1 // Copyright 2019 The libgav1 Authors
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "src/dsp/intra_edge.h"
16 #include "src/utils/cpu.h"
17
18 #if LIBGAV1_ENABLE_NEON
19
20 #include <arm_neon.h>
21
22 #include <algorithm>
23 #include <cassert>
24
25 #include "src/dsp/arm/common_neon.h"
26 #include "src/dsp/constants.h"
27 #include "src/dsp/dsp.h"
28 #include "src/utils/common.h"
29
30 namespace libgav1 {
31 namespace dsp {
32 namespace {
33
34 // Simplified version of intra_edge.cc:kKernels[][]. Only |strength| 1 and 2 are
35 // required.
36 constexpr int kKernelsNEON[3][2] = {{4, 8}, {5, 6}};
37
38 } // namespace
39
40 namespace low_bitdepth {
41 namespace {
42
IntraEdgeFilter_NEON(void * buffer,const int size,const int strength)43 void IntraEdgeFilter_NEON(void* buffer, const int size, const int strength) {
44 assert(strength == 1 || strength == 2 || strength == 3);
45 const int kernel_index = strength - 1;
46 auto* const dst_buffer = static_cast<uint8_t*>(buffer);
47
48 // The first element is not written out (but it is input) so the number of
49 // elements written is |size| - 1.
50 if (size == 1) return;
51
52 const uint8x16_t v_index = vcombine_u8(vcreate_u8(0x0706050403020100),
53 vcreate_u8(0x0f0e0d0c0b0a0908));
54 // |strength| 1 and 2 use a 3 tap filter.
55 if (strength < 3) {
56 // The last value requires extending the buffer (duplicating
57 // |dst_buffer[size - 1]). Calculate it here to avoid extra processing in
58 // neon.
59 const uint8_t last_val = RightShiftWithRounding(
60 kKernelsNEON[kernel_index][0] * dst_buffer[size - 2] +
61 kKernelsNEON[kernel_index][1] * dst_buffer[size - 1] +
62 kKernelsNEON[kernel_index][0] * dst_buffer[size - 1],
63 4);
64
65 const uint8x8_t krn1 = vdup_n_u8(kKernelsNEON[kernel_index][1]);
66
67 // The first value we need gets overwritten by the output from the
68 // previous iteration.
69 uint8x16_t src_0 = vld1q_u8(dst_buffer);
70 int i = 1;
71
72 // Process blocks until there are less than 16 values remaining.
73 for (; i < size - 15; i += 16) {
74 // Loading these at the end of the block with |src_0| will read past the
75 // end of |top_row_data[160]|, the source of |buffer|.
76 const uint8x16_t src_1 = vld1q_u8(dst_buffer + i);
77 const uint8x16_t src_2 = vld1q_u8(dst_buffer + i + 1);
78 uint16x8_t sum_lo = vaddl_u8(vget_low_u8(src_0), vget_low_u8(src_2));
79 sum_lo = vmulq_n_u16(sum_lo, kKernelsNEON[kernel_index][0]);
80 sum_lo = vmlal_u8(sum_lo, vget_low_u8(src_1), krn1);
81 uint16x8_t sum_hi = vaddl_u8(vget_high_u8(src_0), vget_high_u8(src_2));
82 sum_hi = vmulq_n_u16(sum_hi, kKernelsNEON[kernel_index][0]);
83 sum_hi = vmlal_u8(sum_hi, vget_high_u8(src_1), krn1);
84
85 const uint8x16_t result =
86 vcombine_u8(vrshrn_n_u16(sum_lo, 4), vrshrn_n_u16(sum_hi, 4));
87
88 // Load the next row before overwriting. This loads an extra 15 values
89 // past |size| on the trailing iteration.
90 src_0 = vld1q_u8(dst_buffer + i + 15);
91
92 vst1q_u8(dst_buffer + i, result);
93 }
94
95 // The last output value |last_val| was already calculated so if
96 // |remainder| == 1 then we don't have to do anything.
97 const int remainder = (size - 1) & 0xf;
98 if (remainder > 1) {
99 const uint8x16_t src_1 = vld1q_u8(dst_buffer + i);
100 const uint8x16_t src_2 = vld1q_u8(dst_buffer + i + 1);
101
102 uint16x8_t sum_lo = vaddl_u8(vget_low_u8(src_0), vget_low_u8(src_2));
103 sum_lo = vmulq_n_u16(sum_lo, kKernelsNEON[kernel_index][0]);
104 sum_lo = vmlal_u8(sum_lo, vget_low_u8(src_1), krn1);
105 uint16x8_t sum_hi = vaddl_u8(vget_high_u8(src_0), vget_high_u8(src_2));
106 sum_hi = vmulq_n_u16(sum_hi, kKernelsNEON[kernel_index][0]);
107 sum_hi = vmlal_u8(sum_hi, vget_high_u8(src_1), krn1);
108
109 const uint8x16_t result =
110 vcombine_u8(vrshrn_n_u16(sum_lo, 4), vrshrn_n_u16(sum_hi, 4));
111 const uint8x16_t v_remainder = vdupq_n_u8(remainder);
112 // Create over write mask.
113 const uint8x16_t mask = vcleq_u8(v_remainder, v_index);
114 const uint8x16_t dst_remainder = vbslq_u8(mask, src_1, result);
115 vst1q_u8(dst_buffer + i, dst_remainder);
116 }
117
118 dst_buffer[size - 1] = last_val;
119 return;
120 }
121
122 assert(strength == 3);
123 // 5 tap filter. The first element requires duplicating |buffer[0]| and the
124 // last two elements require duplicating |buffer[size - 1]|.
125 uint8_t special_vals[3];
126 special_vals[0] = RightShiftWithRounding(
127 (dst_buffer[0] << 1) + (dst_buffer[0] << 2) + (dst_buffer[1] << 2) +
128 (dst_buffer[2] << 2) + (dst_buffer[3] << 1),
129 4);
130 // Clamp index for very small |size| values.
131 const int first_index_min = std::max(size - 4, 0);
132 const int second_index_min = std::max(size - 3, 0);
133 const int third_index_min = std::max(size - 2, 0);
134 special_vals[1] = RightShiftWithRounding(
135 (dst_buffer[first_index_min] << 1) + (dst_buffer[second_index_min] << 2) +
136 (dst_buffer[third_index_min] << 2) + (dst_buffer[size - 1] << 2) +
137 (dst_buffer[size - 1] << 1),
138 4);
139 special_vals[2] = RightShiftWithRounding(
140 (dst_buffer[second_index_min] << 1) + (dst_buffer[third_index_min] << 2) +
141 // x << 2 + x << 2 == x << 3
142 (dst_buffer[size - 1] << 3) + (dst_buffer[size - 1] << 1),
143 4);
144
145 // The first two values we need get overwritten by the output from the
146 // previous iteration.
147 uint8x16_t src_0 = vld1q_u8(dst_buffer - 1);
148 uint8x16_t src_1 = vld1q_u8(dst_buffer);
149 int i = 1;
150
151 for (; i < size - 15; i += 16) {
152 // Loading these at the end of the block with |src_[01]| will read past
153 // the end of |top_row_data[160]|, the source of |buffer|.
154 const uint8x16_t src_2 = vld1q_u8(dst_buffer + i);
155 const uint8x16_t src_3 = vld1q_u8(dst_buffer + i + 1);
156 const uint8x16_t src_4 = vld1q_u8(dst_buffer + i + 2);
157
158 uint16x8_t sum_lo =
159 vshlq_n_u16(vaddl_u8(vget_low_u8(src_0), vget_low_u8(src_4)), 1);
160 const uint16x8_t sum_123_lo = vaddw_u8(
161 vaddl_u8(vget_low_u8(src_1), vget_low_u8(src_2)), vget_low_u8(src_3));
162 sum_lo = vaddq_u16(sum_lo, vshlq_n_u16(sum_123_lo, 2));
163
164 uint16x8_t sum_hi =
165 vshlq_n_u16(vaddl_u8(vget_high_u8(src_0), vget_high_u8(src_4)), 1);
166 const uint16x8_t sum_123_hi =
167 vaddw_u8(vaddl_u8(vget_high_u8(src_1), vget_high_u8(src_2)),
168 vget_high_u8(src_3));
169 sum_hi = vaddq_u16(sum_hi, vshlq_n_u16(sum_123_hi, 2));
170
171 const uint8x16_t result =
172 vcombine_u8(vrshrn_n_u16(sum_lo, 4), vrshrn_n_u16(sum_hi, 4));
173
174 src_0 = vld1q_u8(dst_buffer + i + 14);
175 src_1 = vld1q_u8(dst_buffer + i + 15);
176
177 vst1q_u8(dst_buffer + i, result);
178 }
179
180 const int remainder = (size - 1) & 0xf;
181 // Like the 3 tap but if there are two remaining values we have already
182 // calculated them.
183 if (remainder > 2) {
184 const uint8x16_t src_2 = vld1q_u8(dst_buffer + i);
185 const uint8x16_t src_3 = vld1q_u8(dst_buffer + i + 1);
186 const uint8x16_t src_4 = vld1q_u8(dst_buffer + i + 2);
187
188 uint16x8_t sum_lo =
189 vshlq_n_u16(vaddl_u8(vget_low_u8(src_0), vget_low_u8(src_4)), 1);
190 const uint16x8_t sum_123_lo = vaddw_u8(
191 vaddl_u8(vget_low_u8(src_1), vget_low_u8(src_2)), vget_low_u8(src_3));
192 sum_lo = vaddq_u16(sum_lo, vshlq_n_u16(sum_123_lo, 2));
193
194 uint16x8_t sum_hi =
195 vshlq_n_u16(vaddl_u8(vget_high_u8(src_0), vget_high_u8(src_4)), 1);
196 const uint16x8_t sum_123_hi =
197 vaddw_u8(vaddl_u8(vget_high_u8(src_1), vget_high_u8(src_2)),
198 vget_high_u8(src_3));
199 sum_hi = vaddq_u16(sum_hi, vshlq_n_u16(sum_123_hi, 2));
200
201 const uint8x16_t result =
202 vcombine_u8(vrshrn_n_u16(sum_lo, 4), vrshrn_n_u16(sum_hi, 4));
203 const uint8x16_t v_remainder = vdupq_n_u8(remainder);
204 // Create over write mask.
205 const uint8x16_t mask = vcleq_u8(v_remainder, v_index);
206 const uint8x16_t dst_remainder = vbslq_u8(mask, src_2, result);
207 vst1q_u8(dst_buffer + i, dst_remainder);
208 }
209
210 dst_buffer[1] = special_vals[0];
211 // Avoid overwriting |dst_buffer[0]|.
212 if (size > 2) dst_buffer[size - 2] = special_vals[1];
213 dst_buffer[size - 1] = special_vals[2];
214 }
215
216 // (-|src0| + |src1| * 9 + |src2| * 9 - |src3|) >> 4
Upsample(const uint8x8_t src0,const uint8x8_t src1,const uint8x8_t src2,const uint8x8_t src3)217 uint8x8_t Upsample(const uint8x8_t src0, const uint8x8_t src1,
218 const uint8x8_t src2, const uint8x8_t src3) {
219 const uint16x8_t middle = vmulq_n_u16(vaddl_u8(src1, src2), 9);
220 const uint16x8_t ends = vaddl_u8(src0, src3);
221 const int16x8_t sum =
222 vsubq_s16(vreinterpretq_s16_u16(middle), vreinterpretq_s16_u16(ends));
223 return vqrshrun_n_s16(sum, 4);
224 }
225
IntraEdgeUpsampler_NEON(void * buffer,const int size)226 void IntraEdgeUpsampler_NEON(void* buffer, const int size) {
227 assert(size % 4 == 0 && size <= 16);
228 auto* const pixel_buffer = static_cast<uint8_t*>(buffer);
229 // This is OK because we don't read this value for |size| 4 or 8 but if we
230 // write |pixel_buffer[size]| and then vld() it, that seems to introduce
231 // some latency.
232 pixel_buffer[-2] = pixel_buffer[-1];
233 if (size == 4) {
234 // This uses one load and two vtbl() which is better than 4x Load{Lo,Hi}4().
235 const uint8x8_t src = vld1_u8(pixel_buffer - 1);
236 // The outside values are negated so put those in the same vector.
237 const uint8x8_t src03 = vtbl1_u8(src, vcreate_u8(0x0404030202010000));
238 // Reverse |src1| and |src2| so we can use |src2| for the interleave at the
239 // end.
240 const uint8x8_t src21 = vtbl1_u8(src, vcreate_u8(0x0302010004030201));
241
242 const uint16x8_t middle = vmull_u8(src21, vdup_n_u8(9));
243 const int16x8_t half_sum = vsubq_s16(
244 vreinterpretq_s16_u16(middle), vreinterpretq_s16_u16(vmovl_u8(src03)));
245 const int16x4_t sum =
246 vadd_s16(vget_low_s16(half_sum), vget_high_s16(half_sum));
247 const uint8x8_t result = vqrshrun_n_s16(vcombine_s16(sum, sum), 4);
248
249 vst1_u8(pixel_buffer - 1, InterleaveLow8(result, src21));
250 return;
251 }
252 if (size == 8) {
253 // Likewise, one load + multiple vtbls seems preferred to multiple loads.
254 const uint8x16_t src = vld1q_u8(pixel_buffer - 1);
255 const uint8x8_t src0 = VQTbl1U8(src, vcreate_u8(0x0605040302010000));
256 const uint8x8_t src1 = vget_low_u8(src);
257 const uint8x8_t src2 = VQTbl1U8(src, vcreate_u8(0x0807060504030201));
258 const uint8x8_t src3 = VQTbl1U8(src, vcreate_u8(0x0808070605040302));
259
260 const uint8x8x2_t output = {Upsample(src0, src1, src2, src3), src2};
261 vst2_u8(pixel_buffer - 1, output);
262 return;
263 }
264 assert(size == 12 || size == 16);
265 // Extend the input borders to avoid branching later.
266 pixel_buffer[size] = pixel_buffer[size - 1];
267 const uint8x16_t src0 = vld1q_u8(pixel_buffer - 2);
268 const uint8x16_t src1 = vld1q_u8(pixel_buffer - 1);
269 const uint8x16_t src2 = vld1q_u8(pixel_buffer);
270 const uint8x16_t src3 = vld1q_u8(pixel_buffer + 1);
271
272 const uint8x8_t result_lo = Upsample(vget_low_u8(src0), vget_low_u8(src1),
273 vget_low_u8(src2), vget_low_u8(src3));
274
275 const uint8x8x2_t output_lo = {result_lo, vget_low_u8(src2)};
276 vst2_u8(pixel_buffer - 1, output_lo);
277
278 const uint8x8_t result_hi = Upsample(vget_high_u8(src0), vget_high_u8(src1),
279 vget_high_u8(src2), vget_high_u8(src3));
280
281 if (size == 12) {
282 vst1_u8(pixel_buffer + 15, InterleaveLow8(result_hi, vget_high_u8(src2)));
283 } else /* size == 16 */ {
284 const uint8x8x2_t output_hi = {result_hi, vget_high_u8(src2)};
285 vst2_u8(pixel_buffer + 15, output_hi);
286 }
287 }
288
Init8bpp()289 void Init8bpp() {
290 Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8);
291 assert(dsp != nullptr);
292 dsp->intra_edge_filter = IntraEdgeFilter_NEON;
293 dsp->intra_edge_upsampler = IntraEdgeUpsampler_NEON;
294 }
295
296 } // namespace
297 } // namespace low_bitdepth
298
299 //------------------------------------------------------------------------------
300 #if LIBGAV1_MAX_BITDEPTH >= 10
301 namespace high_bitdepth {
302 namespace {
303
304 const uint16_t kRemainderMask[8][8] = {
305 {0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
306 {0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
307 {0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
308 {0xffff, 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
309 {0xffff, 0xffff, 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000},
310 {0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000, 0x0000, 0x0000},
311 {0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000, 0x0000},
312 {0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000},
313 };
314
IntraEdgeFilter_NEON(void * buffer,const int size,const int strength)315 void IntraEdgeFilter_NEON(void* buffer, const int size, const int strength) {
316 assert(strength == 1 || strength == 2 || strength == 3);
317 const int kernel_index = strength - 1;
318 auto* const dst_buffer = static_cast<uint16_t*>(buffer);
319
320 // The first element is not written out (but it is input) so the number of
321 // elements written is |size| - 1.
322 if (size == 1) return;
323
324 // |strength| 1 and 2 use a 3 tap filter.
325 if (strength < 3) {
326 // The last value requires extending the buffer (duplicating
327 // |dst_buffer[size - 1]). Calculate it here to avoid extra processing in
328 // neon.
329 const uint16_t last_val = RightShiftWithRounding(
330 kKernelsNEON[kernel_index][0] * dst_buffer[size - 2] +
331 kKernelsNEON[kernel_index][1] * dst_buffer[size - 1] +
332 kKernelsNEON[kernel_index][0] * dst_buffer[size - 1],
333 4);
334
335 const uint16_t krn0 = kKernelsNEON[kernel_index][0];
336 const uint16_t krn1 = kKernelsNEON[kernel_index][1];
337
338 // The first value we need gets overwritten by the output from the
339 // previous iteration.
340 uint16x8_t src_0 = vld1q_u16(dst_buffer);
341 int i = 1;
342
343 // Process blocks until there are less than 16 values remaining.
344 for (; i < size - 7; i += 8) {
345 // Loading these at the end of the block with |src_0| will read past the
346 // end of |top_row_data[160]|, the source of |buffer|.
347 const uint16x8_t src_1 = vld1q_u16(dst_buffer + i);
348 const uint16x8_t src_2 = vld1q_u16(dst_buffer + i + 1);
349 const uint16x8_t sum_02 = vmulq_n_u16(vaddq_u16(src_0, src_2), krn0);
350 const uint16x8_t sum = vmlaq_n_u16(sum_02, src_1, krn1);
351 const uint16x8_t result = vrshrq_n_u16(sum, 4);
352 // Load the next row before overwriting. This loads an extra 7 values
353 // past |size| on the trailing iteration.
354 src_0 = vld1q_u16(dst_buffer + i + 7);
355 vst1q_u16(dst_buffer + i, result);
356 }
357
358 // The last output value |last_val| was already calculated so if
359 // |remainder| == 1 then we don't have to do anything.
360 const int remainder = (size - 1) & 0x7;
361 if (remainder > 1) {
362 const uint16x8_t src_1 = vld1q_u16(dst_buffer + i);
363 const uint16x8_t src_2 = vld1q_u16(dst_buffer + i + 1);
364 const uint16x8_t sum_02 = vmulq_n_u16(vaddq_u16(src_0, src_2), krn0);
365 const uint16x8_t sum = vmlaq_n_u16(sum_02, src_1, krn1);
366 const uint16x8_t result = vrshrq_n_u16(sum, 4);
367 const uint16x8_t mask = vld1q_u16(kRemainderMask[remainder]);
368 const uint16x8_t dst_remainder = vbslq_u16(mask, result, src_1);
369 vst1q_u16(dst_buffer + i, dst_remainder);
370 }
371
372 dst_buffer[size - 1] = last_val;
373 return;
374 }
375
376 assert(strength == 3);
377 // 5 tap filter. The first element requires duplicating |buffer[0]| and the
378 // last two elements require duplicating |buffer[size - 1]|.
379 uint16_t special_vals[3];
380 special_vals[0] = RightShiftWithRounding(
381 (dst_buffer[0] << 1) + (dst_buffer[0] << 2) + (dst_buffer[1] << 2) +
382 (dst_buffer[2] << 2) + (dst_buffer[3] << 1),
383 4);
384 // Clamp index for very small |size| values.
385 const int first_index_min = std::max(size - 4, 0);
386 const int second_index_min = std::max(size - 3, 0);
387 const int third_index_min = std::max(size - 2, 0);
388 special_vals[1] = RightShiftWithRounding(
389 (dst_buffer[first_index_min] << 1) + (dst_buffer[second_index_min] << 2) +
390 (dst_buffer[third_index_min] << 2) + (dst_buffer[size - 1] << 2) +
391 (dst_buffer[size - 1] << 1),
392 4);
393 special_vals[2] = RightShiftWithRounding(
394 (dst_buffer[second_index_min] << 1) + (dst_buffer[third_index_min] << 2) +
395 // x << 2 + x << 2 == x << 3
396 (dst_buffer[size - 1] << 3) + (dst_buffer[size - 1] << 1),
397 4);
398
399 // The first two values we need get overwritten by the output from the
400 // previous iteration.
401 uint16x8_t src_0 = vld1q_u16(dst_buffer - 1);
402 uint16x8_t src_1 = vld1q_u16(dst_buffer);
403 int i = 1;
404
405 for (; i < size - 7; i += 8) {
406 // Loading these at the end of the block with |src_[01]| will read past
407 // the end of |top_row_data[160]|, the source of |buffer|.
408 const uint16x8_t src_2 = vld1q_u16(dst_buffer + i);
409 const uint16x8_t src_3 = vld1q_u16(dst_buffer + i + 1);
410 const uint16x8_t src_4 = vld1q_u16(dst_buffer + i + 2);
411 const uint16x8_t sum_04 = vshlq_n_u16(vaddq_u16(src_0, src_4), 1);
412 const uint16x8_t sum_123 = vaddq_u16(vaddq_u16(src_1, src_2), src_3);
413 const uint16x8_t sum = vaddq_u16(sum_04, vshlq_n_u16(sum_123, 2));
414 const uint16x8_t result = vrshrq_n_u16(sum, 4);
415
416 // Load the next before overwriting.
417 src_0 = vld1q_u16(dst_buffer + i + 6);
418 src_1 = vld1q_u16(dst_buffer + i + 7);
419
420 vst1q_u16(dst_buffer + i, result);
421 }
422
423 const int remainder = (size - 1) & 0x7;
424 // Like the 3 tap but if there are two remaining values we have already
425 // calculated them.
426 if (remainder > 2) {
427 const uint16x8_t src_2 = vld1q_u16(dst_buffer + i);
428 const uint16x8_t src_3 = vld1q_u16(dst_buffer + i + 1);
429 const uint16x8_t src_4 = vld1q_u16(dst_buffer + i + 2);
430 const uint16x8_t sum_04 = vshlq_n_u16(vaddq_u16(src_0, src_4), 1);
431 const uint16x8_t sum_123 = vaddq_u16(vaddq_u16(src_1, src_2), src_3);
432 const uint16x8_t sum = vaddq_u16(sum_04, vshlq_n_u16(sum_123, 2));
433 const uint16x8_t result = vrshrq_n_u16(sum, 4);
434 const uint16x8_t mask = vld1q_u16(kRemainderMask[remainder]);
435 const uint16x8_t dst_remainder = vbslq_u16(mask, result, src_2);
436 vst1q_u16(dst_buffer + i, dst_remainder);
437 }
438
439 dst_buffer[1] = special_vals[0];
440 // Avoid overwriting |dst_buffer[0]|.
441 if (size > 2) dst_buffer[size - 2] = special_vals[1];
442 dst_buffer[size - 1] = special_vals[2];
443 }
444
IntraEdgeUpsampler_NEON(void * buffer,const int size)445 void IntraEdgeUpsampler_NEON(void* buffer, const int size) {
446 assert(size % 4 == 0 && size <= 16);
447 auto* const pixel_buffer = static_cast<uint16_t*>(buffer);
448
449 // Extend first/last samples
450 pixel_buffer[-2] = pixel_buffer[-1];
451 pixel_buffer[size] = pixel_buffer[size - 1];
452
453 const int16x8_t src_lo = vreinterpretq_s16_u16(vld1q_u16(pixel_buffer - 2));
454 const int16x8_t src_hi =
455 vreinterpretq_s16_u16(vld1q_u16(pixel_buffer - 2 + 8));
456 const int16x8_t src9_hi = vaddq_s16(src_hi, vshlq_n_s16(src_hi, 3));
457 const int16x8_t src9_lo = vaddq_s16(src_lo, vshlq_n_s16(src_lo, 3));
458
459 int16x8_t sum_lo = vsubq_s16(vextq_s16(src9_lo, src9_hi, 1), src_lo);
460 sum_lo = vaddq_s16(sum_lo, vextq_s16(src9_lo, src9_hi, 2));
461 sum_lo = vsubq_s16(sum_lo, vextq_s16(src_lo, src_hi, 3));
462 sum_lo = vrshrq_n_s16(sum_lo, 4);
463
464 uint16x8x2_t result_lo;
465 result_lo.val[0] =
466 vminq_u16(vreinterpretq_u16_s16(vmaxq_s16(sum_lo, vdupq_n_s16(0))),
467 vdupq_n_u16((1 << kBitdepth10) - 1));
468 result_lo.val[1] = vreinterpretq_u16_s16(vextq_s16(src_lo, src_hi, 2));
469
470 if (size > 8) {
471 const int16x8_t src_hi_extra =
472 vreinterpretq_s16_u16(vld1q_u16(pixel_buffer + 16 - 2));
473 const int16x8_t src9_hi_extra =
474 vaddq_s16(src_hi_extra, vshlq_n_s16(src_hi_extra, 3));
475
476 int16x8_t sum_hi = vsubq_s16(vextq_s16(src9_hi, src9_hi_extra, 1), src_hi);
477 sum_hi = vaddq_s16(sum_hi, vextq_s16(src9_hi, src9_hi_extra, 2));
478 sum_hi = vsubq_s16(sum_hi, vextq_s16(src_hi, src_hi_extra, 3));
479 sum_hi = vrshrq_n_s16(sum_hi, 4);
480
481 uint16x8x2_t result_hi;
482 result_hi.val[0] =
483 vminq_u16(vreinterpretq_u16_s16(vmaxq_s16(sum_hi, vdupq_n_s16(0))),
484 vdupq_n_u16((1 << kBitdepth10) - 1));
485 result_hi.val[1] =
486 vreinterpretq_u16_s16(vextq_s16(src_hi, src_hi_extra, 2));
487 vst2q_u16(pixel_buffer - 1, result_lo);
488 vst2q_u16(pixel_buffer + 15, result_hi);
489 } else {
490 vst2q_u16(pixel_buffer - 1, result_lo);
491 }
492 }
493
Init10bpp()494 void Init10bpp() {
495 Dsp* dsp = dsp_internal::GetWritableDspTable(kBitdepth10);
496 assert(dsp != nullptr);
497 dsp->intra_edge_filter = IntraEdgeFilter_NEON;
498 dsp->intra_edge_upsampler = IntraEdgeUpsampler_NEON;
499 }
500
501 } // namespace
502 } // namespace high_bitdepth
503 #endif // LIBGAV1_MAX_BITDEPTH >= 10
504
IntraEdgeInit_NEON()505 void IntraEdgeInit_NEON() {
506 low_bitdepth::Init8bpp();
507 #if LIBGAV1_MAX_BITDEPTH >= 10
508 high_bitdepth::Init10bpp();
509 #endif
510 }
511
512 } // namespace dsp
513 } // namespace libgav1
514
515 #else // !LIBGAV1_ENABLE_NEON
516 namespace libgav1 {
517 namespace dsp {
518
IntraEdgeInit_NEON()519 void IntraEdgeInit_NEON() {}
520
521 } // namespace dsp
522 } // namespace libgav1
523 #endif // LIBGAV1_ENABLE_NEON
524