xref: /aosp_15_r20/external/libaom/test/hadamard_test.cc (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2019, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <algorithm>
13 #include <ostream>
14 
15 #include "gtest/gtest.h"
16 
17 #include "config/aom_dsp_rtcd.h"
18 
19 #include "test/acm_random.h"
20 #include "test/register_state_check.h"
21 #include "test/util.h"
22 
23 namespace {
24 
25 using libaom_test::ACMRandom;
26 
27 using HadamardFunc = void (*)(const int16_t *a, ptrdiff_t a_stride,
28                               tran_low_t *b);
29 // Low precision version of Hadamard Transform
30 using HadamardLPFunc = void (*)(const int16_t *a, ptrdiff_t a_stride,
31                                 int16_t *b);
32 // Low precision version of Hadamard Transform 8x8 - Dual
33 using HadamardLP8x8DualFunc = void (*)(const int16_t *a, ptrdiff_t a_stride,
34                                        int16_t *b);
35 
36 template <typename OutputType>
Hadamard4x4(const OutputType * a,OutputType * out)37 void Hadamard4x4(const OutputType *a, OutputType *out) {
38   OutputType b[8];
39   for (int i = 0; i < 4; i += 2) {
40     b[i + 0] = (a[i * 4] + a[(i + 1) * 4]) >> 1;
41     b[i + 1] = (a[i * 4] - a[(i + 1) * 4]) >> 1;
42   }
43 
44   out[0] = b[0] + b[2];
45   out[1] = b[1] + b[3];
46   out[2] = b[0] - b[2];
47   out[3] = b[1] - b[3];
48 }
49 
50 template <typename OutputType>
ReferenceHadamard4x4(const int16_t * a,int a_stride,OutputType * b)51 void ReferenceHadamard4x4(const int16_t *a, int a_stride, OutputType *b) {
52   OutputType input[16];
53   OutputType buf[16];
54   for (int i = 0; i < 4; ++i) {
55     for (int j = 0; j < 4; ++j) {
56       input[i * 4 + j] = static_cast<OutputType>(a[i * a_stride + j]);
57     }
58   }
59   for (int i = 0; i < 4; ++i) Hadamard4x4(input + i, buf + i * 4);
60   for (int i = 0; i < 4; ++i) Hadamard4x4(buf + i, b + i * 4);
61 
62   // Extra transpose to match C and SSE2 behavior(i.e., aom_hadamard_4x4).
63   for (int i = 0; i < 4; i++) {
64     for (int j = i + 1; j < 4; j++) {
65       OutputType temp = b[j * 4 + i];
66       b[j * 4 + i] = b[i * 4 + j];
67       b[i * 4 + j] = temp;
68     }
69   }
70 }
71 
72 template <typename OutputType>
HadamardLoop(const OutputType * a,OutputType * out)73 void HadamardLoop(const OutputType *a, OutputType *out) {
74   OutputType b[8];
75   for (int i = 0; i < 8; i += 2) {
76     b[i + 0] = a[i * 8] + a[(i + 1) * 8];
77     b[i + 1] = a[i * 8] - a[(i + 1) * 8];
78   }
79   OutputType c[8];
80   for (int i = 0; i < 8; i += 4) {
81     c[i + 0] = b[i + 0] + b[i + 2];
82     c[i + 1] = b[i + 1] + b[i + 3];
83     c[i + 2] = b[i + 0] - b[i + 2];
84     c[i + 3] = b[i + 1] - b[i + 3];
85   }
86   out[0] = c[0] + c[4];
87   out[7] = c[1] + c[5];
88   out[3] = c[2] + c[6];
89   out[4] = c[3] + c[7];
90   out[2] = c[0] - c[4];
91   out[6] = c[1] - c[5];
92   out[1] = c[2] - c[6];
93   out[5] = c[3] - c[7];
94 }
95 
96 template <typename OutputType>
ReferenceHadamard8x8(const int16_t * a,int a_stride,OutputType * b)97 void ReferenceHadamard8x8(const int16_t *a, int a_stride, OutputType *b) {
98   OutputType input[64];
99   OutputType buf[64];
100   for (int i = 0; i < 8; ++i) {
101     for (int j = 0; j < 8; ++j) {
102       input[i * 8 + j] = static_cast<OutputType>(a[i * a_stride + j]);
103     }
104   }
105   for (int i = 0; i < 8; ++i) HadamardLoop(input + i, buf + i * 8);
106   for (int i = 0; i < 8; ++i) HadamardLoop(buf + i, b + i * 8);
107 
108   // Extra transpose to match SSE2 behavior (i.e., aom_hadamard_8x8 and
109   // aom_hadamard_lp_8x8).
110   for (int i = 0; i < 8; i++) {
111     for (int j = i + 1; j < 8; j++) {
112       OutputType temp = b[j * 8 + i];
113       b[j * 8 + i] = b[i * 8 + j];
114       b[i * 8 + j] = temp;
115     }
116   }
117 }
118 
119 template <typename OutputType>
ReferenceHadamard8x8Dual(const int16_t * a,int a_stride,OutputType * b)120 void ReferenceHadamard8x8Dual(const int16_t *a, int a_stride, OutputType *b) {
121   /* The source is a 8x16 block. The destination is rearranged to 8x16.
122    * Input is 9 bit. */
123   ReferenceHadamard8x8(a, a_stride, b);
124   ReferenceHadamard8x8(a + 8, a_stride, b + 64);
125 }
126 
127 template <typename OutputType>
ReferenceHadamard16x16(const int16_t * a,int a_stride,OutputType * b,bool shift)128 void ReferenceHadamard16x16(const int16_t *a, int a_stride, OutputType *b,
129                             bool shift) {
130   /* The source is a 16x16 block. The destination is rearranged to 8x32.
131    * Input is 9 bit. */
132   ReferenceHadamard8x8(a + 0 + 0 * a_stride, a_stride, b + 0);
133   ReferenceHadamard8x8(a + 8 + 0 * a_stride, a_stride, b + 64);
134   ReferenceHadamard8x8(a + 0 + 8 * a_stride, a_stride, b + 128);
135   ReferenceHadamard8x8(a + 8 + 8 * a_stride, a_stride, b + 192);
136 
137   /* Overlay the 8x8 blocks and combine. */
138   for (int i = 0; i < 64; ++i) {
139     /* 8x8 steps the range up to 15 bits. */
140     const OutputType a0 = b[0];
141     const OutputType a1 = b[64];
142     const OutputType a2 = b[128];
143     const OutputType a3 = b[192];
144 
145     /* Prevent the result from escaping int16_t. */
146     const OutputType b0 = (a0 + a1) >> 1;
147     const OutputType b1 = (a0 - a1) >> 1;
148     const OutputType b2 = (a2 + a3) >> 1;
149     const OutputType b3 = (a2 - a3) >> 1;
150 
151     /* Store a 16 bit value. */
152     b[0] = b0 + b2;
153     b[64] = b1 + b3;
154     b[128] = b0 - b2;
155     b[192] = b1 - b3;
156 
157     ++b;
158   }
159 
160   if (shift) {
161     b -= 64;
162     // Extra shift to match aom_hadamard_16x16_c and aom_hadamard_16x16_avx2.
163     for (int i = 0; i < 16; i++) {
164       for (int j = 0; j < 4; j++) {
165         OutputType temp = b[i * 16 + 4 + j];
166         b[i * 16 + 4 + j] = b[i * 16 + 8 + j];
167         b[i * 16 + 8 + j] = temp;
168       }
169     }
170   }
171 }
172 
173 template <typename OutputType>
ReferenceHadamard32x32(const int16_t * a,int a_stride,OutputType * b,bool shift)174 void ReferenceHadamard32x32(const int16_t *a, int a_stride, OutputType *b,
175                             bool shift) {
176   ReferenceHadamard16x16(a + 0 + 0 * a_stride, a_stride, b + 0, shift);
177   ReferenceHadamard16x16(a + 16 + 0 * a_stride, a_stride, b + 256, shift);
178   ReferenceHadamard16x16(a + 0 + 16 * a_stride, a_stride, b + 512, shift);
179   ReferenceHadamard16x16(a + 16 + 16 * a_stride, a_stride, b + 768, shift);
180 
181   for (int i = 0; i < 256; ++i) {
182     const OutputType a0 = b[0];
183     const OutputType a1 = b[256];
184     const OutputType a2 = b[512];
185     const OutputType a3 = b[768];
186 
187     const OutputType b0 = (a0 + a1) >> 2;
188     const OutputType b1 = (a0 - a1) >> 2;
189     const OutputType b2 = (a2 + a3) >> 2;
190     const OutputType b3 = (a2 - a3) >> 2;
191 
192     b[0] = b0 + b2;
193     b[256] = b1 + b3;
194     b[512] = b0 - b2;
195     b[768] = b1 - b3;
196 
197     ++b;
198   }
199 }
200 
201 template <typename OutputType>
ReferenceHadamard(const int16_t * a,int a_stride,OutputType * b,int bw,int bh,bool shift)202 void ReferenceHadamard(const int16_t *a, int a_stride, OutputType *b, int bw,
203                        int bh, bool shift) {
204   if (bw == 32 && bh == 32) {
205     ReferenceHadamard32x32(a, a_stride, b, shift);
206   } else if (bw == 16 && bh == 16) {
207     ReferenceHadamard16x16(a, a_stride, b, shift);
208   } else if (bw == 8 && bh == 8) {
209     ReferenceHadamard8x8(a, a_stride, b);
210   } else if (bw == 4 && bh == 4) {
211     ReferenceHadamard4x4(a, a_stride, b);
212   } else if (bw == 8 && bh == 16) {
213     ReferenceHadamard8x8Dual(a, a_stride, b);
214   } else {
215     GTEST_FAIL() << "Invalid Hadamard transform size " << bw << bh << std::endl;
216   }
217 }
218 
219 template <typename HadamardFuncType>
220 struct FuncWithSize {
FuncWithSize__anoncdacd0be0111::FuncWithSize221   FuncWithSize(HadamardFuncType f, int bw, int bh)
222       : func(f), block_width(bw), block_height(bh) {}
223   HadamardFuncType func;
224   int block_width;
225   int block_height;
226 };
227 
228 using HadamardFuncWithSize = FuncWithSize<HadamardFunc>;
229 using HadamardLPFuncWithSize = FuncWithSize<HadamardLPFunc>;
230 using HadamardLP8x8DualFuncWithSize = FuncWithSize<HadamardLP8x8DualFunc>;
231 
232 template <typename OutputType, typename HadamardFuncType>
233 class HadamardTestBase
234     : public ::testing::TestWithParam<FuncWithSize<HadamardFuncType>> {
235  public:
HadamardTestBase(const FuncWithSize<HadamardFuncType> & func_param,bool do_shift)236   HadamardTestBase(const FuncWithSize<HadamardFuncType> &func_param,
237                    bool do_shift) {
238     h_func_ = func_param.func;
239     bw_ = func_param.block_width;
240     bh_ = func_param.block_height;
241     shift_ = do_shift;
242   }
243 
SetUp()244   void SetUp() override { rnd_.Reset(ACMRandom::DeterministicSeed()); }
245 
246   // The Rand() function generates values in the range [-((1 << BitDepth) - 1),
247   // (1 << BitDepth) - 1]. This is because the input to the Hadamard transform
248   // is the residual pixel, which is defined as 'source pixel - predicted
249   // pixel'. Source pixel and predicted pixel take values in the range
250   // [0, (1 << BitDepth) - 1] and thus the residual pixel ranges from
251   // -((1 << BitDepth) - 1) to ((1 << BitDepth) - 1).
252   virtual int16_t Rand() = 0;
253 
CompareReferenceRandom()254   void CompareReferenceRandom() {
255     const int kMaxBlockSize = 32 * 32;
256     const int block_size = bw_ * bh_;
257 
258     DECLARE_ALIGNED(16, int16_t, a[kMaxBlockSize]);
259     DECLARE_ALIGNED(16, OutputType, b[kMaxBlockSize]);
260     memset(a, 0, sizeof(a));
261     memset(b, 0, sizeof(b));
262 
263     OutputType b_ref[kMaxBlockSize];
264     memset(b_ref, 0, sizeof(b_ref));
265 
266     for (int i = 0; i < block_size; ++i) a[i] = Rand();
267     ReferenceHadamard(a, bw_, b_ref, bw_, bh_, shift_);
268     API_REGISTER_STATE_CHECK(h_func_(a, bw_, b));
269 
270     // The order of the output is not important. Sort before checking.
271     std::sort(b, b + block_size);
272     std::sort(b_ref, b_ref + block_size);
273     EXPECT_EQ(memcmp(b, b_ref, sizeof(b)), 0);
274   }
275 
CompareReferenceExtreme()276   void CompareReferenceExtreme() {
277     const int kMaxBlockSize = 32 * 32;
278     const int block_size = bw_ * bh_;
279     const int kBitDepth = 8;
280     DECLARE_ALIGNED(16, int16_t, a[kMaxBlockSize]);
281     DECLARE_ALIGNED(16, OutputType, b[kMaxBlockSize]);
282     memset(b, 0, sizeof(b));
283 
284     OutputType b_ref[kMaxBlockSize];
285     memset(b_ref, 0, sizeof(b_ref));
286     for (int i = 0; i < 2; ++i) {
287       const int sign = (i == 0) ? 1 : -1;
288       for (int j = 0; j < block_size; ++j) a[j] = sign * ((1 << kBitDepth) - 1);
289 
290       ReferenceHadamard(a, bw_, b_ref, bw_, bh_, shift_);
291       API_REGISTER_STATE_CHECK(h_func_(a, bw_, b));
292 
293       // The order of the output is not important. Sort before checking.
294       std::sort(b, b + block_size);
295       std::sort(b_ref, b_ref + block_size);
296       EXPECT_EQ(memcmp(b, b_ref, sizeof(b)), 0);
297     }
298   }
299 
VaryStride()300   void VaryStride() {
301     const int kMaxBlockSize = 32 * 32;
302     const int block_size = bw_ * bh_;
303 
304     DECLARE_ALIGNED(16, int16_t, a[kMaxBlockSize * 8]);
305     DECLARE_ALIGNED(16, OutputType, b[kMaxBlockSize]);
306     memset(a, 0, sizeof(a));
307     for (int i = 0; i < block_size * 8; ++i) a[i] = Rand();
308 
309     OutputType b_ref[kMaxBlockSize];
310     for (int i = 8; i < 64; i += 8) {
311       memset(b, 0, sizeof(b));
312       memset(b_ref, 0, sizeof(b_ref));
313 
314       ReferenceHadamard(a, i, b_ref, bw_, bh_, shift_);
315       API_REGISTER_STATE_CHECK(h_func_(a, i, b));
316 
317       // The order of the output is not important. Sort before checking.
318       std::sort(b, b + block_size);
319       std::sort(b_ref, b_ref + block_size);
320       EXPECT_EQ(0, memcmp(b, b_ref, sizeof(b)));
321     }
322   }
323 
SpeedTest(int times)324   void SpeedTest(int times) {
325     const int kMaxBlockSize = 32 * 32;
326     DECLARE_ALIGNED(16, int16_t, input[kMaxBlockSize]);
327     DECLARE_ALIGNED(16, OutputType, output[kMaxBlockSize]);
328     memset(input, 1, sizeof(input));
329     memset(output, 0, sizeof(output));
330 
331     aom_usec_timer timer;
332     aom_usec_timer_start(&timer);
333     for (int i = 0; i < times; ++i) {
334       h_func_(input, bw_, output);
335     }
336     aom_usec_timer_mark(&timer);
337 
338     const int elapsed_time = static_cast<int>(aom_usec_timer_elapsed(&timer));
339     printf("Hadamard%dx%d[%12d runs]: %d us\n", bw_, bh_, times, elapsed_time);
340   }
341 
342  protected:
343   ACMRandom rnd_;
344 
345  private:
346   HadamardFuncType h_func_;
347   int bw_;
348   int bh_;
349   bool shift_;
350 };
351 
352 class HadamardLowbdTest : public HadamardTestBase<tran_low_t, HadamardFunc> {
353  public:
HadamardLowbdTest()354   HadamardLowbdTest() : HadamardTestBase(GetParam(), /*do_shift=*/true) {}
355   // Use values between -255 (0xFF01) and 255 (0x00FF)
Rand()356   int16_t Rand() override {
357     int16_t src = rnd_.Rand8();
358     int16_t pred = rnd_.Rand8();
359     return src - pred;
360   }
361 };
362 
TEST_P(HadamardLowbdTest,CompareReferenceRandom)363 TEST_P(HadamardLowbdTest, CompareReferenceRandom) { CompareReferenceRandom(); }
364 
TEST_P(HadamardLowbdTest,CompareReferenceExtreme)365 TEST_P(HadamardLowbdTest, CompareReferenceExtreme) {
366   CompareReferenceExtreme();
367 }
368 
TEST_P(HadamardLowbdTest,VaryStride)369 TEST_P(HadamardLowbdTest, VaryStride) { VaryStride(); }
370 
TEST_P(HadamardLowbdTest,DISABLED_SpeedTest)371 TEST_P(HadamardLowbdTest, DISABLED_SpeedTest) { SpeedTest(1000000); }
372 
373 INSTANTIATE_TEST_SUITE_P(
374     C, HadamardLowbdTest,
375     ::testing::Values(HadamardFuncWithSize(&aom_hadamard_4x4_c, 4, 4),
376                       HadamardFuncWithSize(&aom_hadamard_8x8_c, 8, 8),
377                       HadamardFuncWithSize(&aom_hadamard_16x16_c, 16, 16),
378                       HadamardFuncWithSize(&aom_hadamard_32x32_c, 32, 32)));
379 
380 #if HAVE_SSE2
381 INSTANTIATE_TEST_SUITE_P(
382     SSE2, HadamardLowbdTest,
383     ::testing::Values(HadamardFuncWithSize(&aom_hadamard_4x4_sse2, 4, 4),
384                       HadamardFuncWithSize(&aom_hadamard_8x8_sse2, 8, 8),
385                       HadamardFuncWithSize(&aom_hadamard_16x16_sse2, 16, 16),
386                       HadamardFuncWithSize(&aom_hadamard_32x32_sse2, 32, 32)));
387 #endif  // HAVE_SSE2
388 
389 #if HAVE_AVX2
390 INSTANTIATE_TEST_SUITE_P(
391     AVX2, HadamardLowbdTest,
392     ::testing::Values(HadamardFuncWithSize(&aom_hadamard_16x16_avx2, 16, 16),
393                       HadamardFuncWithSize(&aom_hadamard_32x32_avx2, 32, 32)));
394 #endif  // HAVE_AVX2
395 
396 // TODO(aomedia:3314): Disable NEON unit test for now, since hadamard 16x16 NEON
397 // need modifications to match C/AVX2 behavior.
398 #if HAVE_NEON
399 INSTANTIATE_TEST_SUITE_P(
400     NEON, HadamardLowbdTest,
401     ::testing::Values(HadamardFuncWithSize(&aom_hadamard_4x4_neon, 4, 4),
402                       HadamardFuncWithSize(&aom_hadamard_8x8_neon, 8, 8),
403                       HadamardFuncWithSize(&aom_hadamard_16x16_neon, 16, 16),
404                       HadamardFuncWithSize(&aom_hadamard_32x32_neon, 32, 32)));
405 #endif  // HAVE_NEON
406 
407 #if CONFIG_AV1_HIGHBITDEPTH
408 class HadamardHighbdTest : public HadamardTestBase<tran_low_t, HadamardFunc> {
409  protected:
HadamardHighbdTest()410   HadamardHighbdTest() : HadamardTestBase(GetParam(), /*do_shift=*/true) {}
411   // Use values between -4095 (0xF001) and 4095 (0x0FFF)
Rand()412   int16_t Rand() override {
413     int16_t src = rnd_.Rand12();
414     int16_t pred = rnd_.Rand12();
415     return src - pred;
416   }
417 };
418 
TEST_P(HadamardHighbdTest,CompareReferenceRandom)419 TEST_P(HadamardHighbdTest, CompareReferenceRandom) { CompareReferenceRandom(); }
420 
TEST_P(HadamardHighbdTest,VaryStride)421 TEST_P(HadamardHighbdTest, VaryStride) { VaryStride(); }
422 
TEST_P(HadamardHighbdTest,DISABLED_Speed)423 TEST_P(HadamardHighbdTest, DISABLED_Speed) {
424   SpeedTest(10);
425   SpeedTest(10000);
426   SpeedTest(10000000);
427 }
428 
429 INSTANTIATE_TEST_SUITE_P(
430     C, HadamardHighbdTest,
431     ::testing::Values(
432         HadamardFuncWithSize(&aom_highbd_hadamard_8x8_c, 8, 8),
433         HadamardFuncWithSize(&aom_highbd_hadamard_16x16_c, 16, 16),
434         HadamardFuncWithSize(&aom_highbd_hadamard_32x32_c, 32, 32)));
435 
436 #if HAVE_AVX2
437 INSTANTIATE_TEST_SUITE_P(
438     AVX2, HadamardHighbdTest,
439     ::testing::Values(
440         HadamardFuncWithSize(&aom_highbd_hadamard_8x8_avx2, 8, 8),
441         HadamardFuncWithSize(&aom_highbd_hadamard_16x16_avx2, 16, 16),
442         HadamardFuncWithSize(&aom_highbd_hadamard_32x32_avx2, 32, 32)));
443 #endif  // HAVE_AVX2
444 
445 #if HAVE_NEON
446 INSTANTIATE_TEST_SUITE_P(
447     NEON, HadamardHighbdTest,
448     ::testing::Values(
449         HadamardFuncWithSize(&aom_highbd_hadamard_8x8_neon, 8, 8),
450         HadamardFuncWithSize(&aom_highbd_hadamard_16x16_neon, 16, 16),
451         HadamardFuncWithSize(&aom_highbd_hadamard_32x32_neon, 32, 32)));
452 #endif  // HAVE_NEON
453 
454 #endif  // CONFIG_AV1_HIGHBITDEPTH
455 
456 // Tests for low precision
457 class HadamardLowbdLPTest : public HadamardTestBase<int16_t, HadamardLPFunc> {
458  public:
HadamardLowbdLPTest()459   HadamardLowbdLPTest() : HadamardTestBase(GetParam(), /*do_shift=*/false) {}
460   // Use values between -255 (0xFF01) and 255 (0x00FF)
Rand()461   int16_t Rand() override {
462     int16_t src = rnd_.Rand8();
463     int16_t pred = rnd_.Rand8();
464     return src - pred;
465   }
466 };
467 
TEST_P(HadamardLowbdLPTest,CompareReferenceRandom)468 TEST_P(HadamardLowbdLPTest, CompareReferenceRandom) {
469   CompareReferenceRandom();
470 }
471 
TEST_P(HadamardLowbdLPTest,VaryStride)472 TEST_P(HadamardLowbdLPTest, VaryStride) { VaryStride(); }
473 
TEST_P(HadamardLowbdLPTest,DISABLED_SpeedTest)474 TEST_P(HadamardLowbdLPTest, DISABLED_SpeedTest) { SpeedTest(1000000); }
475 
476 INSTANTIATE_TEST_SUITE_P(
477     C, HadamardLowbdLPTest,
478     ::testing::Values(HadamardLPFuncWithSize(&aom_hadamard_lp_8x8_c, 8, 8),
479                       HadamardLPFuncWithSize(&aom_hadamard_lp_16x16_c, 16,
480                                              16)));
481 
482 #if HAVE_SSE2
483 INSTANTIATE_TEST_SUITE_P(
484     SSE2, HadamardLowbdLPTest,
485     ::testing::Values(HadamardLPFuncWithSize(&aom_hadamard_lp_8x8_sse2, 8, 8),
486                       HadamardLPFuncWithSize(&aom_hadamard_lp_16x16_sse2, 16,
487                                              16)));
488 #endif  // HAVE_SSE2
489 
490 #if HAVE_AVX2
491 INSTANTIATE_TEST_SUITE_P(AVX2, HadamardLowbdLPTest,
492                          ::testing::Values(HadamardLPFuncWithSize(
493                              &aom_hadamard_lp_16x16_avx2, 16, 16)));
494 #endif  // HAVE_AVX2
495 
496 #if HAVE_NEON
497 INSTANTIATE_TEST_SUITE_P(
498     NEON, HadamardLowbdLPTest,
499     ::testing::Values(HadamardLPFuncWithSize(&aom_hadamard_lp_8x8_neon, 8, 8),
500                       HadamardLPFuncWithSize(&aom_hadamard_lp_16x16_neon, 16,
501                                              16)));
502 #endif  // HAVE_NEON
503 
504 // Tests for 8x8 dual low precision
505 class HadamardLowbdLP8x8DualTest
506     : public HadamardTestBase<int16_t, HadamardLP8x8DualFunc> {
507  public:
HadamardLowbdLP8x8DualTest()508   HadamardLowbdLP8x8DualTest()
509       : HadamardTestBase(GetParam(), /*do_shift=*/false) {}
510   // Use values between -255 (0xFF01) and 255 (0x00FF)
Rand()511   int16_t Rand() override {
512     int16_t src = rnd_.Rand8();
513     int16_t pred = rnd_.Rand8();
514     return src - pred;
515   }
516 };
517 
TEST_P(HadamardLowbdLP8x8DualTest,CompareReferenceRandom)518 TEST_P(HadamardLowbdLP8x8DualTest, CompareReferenceRandom) {
519   CompareReferenceRandom();
520 }
521 
TEST_P(HadamardLowbdLP8x8DualTest,VaryStride)522 TEST_P(HadamardLowbdLP8x8DualTest, VaryStride) { VaryStride(); }
523 
TEST_P(HadamardLowbdLP8x8DualTest,DISABLED_SpeedTest)524 TEST_P(HadamardLowbdLP8x8DualTest, DISABLED_SpeedTest) { SpeedTest(1000000); }
525 
526 INSTANTIATE_TEST_SUITE_P(C, HadamardLowbdLP8x8DualTest,
527                          ::testing::Values(HadamardLP8x8DualFuncWithSize(
528                              &aom_hadamard_lp_8x8_dual_c, 8, 16)));
529 
530 #if HAVE_SSE2
531 INSTANTIATE_TEST_SUITE_P(SSE2, HadamardLowbdLP8x8DualTest,
532                          ::testing::Values(HadamardLP8x8DualFuncWithSize(
533                              &aom_hadamard_lp_8x8_dual_sse2, 8, 16)));
534 #endif  // HAVE_SSE2
535 
536 #if HAVE_AVX2
537 INSTANTIATE_TEST_SUITE_P(AVX2, HadamardLowbdLP8x8DualTest,
538                          ::testing::Values(HadamardLP8x8DualFuncWithSize(
539                              &aom_hadamard_lp_8x8_dual_avx2, 8, 16)));
540 #endif  // HAVE_AVX2
541 
542 #if HAVE_NEON
543 INSTANTIATE_TEST_SUITE_P(NEON, HadamardLowbdLP8x8DualTest,
544                          ::testing::Values(HadamardLP8x8DualFuncWithSize(
545                              &aom_hadamard_lp_8x8_dual_neon, 8, 16)));
546 #endif  // HAVE_NEON
547 
548 }  // namespace
549