(coeff, dqcoeff, pix_num, sse, xd->bd) >> shift;
124   } else {
125     av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob, scan_order,
126                            &quant_param);
127     *recon_error = av1_block_error(coeff, dqcoeff, pix_num, sse) >> shift;
128   }
129 #else
130   (void)xd;
131   av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob, scan_order,
132                          &quant_param);
133   *recon_error = av1_block_error(coeff, dqcoeff, pix_num, sse) >> shift;
134 #endif  // CONFIG_AV1_HIGHBITDEPTH
135 
136   *recon_error = AOMMAX(*recon_error, 1);
137 
138   *sse = (*sse) >> shift;
139   *sse = AOMMAX(*sse, 1);
140 }
141 
set_tpl_stats_block_size(uint8_t * block_mis_log2,uint8_t * tpl_bsize_1d)142 static inline void set_tpl_stats_block_size(uint8_t *block_mis_log2,
143                                             uint8_t *tpl_bsize_1d) {
144   // tpl stats bsize: 2 means 16x16
145   *block_mis_log2 = 2;
146   // Block size used in tpl motion estimation
147   *tpl_bsize_1d = 16;
148   // MIN_TPL_BSIZE_1D = 16;
149   assert(*tpl_bsize_1d >= 16);
150 }
151 
av1_setup_tpl_buffers(AV1_PRIMARY * const ppi,CommonModeInfoParams * const mi_params,int width,int height,int byte_alignment,int lag_in_frames)152 void av1_setup_tpl_buffers(AV1_PRIMARY *const ppi,
153                            CommonModeInfoParams *const mi_params, int width,
154                            int height, int byte_alignment, int lag_in_frames) {
155   SequenceHeader *const seq_params = &ppi->seq_params;
156   TplParams *const tpl_data = &ppi->tpl_data;
157   set_tpl_stats_block_size(&tpl_data->tpl_stats_block_mis_log2,
158                            &tpl_data->tpl_bsize_1d);
159   const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
160   tpl_data->border_in_pixels =
161       ALIGN_POWER_OF_TWO(tpl_data->tpl_bsize_1d + 2 * AOM_INTERP_EXTEND, 5);
162 
163   const int alloc_y_plane_only =
164       ppi->cpi->sf.tpl_sf.use_y_only_rate_distortion ? 1 : 0;
165   for (int frame = 0; frame < MAX_LENGTH_TPL_FRAME_STATS; ++frame) {
166     const int mi_cols =
167         ALIGN_POWER_OF_TWO(mi_params->mi_cols, MAX_MIB_SIZE_LOG2);
168     const int mi_rows =
169         ALIGN_POWER_OF_TWO(mi_params->mi_rows, MAX_MIB_SIZE_LOG2);
170     TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame];
171     tpl_frame->is_valid = 0;
172     tpl_frame->width = mi_cols >> block_mis_log2;
173     tpl_frame->height = mi_rows >> block_mis_log2;
174     tpl_frame->stride = tpl_data->tpl_stats_buffer[frame].width;
175     tpl_frame->mi_rows = mi_params->mi_rows;
176     tpl_frame->mi_cols = mi_params->mi_cols;
177   }
178   tpl_data->tpl_frame = &tpl_data->tpl_stats_buffer[REF_FRAMES + 1];
179 
180   // If lag_in_frames <= 1, TPL module is not invoked. Hence dynamic memory
181   // allocations are avoided for buffers in tpl_data.
182   if (lag_in_frames <= 1) return;
183 
184   AOM_CHECK_MEM_ERROR(&ppi->error, tpl_data->txfm_stats_list,
185                       aom_calloc(MAX_LENGTH_TPL_FRAME_STATS,
186                                  sizeof(*tpl_data->txfm_stats_list)));
187 
188   for (int frame = 0; frame < lag_in_frames; ++frame) {
189     AOM_CHECK_MEM_ERROR(
190         &ppi->error, tpl_data->tpl_stats_pool[frame],
191         aom_calloc(tpl_data->tpl_stats_buffer[frame].width *
192                        tpl_data->tpl_stats_buffer[frame].height,
193                    sizeof(*tpl_data->tpl_stats_buffer[frame].tpl_stats_ptr)));
194 
195     if (aom_alloc_frame_buffer(
196             &tpl_data->tpl_rec_pool[frame], width, height,
197             seq_params->subsampling_x, seq_params->subsampling_y,
198             seq_params->use_highbitdepth, tpl_data->border_in_pixels,
199             byte_alignment, false, alloc_y_plane_only))
200       aom_internal_error(&ppi->error, AOM_CODEC_MEM_ERROR,
201                          "Failed to allocate frame buffer");
202   }
203 }
204 
tpl_get_satd_cost(BitDepthInfo bd_info,int16_t * src_diff,int diff_stride,const uint8_t * src,int src_stride,const uint8_t * dst,int dst_stride,tran_low_t * coeff,int bw,int bh,TX_SIZE tx_size)205 static inline int32_t tpl_get_satd_cost(BitDepthInfo bd_info, int16_t *src_diff,
206                                         int diff_stride, const uint8_t *src,
207                                         int src_stride, const uint8_t *dst,
208                                         int dst_stride, tran_low_t *coeff,
209                                         int bw, int bh, TX_SIZE tx_size) {
210   const int pix_num = bw * bh;
211 
212   av1_subtract_block(bd_info, bh, bw, src_diff, diff_stride, src, src_stride,
213                      dst, dst_stride);
214   av1_quick_txfm(/*use_hadamard=*/0, tx_size, bd_info, src_diff, bw, coeff);
215   return aom_satd(coeff, pix_num);
216 }
217 
rate_estimator(const tran_low_t * qcoeff,int eob,TX_SIZE tx_size)218 static int rate_estimator(const tran_low_t *qcoeff, int eob, TX_SIZE tx_size) {
219   const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
220 
221   assert((1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]]) >= eob);
222   int rate_cost = 1;
223 
224   for (int idx = 0; idx < eob; ++idx) {
225     unsigned int abs_level = abs(qcoeff[scan_order->scan[idx]]);
226     rate_cost += get_msb(abs_level + 1) + 1 + (abs_level > 0);
227   }
228 
229   return (rate_cost << AV1_PROB_COST_SHIFT);
230 }
231 
txfm_quant_rdcost(const MACROBLOCK * x,int16_t * src_diff,int diff_stride,uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,tran_low_t * coeff,tran_low_t * qcoeff,tran_low_t * dqcoeff,int bw,int bh,TX_SIZE tx_size,int do_recon,int * rate_cost,int64_t * recon_error,int64_t * sse)232 static inline void txfm_quant_rdcost(
233     const MACROBLOCK *x, int16_t *src_diff, int diff_stride, uint8_t *src,
234     int src_stride, uint8_t *dst, int dst_stride, tran_low_t *coeff,
235     tran_low_t *qcoeff, tran_low_t *dqcoeff, int bw, int bh, TX_SIZE tx_size,
236     int do_recon, int *rate_cost, int64_t *recon_error, int64_t *sse) {
237   const MACROBLOCKD *xd = &x->e_mbd;
238   const BitDepthInfo bd_info = get_bit_depth_info(xd);
239   uint16_t eob;
240   av1_subtract_block(bd_info, bh, bw, src_diff, diff_stride, src, src_stride,
241                      dst, dst_stride);
242   av1_quick_txfm(/*use_hadamard=*/0, tx_size, bd_info, src_diff, bw, coeff);
243 
244   get_quantize_error(x, 0, coeff, qcoeff, dqcoeff, tx_size, &eob, recon_error,
245                      sse);
246 
247   *rate_cost = rate_estimator(qcoeff, eob, tx_size);
248 
249   if (do_recon)
250     av1_inverse_transform_block(xd, dqcoeff, 0, DCT_DCT, tx_size, dst,
251                                 dst_stride, eob, 0);
252 }
253 
motion_estimation(AV1_COMP * cpi,MACROBLOCK * x,uint8_t * cur_frame_buf,uint8_t * ref_frame_buf,int stride,int ref_stride,int width,int ref_width,BLOCK_SIZE bsize,MV center_mv,int_mv * best_mv)254 static uint32_t motion_estimation(AV1_COMP *cpi, MACROBLOCK *x,
255                                   uint8_t *cur_frame_buf,
256                                   uint8_t *ref_frame_buf, int stride,
257                                   int ref_stride, int width, int ref_width,
258                                   BLOCK_SIZE bsize, MV center_mv,
259                                   int_mv *best_mv) {
260   AV1_COMMON *cm = &cpi->common;
261   MACROBLOCKD *const xd = &x->e_mbd;
262   TPL_SPEED_FEATURES *tpl_sf = &cpi->sf.tpl_sf;
263   int step_param;
264   uint32_t bestsme = UINT_MAX;
265   FULLPEL_MV_STATS best_mv_stats;
266   int distortion;
267   uint32_t sse;
268   int cost_list[5];
269   FULLPEL_MV start_mv = get_fullmv_from_mv(&center_mv);
270 
271   // Setup frame pointers
272   x->plane[0].src.buf = cur_frame_buf;
273   x->plane[0].src.stride = stride;
274   x->plane[0].src.width = width;
275   xd->plane[0].pre[0].buf = ref_frame_buf;
276   xd->plane[0].pre[0].stride = ref_stride;
277   xd->plane[0].pre[0].width = ref_width;
278 
279   step_param = tpl_sf->reduce_first_step_size;
280   step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 2);
281 
282   const search_site_config *search_site_cfg =
283       cpi->mv_search_params.search_site_cfg[SS_CFG_SRC];
284   if (search_site_cfg->stride != ref_stride)
285     search_site_cfg = cpi->mv_search_params.search_site_cfg[SS_CFG_LOOKAHEAD];
286   assert(search_site_cfg->stride == ref_stride);
287 
288   FULLPEL_MOTION_SEARCH_PARAMS full_ms_params;
289   av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize, &center_mv,
290                                      start_mv, search_site_cfg,
291                                      tpl_sf->search_method,
292                                      /*fine_search_interval=*/0);
293 
294   bestsme = av1_full_pixel_search(start_mv, &full_ms_params, step_param,
295                                   cond_cost_list(cpi, cost_list),
296                                   &best_mv->as_fullmv, &best_mv_stats, NULL);
297 
298   // When sub-pel motion search is skipped, populate sub-pel precision MV and
299   // return.
300   if (tpl_sf->subpel_force_stop == FULL_PEL) {
301     best_mv->as_mv = get_mv_from_fullmv(&best_mv->as_fullmv);
302     return bestsme;
303   }
304 
305   SUBPEL_MOTION_SEARCH_PARAMS ms_params;
306   av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &center_mv,
307                                     cost_list);
308   ms_params.forced_stop = tpl_sf->subpel_force_stop;
309   ms_params.var_params.subpel_search_type = USE_2_TAPS;
310   ms_params.mv_cost_params.mv_cost_type = MV_COST_NONE;
311   best_mv_stats.err_cost = 0;
312   MV subpel_start_mv = get_mv_from_fullmv(&best_mv->as_fullmv);
313   assert(av1_is_subpelmv_in_range(&ms_params.mv_limits, subpel_start_mv));
314   bestsme = cpi->mv_search_params.find_fractional_mv_step(
315       xd, cm, &ms_params, subpel_start_mv, &best_mv_stats, &best_mv->as_mv,
316       &distortion, &sse, NULL);
317 
318   return bestsme;
319 }
320 
321 typedef struct {
322   int_mv mv;
323   int sad;
324 } center_mv_t;
325 
compare_sad(const void * a,const void * b)326 static int compare_sad(const void *a, const void *b) {
327   const int diff = ((center_mv_t *)a)->sad - ((center_mv_t *)b)->sad;
328   if (diff < 0)
329     return -1;
330   else if (diff > 0)
331     return 1;
332   return 0;
333 }
334 
is_alike_mv(int_mv candidate_mv,center_mv_t * center_mvs,int center_mvs_count,int skip_alike_starting_mv)335 static int is_alike_mv(int_mv candidate_mv, center_mv_t *center_mvs,
336                        int center_mvs_count, int skip_alike_starting_mv) {
337   // MV difference threshold is in 1/8 precision.
338   const int mv_diff_thr[3] = { 1, (8 << 3), (16 << 3) };
339   int thr = mv_diff_thr[skip_alike_starting_mv];
340   int i;
341 
342   for (i = 0; i < center_mvs_count; i++) {
343     if (abs(center_mvs[i].mv.as_mv.col - candidate_mv.as_mv.col) < thr &&
344         abs(center_mvs[i].mv.as_mv.row - candidate_mv.as_mv.row) < thr)
345       return 1;
346   }
347 
348   return 0;
349 }
350 
get_rate_distortion(int * rate_cost,int64_t * recon_error,int64_t * pred_error,int16_t * src_diff,tran_low_t * coeff,tran_low_t * qcoeff,tran_low_t * dqcoeff,AV1_COMMON * cm,MACROBLOCK * x,const YV12_BUFFER_CONFIG * ref_frame_ptr[2],uint8_t * rec_buffer_pool[3],const int rec_stride_pool[3],TX_SIZE tx_size,PREDICTION_MODE best_mode,int mi_row,int mi_col,int use_y_only_rate_distortion,int do_recon,TplTxfmStats * tpl_txfm_stats)351 static void get_rate_distortion(
352     int *rate_cost, int64_t *recon_error, int64_t *pred_error,
353     int16_t *src_diff, tran_low_t *coeff, tran_low_t *qcoeff,
354     tran_low_t *dqcoeff, AV1_COMMON *cm, MACROBLOCK *x,
355     const YV12_BUFFER_CONFIG *ref_frame_ptr[2], uint8_t *rec_buffer_pool[3],
356     const int rec_stride_pool[3], TX_SIZE tx_size, PREDICTION_MODE best_mode,
357     int mi_row, int mi_col, int use_y_only_rate_distortion, int do_recon,
358     TplTxfmStats *tpl_txfm_stats) {
359   const SequenceHeader *seq_params = cm->seq_params;
360   *rate_cost = 0;
361   *recon_error = 1;
362   *pred_error = 1;
363 
364   (void)tpl_txfm_stats;
365 
366   MACROBLOCKD *xd = &x->e_mbd;
367   int is_compound = (best_mode == NEW_NEWMV);
368   int num_planes = use_y_only_rate_distortion ? 1 : MAX_MB_PLANE;
369 
370   uint8_t *src_buffer_pool[MAX_MB_PLANE] = {
371     xd->cur_buf->y_buffer,
372     xd->cur_buf->u_buffer,
373     xd->cur_buf->v_buffer,
374   };
375   const int src_stride_pool[MAX_MB_PLANE] = {
376     xd->cur_buf->y_stride,
377     xd->cur_buf->uv_stride,
378     xd->cur_buf->uv_stride,
379   };
380 
381   const int_interpfilters kernel =
382       av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
383 
384   for (int plane = 0; plane < num_planes; ++plane) {
385     struct macroblockd_plane *pd = &xd->plane[plane];
386     BLOCK_SIZE bsize_plane =
387         av1_ss_size_lookup[txsize_to_bsize[tx_size]][pd->subsampling_x]
388                           [pd->subsampling_y];
389 
390     int dst_buffer_stride = rec_stride_pool[plane];
391     int dst_mb_offset =
392         ((mi_row * MI_SIZE * dst_buffer_stride) >> pd->subsampling_y) +
393         ((mi_col * MI_SIZE) >> pd->subsampling_x);
394     uint8_t *dst_buffer = rec_buffer_pool[plane] + dst_mb_offset;
395     for (int ref = 0; ref < 1 + is_compound; ++ref) {
396       if (!is_inter_mode(best_mode)) {
397         av1_predict_intra_block(
398             xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
399             block_size_wide[bsize_plane], block_size_high[bsize_plane],
400             max_txsize_rect_lookup[bsize_plane], best_mode, 0, 0,
401             FILTER_INTRA_MODES, dst_buffer, dst_buffer_stride, dst_buffer,
402             dst_buffer_stride, 0, 0, plane);
403       } else {
404         int_mv best_mv = xd->mi[0]->mv[ref];
405         uint8_t *ref_buffer_pool[MAX_MB_PLANE] = {
406           ref_frame_ptr[ref]->y_buffer,
407           ref_frame_ptr[ref]->u_buffer,
408           ref_frame_ptr[ref]->v_buffer,
409         };
410         InterPredParams inter_pred_params;
411         struct buf_2d ref_buf = {
412           NULL, ref_buffer_pool[plane],
413           plane ? ref_frame_ptr[ref]->uv_width : ref_frame_ptr[ref]->y_width,
414           plane ? ref_frame_ptr[ref]->uv_height : ref_frame_ptr[ref]->y_height,
415           plane ? ref_frame_ptr[ref]->uv_stride : ref_frame_ptr[ref]->y_stride
416         };
417         av1_init_inter_params(&inter_pred_params, block_size_wide[bsize_plane],
418                               block_size_high[bsize_plane],
419                               (mi_row * MI_SIZE) >> pd->subsampling_y,
420                               (mi_col * MI_SIZE) >> pd->subsampling_x,
421                               pd->subsampling_x, pd->subsampling_y, xd->bd,
422                               is_cur_buf_hbd(xd), 0,
423                               xd->block_ref_scale_factors[0], &ref_buf, kernel);
424         if (is_compound) av1_init_comp_mode(&inter_pred_params);
425         inter_pred_params.conv_params = get_conv_params_no_round(
426             ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
427 
428         av1_enc_build_one_inter_predictor(dst_buffer, dst_buffer_stride,
429                                           &best_mv.as_mv, &inter_pred_params);
430       }
431     }
432 
433     int src_stride = src_stride_pool[plane];
434     int src_mb_offset = ((mi_row * MI_SIZE * src_stride) >> pd->subsampling_y) +
435                         ((mi_col * MI_SIZE) >> pd->subsampling_x);
436 
437     int this_rate = 1;
438     int64_t this_recon_error = 1;
439     int64_t sse;
440     txfm_quant_rdcost(
441         x, src_diff, block_size_wide[bsize_plane],
442         src_buffer_pool[plane] + src_mb_offset, src_stride, dst_buffer,
443         dst_buffer_stride, coeff, qcoeff, dqcoeff, block_size_wide[bsize_plane],
444         block_size_high[bsize_plane], max_txsize_rect_lookup[bsize_plane],
445         do_recon, &this_rate, &this_recon_error, &sse);
446 
447 #if CONFIG_BITRATE_ACCURACY
448     if (plane == 0 && tpl_txfm_stats) {
449       // We only collect Y plane's transform coefficient
450       av1_record_tpl_txfm_block(tpl_txfm_stats, coeff);
451     }
452 #endif  // CONFIG_BITRATE_ACCURACY
453 
454     *recon_error += this_recon_error;
455     *pred_error += sse;
456     *rate_cost += this_rate;
457   }
458 }
459 
get_inter_cost(const AV1_COMP * cpi,MACROBLOCKD * xd,const uint8_t * src_mb_buffer,int src_stride,TplBuffers * tpl_tmp_buffers,BLOCK_SIZE bsize,TX_SIZE tx_size,int mi_row,int mi_col,int rf_idx,MV * rfidx_mv,int use_pred_sad)460 static inline int32_t get_inter_cost(const AV1_COMP *cpi, MACROBLOCKD *xd,
461                                      const uint8_t *src_mb_buffer,
462                                      int src_stride,
463                                      TplBuffers *tpl_tmp_buffers,
464                                      BLOCK_SIZE bsize, TX_SIZE tx_size,
465                                      int mi_row, int mi_col, int rf_idx,
466                                      MV *rfidx_mv, int use_pred_sad) {
467   const BitDepthInfo bd_info = get_bit_depth_info(xd);
468   TplParams *tpl_data = &cpi->ppi->tpl_data;
469   const YV12_BUFFER_CONFIG *const ref_frame_ptr =
470       tpl_data->src_ref_frame[rf_idx];
471   int16_t *src_diff = tpl_tmp_buffers->src_diff;
472   tran_low_t *coeff = tpl_tmp_buffers->coeff;
473   const int bw = 4 << mi_size_wide_log2[bsize];
474   const int bh = 4 << mi_size_high_log2[bsize];
475   int32_t inter_cost;
476 
477   if (cpi->sf.tpl_sf.subpel_force_stop != FULL_PEL) {
478     const int_interpfilters kernel =
479         av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
480     uint8_t *predictor8 = tpl_tmp_buffers->predictor8;
481     uint8_t *predictor =
482         is_cur_buf_hbd(xd) ? CONVERT_TO_BYTEPTR(predictor8) : predictor8;
483     struct buf_2d ref_buf = { NULL, ref_frame_ptr->y_buffer,
484                               ref_frame_ptr->y_width, ref_frame_ptr->y_height,
485                               ref_frame_ptr->y_stride };
486     InterPredParams inter_pred_params;
487     av1_init_inter_params(&inter_pred_params, bw, bh, mi_row * MI_SIZE,
488                           mi_col * MI_SIZE, 0, 0, xd->bd, is_cur_buf_hbd(xd), 0,
489                           &tpl_data->sf, &ref_buf, kernel);
490     inter_pred_params.conv_params = get_conv_params(0, 0, xd->bd);
491 
492     av1_enc_build_one_inter_predictor(predictor, bw, rfidx_mv,
493                                       &inter_pred_params);
494 
495     if (use_pred_sad) {
496       inter_cost = (int)cpi->ppi->fn_ptr[bsize].sdf(src_mb_buffer, src_stride,
497                                                     predictor, bw);
498     } else {
499       inter_cost =
500           tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
501                             predictor, bw, coeff, bw, bh, tx_size);
502     }
503   } else {
504     int ref_mb_offset =
505         mi_row * MI_SIZE * ref_frame_ptr->y_stride + mi_col * MI_SIZE;
506     uint8_t *ref_mb = ref_frame_ptr->y_buffer + ref_mb_offset;
507     int ref_stride = ref_frame_ptr->y_stride;
508     const FULLPEL_MV fullmv = get_fullmv_from_mv(rfidx_mv);
509     // Since sub-pel motion search is not performed, use the prediction pixels
510     // directly from the reference block ref_mb
511     if (use_pred_sad) {
512       inter_cost = (int)cpi->ppi->fn_ptr[bsize].sdf(
513           src_mb_buffer, src_stride,
514           &ref_mb[fullmv.row * ref_stride + fullmv.col], ref_stride);
515     } else {
516       inter_cost =
517           tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
518                             &ref_mb[fullmv.row * ref_stride + fullmv.col],
519                             ref_stride, coeff, bw, bh, tx_size);
520     }
521   }
522   return inter_cost;
523 }
524 
mode_estimation(AV1_COMP * cpi,TplTxfmStats * tpl_txfm_stats,TplBuffers * tpl_tmp_buffers,MACROBLOCK * x,int mi_row,int mi_col,BLOCK_SIZE bsize,TX_SIZE tx_size,TplDepStats * tpl_stats)525 static inline void mode_estimation(AV1_COMP *cpi, TplTxfmStats *tpl_txfm_stats,
526                                    TplBuffers *tpl_tmp_buffers, MACROBLOCK *x,
527                                    int mi_row, int mi_col, BLOCK_SIZE bsize,
528                                    TX_SIZE tx_size, TplDepStats *tpl_stats) {
529   AV1_COMMON *cm = &cpi->common;
530   const GF_GROUP *gf_group = &cpi->ppi->gf_group;
531   TPL_SPEED_FEATURES *tpl_sf = &cpi->sf.tpl_sf;
532 
533   (void)gf_group;
534 
535   MACROBLOCKD *xd = &x->e_mbd;
536   const BitDepthInfo bd_info = get_bit_depth_info(xd);
537   TplParams *tpl_data = &cpi->ppi->tpl_data;
538   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_data->frame_idx];
539   const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
540 
541   const int bw = 4 << mi_size_wide_log2[bsize];
542   const int bh = 4 << mi_size_high_log2[bsize];
543 
544   int32_t best_intra_cost = INT32_MAX;
545   int32_t intra_cost;
546   PREDICTION_MODE best_mode = DC_PRED;
547 
548   const int mb_y_offset =
549       mi_row * MI_SIZE * xd->cur_buf->y_stride + mi_col * MI_SIZE;
550   uint8_t *src_mb_buffer = xd->cur_buf->y_buffer + mb_y_offset;
551   const int src_stride = xd->cur_buf->y_stride;
552   const int src_width = xd->cur_buf->y_width;
553 
554   int dst_mb_offset =
555       mi_row * MI_SIZE * tpl_frame->rec_picture->y_stride + mi_col * MI_SIZE;
556   uint8_t *dst_buffer = tpl_frame->rec_picture->y_buffer + dst_mb_offset;
557   int dst_buffer_stride = tpl_frame->rec_picture->y_stride;
558   int use_y_only_rate_distortion = tpl_sf->use_y_only_rate_distortion;
559 
560   uint8_t *rec_buffer_pool[3] = {
561     tpl_frame->rec_picture->y_buffer,
562     tpl_frame->rec_picture->u_buffer,
563     tpl_frame->rec_picture->v_buffer,
564   };
565 
566   const int rec_stride_pool[3] = {
567     tpl_frame->rec_picture->y_stride,
568     tpl_frame->rec_picture->uv_stride,
569     tpl_frame->rec_picture->uv_stride,
570   };
571 
572   for (int plane = 1; plane < MAX_MB_PLANE; ++plane) {
573     struct macroblockd_plane *pd = &xd->plane[plane];
574     pd->subsampling_x = xd->cur_buf->subsampling_x;
575     pd->subsampling_y = xd->cur_buf->subsampling_y;
576   }
577 
578   uint8_t *predictor8 = tpl_tmp_buffers->predictor8;
579   int16_t *src_diff = tpl_tmp_buffers->src_diff;
580   tran_low_t *coeff = tpl_tmp_buffers->coeff;
581   tran_low_t *qcoeff = tpl_tmp_buffers->qcoeff;
582   tran_low_t *dqcoeff = tpl_tmp_buffers->dqcoeff;
583   uint8_t *predictor =
584       is_cur_buf_hbd(xd) ? CONVERT_TO_BYTEPTR(predictor8) : predictor8;
585   int64_t recon_error = 1;
586   int64_t pred_error = 1;
587 
588   memset(tpl_stats, 0, sizeof(*tpl_stats));
589   tpl_stats->ref_frame_index[0] = -1;
590   tpl_stats->ref_frame_index[1] = -1;
591 
592   const int mi_width = mi_size_wide[bsize];
593   const int mi_height = mi_size_high[bsize];
594   set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd,
595                         mi_row, mi_col);
596   set_mi_row_col(xd, &xd->tile, mi_row, mi_height, mi_col, mi_width,
597                  cm->mi_params.mi_rows, cm->mi_params.mi_cols);
598   set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize],
599                av1_num_planes(cm));
600   xd->mi[0]->bsize = bsize;
601   xd->mi[0]->motion_mode = SIMPLE_TRANSLATION;
602 
603   // Intra prediction search
604   xd->mi[0]->ref_frame[0] = INTRA_FRAME;
605 
606   // Pre-load the bottom left line.
607   if (xd->left_available &&
608       mi_row + tx_size_high_unit[tx_size] < xd->tile.mi_row_end) {
609     if (is_cur_buf_hbd(xd)) {
610       uint16_t *dst = CONVERT_TO_SHORTPTR(dst_buffer);
611       for (int i = 0; i < bw; ++i)
612         dst[(bw + i) * dst_buffer_stride - 1] =
613             dst[(bw - 1) * dst_buffer_stride - 1];
614     } else {
615       for (int i = 0; i < bw; ++i)
616         dst_buffer[(bw + i) * dst_buffer_stride - 1] =
617             dst_buffer[(bw - 1) * dst_buffer_stride - 1];
618     }
619   }
620 
621   // if cpi->sf.tpl_sf.prune_intra_modes is on, then search only DC_PRED,
622   // H_PRED, and V_PRED
623   const PREDICTION_MODE last_intra_mode =
624       tpl_sf->prune_intra_modes ? D45_PRED : INTRA_MODE_END;
625   const SequenceHeader *seq_params = cm->seq_params;
626   for (PREDICTION_MODE mode = INTRA_MODE_START; mode < last_intra_mode;
627        ++mode) {
628     av1_predict_intra_block(xd, seq_params->sb_size,
629                             seq_params->enable_intra_edge_filter,
630                             block_size_wide[bsize], block_size_high[bsize],
631                             tx_size, mode, 0, 0, FILTER_INTRA_MODES, dst_buffer,
632                             dst_buffer_stride, predictor, bw, 0, 0, 0);
633 
634     if (tpl_frame->use_pred_sad) {
635       intra_cost = (int32_t)cpi->ppi->fn_ptr[bsize].sdf(
636           src_mb_buffer, src_stride, predictor, bw);
637     } else {
638       intra_cost =
639           tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
640                             predictor, bw, coeff, bw, bh, tx_size);
641     }
642 
643     if (intra_cost < best_intra_cost) {
644       best_intra_cost = intra_cost;
645       best_mode = mode;
646     }
647   }
648   // Calculate SATD of the best intra mode if SAD was used for mode decision
649   // as best_intra_cost is used in ML model to skip intra mode evaluation.
650   if (tpl_frame->use_pred_sad) {
651     av1_predict_intra_block(
652         xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
653         block_size_wide[bsize], block_size_high[bsize], tx_size, best_mode, 0,
654         0, FILTER_INTRA_MODES, dst_buffer, dst_buffer_stride, predictor, bw, 0,
655         0, 0);
656     best_intra_cost =
657         tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
658                           predictor, bw, coeff, bw, bh, tx_size);
659   }
660 
661   int rate_cost = 1;
662 
663   if (cpi->use_ducky_encode) {
664     get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
665                         qcoeff, dqcoeff, cm, x, NULL, rec_buffer_pool,
666                         rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
667                         use_y_only_rate_distortion, 1 /*do_recon*/, NULL);
668 
669     tpl_stats->intra_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
670     tpl_stats->intra_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
671     tpl_stats->intra_rate = rate_cost;
672   }
673 
674 #if CONFIG_THREE_PASS
675   const int frame_offset = tpl_data->frame_idx - cpi->gf_frame_index;
676 
677   if (cpi->third_pass_ctx &&
678       frame_offset < cpi->third_pass_ctx->frame_info_count &&
679       tpl_data->frame_idx < gf_group->size) {
680     double ratio_h, ratio_w;
681     av1_get_third_pass_ratio(cpi->third_pass_ctx, frame_offset, cm->height,
682                              cm->width, &ratio_h, &ratio_w);
683     THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi(
684         cpi->third_pass_ctx, frame_offset, mi_row, mi_col, ratio_h, ratio_w);
685 
686     PREDICTION_MODE third_pass_mode = this_mi->pred_mode;
687 
688     if (third_pass_mode >= last_intra_mode &&
689         third_pass_mode < INTRA_MODE_END) {
690       av1_predict_intra_block(
691           xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
692           block_size_wide[bsize], block_size_high[bsize], tx_size,
693           third_pass_mode, 0, 0, FILTER_INTRA_MODES, dst_buffer,
694           dst_buffer_stride, predictor, bw, 0, 0, 0);
695 
696       intra_cost =
697           tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
698                             predictor, bw, coeff, bw, bh, tx_size);
699 
700       if (intra_cost < best_intra_cost) {
701         best_intra_cost = intra_cost;
702         best_mode = third_pass_mode;
703       }
704     }
705   }
706 #endif  // CONFIG_THREE_PASS
707 
708   // Motion compensated prediction
709   xd->mi[0]->ref_frame[0] = INTRA_FRAME;
710   xd->mi[0]->ref_frame[1] = NONE_FRAME;
711   xd->mi[0]->compound_idx = 1;
712 
713   int best_rf_idx = -1;
714   int_mv best_mv[2];
715   int32_t inter_cost;
716   int32_t best_inter_cost = INT32_MAX;
717   int rf_idx;
718   int_mv single_mv[INTER_REFS_PER_FRAME];
719 
720   best_mv[0].as_int = INVALID_MV;
721   best_mv[1].as_int = INVALID_MV;
722 
723   for (rf_idx = 0; rf_idx < INTER_REFS_PER_FRAME; ++rf_idx) {
724     single_mv[rf_idx].as_int = INVALID_MV;
725     if (tpl_data->ref_frame[rf_idx] == NULL ||
726         tpl_data->src_ref_frame[rf_idx] == NULL) {
727       tpl_stats->mv[rf_idx].as_int = INVALID_MV;
728       continue;
729     }
730 
731     const YV12_BUFFER_CONFIG *ref_frame_ptr = tpl_data->src_ref_frame[rf_idx];
732     const int ref_mb_offset =
733         mi_row * MI_SIZE * ref_frame_ptr->y_stride + mi_col * MI_SIZE;
734     uint8_t *ref_mb = ref_frame_ptr->y_buffer + ref_mb_offset;
735     const int ref_stride = ref_frame_ptr->y_stride;
736     const int ref_width = ref_frame_ptr->y_width;
737 
738     int_mv best_rfidx_mv = { 0 };
739     uint32_t bestsme = UINT32_MAX;
740 
741     center_mv_t center_mvs[4] = { { { 0 }, INT_MAX },
742                                   { { 0 }, INT_MAX },
743                                   { { 0 }, INT_MAX },
744                                   { { 0 }, INT_MAX } };
745     int refmv_count = 1;
746     int idx;
747 
748     if (xd->up_available) {
749       TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
750           mi_row - mi_height, mi_col, tpl_frame->stride, block_mis_log2)];
751       if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count,
752                        tpl_sf->skip_alike_starting_mv)) {
753         center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int;
754         ++refmv_count;
755       }
756     }
757 
758     if (xd->left_available) {
759       TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
760           mi_row, mi_col - mi_width, tpl_frame->stride, block_mis_log2)];
761       if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count,
762                        tpl_sf->skip_alike_starting_mv)) {
763         center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int;
764         ++refmv_count;
765       }
766     }
767 
768     if (xd->up_available && mi_col + mi_width < xd->tile.mi_col_end) {
769       TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
770           mi_row - mi_height, mi_col + mi_width, tpl_frame->stride,
771           block_mis_log2)];
772       if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count,
773                        tpl_sf->skip_alike_starting_mv)) {
774         center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int;
775         ++refmv_count;
776       }
777     }
778 
779 #if CONFIG_THREE_PASS
780     if (cpi->third_pass_ctx &&
781         frame_offset < cpi->third_pass_ctx->frame_info_count &&
782         tpl_data->frame_idx < gf_group->size) {
783       double ratio_h, ratio_w;
784       av1_get_third_pass_ratio(cpi->third_pass_ctx, frame_offset, cm->height,
785                                cm->width, &ratio_h, &ratio_w);
786       THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi(
787           cpi->third_pass_ctx, frame_offset, mi_row, mi_col, ratio_h, ratio_w);
788 
789       int_mv tp_mv = av1_get_third_pass_adjusted_mv(this_mi, ratio_h, ratio_w,
790                                                     rf_idx + LAST_FRAME);
791       if (tp_mv.as_int != INVALID_MV &&
792           !is_alike_mv(tp_mv, center_mvs + 1, refmv_count - 1,
793                        tpl_sf->skip_alike_starting_mv)) {
794         center_mvs[0].mv = tp_mv;
795       }
796     }
797 #endif  // CONFIG_THREE_PASS
798 
799     // Prune starting mvs
800     if (tpl_sf->prune_starting_mv && refmv_count > 1) {
801       // Get each center mv's sad.
802       for (idx = 0; idx < refmv_count; ++idx) {
803         FULLPEL_MV mv = get_fullmv_from_mv(&center_mvs[idx].mv.as_mv);
804         clamp_fullmv(&mv, &x->mv_limits);
805         center_mvs[idx].sad = (int)cpi->ppi->fn_ptr[bsize].sdf(
806             src_mb_buffer, src_stride, &ref_mb[mv.row * ref_stride + mv.col],
807             ref_stride);
808       }
809 
810       // Rank center_mv using sad.
811       qsort(center_mvs, refmv_count, sizeof(center_mvs[0]), compare_sad);
812 
813       refmv_count = AOMMIN(4 - tpl_sf->prune_starting_mv, refmv_count);
814       // Further reduce number of refmv based on sad difference.
815       if (refmv_count > 1) {
816         int last_sad = center_mvs[refmv_count - 1].sad;
817         int second_to_last_sad = center_mvs[refmv_count - 2].sad;
818         if ((last_sad - second_to_last_sad) * 5 > second_to_last_sad)
819           refmv_count--;
820       }
821     }
822 
823     for (idx = 0; idx < refmv_count; ++idx) {
824       int_mv this_mv;
825       uint32_t thissme = motion_estimation(
826           cpi, x, src_mb_buffer, ref_mb, src_stride, ref_stride, src_width,
827           ref_width, bsize, center_mvs[idx].mv.as_mv, &this_mv);
828 
829       if (thissme < bestsme) {
830         bestsme = thissme;
831         best_rfidx_mv = this_mv;
832       }
833     }
834 
835     tpl_stats->mv[rf_idx].as_int = best_rfidx_mv.as_int;
836     single_mv[rf_idx] = best_rfidx_mv;
837 
838     inter_cost = get_inter_cost(
839         cpi, xd, src_mb_buffer, src_stride, tpl_tmp_buffers, bsize, tx_size,
840         mi_row, mi_col, rf_idx, &best_rfidx_mv.as_mv, tpl_frame->use_pred_sad);
841     // Store inter cost for each ref frame. This is used to prune inter modes.
842     tpl_stats->pred_error[rf_idx] = AOMMAX(1, inter_cost);
843 
844     if (inter_cost < best_inter_cost) {
845       best_rf_idx = rf_idx;
846 
847       best_inter_cost = inter_cost;
848       best_mv[0].as_int = best_rfidx_mv.as_int;
849     }
850   }
851   // Calculate SATD of the best inter mode if SAD was used for mode decision
852   // as best_inter_cost is used in ML model to skip intra mode evaluation.
853   if (best_inter_cost < INT32_MAX && tpl_frame->use_pred_sad) {
854     assert(best_rf_idx != -1);
855     best_inter_cost = get_inter_cost(
856         cpi, xd, src_mb_buffer, src_stride, tpl_tmp_buffers, bsize, tx_size,
857         mi_row, mi_col, best_rf_idx, &best_mv[0].as_mv, 0 /* use_pred_sad */);
858   }
859 
860   if (best_rf_idx != -1 && best_inter_cost < best_intra_cost) {
861     best_mode = NEWMV;
862     xd->mi[0]->ref_frame[0] = best_rf_idx + LAST_FRAME;
863     xd->mi[0]->mv[0].as_int = best_mv[0].as_int;
864   }
865 
866   // Start compound predition search.
867   int comp_ref_frames[3][2] = {
868     { 0, 4 },
869     { 0, 6 },
870     { 3, 6 },
871   };
872 
873   int start_rf = 0;
874   int end_rf = 3;
875   if (!tpl_sf->allow_compound_pred) end_rf = 0;
876 #if CONFIG_THREE_PASS
877   if (cpi->third_pass_ctx &&
878       frame_offset < cpi->third_pass_ctx->frame_info_count &&
879       tpl_data->frame_idx < gf_group->size) {
880     double ratio_h, ratio_w;
881     av1_get_third_pass_ratio(cpi->third_pass_ctx, frame_offset, cm->height,
882                              cm->width, &ratio_h, &ratio_w);
883     THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi(
884         cpi->third_pass_ctx, frame_offset, mi_row, mi_col, ratio_h, ratio_w);
885 
886     if (this_mi->ref_frame[0] >= LAST_FRAME &&
887         this_mi->ref_frame[1] >= LAST_FRAME) {
888       int found = 0;
889       for (int i = 0; i < 3; i++) {
890         if (comp_ref_frames[i][0] + LAST_FRAME == this_mi->ref_frame[0] &&
891             comp_ref_frames[i][1] + LAST_FRAME == this_mi->ref_frame[1]) {
892           found = 1;
893           break;
894         }
895       }
896       if (!found || !tpl_sf->allow_compound_pred) {
897         comp_ref_frames[2][0] = this_mi->ref_frame[0] - LAST_FRAME;
898         comp_ref_frames[2][1] = this_mi->ref_frame[1] - LAST_FRAME;
899         if (!tpl_sf->allow_compound_pred) {
900           start_rf = 2;
901           end_rf = 3;
902         }
903       }
904     }
905   }
906 #endif  // CONFIG_THREE_PASS
907 
908   xd->mi_row = mi_row;
909   xd->mi_col = mi_col;
910   int best_cmp_rf_idx = -1;
911   const int_interpfilters kernel =
912       av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
913   for (int cmp_rf_idx = start_rf; cmp_rf_idx < end_rf; ++cmp_rf_idx) {
914     int rf_idx0 = comp_ref_frames[cmp_rf_idx][0];
915     int rf_idx1 = comp_ref_frames[cmp_rf_idx][1];
916 
917     if (tpl_data->ref_frame[rf_idx0] == NULL ||
918         tpl_data->src_ref_frame[rf_idx0] == NULL ||
919         tpl_data->ref_frame[rf_idx1] == NULL ||
920         tpl_data->src_ref_frame[rf_idx1] == NULL) {
921       continue;
922     }
923 
924     const YV12_BUFFER_CONFIG *ref_frame_ptr[2] = {
925       tpl_data->src_ref_frame[rf_idx0],
926       tpl_data->src_ref_frame[rf_idx1],
927     };
928 
929     xd->mi[0]->ref_frame[0] = rf_idx0 + LAST_FRAME;
930     xd->mi[0]->ref_frame[1] = rf_idx1 + LAST_FRAME;
931     xd->mi[0]->mode = NEW_NEWMV;
932     const int8_t ref_frame_type = av1_ref_frame_type(xd->mi[0]->ref_frame);
933     // Set up ref_mv for av1_joint_motion_search().
934     CANDIDATE_MV *this_ref_mv_stack = x->mbmi_ext.ref_mv_stack[ref_frame_type];
935     this_ref_mv_stack[xd->mi[0]->ref_mv_idx].this_mv = single_mv[rf_idx0];
936     this_ref_mv_stack[xd->mi[0]->ref_mv_idx].comp_mv = single_mv[rf_idx1];
937 
938     struct buf_2d yv12_mb[2][MAX_MB_PLANE];
939     for (int i = 0; i < 2; ++i) {
940       av1_setup_pred_block(xd, yv12_mb[i], ref_frame_ptr[i],
941                            xd->block_ref_scale_factors[i],
942                            xd->block_ref_scale_factors[i], MAX_MB_PLANE);
943       for (int plane = 0; plane < MAX_MB_PLANE; ++plane) {
944         xd->plane[plane].pre[i] = yv12_mb[i][plane];
945       }
946     }
947 
948     int_mv tmp_mv[2] = { single_mv[rf_idx0], single_mv[rf_idx1] };
949     int rate_mv;
950     av1_joint_motion_search(cpi, x, bsize, tmp_mv, NULL, 0, &rate_mv,
951                             !cpi->sf.mv_sf.disable_second_mv,
952                             NUM_JOINT_ME_REFINE_ITER);
953 
954     for (int ref = 0; ref < 2; ++ref) {
955       struct buf_2d ref_buf = { NULL, ref_frame_ptr[ref]->y_buffer,
956                                 ref_frame_ptr[ref]->y_width,
957                                 ref_frame_ptr[ref]->y_height,
958                                 ref_frame_ptr[ref]->y_stride };
959       InterPredParams inter_pred_params;
960       av1_init_inter_params(&inter_pred_params, bw, bh, mi_row * MI_SIZE,
961                             mi_col * MI_SIZE, 0, 0, xd->bd, is_cur_buf_hbd(xd),
962                             0, &tpl_data->sf, &ref_buf, kernel);
963       av1_init_comp_mode(&inter_pred_params);
964 
965       inter_pred_params.conv_params = get_conv_params_no_round(
966           ref, 0, xd->tmp_conv_dst, MAX_SB_SIZE, 1, xd->bd);
967 
968       av1_enc_build_one_inter_predictor(predictor, bw, &tmp_mv[ref].as_mv,
969                                         &inter_pred_params);
970     }
971     inter_cost =
972         tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
973                           predictor, bw, coeff, bw, bh, tx_size);
974     if (inter_cost < best_inter_cost) {
975       best_cmp_rf_idx = cmp_rf_idx;
976       best_inter_cost = inter_cost;
977       best_mv[0] = tmp_mv[0];
978       best_mv[1] = tmp_mv[1];
979     }
980   }
981 
982   if (best_cmp_rf_idx != -1 && best_inter_cost < best_intra_cost) {
983     best_mode = NEW_NEWMV;
984     const int best_rf_idx0 = comp_ref_frames[best_cmp_rf_idx][0];
985     const int best_rf_idx1 = comp_ref_frames[best_cmp_rf_idx][1];
986     xd->mi[0]->ref_frame[0] = best_rf_idx0 + LAST_FRAME;
987     xd->mi[0]->ref_frame[1] = best_rf_idx1 + LAST_FRAME;
988   }
989 
990   if (best_inter_cost < INT32_MAX && is_inter_mode(best_mode)) {
991     xd->mi[0]->mv[0].as_int = best_mv[0].as_int;
992     xd->mi[0]->mv[1].as_int = best_mv[1].as_int;
993     const YV12_BUFFER_CONFIG *ref_frame_ptr[2] = {
994       best_cmp_rf_idx >= 0
995           ? tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][0]]
996           : tpl_data->src_ref_frame[best_rf_idx],
997       best_cmp_rf_idx >= 0
998           ? tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][1]]
999           : NULL,
1000     };
1001     rate_cost = 1;
1002     get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
1003                         qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
1004                         rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
1005                         use_y_only_rate_distortion, 0 /*do_recon*/, NULL);
1006     tpl_stats->srcrf_rate = rate_cost;
1007   }
1008 
1009   best_intra_cost = AOMMAX(best_intra_cost, 1);
1010   best_inter_cost = AOMMIN(best_intra_cost, best_inter_cost);
1011   tpl_stats->inter_cost = best_inter_cost;
1012   tpl_stats->intra_cost = best_intra_cost;
1013 
1014   tpl_stats->srcrf_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
1015   tpl_stats->srcrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
1016 
1017   // Final encode
1018   rate_cost = 0;
1019   const YV12_BUFFER_CONFIG *ref_frame_ptr[2];
1020 
1021   ref_frame_ptr[0] =
1022       best_mode == NEW_NEWMV
1023           ? tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][0]]
1024       : best_rf_idx >= 0 ? tpl_data->ref_frame[best_rf_idx]
1025                          : NULL;
1026   ref_frame_ptr[1] =
1027       best_mode == NEW_NEWMV
1028           ? tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][1]]
1029           : NULL;
1030   get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
1031                       qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
1032                       rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
1033                       use_y_only_rate_distortion, 1 /*do_recon*/,
1034                       tpl_txfm_stats);
1035 
1036   tpl_stats->recrf_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
1037   tpl_stats->recrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
1038   tpl_stats->recrf_rate = rate_cost;
1039 
1040   if (!is_inter_mode(best_mode)) {
1041     tpl_stats->srcrf_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
1042     tpl_stats->srcrf_rate = rate_cost;
1043     tpl_stats->srcrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
1044   }
1045 
1046   tpl_stats->recrf_dist = AOMMAX(tpl_stats->srcrf_dist, tpl_stats->recrf_dist);
1047   tpl_stats->recrf_rate = AOMMAX(tpl_stats->srcrf_rate, tpl_stats->recrf_rate);
1048 
1049   if (best_mode == NEW_NEWMV) {
1050     ref_frame_ptr[0] = tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][0]];
1051     ref_frame_ptr[1] =
1052         tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][1]];
1053     get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
1054                         qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
1055                         rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
1056                         use_y_only_rate_distortion, 1 /*do_recon*/, NULL);
1057     tpl_stats->cmp_recrf_dist[0] = recon_error << TPL_DEP_COST_SCALE_LOG2;
1058     tpl_stats->cmp_recrf_rate[0] = rate_cost;
1059 
1060     tpl_stats->cmp_recrf_dist[0] =
1061         AOMMAX(tpl_stats->srcrf_dist, tpl_stats->cmp_recrf_dist[0]);
1062     tpl_stats->cmp_recrf_rate[0] =
1063         AOMMAX(tpl_stats->srcrf_rate, tpl_stats->cmp_recrf_rate[0]);
1064 
1065     tpl_stats->cmp_recrf_dist[0] =
1066         AOMMIN(tpl_stats->recrf_dist, tpl_stats->cmp_recrf_dist[0]);
1067     tpl_stats->cmp_recrf_rate[0] =
1068         AOMMIN(tpl_stats->recrf_rate, tpl_stats->cmp_recrf_rate[0]);
1069 
1070     rate_cost = 0;
1071     ref_frame_ptr[0] =
1072         tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][0]];
1073     ref_frame_ptr[1] = tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][1]];
1074     get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
1075                         qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
1076                         rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
1077                         use_y_only_rate_distortion, 1 /*do_recon*/, NULL);
1078     tpl_stats->cmp_recrf_dist[1] = recon_error << TPL_DEP_COST_SCALE_LOG2;
1079     tpl_stats->cmp_recrf_rate[1] = rate_cost;
1080 
1081     tpl_stats->cmp_recrf_dist[1] =
1082         AOMMAX(tpl_stats->srcrf_dist, tpl_stats->cmp_recrf_dist[1]);
1083     tpl_stats->cmp_recrf_rate[1] =
1084         AOMMAX(tpl_stats->srcrf_rate, tpl_stats->cmp_recrf_rate[1]);
1085 
1086     tpl_stats->cmp_recrf_dist[1] =
1087         AOMMIN(tpl_stats->recrf_dist, tpl_stats->cmp_recrf_dist[1]);
1088     tpl_stats->cmp_recrf_rate[1] =
1089         AOMMIN(tpl_stats->recrf_rate, tpl_stats->cmp_recrf_rate[1]);
1090   }
1091 
1092   if (best_mode == NEWMV) {
1093     tpl_stats->mv[best_rf_idx] = best_mv[0];
1094     tpl_stats->ref_frame_index[0] = best_rf_idx;
1095     tpl_stats->ref_frame_index[1] = NONE_FRAME;
1096   } else if (best_mode == NEW_NEWMV) {
1097     tpl_stats->ref_frame_index[0] = comp_ref_frames[best_cmp_rf_idx][0];
1098     tpl_stats->ref_frame_index[1] = comp_ref_frames[best_cmp_rf_idx][1];
1099     tpl_stats->mv[tpl_stats->ref_frame_index[0]] = best_mv[0];
1100     tpl_stats->mv[tpl_stats->ref_frame_index[1]] = best_mv[1];
1101   }
1102 
1103   for (int idy = 0; idy < mi_height; ++idy) {
1104     for (int idx = 0; idx < mi_width; ++idx) {
1105       if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > idx &&
1106           (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > idy) {
1107         xd->mi[idx + idy * cm->mi_params.mi_stride] = xd->mi[0];
1108       }
1109     }
1110   }
1111 }
1112 
round_floor(int ref_pos,int bsize_pix)1113 static int round_floor(int ref_pos, int bsize_pix) {
1114   int round;
1115   if (ref_pos < 0)
1116     round = -(1 + (-ref_pos - 1) / bsize_pix);
1117   else
1118     round = ref_pos / bsize_pix;
1119 
1120   return round;
1121 }
1122 
av1_get_overlap_area(int row_a,int col_a,int row_b,int col_b,int width,int height)1123 int av1_get_overlap_area(int row_a, int col_a, int row_b, int col_b, int width,
1124                          int height) {
1125   int min_row = AOMMAX(row_a, row_b);
1126   int max_row = AOMMIN(row_a + height, row_b + height);
1127   int min_col = AOMMAX(col_a, col_b);
1128   int max_col = AOMMIN(col_a + width, col_b + width);
1129   if (min_row < max_row && min_col < max_col) {
1130     return (max_row - min_row) * (max_col - min_col);
1131   }
1132   return 0;
1133 }
1134 
av1_tpl_ptr_pos(int mi_row,int mi_col,int stride,uint8_t right_shift)1135 int av1_tpl_ptr_pos(int mi_row, int mi_col, int stride, uint8_t right_shift) {
1136   return (mi_row >> right_shift) * stride + (mi_col >> right_shift);
1137 }
1138 
av1_delta_rate_cost(int64_t delta_rate,int64_t recrf_dist,int64_t srcrf_dist,int pix_num)1139 int64_t av1_delta_rate_cost(int64_t delta_rate, int64_t recrf_dist,
1140                             int64_t srcrf_dist, int pix_num) {
1141   double beta = (double)srcrf_dist / recrf_dist;
1142   int64_t rate_cost = delta_rate;
1143 
1144   if (srcrf_dist <= 128) return rate_cost;
1145 
1146   double dr =
1147       (double)(delta_rate >> (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT)) /
1148       pix_num;
1149 
1150   double log_den = log(beta) / log(2.0) + 2.0 * dr;
1151 
1152   if (log_den > log(10.0) / log(2.0)) {
1153     rate_cost = (int64_t)((log(1.0 / beta) * pix_num) / log(2.0) / 2.0);
1154     rate_cost <<= (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT);
1155     return rate_cost;
1156   }
1157 
1158   double num = pow(2.0, log_den);
1159   double den = num * beta + (1 - beta) * beta;
1160 
1161   rate_cost = (int64_t)((pix_num * log(num / den)) / log(2.0) / 2.0);
1162 
1163   rate_cost <<= (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT);
1164 
1165   return rate_cost;
1166 }
1167 
tpl_model_update_b(TplParams * const tpl_data,int mi_row,int mi_col,const BLOCK_SIZE bsize,int frame_idx,int ref)1168 static inline void tpl_model_update_b(TplParams *const tpl_data, int mi_row,
1169                                       int mi_col, const BLOCK_SIZE bsize,
1170                                       int frame_idx, int ref) {
1171   TplDepFrame *tpl_frame_ptr = &tpl_data->tpl_frame[frame_idx];
1172   TplDepStats *tpl_ptr = tpl_frame_ptr->tpl_stats_ptr;
1173   TplDepFrame *tpl_frame = tpl_data->tpl_frame;
1174   const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
1175   TplDepStats *tpl_stats_ptr = &tpl_ptr[av1_tpl_ptr_pos(
1176       mi_row, mi_col, tpl_frame->stride, block_mis_log2)];
1177 
1178   int is_compound = tpl_stats_ptr->ref_frame_index[1] >= 0;
1179 
1180   if (tpl_stats_ptr->ref_frame_index[ref] < 0) return;
1181   const int ref_frame_index = tpl_stats_ptr->ref_frame_index[ref];
1182   TplDepFrame *ref_tpl_frame =
1183       &tpl_frame[tpl_frame[frame_idx].ref_map_index[ref_frame_index]];
1184   TplDepStats *ref_stats_ptr = ref_tpl_frame->tpl_stats_ptr;
1185 
1186   if (tpl_frame[frame_idx].ref_map_index[ref_frame_index] < 0) return;
1187 
1188   const FULLPEL_MV full_mv =
1189       get_fullmv_from_mv(&tpl_stats_ptr->mv[ref_frame_index].as_mv);
1190   const int ref_pos_row = mi_row * MI_SIZE + full_mv.row;
1191   const int ref_pos_col = mi_col * MI_SIZE + full_mv.col;
1192 
1193   const int bw = 4 << mi_size_wide_log2[bsize];
1194   const int bh = 4 << mi_size_high_log2[bsize];
1195   const int mi_height = mi_size_high[bsize];
1196   const int mi_width = mi_size_wide[bsize];
1197   const int pix_num = bw * bh;
1198 
1199   // top-left on grid block location in pixel
1200   int grid_pos_row_base = round_floor(ref_pos_row, bh) * bh;
1201   int grid_pos_col_base = round_floor(ref_pos_col, bw) * bw;
1202   int block;
1203 
1204   int64_t srcrf_dist = is_compound ? tpl_stats_ptr->cmp_recrf_dist[!ref]
1205                                    : tpl_stats_ptr->srcrf_dist;
1206   int64_t srcrf_rate =
1207       is_compound
1208           ? (tpl_stats_ptr->cmp_recrf_rate[!ref] << TPL_DEP_COST_SCALE_LOG2)
1209           : (tpl_stats_ptr->srcrf_rate << TPL_DEP_COST_SCALE_LOG2);
1210 
1211   int64_t cur_dep_dist = tpl_stats_ptr->recrf_dist - srcrf_dist;
1212   int64_t mc_dep_dist =
1213       (int64_t)(tpl_stats_ptr->mc_dep_dist *
1214                 ((double)(tpl_stats_ptr->recrf_dist - srcrf_dist) /
1215                  tpl_stats_ptr->recrf_dist));
1216   int64_t delta_rate =
1217       (tpl_stats_ptr->recrf_rate << TPL_DEP_COST_SCALE_LOG2) - srcrf_rate;
1218   int64_t mc_dep_rate =
1219       av1_delta_rate_cost(tpl_stats_ptr->mc_dep_rate, tpl_stats_ptr->recrf_dist,
1220                           srcrf_dist, pix_num);
1221 
1222   for (block = 0; block < 4; ++block) {
1223     int grid_pos_row = grid_pos_row_base + bh * (block >> 1);
1224     int grid_pos_col = grid_pos_col_base + bw * (block & 0x01);
1225 
1226     if (grid_pos_row >= 0 && grid_pos_row < ref_tpl_frame->mi_rows * MI_SIZE &&
1227         grid_pos_col >= 0 && grid_pos_col < ref_tpl_frame->mi_cols * MI_SIZE) {
1228       int overlap_area = av1_get_overlap_area(grid_pos_row, grid_pos_col,
1229                                               ref_pos_row, ref_pos_col, bw, bh);
1230       int ref_mi_row = round_floor(grid_pos_row, bh) * mi_height;
1231       int ref_mi_col = round_floor(grid_pos_col, bw) * mi_width;
1232       assert((1 << block_mis_log2) == mi_height);
1233       assert((1 << block_mis_log2) == mi_width);
1234       TplDepStats *des_stats = &ref_stats_ptr[av1_tpl_ptr_pos(
1235           ref_mi_row, ref_mi_col, ref_tpl_frame->stride, block_mis_log2)];
1236       des_stats->mc_dep_dist +=
1237           ((cur_dep_dist + mc_dep_dist) * overlap_area) / pix_num;
1238       des_stats->mc_dep_rate +=
1239           ((delta_rate + mc_dep_rate) * overlap_area) / pix_num;
1240     }
1241   }
1242 }
1243 
tpl_model_update(TplParams * const tpl_data,int mi_row,int mi_col,int frame_idx)1244 static inline void tpl_model_update(TplParams *const tpl_data, int mi_row,
1245                                     int mi_col, int frame_idx) {
1246   const BLOCK_SIZE tpl_stats_block_size =
1247       convert_length_to_bsize(MI_SIZE << tpl_data->tpl_stats_block_mis_log2);
1248   tpl_model_update_b(tpl_data, mi_row, mi_col, tpl_stats_block_size, frame_idx,
1249                      0);
1250   tpl_model_update_b(tpl_data, mi_row, mi_col, tpl_stats_block_size, frame_idx,
1251                      1);
1252 }
1253 
tpl_model_store(TplDepStats * tpl_stats_ptr,int mi_row,int mi_col,int stride,const TplDepStats * src_stats,uint8_t block_mis_log2)1254 static inline void tpl_model_store(TplDepStats *tpl_stats_ptr, int mi_row,
1255                                    int mi_col, int stride,
1256                                    const TplDepStats *src_stats,
1257                                    uint8_t block_mis_log2) {
1258   int index = av1_tpl_ptr_pos(mi_row, mi_col, stride, block_mis_log2);
1259   TplDepStats *tpl_ptr = &tpl_stats_ptr[index];
1260   *tpl_ptr = *src_stats;
1261   tpl_ptr->intra_cost = AOMMAX(1, tpl_ptr->intra_cost);
1262   tpl_ptr->inter_cost = AOMMAX(1, tpl_ptr->inter_cost);
1263   tpl_ptr->srcrf_dist = AOMMAX(1, tpl_ptr->srcrf_dist);
1264   tpl_ptr->srcrf_sse = AOMMAX(1, tpl_ptr->srcrf_sse);
1265   tpl_ptr->recrf_dist = AOMMAX(1, tpl_ptr->recrf_dist);
1266   tpl_ptr->srcrf_rate = AOMMAX(1, tpl_ptr->srcrf_rate);
1267   tpl_ptr->recrf_rate = AOMMAX(1, tpl_ptr->recrf_rate);
1268   tpl_ptr->cmp_recrf_dist[0] = AOMMAX(1, tpl_ptr->cmp_recrf_dist[0]);
1269   tpl_ptr->cmp_recrf_dist[1] = AOMMAX(1, tpl_ptr->cmp_recrf_dist[1]);
1270   tpl_ptr->cmp_recrf_rate[0] = AOMMAX(1, tpl_ptr->cmp_recrf_rate[0]);
1271   tpl_ptr->cmp_recrf_rate[1] = AOMMAX(1, tpl_ptr->cmp_recrf_rate[1]);
1272 }
1273 
1274 // Reset the ref and source frame pointers of tpl_data.
tpl_reset_src_ref_frames(TplParams * tpl_data)1275 static inline void tpl_reset_src_ref_frames(TplParams *tpl_data) {
1276   for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
1277     tpl_data->ref_frame[i] = NULL;
1278     tpl_data->src_ref_frame[i] = NULL;
1279   }
1280 }
1281 
get_gop_length(const GF_GROUP * gf_group)1282 static inline int get_gop_length(const GF_GROUP *gf_group) {
1283   int gop_length = AOMMIN(gf_group->size, MAX_TPL_FRAME_IDX - 1);
1284   return gop_length;
1285 }
1286 
1287 // Initialize the mc_flow parameters used in computing tpl data.
init_mc_flow_dispenser(AV1_COMP * cpi,int frame_idx,int pframe_qindex)1288 static inline void init_mc_flow_dispenser(AV1_COMP *cpi, int frame_idx,
1289                                           int pframe_qindex) {
1290   TplParams *const tpl_data = &cpi->ppi->tpl_data;
1291   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[frame_idx];
1292   const YV12_BUFFER_CONFIG *this_frame = tpl_frame->gf_picture;
1293   const YV12_BUFFER_CONFIG *ref_frames_ordered[INTER_REFS_PER_FRAME];
1294   uint32_t ref_frame_display_indices[INTER_REFS_PER_FRAME];
1295   const GF_GROUP *gf_group = &cpi->ppi->gf_group;
1296   TPL_SPEED_FEATURES *tpl_sf = &cpi->sf.tpl_sf;
1297   int ref_pruning_enabled = is_frame_eligible_for_ref_pruning(
1298       gf_group, cpi->sf.inter_sf.selective_ref_frame,
1299       tpl_sf->prune_ref_frames_in_tpl, frame_idx);
1300   int gop_length = get_gop_length(gf_group);
1301   int ref_frame_flags;
1302   AV1_COMMON *cm = &cpi->common;
1303   int rdmult, idx;
1304   ThreadData *td = &cpi->td;
1305   MACROBLOCK *x = &td->mb;
1306   MACROBLOCKD *xd = &x->e_mbd;
1307   TplTxfmStats *tpl_txfm_stats = &td->tpl_txfm_stats;
1308   tpl_data->frame_idx = frame_idx;
1309   tpl_reset_src_ref_frames(tpl_data);
1310   av1_tile_init(&xd->tile, cm, 0, 0);
1311 
1312   const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100));
1313   const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6);
1314   const FRAME_TYPE frame_type = cm->current_frame.frame_type;
1315 
1316   // Setup scaling factor
1317   av1_setup_scale_factors_for_frame(
1318       &tpl_data->sf, this_frame->y_crop_width, this_frame->y_crop_height,
1319       this_frame->y_crop_width, this_frame->y_crop_height);
1320 
1321   xd->cur_buf = this_frame;
1322 
1323   for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) {
1324     TplDepFrame *tpl_ref_frame =
1325         &tpl_data->tpl_frame[tpl_frame->ref_map_index[idx]];
1326     tpl_data->ref_frame[idx] = tpl_ref_frame->rec_picture;
1327     tpl_data->src_ref_frame[idx] = tpl_ref_frame->gf_picture;
1328     ref_frame_display_indices[idx] = tpl_ref_frame->frame_display_index;
1329   }
1330 
1331   // Store the reference frames based on priority order
1332   for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
1333     ref_frames_ordered[i] =
1334         tpl_data->ref_frame[ref_frame_priority_order[i] - 1];
1335   }
1336 
1337   // Work out which reference frame slots may be used.
1338   ref_frame_flags =
1339       get_ref_frame_flags(&cpi->sf, is_one_pass_rt_params(cpi),
1340                           ref_frames_ordered, cpi->ext_flags.ref_frame_flags);
1341 
1342   enforce_max_ref_frames(cpi, &ref_frame_flags, ref_frame_display_indices,
1343                          tpl_frame->frame_display_index);
1344 
1345   // Prune reference frames
1346   for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) {
1347     if ((ref_frame_flags & (1 << idx)) == 0) {
1348       tpl_data->ref_frame[idx] = NULL;
1349     }
1350   }
1351 
1352   // Skip motion estimation w.r.t. reference frames which are not
1353   // considered in RD search, using "selective_ref_frame" speed feature.
1354   // The reference frame pruning is not enabled for frames beyond the gop
1355   // length, as there are fewer reference frames and the reference frames
1356   // differ from the frames considered during RD search.
1357   if (ref_pruning_enabled && (frame_idx < gop_length)) {
1358     for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) {
1359       const MV_REFERENCE_FRAME refs[2] = { idx + 1, NONE_FRAME };
1360       if (prune_ref_by_selective_ref_frame(cpi, NULL, refs,
1361                                            ref_frame_display_indices)) {
1362         tpl_data->ref_frame[idx] = NULL;
1363       }
1364     }
1365   }
1366 
1367   // Make a temporary mbmi for tpl model
1368   MB_MODE_INFO mbmi;
1369   memset(&mbmi, 0, sizeof(mbmi));
1370   MB_MODE_INFO *mbmi_ptr = &mbmi;
1371   xd->mi = &mbmi_ptr;
1372 
1373   xd->block_ref_scale_factors[0] = &tpl_data->sf;
1374   xd->block_ref_scale_factors[1] = &tpl_data->sf;
1375 
1376   const int base_qindex =
1377       cpi->use_ducky_encode ? gf_group->q_val[frame_idx] : pframe_qindex;
1378   // Get rd multiplier set up.
1379   rdmult = (int)av1_compute_rd_mult(
1380       base_qindex, cm->seq_params->bit_depth,
1381       cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
1382       boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
1383       is_stat_consumption_stage(cpi));
1384 
1385   if (rdmult < 1) rdmult = 1;
1386   av1_set_error_per_bit(&x->errorperbit, rdmult);
1387   av1_set_sad_per_bit(cpi, &x->sadperbit, base_qindex);
1388 
1389   tpl_frame->is_valid = 1;
1390 
1391   cm->quant_params.base_qindex = base_qindex;
1392   av1_frame_init_quantizer(cpi);
1393 
1394   const BitDepthInfo bd_info = get_bit_depth_info(xd);
1395   const FRAME_UPDATE_TYPE update_type =
1396       gf_group->update_type[cpi->gf_frame_index];
1397   tpl_frame->base_rdmult = av1_compute_rd_mult_based_on_qindex(
1398                                bd_info.bit_depth, update_type, base_qindex) /
1399                            6;
1400 
1401   if (cpi->use_ducky_encode)
1402     tpl_frame->base_rdmult = gf_group->rdmult_val[frame_idx];
1403 
1404   av1_init_tpl_txfm_stats(tpl_txfm_stats);
1405 
1406   // Initialize x->mbmi_ext when compound predictions are enabled.
1407   if (tpl_sf->allow_compound_pred) av1_zero(x->mbmi_ext);
1408 
1409   // Set the pointer to null since mbmi is only allocated inside this function.
1410   assert(xd->mi == &mbmi_ptr);
1411   xd->mi = NULL;
1412 
1413   // Tpl module is called before the setting of speed features at frame level.
1414   // Thus, turning off this speed feature for key frame is done here and not
1415   // integrated into the speed feature setting itself.
1416   const int layer_depth_th = (tpl_sf->use_sad_for_mode_decision == 1) ? 5 : 0;
1417   tpl_frame->use_pred_sad =
1418       tpl_sf->use_sad_for_mode_decision &&
1419       gf_group->update_type[cpi->gf_frame_index] != KF_UPDATE &&
1420       gf_group->layer_depth[frame_idx] >= layer_depth_th;
1421 }
1422 
1423 // This function stores the motion estimation dependencies of all the blocks in
1424 // a row
av1_mc_flow_dispenser_row(AV1_COMP * cpi,TplTxfmStats * tpl_txfm_stats,TplBuffers * tpl_tmp_buffers,MACROBLOCK * x,int mi_row,BLOCK_SIZE bsize,TX_SIZE tx_size)1425 void av1_mc_flow_dispenser_row(AV1_COMP *cpi, TplTxfmStats *tpl_txfm_stats,
1426                                TplBuffers *tpl_tmp_buffers, MACROBLOCK *x,
1427                                int mi_row, BLOCK_SIZE bsize, TX_SIZE tx_size) {
1428   AV1_COMMON *const cm = &cpi->common;
1429   MultiThreadInfo *const mt_info = &cpi->mt_info;
1430   AV1TplRowMultiThreadInfo *const tpl_row_mt = &mt_info->tpl_row_mt;
1431   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1432   const int mi_width = mi_size_wide[bsize];
1433   TplParams *const tpl_data = &cpi->ppi->tpl_data;
1434   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_data->frame_idx];
1435   MACROBLOCKD *xd = &x->e_mbd;
1436 
1437   const int tplb_cols_in_tile =
1438       ROUND_POWER_OF_TWO(mi_params->mi_cols, mi_size_wide_log2[bsize]);
1439   const int tplb_row = ROUND_POWER_OF_TWO(mi_row, mi_size_high_log2[bsize]);
1440   assert(mi_size_high[bsize] == (1 << tpl_data->tpl_stats_block_mis_log2));
1441   assert(mi_size_wide[bsize] == (1 << tpl_data->tpl_stats_block_mis_log2));
1442 
1443   for (int mi_col = 0, tplb_col_in_tile = 0; mi_col < mi_params->mi_cols;
1444        mi_col += mi_width, tplb_col_in_tile++) {
1445     (*tpl_row_mt->sync_read_ptr)(&tpl_data->tpl_mt_sync, tplb_row,
1446                                  tplb_col_in_tile);
1447 
1448 #if CONFIG_MULTITHREAD
1449     if (mt_info->num_workers > 1) {
1450       pthread_mutex_lock(tpl_row_mt->mutex_);
1451       const bool tpl_mt_exit = tpl_row_mt->tpl_mt_exit;
1452       pthread_mutex_unlock(tpl_row_mt->mutex_);
1453       // Exit in case any worker has encountered an error.
1454       if (tpl_mt_exit) return;
1455     }
1456 #endif
1457 
1458     TplDepStats tpl_stats;
1459 
1460     // Motion estimation column boundary
1461     av1_set_mv_col_limits(mi_params, &x->mv_limits, mi_col, mi_width,
1462                           tpl_data->border_in_pixels);
1463     xd->mb_to_left_edge = -GET_MV_SUBPEL(mi_col * MI_SIZE);
1464     xd->mb_to_right_edge =
1465         GET_MV_SUBPEL(mi_params->mi_cols - mi_width - mi_col);
1466     mode_estimation(cpi, tpl_txfm_stats, tpl_tmp_buffers, x, mi_row, mi_col,
1467                     bsize, tx_size, &tpl_stats);
1468 
1469     // Motion flow dependency dispenser.
1470     tpl_model_store(tpl_frame->tpl_stats_ptr, mi_row, mi_col, tpl_frame->stride,
1471                     &tpl_stats, tpl_data->tpl_stats_block_mis_log2);
1472     (*tpl_row_mt->sync_write_ptr)(&tpl_data->tpl_mt_sync, tplb_row,
1473                                   tplb_col_in_tile, tplb_cols_in_tile);
1474   }
1475 }
1476 
mc_flow_dispenser(AV1_COMP * cpi)1477 static inline void mc_flow_dispenser(AV1_COMP *cpi) {
1478   AV1_COMMON *cm = &cpi->common;
1479   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1480   ThreadData *td = &cpi->td;
1481   MACROBLOCK *x = &td->mb;
1482   MACROBLOCKD *xd = &x->e_mbd;
1483   const BLOCK_SIZE bsize =
1484       convert_length_to_bsize(cpi->ppi->tpl_data.tpl_bsize_1d);
1485   const TX_SIZE tx_size = max_txsize_lookup[bsize];
1486   const int mi_height = mi_size_high[bsize];
1487   for (int mi_row = 0; mi_row < mi_params->mi_rows; mi_row += mi_height) {
1488     // Motion estimation row boundary
1489     av1_set_mv_row_limits(mi_params, &x->mv_limits, mi_row, mi_height,
1490                           cpi->ppi->tpl_data.border_in_pixels);
1491     xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
1492     xd->mb_to_bottom_edge =
1493         GET_MV_SUBPEL((mi_params->mi_rows - mi_height - mi_row) * MI_SIZE);
1494     av1_mc_flow_dispenser_row(cpi, &td->tpl_txfm_stats, &td->tpl_tmp_buffers, x,
1495                               mi_row, bsize, tx_size);
1496   }
1497 }
1498 
mc_flow_synthesizer(TplParams * tpl_data,int frame_idx,int mi_rows,int mi_cols)1499 static void mc_flow_synthesizer(TplParams *tpl_data, int frame_idx, int mi_rows,
1500                                 int mi_cols) {
1501   if (!frame_idx) {
1502     return;
1503   }
1504   const BLOCK_SIZE bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d);
1505   const int mi_height = mi_size_high[bsize];
1506   const int mi_width = mi_size_wide[bsize];
1507   assert(mi_height == (1 << tpl_data->tpl_stats_block_mis_log2));
1508   assert(mi_width == (1 << tpl_data->tpl_stats_block_mis_log2));
1509 
1510   for (int mi_row = 0; mi_row < mi_rows; mi_row += mi_height) {
1511     for (int mi_col = 0; mi_col < mi_cols; mi_col += mi_width) {
1512       tpl_model_update(tpl_data, mi_row, mi_col, frame_idx);
1513     }
1514   }
1515 }
1516 
init_gop_frames_for_tpl(AV1_COMP * cpi,const EncodeFrameParams * const init_frame_params,GF_GROUP * gf_group,int * tpl_group_frames,int * pframe_qindex)1517 static inline void init_gop_frames_for_tpl(
1518     AV1_COMP *cpi, const EncodeFrameParams *const init_frame_params,
1519     GF_GROUP *gf_group, int *tpl_group_frames, int *pframe_qindex) {
1520   AV1_COMMON *cm = &cpi->common;
1521   assert(cpi->gf_frame_index == 0);
1522   *pframe_qindex = 0;
1523 
1524   RefFrameMapPair ref_frame_map_pairs[REF_FRAMES];
1525   init_ref_map_pair(cpi, ref_frame_map_pairs);
1526 
1527   int remapped_ref_idx[REF_FRAMES];
1528 
1529   EncodeFrameParams frame_params = *init_frame_params;
1530   TplParams *const tpl_data = &cpi->ppi->tpl_data;
1531 
1532   int ref_picture_map[REF_FRAMES];
1533 
1534   for (int i = 0; i < REF_FRAMES; ++i) {
1535     if (frame_params.frame_type == KEY_FRAME) {
1536       tpl_data->tpl_frame[-i - 1].gf_picture = NULL;
1537       tpl_data->tpl_frame[-i - 1].rec_picture = NULL;
1538       tpl_data->tpl_frame[-i - 1].frame_display_index = 0;
1539     } else {
1540       tpl_data->tpl_frame[-i - 1].gf_picture = &cm->ref_frame_map[i]->buf;
1541       tpl_data->tpl_frame[-i - 1].rec_picture = &cm->ref_frame_map[i]->buf;
1542       tpl_data->tpl_frame[-i - 1].frame_display_index =
1543           cm->ref_frame_map[i]->display_order_hint;
1544     }
1545 
1546     ref_picture_map[i] = -i - 1;
1547   }
1548 
1549   *tpl_group_frames = 0;
1550 
1551   int gf_index;
1552   int process_frame_count = 0;
1553   const int gop_length = get_gop_length(gf_group);
1554 
1555   for (gf_index = 0; gf_index < gop_length; ++gf_index) {
1556     TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_index];
1557     FRAME_UPDATE_TYPE frame_update_type = gf_group->update_type[gf_index];
1558     int lookahead_index =
1559         gf_group->cur_frame_idx[gf_index] + gf_group->arf_src_offset[gf_index];
1560     frame_params.show_frame = frame_update_type != ARF_UPDATE &&
1561                               frame_update_type != INTNL_ARF_UPDATE;
1562     frame_params.show_existing_frame =
1563         frame_update_type == INTNL_OVERLAY_UPDATE ||
1564         frame_update_type == OVERLAY_UPDATE;
1565     frame_params.frame_type = gf_group->frame_type[gf_index];
1566 
1567     if (frame_update_type == LF_UPDATE)
1568       *pframe_qindex = gf_group->q_val[gf_index];
1569 
1570     const struct lookahead_entry *buf = av1_lookahead_peek(
1571         cpi->ppi->lookahead, lookahead_index, cpi->compressor_stage);
1572     if (buf == NULL) break;
1573     tpl_frame->gf_picture = &buf->img;
1574 
1575     // Use filtered frame buffer if available. This will make tpl stats more
1576     // precise.
1577     FRAME_DIFF frame_diff;
1578     const YV12_BUFFER_CONFIG *tf_buf =
1579         av1_tf_info_get_filtered_buf(&cpi->ppi->tf_info, gf_index, &frame_diff);
1580     if (tf_buf != NULL) {
1581       tpl_frame->gf_picture = tf_buf;
1582     }
1583 
1584     // 'cm->current_frame.frame_number' is the display number
1585     // of the current frame.
1586     // 'lookahead_index' is frame offset within the gf group.
1587     // 'lookahead_index + cm->current_frame.frame_number'
1588     // is the display index of the frame.
1589     tpl_frame->frame_display_index =
1590         lookahead_index + cm->current_frame.frame_number;
1591     assert(buf->display_idx ==
1592            cpi->frame_index_set.show_frame_count + lookahead_index);
1593 
1594     if (frame_update_type != OVERLAY_UPDATE &&
1595         frame_update_type != INTNL_OVERLAY_UPDATE) {
1596       tpl_frame->rec_picture = &tpl_data->tpl_rec_pool[process_frame_count];
1597       tpl_frame->tpl_stats_ptr = tpl_data->tpl_stats_pool[process_frame_count];
1598       ++process_frame_count;
1599     }
1600     const int true_disp = (int)(tpl_frame->frame_display_index);
1601 
1602     av1_get_ref_frames(ref_frame_map_pairs, true_disp, cpi, gf_index, 0,
1603                        remapped_ref_idx);
1604 
1605     int refresh_mask =
1606         av1_get_refresh_frame_flags(cpi, &frame_params, frame_update_type,
1607                                     gf_index, true_disp, ref_frame_map_pairs);
1608 
1609     // Make the frames marked as is_frame_non_ref to non-reference frames.
1610     if (cpi->ppi->gf_group.is_frame_non_ref[gf_index]) refresh_mask = 0;
1611 
1612     int refresh_frame_map_index = av1_get_refresh_ref_frame_map(refresh_mask);
1613 
1614     if (refresh_frame_map_index < REF_FRAMES &&
1615         refresh_frame_map_index != INVALID_IDX) {
1616       ref_frame_map_pairs[refresh_frame_map_index].disp_order =
1617           AOMMAX(0, true_disp);
1618       ref_frame_map_pairs[refresh_frame_map_index].pyr_level =
1619           get_true_pyr_level(gf_group->layer_depth[gf_index], true_disp,
1620                              cpi->ppi->gf_group.max_layer_depth);
1621     }
1622 
1623     for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i)
1624       tpl_frame->ref_map_index[i - LAST_FRAME] =
1625           ref_picture_map[remapped_ref_idx[i - LAST_FRAME]];
1626 
1627     if (refresh_mask) ref_picture_map[refresh_frame_map_index] = gf_index;
1628 
1629     ++*tpl_group_frames;
1630   }
1631 
1632   const int tpl_extend = cpi->oxcf.gf_cfg.lag_in_frames - MAX_GF_INTERVAL;
1633   int extend_frame_count = 0;
1634   int extend_frame_length = AOMMIN(
1635       tpl_extend, cpi->rc.frames_to_key - cpi->ppi->p_rc.baseline_gf_interval);
1636 
1637   int frame_display_index = gf_group->cur_frame_idx[gop_length - 1] +
1638                             gf_group->arf_src_offset[gop_length - 1] + 1;
1639 
1640   for (;
1641        gf_index < MAX_TPL_FRAME_IDX && extend_frame_count < extend_frame_length;
1642        ++gf_index) {
1643     TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_index];
1644     FRAME_UPDATE_TYPE frame_update_type = LF_UPDATE;
1645     frame_params.show_frame = frame_update_type != ARF_UPDATE &&
1646                               frame_update_type != INTNL_ARF_UPDATE;
1647     frame_params.show_existing_frame =
1648         frame_update_type == INTNL_OVERLAY_UPDATE;
1649     frame_params.frame_type = INTER_FRAME;
1650 
1651     int lookahead_index = frame_display_index;
1652     struct lookahead_entry *buf = av1_lookahead_peek(
1653         cpi->ppi->lookahead, lookahead_index, cpi->compressor_stage);
1654 
1655     if (buf == NULL) break;
1656 
1657     tpl_frame->gf_picture = &buf->img;
1658     tpl_frame->rec_picture = &tpl_data->tpl_rec_pool[process_frame_count];
1659     tpl_frame->tpl_stats_ptr = tpl_data->tpl_stats_pool[process_frame_count];
1660     // 'cm->current_frame.frame_number' is the display number
1661     // of the current frame.
1662     // 'frame_display_index' is frame offset within the gf group.
1663     // 'frame_display_index + cm->current_frame.frame_number'
1664     // is the display index of the frame.
1665     tpl_frame->frame_display_index =
1666         frame_display_index + cm->current_frame.frame_number;
1667 
1668     ++process_frame_count;
1669 
1670     gf_group->update_type[gf_index] = LF_UPDATE;
1671 
1672 #if CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS
1673     if (cpi->oxcf.pass == AOM_RC_SECOND_PASS) {
1674       if (cpi->oxcf.rc_cfg.mode == AOM_Q) {
1675         *pframe_qindex = cpi->oxcf.rc_cfg.cq_level;
1676       } else if (cpi->oxcf.rc_cfg.mode == AOM_VBR) {
1677         // TODO(angiebird): Find a more adaptive method to decide pframe_qindex
1678         // override the pframe_qindex in the second pass when bitrate accuracy
1679         // is on. We found that setting this pframe_qindex make the tpl stats
1680         // more stable.
1681         *pframe_qindex = 128;
1682       }
1683     }
1684 #endif  // CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS
1685     gf_group->q_val[gf_index] = *pframe_qindex;
1686     const int true_disp = (int)(tpl_frame->frame_display_index);
1687     av1_get_ref_frames(ref_frame_map_pairs, true_disp, cpi, gf_index, 0,
1688                        remapped_ref_idx);
1689     int refresh_mask =
1690         av1_get_refresh_frame_flags(cpi, &frame_params, frame_update_type,
1691                                     gf_index, true_disp, ref_frame_map_pairs);
1692     int refresh_frame_map_index = av1_get_refresh_ref_frame_map(refresh_mask);
1693 
1694     if (refresh_frame_map_index < REF_FRAMES &&
1695         refresh_frame_map_index != INVALID_IDX) {
1696       ref_frame_map_pairs[refresh_frame_map_index].disp_order =
1697           AOMMAX(0, true_disp);
1698       ref_frame_map_pairs[refresh_frame_map_index].pyr_level =
1699           get_true_pyr_level(gf_group->layer_depth[gf_index], true_disp,
1700                              cpi->ppi->gf_group.max_layer_depth);
1701     }
1702 
1703     for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i)
1704       tpl_frame->ref_map_index[i - LAST_FRAME] =
1705           ref_picture_map[remapped_ref_idx[i - LAST_FRAME]];
1706 
1707     tpl_frame->ref_map_index[ALTREF_FRAME - LAST_FRAME] = -1;
1708     tpl_frame->ref_map_index[LAST3_FRAME - LAST_FRAME] = -1;
1709     tpl_frame->ref_map_index[BWDREF_FRAME - LAST_FRAME] = -1;
1710     tpl_frame->ref_map_index[ALTREF2_FRAME - LAST_FRAME] = -1;
1711 
1712     if (refresh_mask) ref_picture_map[refresh_frame_map_index] = gf_index;
1713 
1714     ++*tpl_group_frames;
1715     ++extend_frame_count;
1716     ++frame_display_index;
1717   }
1718 }
1719 
av1_init_tpl_stats(TplParams * const tpl_data)1720 void av1_init_tpl_stats(TplParams *const tpl_data) {
1721   tpl_data->ready = 0;
1722   set_tpl_stats_block_size(&tpl_data->tpl_stats_block_mis_log2,
1723                            &tpl_data->tpl_bsize_1d);
1724   for (int frame_idx = 0; frame_idx < MAX_LENGTH_TPL_FRAME_STATS; ++frame_idx) {
1725     TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame_idx];
1726     tpl_frame->is_valid = 0;
1727   }
1728   for (int frame_idx = 0; frame_idx < MAX_LAG_BUFFERS; ++frame_idx) {
1729     TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame_idx];
1730     if (tpl_data->tpl_stats_pool[frame_idx] == NULL) continue;
1731     memset(tpl_data->tpl_stats_pool[frame_idx], 0,
1732            tpl_frame->height * tpl_frame->width *
1733                sizeof(*tpl_frame->tpl_stats_ptr));
1734   }
1735 }
1736 
av1_tpl_stats_ready(const TplParams * tpl_data,int gf_frame_index)1737 int av1_tpl_stats_ready(const TplParams *tpl_data, int gf_frame_index) {
1738   if (tpl_data->ready == 0) {
1739     return 0;
1740   }
1741   if (gf_frame_index >= MAX_TPL_FRAME_IDX) {
1742     // The sub-GOP length exceeds the TPL buffer capacity.
1743     // Hence the TPL related functions are disabled hereafter.
1744     return 0;
1745   }
1746   return tpl_data->tpl_frame[gf_frame_index].is_valid;
1747 }
1748 
eval_gop_length(double * beta,int gop_eval)1749 static inline int eval_gop_length(double *beta, int gop_eval) {
1750   switch (gop_eval) {
1751     case 1:
1752       // Allow larger GOP size if the base layer ARF has higher dependency
1753       // factor than the intermediate ARF and both ARFs have reasonably high
1754       // dependency factors.
1755       return (beta[0] >= beta[1] + 0.7) && beta[0] > 3.0;
1756     case 2:
1757       if ((beta[0] >= beta[1] + 0.4) && beta[0] > 1.6)
1758         return 1;  // Don't shorten the gf interval
1759       else if ((beta[0] < beta[1] + 0.1) || beta[0] <= 1.4)
1760         return 0;  // Shorten the gf interval
1761       else
1762         return 2;  // Cannot decide the gf interval, so redo the
1763                    // tpl stats calculation.
1764     case 3: return beta[0] > 1.1;
1765     default: return 2;
1766   }
1767 }
1768 
1769 // TODO(jingning): Restructure av1_rc_pick_q_and_bounds() to narrow down
1770 // the scope of input arguments.
av1_tpl_preload_rc_estimate(AV1_COMP * cpi,const EncodeFrameParams * const frame_params)1771 void av1_tpl_preload_rc_estimate(AV1_COMP *cpi,
1772                                  const EncodeFrameParams *const frame_params) {
1773   AV1_COMMON *cm = &cpi->common;
1774   GF_GROUP *gf_group = &cpi->ppi->gf_group;
1775   int bottom_index, top_index;
1776   if (cpi->use_ducky_encode) return;
1777 
1778   cm->current_frame.frame_type = frame_params->frame_type;
1779   for (int gf_index = cpi->gf_frame_index; gf_index < gf_group->size;
1780        ++gf_index) {
1781     cm->current_frame.frame_type = gf_group->frame_type[gf_index];
1782     cm->show_frame = gf_group->update_type[gf_index] != ARF_UPDATE &&
1783                      gf_group->update_type[gf_index] != INTNL_ARF_UPDATE;
1784     gf_group->q_val[gf_index] = av1_rc_pick_q_and_bounds(
1785         cpi, cm->width, cm->height, gf_index, &bottom_index, &top_index);
1786   }
1787 }
1788 
skip_tpl_for_frame(const GF_GROUP * gf_group,int frame_idx,int gop_eval,int approx_gop_eval,int reduce_num_frames)1789 static inline int skip_tpl_for_frame(const GF_GROUP *gf_group, int frame_idx,
1790                                      int gop_eval, int approx_gop_eval,
1791                                      int reduce_num_frames) {
1792   // When gop_eval is set to 2, tpl stats calculation is done for ARFs from base
1793   // layer, (base+1) layer and (base+2) layer. When gop_eval is set to 3,
1794   // tpl stats calculation is limited to ARFs from base layer and (base+1)
1795   // layer.
1796   const int num_arf_layers = (gop_eval == 2) ? 3 : 2;
1797   const int gop_length = get_gop_length(gf_group);
1798 
1799   if (gf_group->update_type[frame_idx] == INTNL_OVERLAY_UPDATE ||
1800       gf_group->update_type[frame_idx] == OVERLAY_UPDATE)
1801     return 1;
1802 
1803   // When approx_gop_eval = 1, skip tpl stats calculation for higher layer
1804   // frames and for frames beyond gop length.
1805   if (approx_gop_eval && (gf_group->layer_depth[frame_idx] > num_arf_layers ||
1806                           frame_idx >= gop_length))
1807     return 1;
1808 
1809   if (reduce_num_frames && gf_group->update_type[frame_idx] == LF_UPDATE &&
1810       frame_idx < gop_length)
1811     return 1;
1812 
1813   return 0;
1814 }
1815 
av1_tpl_setup_stats(AV1_COMP * cpi,int gop_eval,const EncodeFrameParams * const frame_params)1816 int av1_tpl_setup_stats(AV1_COMP *cpi, int gop_eval,
1817                         const EncodeFrameParams *const frame_params) {
1818 #if CONFIG_COLLECT_COMPONENT_TIMING
1819   start_timing(cpi, av1_tpl_setup_stats_time);
1820 #endif
1821   assert(cpi->gf_frame_index == 0);
1822   AV1_COMMON *cm = &cpi->common;
1823   MultiThreadInfo *const mt_info = &cpi->mt_info;
1824   AV1TplRowMultiThreadInfo *const tpl_row_mt = &mt_info->tpl_row_mt;
1825   GF_GROUP *gf_group = &cpi->ppi->gf_group;
1826   EncodeFrameParams this_frame_params = *frame_params;
1827   TplParams *const tpl_data = &cpi->ppi->tpl_data;
1828   int approx_gop_eval = (gop_eval > 1);
1829 
1830   if (cpi->superres_mode != AOM_SUPERRES_NONE) {
1831     assert(cpi->superres_mode != AOM_SUPERRES_AUTO);
1832     av1_init_tpl_stats(tpl_data);
1833     return 0;
1834   }
1835 
1836   cm->current_frame.frame_type = frame_params->frame_type;
1837   for (int gf_index = cpi->gf_frame_index; gf_index < gf_group->size;
1838        ++gf_index) {
1839     cm->current_frame.frame_type = gf_group->frame_type[gf_index];
1840     av1_configure_buffer_updates(cpi, &this_frame_params.refresh_frame,
1841                                  gf_group->update_type[gf_index],
1842                                  gf_group->refbuf_state[gf_index], 0);
1843 
1844     memcpy(&cpi->refresh_frame, &this_frame_params.refresh_frame,
1845            sizeof(cpi->refresh_frame));
1846   }
1847 
1848   int pframe_qindex;
1849   int tpl_gf_group_frames;
1850   init_gop_frames_for_tpl(cpi, frame_params, gf_group, &tpl_gf_group_frames,
1851                           &pframe_qindex);
1852 
1853   cpi->ppi->p_rc.base_layer_qp = pframe_qindex;
1854 
1855   av1_init_tpl_stats(tpl_data);
1856 
1857   TplBuffers *tpl_tmp_buffers = &cpi->td.tpl_tmp_buffers;
1858   if (!tpl_alloc_temp_buffers(tpl_tmp_buffers, tpl_data->tpl_bsize_1d)) {
1859     aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR,
1860                        "Error allocating tpl data");
1861   }
1862 
1863   tpl_row_mt->sync_read_ptr = av1_tpl_row_mt_sync_read_dummy;
1864   tpl_row_mt->sync_write_ptr = av1_tpl_row_mt_sync_write_dummy;
1865 
1866   av1_setup_scale_factors_for_frame(&cm->sf_identity, cm->width, cm->height,
1867                                     cm->width, cm->height);
1868 
1869   if (frame_params->frame_type == KEY_FRAME) {
1870     av1_init_mv_probs(cm);
1871   }
1872   av1_fill_mv_costs(&cm->fc->nmvc, cm->features.cur_frame_force_integer_mv,
1873                     cm->features.allow_high_precision_mv, cpi->td.mb.mv_costs);
1874 
1875   const int num_planes =
1876       cpi->sf.tpl_sf.use_y_only_rate_distortion ? 1 : av1_num_planes(cm);
1877   // As tpl module is called before the setting of speed features at frame
1878   // level, turning off this speed feature for the first GF group of the
1879   // key-frame interval is done here.
1880   int reduce_num_frames =
1881       cpi->sf.tpl_sf.reduce_num_frames &&
1882       gf_group->update_type[cpi->gf_frame_index] != KF_UPDATE &&
1883       gf_group->max_layer_depth > 2;
1884   // TPL processing is skipped for frames of type LF_UPDATE when
1885   // 'reduce_num_frames' is 1, which affects the r0 calcuation. Thus, a factor
1886   // to adjust r0 is used. The value of 1.6 corresponds to using ~60% of the
1887   // frames in the gf group on an average.
1888   tpl_data->r0_adjust_factor = reduce_num_frames ? 1.6 : 1.0;
1889 
1890   // Backward propagation from tpl_group_frames to 1.
1891   for (int frame_idx = cpi->gf_frame_index; frame_idx < tpl_gf_group_frames;
1892        ++frame_idx) {
1893     if (skip_tpl_for_frame(gf_group, frame_idx, gop_eval, approx_gop_eval,
1894                            reduce_num_frames))
1895       continue;
1896 
1897     init_mc_flow_dispenser(cpi, frame_idx, pframe_qindex);
1898     if (mt_info->num_workers > 1) {
1899       tpl_row_mt->sync_read_ptr = av1_tpl_row_mt_sync_read;
1900       tpl_row_mt->sync_write_ptr = av1_tpl_row_mt_sync_write;
1901       av1_mc_flow_dispenser_mt(cpi);
1902     } else {
1903       mc_flow_dispenser(cpi);
1904     }
1905 #if CONFIG_BITRATE_ACCURACY
1906     av1_tpl_txfm_stats_update_abs_coeff_mean(&cpi->td.tpl_txfm_stats);
1907     av1_tpl_store_txfm_stats(tpl_data, &cpi->td.tpl_txfm_stats, frame_idx);
1908 #endif  // CONFIG_BITRATE_ACCURACY
1909 #if CONFIG_RATECTRL_LOG && CONFIG_THREE_PASS && CONFIG_BITRATE_ACCURACY
1910     if (cpi->oxcf.pass == AOM_RC_THIRD_PASS) {
1911       int frame_coding_idx =
1912           av1_vbr_rc_frame_coding_idx(&cpi->vbr_rc_info, frame_idx);
1913       rc_log_frame_stats(&cpi->rc_log, frame_coding_idx,
1914                          &cpi->td.tpl_txfm_stats);
1915     }
1916 #endif  // CONFIG_RATECTRL_LOG
1917 
1918     aom_extend_frame_borders(tpl_data->tpl_frame[frame_idx].rec_picture,
1919                              num_planes);
1920   }
1921 
1922   for (int frame_idx = tpl_gf_group_frames - 1;
1923        frame_idx >= cpi->gf_frame_index; --frame_idx) {
1924     if (skip_tpl_for_frame(gf_group, frame_idx, gop_eval, approx_gop_eval,
1925                            reduce_num_frames))
1926       continue;
1927 
1928     mc_flow_synthesizer(tpl_data, frame_idx, cm->mi_params.mi_rows,
1929                         cm->mi_params.mi_cols);
1930   }
1931 
1932   av1_configure_buffer_updates(cpi, &this_frame_params.refresh_frame,
1933                                gf_group->update_type[cpi->gf_frame_index],
1934                                gf_group->update_type[cpi->gf_frame_index], 0);
1935   cm->current_frame.frame_type = frame_params->frame_type;
1936   cm->show_frame = frame_params->show_frame;
1937 
1938 #if CONFIG_COLLECT_COMPONENT_TIMING
1939   // Record the time if the function returns.
1940   if (cpi->common.tiles.large_scale || gf_group->max_layer_depth_allowed == 0 ||
1941       !gop_eval)
1942     end_timing(cpi, av1_tpl_setup_stats_time);
1943 #endif
1944 
1945   tpl_dealloc_temp_buffers(tpl_tmp_buffers);
1946 
1947   if (!approx_gop_eval) {
1948     tpl_data->ready = 1;
1949   }
1950   if (cpi->common.tiles.large_scale) return 0;
1951   if (gf_group->max_layer_depth_allowed == 0) return 1;
1952   if (!gop_eval) return 0;
1953   assert(gf_group->arf_index >= 0);
1954 
1955   double beta[2] = { 0.0 };
1956   const int frame_idx_0 = gf_group->arf_index;
1957   const int frame_idx_1 =
1958       AOMMIN(tpl_gf_group_frames - 1, gf_group->arf_index + 1);
1959   beta[0] = av1_tpl_get_frame_importance(tpl_data, frame_idx_0);
1960   beta[1] = av1_tpl_get_frame_importance(tpl_data, frame_idx_1);
1961 #if CONFIG_COLLECT_COMPONENT_TIMING
1962   end_timing(cpi, av1_tpl_setup_stats_time);
1963 #endif
1964   return eval_gop_length(beta, gop_eval);
1965 }
1966 
av1_tpl_rdmult_setup(AV1_COMP * cpi)1967 void av1_tpl_rdmult_setup(AV1_COMP *cpi) {
1968   const AV1_COMMON *const cm = &cpi->common;
1969   const int tpl_idx = cpi->gf_frame_index;
1970 
1971   assert(
1972       IMPLIES(cpi->ppi->gf_group.size > 0, tpl_idx < cpi->ppi->gf_group.size));
1973 
1974   TplParams *const tpl_data = &cpi->ppi->tpl_data;
1975   const TplDepFrame *const tpl_frame = &tpl_data->tpl_frame[tpl_idx];
1976 
1977   if (!tpl_frame->is_valid) return;
1978 
1979   const TplDepStats *const tpl_stats = tpl_frame->tpl_stats_ptr;
1980   const int tpl_stride = tpl_frame->stride;
1981   const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
1982 
1983   const int block_size = BLOCK_16X16;
1984   const int num_mi_w = mi_size_wide[block_size];
1985   const int num_mi_h = mi_size_high[block_size];
1986   const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w;
1987   const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
1988   const double c = 1.2;
1989   const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
1990 
1991   // Loop through each 'block_size' X 'block_size' block.
1992   for (int row = 0; row < num_rows; row++) {
1993     for (int col = 0; col < num_cols; col++) {
1994       double intra_cost = 0.0, mc_dep_cost = 0.0;
1995       // Loop through each mi block.
1996       for (int mi_row = row * num_mi_h; mi_row < (row + 1) * num_mi_h;
1997            mi_row += step) {
1998         for (int mi_col = col * num_mi_w; mi_col < (col + 1) * num_mi_w;
1999              mi_col += step) {
2000           if (mi_row >= cm->mi_params.mi_rows || mi_col >= mi_cols_sr) continue;
2001           const TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
2002               mi_row, mi_col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
2003           int64_t mc_dep_delta =
2004               RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
2005                      this_stats->mc_dep_dist);
2006           intra_cost += (double)(this_stats->recrf_dist << RDDIV_BITS);
2007           mc_dep_cost +=
2008               (double)(this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
2009         }
2010       }
2011       const double rk = intra_cost / mc_dep_cost;
2012       const int index = row * num_cols + col;
2013       cpi->tpl_rdmult_scaling_factors[index] = rk / cpi->rd.r0 + c;
2014     }
2015   }
2016 }
2017 
av1_tpl_rdmult_setup_sb(AV1_COMP * cpi,MACROBLOCK * const x,BLOCK_SIZE sb_size,int mi_row,int mi_col)2018 void av1_tpl_rdmult_setup_sb(AV1_COMP *cpi, MACROBLOCK *const x,
2019                              BLOCK_SIZE sb_size, int mi_row, int mi_col) {
2020   AV1_COMMON *const cm = &cpi->common;
2021   GF_GROUP *gf_group = &cpi->ppi->gf_group;
2022   assert(IMPLIES(cpi->ppi->gf_group.size > 0,
2023                  cpi->gf_frame_index < cpi->ppi->gf_group.size));
2024   const int tpl_idx = cpi->gf_frame_index;
2025 
2026   const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100));
2027   const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6);
2028   const FRAME_TYPE frame_type = cm->current_frame.frame_type;
2029 
2030   if (tpl_idx >= MAX_TPL_FRAME_IDX) return;
2031   TplDepFrame *tpl_frame = &cpi->ppi->tpl_data.tpl_frame[tpl_idx];
2032   if (!tpl_frame->is_valid) return;
2033   if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) return;
2034   if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return;
2035 
2036   const int mi_col_sr =
2037       coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
2038   const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
2039   const int sb_mi_width_sr = coded_to_superres_mi(
2040       mi_size_wide[sb_size], cm->superres_scale_denominator);
2041 
2042   const int bsize_base = BLOCK_16X16;
2043   const int num_mi_w = mi_size_wide[bsize_base];
2044   const int num_mi_h = mi_size_high[bsize_base];
2045   const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w;
2046   const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
2047   const int num_bcols = (sb_mi_width_sr + num_mi_w - 1) / num_mi_w;
2048   const int num_brows = (mi_size_high[sb_size] + num_mi_h - 1) / num_mi_h;
2049   int row, col;
2050 
2051   double base_block_count = 0.0;
2052   double log_sum = 0.0;
2053 
2054   for (row = mi_row / num_mi_w;
2055        row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
2056     for (col = mi_col_sr / num_mi_h;
2057          col < num_cols && col < mi_col_sr / num_mi_h + num_bcols; ++col) {
2058       const int index = row * num_cols + col;
2059       log_sum += log(cpi->tpl_rdmult_scaling_factors[index]);
2060       base_block_count += 1.0;
2061     }
2062   }
2063 
2064   const CommonQuantParams *quant_params = &cm->quant_params;
2065 
2066   const int orig_qindex_rdmult =
2067       quant_params->base_qindex + quant_params->y_dc_delta_q;
2068   const int orig_rdmult = av1_compute_rd_mult(
2069       orig_qindex_rdmult, cm->seq_params->bit_depth,
2070       cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
2071       boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
2072       is_stat_consumption_stage(cpi));
2073 
2074   const int new_qindex_rdmult = quant_params->base_qindex +
2075                                 x->rdmult_delta_qindex +
2076                                 quant_params->y_dc_delta_q;
2077   const int new_rdmult = av1_compute_rd_mult(
2078       new_qindex_rdmult, cm->seq_params->bit_depth,
2079       cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
2080       boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
2081       is_stat_consumption_stage(cpi));
2082 
2083   const double scaling_factor = (double)new_rdmult / (double)orig_rdmult;
2084 
2085   double scale_adj = log(scaling_factor) - log_sum / base_block_count;
2086   scale_adj = exp_bounded(scale_adj);
2087 
2088   for (row = mi_row / num_mi_w;
2089        row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
2090     for (col = mi_col_sr / num_mi_h;
2091          col < num_cols && col < mi_col_sr / num_mi_h + num_bcols; ++col) {
2092       const int index = row * num_cols + col;
2093       cpi->ppi->tpl_sb_rdmult_scaling_factors[index] =
2094           scale_adj * cpi->tpl_rdmult_scaling_factors[index];
2095     }
2096   }
2097 }
2098 
av1_exponential_entropy(double q_step,double b)2099 double av1_exponential_entropy(double q_step, double b) {
2100   b = AOMMAX(b, TPL_EPSILON);
2101   double z = fmax(exp_bounded(-q_step / b), TPL_EPSILON);
2102   return -log2(1 - z) - z * log2(z) / (1 - z);
2103 }
2104 
av1_laplace_entropy(double q_step,double b,double zero_bin_ratio)2105 double av1_laplace_entropy(double q_step, double b, double zero_bin_ratio) {
2106   // zero bin's size is zero_bin_ratio * q_step
2107   // non-zero bin's size is q_step
2108   b = AOMMAX(b, TPL_EPSILON);
2109   double z = fmax(exp_bounded(-zero_bin_ratio / 2 * q_step / b), TPL_EPSILON);
2110   double h = av1_exponential_entropy(q_step, b);
2111   double r = -(1 - z) * log2(1 - z) - z * log2(z) + z * (h + 1);
2112   return r;
2113 }
2114 
av1_laplace_estimate_frame_rate(int q_index,int block_count,const double * abs_coeff_mean,int coeff_num)2115 double av1_laplace_estimate_frame_rate(int q_index, int block_count,
2116                                        const double *abs_coeff_mean,
2117                                        int coeff_num) {
2118   double zero_bin_ratio = 2;
2119   double dc_q_step = av1_dc_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
2120   double ac_q_step = av1_ac_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
2121   double est_rate = 0;
2122   // dc coeff
2123   est_rate += av1_laplace_entropy(dc_q_step, abs_coeff_mean[0], zero_bin_ratio);
2124   // ac coeff
2125   for (int i = 1; i < coeff_num; ++i) {
2126     est_rate +=
2127         av1_laplace_entropy(ac_q_step, abs_coeff_mean[i], zero_bin_ratio);
2128   }
2129   est_rate *= block_count;
2130   return est_rate;
2131 }
2132 
av1_estimate_coeff_entropy(double q_step,double b,double zero_bin_ratio,int qcoeff)2133 double av1_estimate_coeff_entropy(double q_step, double b,
2134                                   double zero_bin_ratio, int qcoeff) {
2135   b = AOMMAX(b, TPL_EPSILON);
2136   int abs_qcoeff = abs(qcoeff);
2137   double z0 = fmax(exp_bounded(-zero_bin_ratio / 2 * q_step / b), TPL_EPSILON);
2138   if (abs_qcoeff == 0) {
2139     double r = -log2(1 - z0);
2140     return r;
2141   } else {
2142     double z = fmax(exp_bounded(-q_step / b), TPL_EPSILON);
2143     double r = 1 - log2(z0) - log2(1 - z) - (abs_qcoeff - 1) * log2(z);
2144     return r;
2145   }
2146 }
2147 
2148 #if CONFIG_RD_COMMAND
av1_read_rd_command(const char * filepath,RD_COMMAND * rd_command)2149 void av1_read_rd_command(const char *filepath, RD_COMMAND *rd_command) {
2150   FILE *fptr = fopen(filepath, "r");
2151   fscanf(fptr, "%d", &rd_command->frame_count);
2152   rd_command->frame_index = 0;
2153   for (int i = 0; i < rd_command->frame_count; ++i) {
2154     int option;
2155     fscanf(fptr, "%d", &option);
2156     rd_command->option_ls[i] = (RD_OPTION)option;
2157     if (option == RD_OPTION_SET_Q) {
2158       fscanf(fptr, "%d", &rd_command->q_index_ls[i]);
2159     } else if (option == RD_OPTION_SET_Q_RDMULT) {
2160       fscanf(fptr, "%d", &rd_command->q_index_ls[i]);
2161       fscanf(fptr, "%d", &rd_command->rdmult_ls[i]);
2162     }
2163   }
2164   fclose(fptr);
2165 }
2166 #endif  // CONFIG_RD_COMMAND
2167 
av1_tpl_get_frame_importance(const TplParams * tpl_data,int gf_frame_index)2168 double av1_tpl_get_frame_importance(const TplParams *tpl_data,
2169                                     int gf_frame_index) {
2170   const TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_frame_index];
2171   const TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
2172 
2173   const int tpl_stride = tpl_frame->stride;
2174   double intra_cost_base = 0;
2175   double mc_dep_cost_base = 0;
2176   double cbcmp_base = 1;
2177   const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
2178 
2179   for (int row = 0; row < tpl_frame->mi_rows; row += step) {
2180     for (int col = 0; col < tpl_frame->mi_cols; col += step) {
2181       const TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
2182           row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
2183       double cbcmp = (double)this_stats->srcrf_dist;
2184       const int64_t mc_dep_delta =
2185           RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
2186                  this_stats->mc_dep_dist);
2187       double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS);
2188       dist_scaled = AOMMAX(dist_scaled, 1);
2189       intra_cost_base += log(dist_scaled) * cbcmp;
2190       mc_dep_cost_base += log(dist_scaled + mc_dep_delta) * cbcmp;
2191       cbcmp_base += cbcmp;
2192     }
2193   }
2194   return exp((mc_dep_cost_base - intra_cost_base) / cbcmp_base);
2195 }
2196 
av1_tpl_get_qstep_ratio(const TplParams * tpl_data,int gf_frame_index)2197 double av1_tpl_get_qstep_ratio(const TplParams *tpl_data, int gf_frame_index) {
2198   if (!av1_tpl_stats_ready(tpl_data, gf_frame_index)) {
2199     return 1;
2200   }
2201   const double frame_importance =
2202       av1_tpl_get_frame_importance(tpl_data, gf_frame_index);
2203   return sqrt(1 / frame_importance);
2204 }
2205 
av1_get_q_index_from_qstep_ratio(int leaf_qindex,double qstep_ratio,aom_bit_depth_t bit_depth)2206 int av1_get_q_index_from_qstep_ratio(int leaf_qindex, double qstep_ratio,
2207                                      aom_bit_depth_t bit_depth) {
2208   const double leaf_qstep = av1_dc_quant_QTX(leaf_qindex, 0, bit_depth);
2209   const double target_qstep = leaf_qstep * qstep_ratio;
2210   int qindex = leaf_qindex;
2211   if (qstep_ratio < 1.0) {
2212     for (qindex = leaf_qindex; qindex > 0; --qindex) {
2213       const double qstep = av1_dc_quant_QTX(qindex, 0, bit_depth);
2214       if (qstep <= target_qstep) break;
2215     }
2216   } else {
2217     for (qindex = leaf_qindex; qindex <= MAXQ; ++qindex) {
2218       const double qstep = av1_dc_quant_QTX(qindex, 0, bit_depth);
2219       if (qstep >= target_qstep) break;
2220     }
2221   }
2222   return qindex;
2223 }
2224 
av1_tpl_get_q_index(const TplParams * tpl_data,int gf_frame_index,int leaf_qindex,aom_bit_depth_t bit_depth)2225 int av1_tpl_get_q_index(const TplParams *tpl_data, int gf_frame_index,
2226                         int leaf_qindex, aom_bit_depth_t bit_depth) {
2227   const double qstep_ratio = av1_tpl_get_qstep_ratio(tpl_data, gf_frame_index);
2228   return av1_get_q_index_from_qstep_ratio(leaf_qindex, qstep_ratio, bit_depth);
2229 }
2230 
2231 #if CONFIG_BITRATE_ACCURACY
av1_vbr_rc_init(VBR_RATECTRL_INFO * vbr_rc_info,double total_bit_budget,int show_frame_count)2232 void av1_vbr_rc_init(VBR_RATECTRL_INFO *vbr_rc_info, double total_bit_budget,
2233                      int show_frame_count) {
2234   av1_zero(*vbr_rc_info);
2235   vbr_rc_info->ready = 0;
2236   vbr_rc_info->total_bit_budget = total_bit_budget;
2237   vbr_rc_info->show_frame_count = show_frame_count;
2238   const double scale_factors[FRAME_UPDATE_TYPES] = { 0.94559, 0.94559, 1,
2239                                                      0.94559, 1,       1,
2240                                                      0.94559 };
2241 
2242   // TODO(angiebird): Based on the previous code, only the scale factor 0.94559
2243   // will be used in most of the cases with --limi=17. Figure out if the
2244   // following scale factors works better.
2245   // const double scale_factors[FRAME_UPDATE_TYPES] = { 0.94559, 0.12040, 1,
2246   //                                                    1.10199, 1,       1,
2247   //                                                    0.16393 };
2248 
2249   const double mv_scale_factors[FRAME_UPDATE_TYPES] = { 3, 3, 3, 3, 3, 3, 3 };
2250   memcpy(vbr_rc_info->scale_factors, scale_factors,
2251          sizeof(scale_factors[0]) * FRAME_UPDATE_TYPES);
2252   memcpy(vbr_rc_info->mv_scale_factors, mv_scale_factors,
2253          sizeof(mv_scale_factors[0]) * FRAME_UPDATE_TYPES);
2254 
2255   vbr_rc_reset_gop_data(vbr_rc_info);
2256 #if CONFIG_THREE_PASS
2257   // TODO(angiebird): Explain why we use -1 here
2258   vbr_rc_info->cur_gop_idx = -1;
2259   vbr_rc_info->gop_count = 0;
2260   vbr_rc_info->total_frame_count = 0;
2261 #endif  // CONFIG_THREE_PASS
2262 }
2263 
2264 #if CONFIG_THREE_PASS
av1_vbr_rc_frame_coding_idx(const VBR_RATECTRL_INFO * vbr_rc_info,int gf_frame_index)2265 int av1_vbr_rc_frame_coding_idx(const VBR_RATECTRL_INFO *vbr_rc_info,
2266                                 int gf_frame_index) {
2267   int gop_idx = vbr_rc_info->cur_gop_idx;
2268   int gop_start_idx = vbr_rc_info->gop_start_idx_list[gop_idx];
2269   return gop_start_idx + gf_frame_index;
2270 }
2271 
av1_vbr_rc_append_tpl_info(VBR_RATECTRL_INFO * vbr_rc_info,const TPL_INFO * tpl_info)2272 void av1_vbr_rc_append_tpl_info(VBR_RATECTRL_INFO *vbr_rc_info,
2273                                 const TPL_INFO *tpl_info) {
2274   int gop_start_idx = vbr_rc_info->total_frame_count;
2275   vbr_rc_info->gop_start_idx_list[vbr_rc_info->gop_count] = gop_start_idx;
2276   vbr_rc_info->gop_length_list[vbr_rc_info->gop_count] = tpl_info->gf_length;
2277   assert(gop_start_idx + tpl_info->gf_length <= VBR_RC_INFO_MAX_FRAMES);
2278   for (int i = 0; i < tpl_info->gf_length; ++i) {
2279     vbr_rc_info->txfm_stats_list[gop_start_idx + i] =
2280         tpl_info->txfm_stats_list[i];
2281     vbr_rc_info->qstep_ratio_list[gop_start_idx + i] =
2282         tpl_info->qstep_ratio_ls[i];
2283     vbr_rc_info->update_type_list[gop_start_idx + i] =
2284         tpl_info->update_type_list[i];
2285   }
2286   vbr_rc_info->total_frame_count += tpl_info->gf_length;
2287   vbr_rc_info->gop_count++;
2288 }
2289 #endif  // CONFIG_THREE_PASS
2290 
av1_vbr_rc_set_gop_bit_budget(VBR_RATECTRL_INFO * vbr_rc_info,int gop_showframe_count)2291 void av1_vbr_rc_set_gop_bit_budget(VBR_RATECTRL_INFO *vbr_rc_info,
2292                                    int gop_showframe_count) {
2293   vbr_rc_info->gop_showframe_count = gop_showframe_count;
2294   vbr_rc_info->gop_bit_budget = vbr_rc_info->total_bit_budget *
2295                                 gop_showframe_count /
2296                                 vbr_rc_info->show_frame_count;
2297 }
2298 
av1_vbr_rc_compute_q_indices(int base_q_index,int frame_count,const double * qstep_ratio_list,aom_bit_depth_t bit_depth,int * q_index_list)2299 void av1_vbr_rc_compute_q_indices(int base_q_index, int frame_count,
2300                                   const double *qstep_ratio_list,
2301                                   aom_bit_depth_t bit_depth,
2302                                   int *q_index_list) {
2303   for (int i = 0; i < frame_count; ++i) {
2304     q_index_list[i] = av1_get_q_index_from_qstep_ratio(
2305         base_q_index, qstep_ratio_list[i], bit_depth);
2306   }
2307 }
2308 
av1_vbr_rc_info_estimate_gop_bitrate(int base_q_index,aom_bit_depth_t bit_depth,const double * update_type_scale_factors,int frame_count,const FRAME_UPDATE_TYPE * update_type_list,const double * qstep_ratio_list,const TplTxfmStats * stats_list,int * q_index_list,double * estimated_bitrate_byframe)2309 double av1_vbr_rc_info_estimate_gop_bitrate(
2310     int base_q_index, aom_bit_depth_t bit_depth,
2311     const double *update_type_scale_factors, int frame_count,
2312     const FRAME_UPDATE_TYPE *update_type_list, const double *qstep_ratio_list,
2313     const TplTxfmStats *stats_list, int *q_index_list,
2314     double *estimated_bitrate_byframe) {
2315   av1_vbr_rc_compute_q_indices(base_q_index, frame_count, qstep_ratio_list,
2316                                bit_depth, q_index_list);
2317   double estimated_gop_bitrate = 0;
2318   for (int frame_index = 0; frame_index < frame_count; frame_index++) {
2319     const TplTxfmStats *frame_stats = &stats_list[frame_index];
2320     double frame_bitrate = 0;
2321     if (frame_stats->ready) {
2322       int q_index = q_index_list[frame_index];
2323 
2324       frame_bitrate = av1_laplace_estimate_frame_rate(
2325           q_index, frame_stats->txfm_block_count, frame_stats->abs_coeff_mean,
2326           frame_stats->coeff_num);
2327     }
2328     FRAME_UPDATE_TYPE update_type = update_type_list[frame_index];
2329     estimated_gop_bitrate +=
2330         frame_bitrate * update_type_scale_factors[update_type];
2331     if (estimated_bitrate_byframe != NULL) {
2332       estimated_bitrate_byframe[frame_index] = frame_bitrate;
2333     }
2334   }
2335   return estimated_gop_bitrate;
2336 }
2337 
av1_vbr_rc_info_estimate_base_q(double bit_budget,aom_bit_depth_t bit_depth,const double * update_type_scale_factors,int frame_count,const FRAME_UPDATE_TYPE * update_type_list,const double * qstep_ratio_list,const TplTxfmStats * stats_list,int * q_index_list,double * estimated_bitrate_byframe)2338 int av1_vbr_rc_info_estimate_base_q(
2339     double bit_budget, aom_bit_depth_t bit_depth,
2340     const double *update_type_scale_factors, int frame_count,
2341     const FRAME_UPDATE_TYPE *update_type_list, const double *qstep_ratio_list,
2342     const TplTxfmStats *stats_list, int *q_index_list,
2343     double *estimated_bitrate_byframe) {
2344   int q_max = 255;  // Maximum q value.
2345   int q_min = 0;    // Minimum q value.
2346   int q = (q_max + q_min) / 2;
2347 
2348   double q_max_estimate = av1_vbr_rc_info_estimate_gop_bitrate(
2349       q_max, bit_depth, update_type_scale_factors, frame_count,
2350       update_type_list, qstep_ratio_list, stats_list, q_index_list,
2351       estimated_bitrate_byframe);
2352 
2353   double q_min_estimate = av1_vbr_rc_info_estimate_gop_bitrate(
2354       q_min, bit_depth, update_type_scale_factors, frame_count,
2355       update_type_list, qstep_ratio_list, stats_list, q_index_list,
2356       estimated_bitrate_byframe);
2357   while (q_min + 1 < q_max) {
2358     double estimate = av1_vbr_rc_info_estimate_gop_bitrate(
2359         q, bit_depth, update_type_scale_factors, frame_count, update_type_list,
2360         qstep_ratio_list, stats_list, q_index_list, estimated_bitrate_byframe);
2361     if (estimate > bit_budget) {
2362       q_min = q;
2363       q_min_estimate = estimate;
2364     } else {
2365       q_max = q;
2366       q_max_estimate = estimate;
2367     }
2368     q = (q_max + q_min) / 2;
2369   }
2370   // Pick the estimate that lands closest to the budget.
2371   if (fabs(q_max_estimate - bit_budget) < fabs(q_min_estimate - bit_budget)) {
2372     q = q_max;
2373   } else {
2374     q = q_min;
2375   }
2376   // Update q_index_list and vbr_rc_info.
2377   av1_vbr_rc_info_estimate_gop_bitrate(
2378       q, bit_depth, update_type_scale_factors, frame_count, update_type_list,
2379       qstep_ratio_list, stats_list, q_index_list, estimated_bitrate_byframe);
2380   return q;
2381 }
av1_vbr_rc_update_q_index_list(VBR_RATECTRL_INFO * vbr_rc_info,const TplParams * tpl_data,const GF_GROUP * gf_group,aom_bit_depth_t bit_depth)2382 void av1_vbr_rc_update_q_index_list(VBR_RATECTRL_INFO *vbr_rc_info,
2383                                     const TplParams *tpl_data,
2384                                     const GF_GROUP *gf_group,
2385                                     aom_bit_depth_t bit_depth) {
2386   vbr_rc_info->q_index_list_ready = 1;
2387   double gop_bit_budget = vbr_rc_info->gop_bit_budget;
2388 
2389   for (int i = 0; i < gf_group->size; i++) {
2390     vbr_rc_info->qstep_ratio_list[i] = av1_tpl_get_qstep_ratio(tpl_data, i);
2391   }
2392 
2393   double mv_bits = 0;
2394   for (int i = 0; i < gf_group->size; i++) {
2395     double frame_mv_bits = 0;
2396     if (av1_tpl_stats_ready(tpl_data, i)) {
2397       TplDepFrame *tpl_frame = &tpl_data->tpl_frame[i];
2398       frame_mv_bits = av1_tpl_compute_frame_mv_entropy(
2399           tpl_frame, tpl_data->tpl_stats_block_mis_log2);
2400       FRAME_UPDATE_TYPE updae_type = gf_group->update_type[i];
2401       mv_bits += frame_mv_bits * vbr_rc_info->mv_scale_factors[updae_type];
2402     }
2403   }
2404 
2405   mv_bits = AOMMIN(mv_bits, 0.6 * gop_bit_budget);
2406   gop_bit_budget -= mv_bits;
2407 
2408   vbr_rc_info->base_q_index = av1_vbr_rc_info_estimate_base_q(
2409       gop_bit_budget, bit_depth, vbr_rc_info->scale_factors, gf_group->size,
2410       gf_group->update_type, vbr_rc_info->qstep_ratio_list,
2411       tpl_data->txfm_stats_list, vbr_rc_info->q_index_list, NULL);
2412 }
2413 
2414 #endif  // CONFIG_BITRATE_ACCURACY
2415 
2416 // Use upper and left neighbor block as the reference MVs.
2417 // Compute the minimum difference between current MV and reference MV.
av1_compute_mv_difference(const TplDepFrame * tpl_frame,int row,int col,int step,int tpl_stride,int right_shift)2418 int_mv av1_compute_mv_difference(const TplDepFrame *tpl_frame, int row, int col,
2419                                  int step, int tpl_stride, int right_shift) {
2420   const TplDepStats *tpl_stats =
2421       &tpl_frame
2422            ->tpl_stats_ptr[av1_tpl_ptr_pos(row, col, tpl_stride, right_shift)];
2423   int_mv current_mv = tpl_stats->mv[tpl_stats->ref_frame_index[0]];
2424   int current_mv_magnitude =
2425       abs(current_mv.as_mv.row) + abs(current_mv.as_mv.col);
2426 
2427   // Retrieve the up and left neighbors.
2428   int up_error = INT_MAX;
2429   int_mv up_mv_diff;
2430   if (row - step >= 0) {
2431     tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
2432         row - step, col, tpl_stride, right_shift)];
2433     up_mv_diff = tpl_stats->mv[tpl_stats->ref_frame_index[0]];
2434     up_mv_diff.as_mv.row = current_mv.as_mv.row - up_mv_diff.as_mv.row;
2435     up_mv_diff.as_mv.col = current_mv.as_mv.col - up_mv_diff.as_mv.col;
2436     up_error = abs(up_mv_diff.as_mv.row) + abs(up_mv_diff.as_mv.col);
2437   }
2438 
2439   int left_error = INT_MAX;
2440   int_mv left_mv_diff;
2441   if (col - step >= 0) {
2442     tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
2443         row, col - step, tpl_stride, right_shift)];
2444     left_mv_diff = tpl_stats->mv[tpl_stats->ref_frame_index[0]];
2445     left_mv_diff.as_mv.row = current_mv.as_mv.row - left_mv_diff.as_mv.row;
2446     left_mv_diff.as_mv.col = current_mv.as_mv.col - left_mv_diff.as_mv.col;
2447     left_error = abs(left_mv_diff.as_mv.row) + abs(left_mv_diff.as_mv.col);
2448   }
2449 
2450   // Return the MV with the minimum distance from current.
2451   if (up_error < left_error && up_error < current_mv_magnitude) {
2452     return up_mv_diff;
2453   } else if (left_error < up_error && left_error < current_mv_magnitude) {
2454     return left_mv_diff;
2455   }
2456   return current_mv;
2457 }
2458 
2459 /* Compute the entropy of motion vectors for a single frame. */
av1_tpl_compute_frame_mv_entropy(const TplDepFrame * tpl_frame,uint8_t right_shift)2460 double av1_tpl_compute_frame_mv_entropy(const TplDepFrame *tpl_frame,
2461                                         uint8_t right_shift) {
2462   if (!tpl_frame->is_valid) {
2463     return 0;
2464   }
2465 
2466   int count_row[500] = { 0 };
2467   int count_col[500] = { 0 };
2468   int n = 0;  // number of MVs to process
2469 
2470   const int tpl_stride = tpl_frame->stride;
2471   const int step = 1 << right_shift;
2472 
2473   for (int row = 0; row < tpl_frame->mi_rows; row += step) {
2474     for (int col = 0; col < tpl_frame->mi_cols; col += step) {
2475       int_mv mv = av1_compute_mv_difference(tpl_frame, row, col, step,
2476                                             tpl_stride, right_shift);
2477       count_row[clamp(mv.as_mv.row, 0, 499)] += 1;
2478       count_col[clamp(mv.as_mv.row, 0, 499)] += 1;
2479       n += 1;
2480     }
2481   }
2482 
2483   // Estimate the bits used using the entropy formula.
2484   double rate_row = 0;
2485   double rate_col = 0;
2486   for (int i = 0; i < 500; i++) {
2487     if (count_row[i] != 0) {
2488       double p = count_row[i] / (double)n;
2489       rate_row += count_row[i] * -log2(p);
2490     }
2491     if (count_col[i] != 0) {
2492       double p = count_col[i] / (double)n;
2493       rate_col += count_col[i] * -log2(p);
2494     }
2495   }
2496 
2497   return rate_row + rate_col;
2498 }
2499