1 // Copyright 2021 The libgav1 Authors
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "src/dsp/intrapred_directional.h"
16
17 #include <cmath>
18 #include <cstddef>
19 #include <cstdint>
20 #include <cstring>
21 #include <memory>
22 #include <ostream>
23
24 #include "absl/strings/match.h"
25 #include "absl/time/clock.h"
26 #include "absl/time/time.h"
27 #include "gtest/gtest.h"
28 #include "src/dsp/constants.h"
29 #include "src/dsp/dsp.h"
30 #include "src/utils/common.h"
31 #include "src/utils/compiler_attributes.h"
32 #include "src/utils/constants.h"
33 #include "src/utils/cpu.h"
34 #include "src/utils/memory.h"
35 #include "tests/block_utils.h"
36 #include "tests/third_party/libvpx/acm_random.h"
37 #include "tests/utils.h"
38
39 namespace libgav1 {
40 namespace dsp {
41 namespace {
42
43 constexpr int kMaxBlockSize = 64;
44 constexpr int kTotalPixels = kMaxBlockSize * kMaxBlockSize;
45 constexpr int kNumDirectionalIntraPredictors = 3;
46
47 constexpr int kBaseAngles[] = {45, 67, 90, 113, 135, 157, 180, 203};
48
49 const char* const kDirectionalPredNames[kNumDirectionalIntraPredictors] = {
50 "kDirectionalIntraPredictorZone1", "kDirectionalIntraPredictorZone2",
51 "kDirectionalIntraPredictorZone3"};
52
GetDirectionalIntraPredictorDerivative(const int angle)53 int16_t GetDirectionalIntraPredictorDerivative(const int angle) {
54 EXPECT_GE(angle, 3);
55 EXPECT_LE(angle, 87);
56 return kDirectionalIntraPredictorDerivative[DivideBy2(angle) - 1];
57 }
58
59 template <int bitdepth, typename Pixel>
60 class IntraPredTestBase : public testing::TestWithParam<TransformSize>,
61 public test_utils::MaxAlignedAllocable {
62 public:
63 static_assert(bitdepth >= kBitdepth8 && bitdepth <= LIBGAV1_MAX_BITDEPTH, "");
IntraPredTestBase()64 IntraPredTestBase() {
65 switch (tx_size_) {
66 case kNumTransformSizes:
67 EXPECT_NE(tx_size_, kNumTransformSizes);
68 break;
69 default:
70 block_width_ = kTransformWidth[tx_size_];
71 block_height_ = kTransformHeight[tx_size_];
72 break;
73 }
74 }
75
76 IntraPredTestBase(const IntraPredTestBase&) = delete;
77 IntraPredTestBase& operator=(const IntraPredTestBase&) = delete;
78 ~IntraPredTestBase() override = default;
79
80 protected:
81 struct IntraPredMem {
Resetlibgav1::dsp::__anonab1825120111::IntraPredTestBase::IntraPredMem82 void Reset(libvpx_test::ACMRandom* rnd) {
83 ASSERT_NE(rnd, nullptr);
84 #if LIBGAV1_MSAN
85 // Match the behavior of Tile::IntraPrediction to prevent warnings due to
86 // assembly code (safely) overreading to fill a register.
87 memset(left_mem, 0, sizeof(left_mem));
88 memset(top_mem, 0, sizeof(top_mem));
89 #endif // LIBGAV1_MSAN
90 Pixel* const left = left_mem + 16;
91 Pixel* const top = top_mem + 16;
92 const int mask = (1 << bitdepth) - 1;
93 for (auto& r : ref_src) r = rnd->Rand16() & mask;
94 for (int i = 0; i < kMaxBlockSize; ++i) left[i] = rnd->Rand16() & mask;
95 for (int i = -1; i < kMaxBlockSize; ++i) top[i] = rnd->Rand16() & mask;
96
97 // Some directional predictors require top-right, bottom-left.
98 for (int i = kMaxBlockSize; i < 2 * kMaxBlockSize; ++i) {
99 left[i] = rnd->Rand16() & mask;
100 top[i] = rnd->Rand16() & mask;
101 }
102 // TODO(jzern): reorder this and regenerate the digests after switching
103 // random number generators.
104 // Upsampling in the directional predictors extends left/top[-1] to [-2].
105 left[-1] = rnd->Rand16() & mask;
106 left[-2] = rnd->Rand16() & mask;
107 top[-2] = rnd->Rand16() & mask;
108 memset(left_mem, 0, sizeof(left_mem[0]) * 14);
109 memset(top_mem, 0, sizeof(top_mem[0]) * 14);
110 memset(top_mem + kMaxBlockSize * 2 + 16, 0,
111 sizeof(top_mem[0]) * kTopMemPadding);
112 }
113
114 // Set ref_src, top-left, top and left to |pixel|.
Setlibgav1::dsp::__anonab1825120111::IntraPredTestBase::IntraPredMem115 void Set(const Pixel pixel) {
116 #if LIBGAV1_MSAN
117 // Match the behavior of Tile::IntraPrediction to prevent warnings due to
118 // assembly code (safely) overreading to fill a register.
119 memset(left_mem, 0, sizeof(left_mem));
120 memset(top_mem, 0, sizeof(top_mem));
121 #endif // LIBGAV1_MSAN
122 Pixel* const left = left_mem + 16;
123 Pixel* const top = top_mem + 16;
124 for (auto& r : ref_src) r = pixel;
125 // Upsampling in the directional predictors extends left/top[-1] to [-2].
126 for (int i = -2; i < 2 * kMaxBlockSize; ++i) {
127 left[i] = top[i] = pixel;
128 }
129 }
130
131 // DirectionalZone1_Large() overreads up to 7 pixels in |top_mem|.
132 static constexpr int kTopMemPadding = 7;
133 alignas(kMaxAlignment) Pixel dst[kTotalPixels];
134 alignas(kMaxAlignment) Pixel ref_src[kTotalPixels];
135 alignas(kMaxAlignment) Pixel left_mem[kMaxBlockSize * 2 + 16];
136 alignas(
137 kMaxAlignment) Pixel top_mem[kMaxBlockSize * 2 + 16 + kTopMemPadding];
138 };
139
SetUp()140 void SetUp() override { test_utils::ResetDspTable(bitdepth); }
141
142 const TransformSize tx_size_ = GetParam();
143 int block_width_;
144 int block_height_;
145 IntraPredMem intra_pred_mem_;
146 };
147
148 //------------------------------------------------------------------------------
149 // DirectionalIntraPredTest
150
151 template <int bitdepth, typename Pixel>
152 class DirectionalIntraPredTest : public IntraPredTestBase<bitdepth, Pixel> {
153 public:
154 static_assert(bitdepth >= kBitdepth8 && bitdepth <= LIBGAV1_MAX_BITDEPTH, "");
155 DirectionalIntraPredTest() = default;
156 DirectionalIntraPredTest(const DirectionalIntraPredTest&) = delete;
157 DirectionalIntraPredTest& operator=(const DirectionalIntraPredTest&) = delete;
158 ~DirectionalIntraPredTest() override = default;
159
160 protected:
161 using IntraPredTestBase<bitdepth, Pixel>::tx_size_;
162 using IntraPredTestBase<bitdepth, Pixel>::block_width_;
163 using IntraPredTestBase<bitdepth, Pixel>::block_height_;
164 using IntraPredTestBase<bitdepth, Pixel>::intra_pred_mem_;
165
166 enum Zone { kZone1, kZone2, kZone3, kNumZones };
167
168 enum { kAngleDeltaStart = -9, kAngleDeltaStop = 9, kAngleDeltaStep = 3 };
169
SetUp()170 void SetUp() override {
171 IntraPredTestBase<bitdepth, Pixel>::SetUp();
172 IntraPredDirectionalInit_C();
173
174 const Dsp* const dsp = GetDspTable(bitdepth);
175 ASSERT_NE(dsp, nullptr);
176 base_directional_intra_pred_zone1_ = dsp->directional_intra_predictor_zone1;
177 base_directional_intra_pred_zone2_ = dsp->directional_intra_predictor_zone2;
178 base_directional_intra_pred_zone3_ = dsp->directional_intra_predictor_zone3;
179
180 const testing::TestInfo* const test_info =
181 testing::UnitTest::GetInstance()->current_test_info();
182 const char* const test_case = test_info->test_suite_name();
183 if (absl::StartsWith(test_case, "C/")) {
184 base_directional_intra_pred_zone1_ = nullptr;
185 base_directional_intra_pred_zone2_ = nullptr;
186 base_directional_intra_pred_zone3_ = nullptr;
187 } else if (absl::StartsWith(test_case, "NEON/")) {
188 IntraPredDirectionalInit_NEON();
189 } else if (absl::StartsWith(test_case, "SSE41/")) {
190 if ((GetCpuInfo() & kSSE4_1) == 0) GTEST_SKIP() << "No SSE4.1 support!";
191 IntraPredDirectionalInit_SSE4_1();
192 } else {
193 FAIL() << "Unrecognized architecture prefix in test case name: "
194 << test_case;
195 }
196
197 cur_directional_intra_pred_zone1_ = dsp->directional_intra_predictor_zone1;
198 cur_directional_intra_pred_zone2_ = dsp->directional_intra_predictor_zone2;
199 cur_directional_intra_pred_zone3_ = dsp->directional_intra_predictor_zone3;
200
201 // Skip functions that haven't been specialized for this particular
202 // architecture.
203 if (cur_directional_intra_pred_zone1_ ==
204 base_directional_intra_pred_zone1_) {
205 cur_directional_intra_pred_zone1_ = nullptr;
206 }
207 if (cur_directional_intra_pred_zone2_ ==
208 base_directional_intra_pred_zone2_) {
209 cur_directional_intra_pred_zone2_ = nullptr;
210 }
211 if (cur_directional_intra_pred_zone3_ ==
212 base_directional_intra_pred_zone3_) {
213 cur_directional_intra_pred_zone3_ = nullptr;
214 }
215 }
216
IsEdgeUpsampled(int delta,const int filter_type) const217 bool IsEdgeUpsampled(int delta, const int filter_type) const {
218 delta = std::abs(delta);
219 if (delta == 0 || delta >= 40) return false;
220 const int block_wh = block_width_ + block_height_;
221 return (filter_type == 1) ? block_wh <= 8 : block_wh <= 16;
222 }
223
224 // Returns the minimum and maximum (exclusive) range of angles that the
225 // predictor should be applied to.
GetZoneAngleRange(const Zone zone,int * const min_angle,int * const max_angle) const226 void GetZoneAngleRange(const Zone zone, int* const min_angle,
227 int* const max_angle) const {
228 ASSERT_NE(min_angle, nullptr);
229 ASSERT_NE(max_angle, nullptr);
230 switch (zone) {
231 // The overall minimum angle comes from mode D45_PRED, yielding:
232 // min_angle = 45-(MAX_ANGLE_DELTA*ANGLE_STEP) = 36
233 // The overall maximum angle comes from mode D203_PRED, yielding:
234 // max_angle = 203+(MAX_ANGLE_DELTA*ANGLE_STEP) = 212
235 // The angles 180 and 90 are not permitted because they correspond to
236 // V_PRED and H_PRED, which are handled in distinct functions.
237 case kZone1:
238 *min_angle = 36;
239 *max_angle = 87;
240 break;
241 case kZone2:
242 *min_angle = 93;
243 *max_angle = 177;
244 break;
245 case kZone3:
246 *min_angle = 183;
247 *max_angle = 212;
248 break;
249 case kNumZones:
250 FAIL() << "Invalid zone value: " << zone;
251 break;
252 }
253 }
254
255 // These tests modify intra_pred_mem_.
256 void TestSpeed(const char* const digests[kNumDirectionalIntraPredictors],
257 Zone zone, int num_runs);
258 void TestSaturatedValues();
259 void TestRandomValues();
260
261 DirectionalIntraPredictorZone1Func base_directional_intra_pred_zone1_;
262 DirectionalIntraPredictorZone2Func base_directional_intra_pred_zone2_;
263 DirectionalIntraPredictorZone3Func base_directional_intra_pred_zone3_;
264 DirectionalIntraPredictorZone1Func cur_directional_intra_pred_zone1_;
265 DirectionalIntraPredictorZone2Func cur_directional_intra_pred_zone2_;
266 DirectionalIntraPredictorZone3Func cur_directional_intra_pred_zone3_;
267 };
268
269 template <int bitdepth, typename Pixel>
TestSpeed(const char * const digests[kNumDirectionalIntraPredictors],const Zone zone,const int num_runs)270 void DirectionalIntraPredTest<bitdepth, Pixel>::TestSpeed(
271 const char* const digests[kNumDirectionalIntraPredictors], const Zone zone,
272 const int num_runs) {
273 switch (zone) {
274 case kZone1:
275 if (cur_directional_intra_pred_zone1_ == nullptr) return;
276 break;
277 case kZone2:
278 if (cur_directional_intra_pred_zone2_ == nullptr) return;
279 break;
280 case kZone3:
281 if (cur_directional_intra_pred_zone3_ == nullptr) return;
282 break;
283 case kNumZones:
284 FAIL() << "Invalid zone value: " << zone;
285 break;
286 }
287 ASSERT_NE(digests, nullptr);
288 const Pixel* const left = intra_pred_mem_.left_mem + 16;
289 const Pixel* const top = intra_pred_mem_.top_mem + 16;
290
291 libvpx_test::ACMRandom rnd(libvpx_test::ACMRandom::DeterministicSeed());
292 intra_pred_mem_.Reset(&rnd);
293
294 // Allocate separate blocks for each angle + filter + upsampled combination.
295 // Add a 1 pixel right border to test for overwrites.
296 static constexpr int kMaxZoneAngles = 27; // zone 2
297 static constexpr int kMaxFilterTypes = 2;
298 static constexpr int kBlockBorder = 1;
299 static constexpr int kBorderSize =
300 kBlockBorder * kMaxZoneAngles * kMaxFilterTypes;
301 const int ref_stride =
302 kMaxZoneAngles * kMaxFilterTypes * block_width_ + kBorderSize;
303 const size_t ref_alloc_size = sizeof(Pixel) * ref_stride * block_height_;
304
305 using AlignedPtr = std::unique_ptr<Pixel[], decltype(&AlignedFree)>;
306 AlignedPtr ref_src(static_cast<Pixel*>(AlignedAlloc(16, ref_alloc_size)),
307 &AlignedFree);
308 AlignedPtr dest(static_cast<Pixel*>(AlignedAlloc(16, ref_alloc_size)),
309 &AlignedFree);
310 ASSERT_NE(ref_src, nullptr);
311 ASSERT_NE(dest, nullptr);
312
313 const int mask = (1 << bitdepth) - 1;
314 for (size_t i = 0; i < ref_alloc_size / sizeof(ref_src[0]); ++i) {
315 ref_src[i] = rnd.Rand16() & mask;
316 }
317
318 int min_angle = 0, max_angle = 0;
319 ASSERT_NO_FATAL_FAILURE(GetZoneAngleRange(zone, &min_angle, &max_angle));
320
321 absl::Duration elapsed_time;
322 for (int run = 0; run < num_runs; ++run) {
323 Pixel* dst = dest.get();
324 memcpy(dst, ref_src.get(), ref_alloc_size);
325 for (const auto& base_angle : kBaseAngles) {
326 for (int filter_type = 0; filter_type <= 1; ++filter_type) {
327 for (int angle_delta = kAngleDeltaStart; angle_delta <= kAngleDeltaStop;
328 angle_delta += kAngleDeltaStep) {
329 const int predictor_angle = base_angle + angle_delta;
330 if (predictor_angle < min_angle || predictor_angle > max_angle) {
331 continue;
332 }
333
334 ASSERT_GT(predictor_angle, 0) << "base_angle: " << base_angle
335 << " angle_delta: " << angle_delta;
336 const bool upsampled_left =
337 IsEdgeUpsampled(predictor_angle - 180, filter_type);
338 const bool upsampled_top =
339 IsEdgeUpsampled(predictor_angle - 90, filter_type);
340 const ptrdiff_t stride = ref_stride * sizeof(ref_src[0]);
341 if (predictor_angle < 90) {
342 ASSERT_EQ(zone, kZone1);
343 const int xstep =
344 GetDirectionalIntraPredictorDerivative(predictor_angle);
345 const absl::Time start = absl::Now();
346 cur_directional_intra_pred_zone1_(dst, stride, top, block_width_,
347 block_height_, xstep,
348 upsampled_top);
349 elapsed_time += absl::Now() - start;
350 } else if (predictor_angle < 180) {
351 ASSERT_EQ(zone, kZone2);
352 const int xstep =
353 GetDirectionalIntraPredictorDerivative(180 - predictor_angle);
354 const int ystep =
355 GetDirectionalIntraPredictorDerivative(predictor_angle - 90);
356 const absl::Time start = absl::Now();
357 cur_directional_intra_pred_zone2_(
358 dst, stride, top, left, block_width_, block_height_, xstep,
359 ystep, upsampled_top, upsampled_left);
360 elapsed_time += absl::Now() - start;
361 } else {
362 ASSERT_EQ(zone, kZone3);
363 ASSERT_LT(predictor_angle, 270);
364 const int ystep =
365 GetDirectionalIntraPredictorDerivative(270 - predictor_angle);
366 const absl::Time start = absl::Now();
367 cur_directional_intra_pred_zone3_(dst, stride, left, block_width_,
368 block_height_, ystep,
369 upsampled_left);
370 elapsed_time += absl::Now() - start;
371 }
372 dst += block_width_ + kBlockBorder;
373 }
374 }
375 }
376 }
377
378 test_utils::CheckMd5Digest(ToString(tx_size_), kDirectionalPredNames[zone],
379 digests[zone], dest.get(), ref_alloc_size,
380 elapsed_time);
381 }
382
383 template <int bitdepth, typename Pixel>
TestSaturatedValues()384 void DirectionalIntraPredTest<bitdepth, Pixel>::TestSaturatedValues() {
385 const Pixel* const left = intra_pred_mem_.left_mem + 16;
386 const Pixel* const top = intra_pred_mem_.top_mem + 16;
387 const auto kMaxPixel = static_cast<Pixel>((1 << bitdepth) - 1);
388 intra_pred_mem_.Set(kMaxPixel);
389
390 for (int i = kZone1; i < kNumZones; ++i) {
391 switch (i) {
392 case kZone1:
393 if (cur_directional_intra_pred_zone1_ == nullptr) continue;
394 break;
395 case kZone2:
396 if (cur_directional_intra_pred_zone2_ == nullptr) continue;
397 break;
398 case kZone3:
399 if (cur_directional_intra_pred_zone3_ == nullptr) continue;
400 break;
401 case kNumZones:
402 FAIL() << "Invalid zone value: " << i;
403 break;
404 }
405 int min_angle = 0, max_angle = 0;
406 ASSERT_NO_FATAL_FAILURE(
407 GetZoneAngleRange(static_cast<Zone>(i), &min_angle, &max_angle));
408
409 for (const auto& base_angle : kBaseAngles) {
410 for (int filter_type = 0; filter_type <= 1; ++filter_type) {
411 for (int angle_delta = kAngleDeltaStart; angle_delta <= kAngleDeltaStop;
412 angle_delta += kAngleDeltaStep) {
413 const int predictor_angle = base_angle + angle_delta;
414 if (predictor_angle <= min_angle || predictor_angle >= max_angle) {
415 continue;
416 }
417 ASSERT_GT(predictor_angle, 0) << "base_angle: " << base_angle
418 << " angle_delta: " << angle_delta;
419
420 memcpy(intra_pred_mem_.dst, intra_pred_mem_.ref_src,
421 sizeof(intra_pred_mem_.dst));
422
423 const bool upsampled_left =
424 IsEdgeUpsampled(predictor_angle - 180, filter_type);
425 const bool upsampled_top =
426 IsEdgeUpsampled(predictor_angle - 90, filter_type);
427 const ptrdiff_t stride = kMaxBlockSize * sizeof(Pixel);
428 if (predictor_angle < 90) {
429 const int xstep =
430 GetDirectionalIntraPredictorDerivative(predictor_angle);
431 cur_directional_intra_pred_zone1_(intra_pred_mem_.dst, stride, top,
432 block_width_, block_height_,
433 xstep, upsampled_top);
434 } else if (predictor_angle < 180) {
435 const int xstep =
436 GetDirectionalIntraPredictorDerivative(180 - predictor_angle);
437 const int ystep =
438 GetDirectionalIntraPredictorDerivative(predictor_angle - 90);
439 cur_directional_intra_pred_zone2_(
440 intra_pred_mem_.dst, stride, top, left, block_width_,
441 block_height_, xstep, ystep, upsampled_top, upsampled_left);
442 } else {
443 ASSERT_LT(predictor_angle, 270);
444 const int ystep =
445 GetDirectionalIntraPredictorDerivative(270 - predictor_angle);
446 cur_directional_intra_pred_zone3_(intra_pred_mem_.dst, stride, left,
447 block_width_, block_height_,
448 ystep, upsampled_left);
449 }
450
451 if (!test_utils::CompareBlocks(
452 intra_pred_mem_.dst, intra_pred_mem_.ref_src, block_width_,
453 block_height_, kMaxBlockSize, kMaxBlockSize, true)) {
454 ADD_FAILURE() << "Expected " << kDirectionalPredNames[i]
455 << " (angle: " << predictor_angle
456 << " filter type: " << filter_type
457 << ") to produce a block containing '"
458 << static_cast<int>(kMaxPixel) << "'";
459 return;
460 }
461 }
462 }
463 }
464 }
465 }
466
467 template <int bitdepth, typename Pixel>
TestRandomValues()468 void DirectionalIntraPredTest<bitdepth, Pixel>::TestRandomValues() {
469 const Pixel* const left = intra_pred_mem_.left_mem + 16;
470 const Pixel* const top = intra_pred_mem_.top_mem + 16;
471 // Use an alternate seed to differentiate this test from TestSpeed().
472 libvpx_test::ACMRandom rnd(test_utils::kAlternateDeterministicSeed);
473
474 for (int i = kZone1; i < kNumZones; ++i) {
475 // Only run when there is a reference version (base) and a different
476 // optimized version (cur).
477 switch (i) {
478 case kZone1:
479 if (base_directional_intra_pred_zone1_ == nullptr ||
480 cur_directional_intra_pred_zone1_ == nullptr) {
481 continue;
482 }
483 break;
484 case kZone2:
485 if (base_directional_intra_pred_zone2_ == nullptr ||
486 cur_directional_intra_pred_zone2_ == nullptr) {
487 continue;
488 }
489 break;
490 case kZone3:
491 if (base_directional_intra_pred_zone3_ == nullptr ||
492 cur_directional_intra_pred_zone3_ == nullptr) {
493 continue;
494 }
495 break;
496 case kNumZones:
497 FAIL() << "Invalid zone value: " << i;
498 break;
499 }
500 int min_angle = 0, max_angle = 0;
501 ASSERT_NO_FATAL_FAILURE(
502 GetZoneAngleRange(static_cast<Zone>(i), &min_angle, &max_angle));
503
504 for (const auto& base_angle : kBaseAngles) {
505 for (int n = 0; n < 1000; ++n) {
506 for (int filter_type = 0; filter_type <= 1; ++filter_type) {
507 for (int angle_delta = kAngleDeltaStart;
508 angle_delta <= kAngleDeltaStop; angle_delta += kAngleDeltaStep) {
509 const int predictor_angle = base_angle + angle_delta;
510 if (predictor_angle <= min_angle || predictor_angle >= max_angle) {
511 continue;
512 }
513 ASSERT_GT(predictor_angle, 0) << "base_angle: " << base_angle
514 << " angle_delta: " << angle_delta;
515
516 intra_pred_mem_.Reset(&rnd);
517 memcpy(intra_pred_mem_.dst, intra_pred_mem_.ref_src,
518 sizeof(intra_pred_mem_.dst));
519
520 const bool upsampled_left =
521 IsEdgeUpsampled(predictor_angle - 180, filter_type);
522 const bool upsampled_top =
523 IsEdgeUpsampled(predictor_angle - 90, filter_type);
524 const ptrdiff_t stride = kMaxBlockSize * sizeof(Pixel);
525 if (predictor_angle < 90) {
526 const int xstep =
527 GetDirectionalIntraPredictorDerivative(predictor_angle);
528 base_directional_intra_pred_zone1_(
529 intra_pred_mem_.ref_src, stride, top, block_width_,
530 block_height_, xstep, upsampled_top);
531 cur_directional_intra_pred_zone1_(
532 intra_pred_mem_.dst, stride, top, block_width_, block_height_,
533 xstep, upsampled_top);
534 } else if (predictor_angle < 180) {
535 const int xstep =
536 GetDirectionalIntraPredictorDerivative(180 - predictor_angle);
537 const int ystep =
538 GetDirectionalIntraPredictorDerivative(predictor_angle - 90);
539 base_directional_intra_pred_zone2_(
540 intra_pred_mem_.ref_src, stride, top, left, block_width_,
541 block_height_, xstep, ystep, upsampled_top, upsampled_left);
542 cur_directional_intra_pred_zone2_(
543 intra_pred_mem_.dst, stride, top, left, block_width_,
544 block_height_, xstep, ystep, upsampled_top, upsampled_left);
545 } else {
546 ASSERT_LT(predictor_angle, 270);
547 const int ystep =
548 GetDirectionalIntraPredictorDerivative(270 - predictor_angle);
549 base_directional_intra_pred_zone3_(
550 intra_pred_mem_.ref_src, stride, left, block_width_,
551 block_height_, ystep, upsampled_left);
552 cur_directional_intra_pred_zone3_(
553 intra_pred_mem_.dst, stride, left, block_width_,
554 block_height_, ystep, upsampled_left);
555 }
556
557 if (!test_utils::CompareBlocks(
558 intra_pred_mem_.dst, intra_pred_mem_.ref_src, block_width_,
559 block_height_, kMaxBlockSize, kMaxBlockSize, true)) {
560 ADD_FAILURE() << "Result from optimized version of "
561 << kDirectionalPredNames[i]
562 << " differs from reference at angle "
563 << predictor_angle << " with filter type "
564 << filter_type << " in iteration #" << n;
565 return;
566 }
567 }
568 }
569 }
570 }
571 }
572 }
573
574 using DirectionalIntraPredTest8bpp = DirectionalIntraPredTest<8, uint8_t>;
575
GetDirectionalIntraPredDigests8bpp(TransformSize tx_size)576 const char* const* GetDirectionalIntraPredDigests8bpp(TransformSize tx_size) {
577 static const char* const kDigests4x4[kNumDirectionalIntraPredictors] = {
578 "9cfc1da729ad08682e165826c29b280b",
579 "bb73539c7afbda7bddd2184723b932d6",
580 "9d2882800ffe948196e984a26a2da72c",
581 };
582 static const char* const kDigests4x8[kNumDirectionalIntraPredictors] = {
583 "090efe6f83cc6fa301f65d3bbd5c38d2",
584 "d0fba4cdfb90f8bd293a94cae9db1a15",
585 "f7ad0eeab4389d0baa485d30fec87617",
586 };
587 static const char* const kDigests4x16[kNumDirectionalIntraPredictors] = {
588 "1d32b33c75fe85248c48cdc8caa78d84",
589 "7000e18159443d366129a6cc6ef8fcee",
590 "06c02fac5f8575f687abb3f634eb0b4c",
591 };
592 static const char* const kDigests8x4[kNumDirectionalIntraPredictors] = {
593 "1b591799685bc135982114b731293f78",
594 "5cd9099acb9f7b2618dafa6712666580",
595 "d023883efede88f99c19d006044d9fa1",
596 };
597 static const char* const kDigests8x8[kNumDirectionalIntraPredictors] = {
598 "f1e46ecf62a2516852f30c5025adb7ea",
599 "864442a209c16998065af28d8cdd839a",
600 "411a6e554868982af577de69e53f12e8",
601 };
602 static const char* const kDigests8x16[kNumDirectionalIntraPredictors] = {
603 "89278302be913a85cfb06feaea339459",
604 "6c42f1a9493490cd4529fd40729cec3c",
605 "2516b5e1c681e5dcb1acedd5f3d41106",
606 };
607 static const char* const kDigests8x32[kNumDirectionalIntraPredictors] = {
608 "aea7078f3eeaa8afbfe6c959c9e676f1",
609 "cad30babf12729dda5010362223ba65c",
610 "ff384ebdc832007775af418a2aae1463",
611 };
612 static const char* const kDigests16x4[kNumDirectionalIntraPredictors] = {
613 "964a821c313c831e12f4d32e616c0b55",
614 "adf6dad3a84ab4d16c16eea218bec57a",
615 "a54fa008d43895e523474686c48a81c2",
616 };
617 static const char* const kDigests16x8[kNumDirectionalIntraPredictors] = {
618 "fe2851b4e4f9fcf924cf17d50415a4c0",
619 "50a0e279c481437ff315d08eb904c733",
620 "0682065c8fb6cbf9be4949316c87c9e5",
621 };
622 static const char* const kDigests16x16[kNumDirectionalIntraPredictors] = {
623 "ef15503b1943642e7a0bace1616c0e11",
624 "bf1a4d3f855f1072a902a88ec6ce0350",
625 "7e87a03e29cd7fd843fd71b729a18f3f",
626 };
627 static const char* const kDigests16x32[kNumDirectionalIntraPredictors] = {
628 "f7b636615d2e5bf289b5db452a6f188d",
629 "e95858c532c10d00b0ce7a02a02121dd",
630 "34a18ccf58ef490f32268e85ce8c7de4",
631 };
632 static const char* const kDigests16x64[kNumDirectionalIntraPredictors] = {
633 "b250099986c2fab9670748598058846b",
634 "f25d80af4da862a9b6b72979f1e17cb4",
635 "5347dc7bc346733b4887f6c8ad5e0898",
636 };
637 static const char* const kDigests32x8[kNumDirectionalIntraPredictors] = {
638 "72e4c9f8af043b1cb1263490351818ab",
639 "1fc010d2df011b9e4e3d0957107c78df",
640 "f4cbfa3ca941ef08b972a68d7e7bafc4",
641 };
642 static const char* const kDigests32x16[kNumDirectionalIntraPredictors] = {
643 "37e5a1aaf7549d2bce08eece9d20f0f6",
644 "6a2794025d0aca414ab17baa3cf8251a",
645 "63dd37a6efdc91eeefef166c99ce2db1",
646 };
647 static const char* const kDigests32x32[kNumDirectionalIntraPredictors] = {
648 "198aabc958992eb49cceab97d1acb43e",
649 "aee88b6c8bacfcf38799fe338e6c66e7",
650 "01e8f8f96696636f6d79d33951907a16",
651 };
652 static const char* const kDigests32x64[kNumDirectionalIntraPredictors] = {
653 "0611390202c4f90f7add7aec763ded58",
654 "960240c7ceda2ccfac7c90b71460578a",
655 "7e7d97594aab8ad56e8c01c340335607",
656 };
657 static const char* const kDigests64x16[kNumDirectionalIntraPredictors] = {
658 "7e1f567e7fc510757f2d89d638bc826f",
659 "c929d687352ce40a58670be2ce3c8c90",
660 "f6881e6a9ba3c3d3d730b425732656b1",
661 };
662 static const char* const kDigests64x32[kNumDirectionalIntraPredictors] = {
663 "27b4c2a7081d4139f22003ba8b6dfdf2",
664 "301e82740866b9274108a04c872fa848",
665 "98d3aa4fef838f4abf00dac33806659f",
666 };
667 static const char* const kDigests64x64[kNumDirectionalIntraPredictors] = {
668 "b31816db8fade3accfd975b21aa264c7",
669 "2adce01a03b9452633d5830e1a9b4e23",
670 "7b988fadba8b07c36e88d7be6b270494",
671 };
672
673 switch (tx_size) {
674 case kTransformSize4x4:
675 return kDigests4x4;
676 case kTransformSize4x8:
677 return kDigests4x8;
678 case kTransformSize4x16:
679 return kDigests4x16;
680 case kTransformSize8x4:
681 return kDigests8x4;
682 case kTransformSize8x8:
683 return kDigests8x8;
684 case kTransformSize8x16:
685 return kDigests8x16;
686 case kTransformSize8x32:
687 return kDigests8x32;
688 case kTransformSize16x4:
689 return kDigests16x4;
690 case kTransformSize16x8:
691 return kDigests16x8;
692 case kTransformSize16x16:
693 return kDigests16x16;
694 case kTransformSize16x32:
695 return kDigests16x32;
696 case kTransformSize16x64:
697 return kDigests16x64;
698 case kTransformSize32x8:
699 return kDigests32x8;
700 case kTransformSize32x16:
701 return kDigests32x16;
702 case kTransformSize32x32:
703 return kDigests32x32;
704 case kTransformSize32x64:
705 return kDigests32x64;
706 case kTransformSize64x16:
707 return kDigests64x16;
708 case kTransformSize64x32:
709 return kDigests64x32;
710 case kTransformSize64x64:
711 return kDigests64x64;
712 default:
713 ADD_FAILURE() << "Unknown transform size: " << tx_size;
714 return nullptr;
715 }
716 }
717
TEST_P(DirectionalIntraPredTest8bpp,DISABLED_Speed)718 TEST_P(DirectionalIntraPredTest8bpp, DISABLED_Speed) {
719 #if LIBGAV1_ENABLE_NEON
720 const auto num_runs = static_cast<int>(2e5 / (block_width_ * block_height_));
721 #else
722 const int num_runs = static_cast<int>(4e7 / (block_width_ * block_height_));
723 #endif
724 for (int i = kZone1; i < kNumZones; ++i) {
725 TestSpeed(GetDirectionalIntraPredDigests8bpp(tx_size_),
726 static_cast<Zone>(i), num_runs);
727 }
728 }
729
TEST_P(DirectionalIntraPredTest8bpp,FixedInput)730 TEST_P(DirectionalIntraPredTest8bpp, FixedInput) {
731 for (int i = kZone1; i < kNumZones; ++i) {
732 TestSpeed(GetDirectionalIntraPredDigests8bpp(tx_size_),
733 static_cast<Zone>(i), 1);
734 }
735 }
736
TEST_P(DirectionalIntraPredTest8bpp,Overflow)737 TEST_P(DirectionalIntraPredTest8bpp, Overflow) { TestSaturatedValues(); }
TEST_P(DirectionalIntraPredTest8bpp,Random)738 TEST_P(DirectionalIntraPredTest8bpp, Random) { TestRandomValues(); }
739
740 //------------------------------------------------------------------------------
741
742 #if LIBGAV1_MAX_BITDEPTH >= 10
743 using DirectionalIntraPredTest10bpp = DirectionalIntraPredTest<10, uint16_t>;
744
GetDirectionalIntraPredDigests10bpp(TransformSize tx_size)745 const char* const* GetDirectionalIntraPredDigests10bpp(TransformSize tx_size) {
746 static const char* const kDigests4x4[kNumDirectionalIntraPredictors] = {
747 "a683f4d7ccd978737615f61ecb4d638d",
748 "90c94374eaf7e9501f197863937b8639",
749 "0d3969cd081523ac6a906eecc7980c43",
750 };
751 static const char* const kDigests4x8[kNumDirectionalIntraPredictors] = {
752 "c3ffa2979b325644e4a56c882fe27347",
753 "1f61f5ee413a9a3b8d1d93869ec2aee0",
754 "4795ea944779ec4a783408769394d874",
755 };
756 static const char* const kDigests4x16[kNumDirectionalIntraPredictors] = {
757 "45c3282c9aa51024c1d64a40f230aa45",
758 "5cd47dd69f8bd0b15365a0c5cfc0a49a",
759 "06336c507b05f98c1d6a21abc43e6182",
760 };
761 static const char* const kDigests8x4[kNumDirectionalIntraPredictors] = {
762 "7370476ff0abbdc5e92f811b8879c861",
763 "a239a50adb28a4791b52a0dfff3bee06",
764 "4779a17f958a9ca04e8ec08c5aba1d36",
765 };
766 static const char* const kDigests8x8[kNumDirectionalIntraPredictors] = {
767 "305463f346c376594f82aad8304e0362",
768 "0cd481e5bda286c87a645417569fd948",
769 "48c7899dc9b7163b0b1f61b3a2b4b73e",
770 };
771 static const char* const kDigests8x16[kNumDirectionalIntraPredictors] = {
772 "5c18fd5339be90628c82b1fb6af50d5e",
773 "35eaa566ebd3bb7c903cfead5dc9ac78",
774 "9fdb0e790e5965810d02c02713c84071",
775 };
776 static const char* const kDigests8x32[kNumDirectionalIntraPredictors] = {
777 "2168d6cc858c704748b7b343ced2ac3a",
778 "1d3ce273107447faafd2e55877e48ffb",
779 "d344164049d1fe9b65a3ae8764bbbd37",
780 };
781 static const char* const kDigests16x4[kNumDirectionalIntraPredictors] = {
782 "dcef2cf51abe3fe150f388a14c762d30",
783 "6a810b289b1c14f8eab8ca1274e91ecd",
784 "c94da7c11f3fb11963d85c8804fce2d9",
785 };
786 static const char* const kDigests16x8[kNumDirectionalIntraPredictors] = {
787 "50a0d08b0d99b7a574bad2cfb36efc39",
788 "2dcb55874db39da70c8ca1318559f9fe",
789 "6390bcd30ff3bc389ecc0a0952bea531",
790 };
791 static const char* const kDigests16x16[kNumDirectionalIntraPredictors] = {
792 "7146c83c2620935606d49f3cb5876f41",
793 "2318ddf30c070a53c9b9cf199cd1b2c5",
794 "e9042e2124925aa7c1b6110617cb10e8",
795 };
796 static const char* const kDigests16x32[kNumDirectionalIntraPredictors] = {
797 "c970f401de7b7c5bb4e3ad447fcbef8f",
798 "a18cc70730eecdaa31dbcf4306ff490f",
799 "32c1528ad4a576a2210399d6b4ccd46e",
800 };
801 static const char* const kDigests16x64[kNumDirectionalIntraPredictors] = {
802 "00b3f0007da2e5d01380594a3d7162d5",
803 "1971af519e4a18967b7311f93efdd1b8",
804 "e6139769ce5a9c4982cfab9363004516",
805 };
806 static const char* const kDigests32x8[kNumDirectionalIntraPredictors] = {
807 "08107ad971179cc9f465ae5966bd4901",
808 "b215212a3c0dfe9182c4f2e903d731f7",
809 "791274416a0da87c674e1ae318b3ce09",
810 };
811 static const char* const kDigests32x16[kNumDirectionalIntraPredictors] = {
812 "94ea6cccae35b5d08799aa003ac08ccf",
813 "ae105e20e63fb55d4fd9d9e59dc62dde",
814 "973d0b2358ea585e4f486e7e645c5310",
815 };
816 static const char* const kDigests32x32[kNumDirectionalIntraPredictors] = {
817 "d14c695c4853ddf5e5d8256bc1d1ed60",
818 "6bd0ebeb53adecc11442b1218b870cb7",
819 "e03bc402a9999aba8272275dce93e89f",
820 };
821 static const char* const kDigests32x64[kNumDirectionalIntraPredictors] = {
822 "b21a8a8723758392ee659eeeae518a1e",
823 "e50285454896210ce44d6f04dfde05a7",
824 "f0f8ea0c6c2acc8d7d390927c3a90370",
825 };
826 static const char* const kDigests64x16[kNumDirectionalIntraPredictors] = {
827 "ce51db16fd4fa56e601631397b098c89",
828 "aa87a8635e02c1e91d13158c61e443f6",
829 "4c1ee3afd46ef34bd711a34d0bf86f13",
830 };
831 static const char* const kDigests64x32[kNumDirectionalIntraPredictors] = {
832 "25aaf5971e24e543e3e69a47254af777",
833 "eb6f444b3df127d69460778ab5bf8fc1",
834 "2f846cc0d506f90c0a58438600819817",
835 };
836 static const char* const kDigests64x64[kNumDirectionalIntraPredictors] = {
837 "b26ce5b5f4b5d4a438b52e5987877fb8",
838 "35721a00a70938111939cf69988d928e",
839 "0af7ec35939483fac82c246a13845806",
840 };
841
842 switch (tx_size) {
843 case kTransformSize4x4:
844 return kDigests4x4;
845 case kTransformSize4x8:
846 return kDigests4x8;
847 case kTransformSize4x16:
848 return kDigests4x16;
849 case kTransformSize8x4:
850 return kDigests8x4;
851 case kTransformSize8x8:
852 return kDigests8x8;
853 case kTransformSize8x16:
854 return kDigests8x16;
855 case kTransformSize8x32:
856 return kDigests8x32;
857 case kTransformSize16x4:
858 return kDigests16x4;
859 case kTransformSize16x8:
860 return kDigests16x8;
861 case kTransformSize16x16:
862 return kDigests16x16;
863 case kTransformSize16x32:
864 return kDigests16x32;
865 case kTransformSize16x64:
866 return kDigests16x64;
867 case kTransformSize32x8:
868 return kDigests32x8;
869 case kTransformSize32x16:
870 return kDigests32x16;
871 case kTransformSize32x32:
872 return kDigests32x32;
873 case kTransformSize32x64:
874 return kDigests32x64;
875 case kTransformSize64x16:
876 return kDigests64x16;
877 case kTransformSize64x32:
878 return kDigests64x32;
879 case kTransformSize64x64:
880 return kDigests64x64;
881 default:
882 ADD_FAILURE() << "Unknown transform size: " << tx_size;
883 return nullptr;
884 }
885 }
886
TEST_P(DirectionalIntraPredTest10bpp,DISABLED_Speed)887 TEST_P(DirectionalIntraPredTest10bpp, DISABLED_Speed) {
888 #if LIBGAV1_ENABLE_NEON
889 const int num_runs = static_cast<int>(2e5 / (block_width_ * block_height_));
890 #else
891 const int num_runs = static_cast<int>(4e7 / (block_width_ * block_height_));
892 #endif
893 for (int i = kZone1; i < kNumZones; ++i) {
894 TestSpeed(GetDirectionalIntraPredDigests10bpp(tx_size_),
895 static_cast<Zone>(i), num_runs);
896 }
897 }
898
TEST_P(DirectionalIntraPredTest10bpp,FixedInput)899 TEST_P(DirectionalIntraPredTest10bpp, FixedInput) {
900 for (int i = kZone1; i < kNumZones; ++i) {
901 TestSpeed(GetDirectionalIntraPredDigests10bpp(tx_size_),
902 static_cast<Zone>(i), 1);
903 }
904 }
905
TEST_P(DirectionalIntraPredTest10bpp,Overflow)906 TEST_P(DirectionalIntraPredTest10bpp, Overflow) { TestSaturatedValues(); }
TEST_P(DirectionalIntraPredTest10bpp,Random)907 TEST_P(DirectionalIntraPredTest10bpp, Random) { TestRandomValues(); }
908 #endif // LIBGAV1_MAX_BITDEPTH >= 10
909
910 //------------------------------------------------------------------------------
911
912 #if LIBGAV1_MAX_BITDEPTH == 12
913 using DirectionalIntraPredTest12bpp = DirectionalIntraPredTest<12, uint16_t>;
914
GetDirectionalIntraPredDigests12bpp(TransformSize tx_size)915 const char* const* GetDirectionalIntraPredDigests12bpp(TransformSize tx_size) {
916 static const char* const kDigests4x4[kNumDirectionalIntraPredictors] = {
917 "78f3297743f75e928e755b6ffa2d3050",
918 "7315da39861c6e3ef2e47c913e3be349",
919 "5609cb40b575f24d05880df202a60bd3",
920 };
921 static const char* const kDigests4x8[kNumDirectionalIntraPredictors] = {
922 "efb2363d3c25427abe198806c8ba4d6b",
923 "b5aaa41665a10e7e7944fb7fc90fd59a",
924 "5a85610342339ca3109d775fa18dc25c",
925 };
926 static const char* const kDigests4x16[kNumDirectionalIntraPredictors] = {
927 "9045679914980ea1f579d84509397b6e",
928 "f9f50bdc9f81a93095fd9d6998174aa7",
929 "46c1f82e85b8ba5b03bab41a2f561483",
930 };
931 static const char* const kDigests8x4[kNumDirectionalIntraPredictors] = {
932 "a0ae0956b2b667c528b7803d733d49da",
933 "5d9f60ef8904c4faedb6cfc19e54418a",
934 "4ffdcbbbcb23bca8286f1c286b9cb3e8",
935 };
936 static const char* const kDigests8x8[kNumDirectionalIntraPredictors] = {
937 "086116c6b116613b8b47a086726566ea",
938 "141dca7fcae0e4d4b88887a618271ea1",
939 "3575a34278aa0fb1eed934290982f4a7",
940 };
941 static const char* const kDigests8x16[kNumDirectionalIntraPredictors] = {
942 "7922f40216c78a40abaf675667e79493",
943 "55d20588240171df2e24d105ee1563ad",
944 "674b4d8f4dbf514d22e21cc4baeda1d3",
945 };
946 static const char* const kDigests8x32[kNumDirectionalIntraPredictors] = {
947 "32d4d7e256d3b304026ddb5430cf6a09",
948 "72f4be2569f4e067c252d51ff4030de3",
949 "6779a132e1bac0ac43c2373f56553ed8",
950 };
951 static const char* const kDigests16x4[kNumDirectionalIntraPredictors] = {
952 "1be2e0efc1403f9e22cfb8aeb28763d9",
953 "558c8a5418ac91d21a5839c454a9391f",
954 "7693ebef9b86416ebd6e78e98fcafba7",
955 };
956 static const char* const kDigests16x8[kNumDirectionalIntraPredictors] = {
957 "e6217ed1c673ae42e84f8757316b580d",
958 "028aa582c11a9733f0cd693211a067c5",
959 "082de9fc7c4bc80a8ec8522b5a5cb52c",
960 };
961 static const char* const kDigests16x16[kNumDirectionalIntraPredictors] = {
962 "e3b293c09bdc9c5c543ad046a3f0d64f",
963 "2de5803a6ed497c1039c8e6d675c1dd3",
964 "05742f807560f5d5206e54b70097dc4a",
965 };
966 static const char* const kDigests16x32[kNumDirectionalIntraPredictors] = {
967 "57f2ca4ba56be253eff7e6b73df5003d",
968 "ef8bea00437e01fb798a22cda59f0191",
969 "989ff38c96600c2f108d6e6fa381fd13",
970 };
971 static const char* const kDigests16x64[kNumDirectionalIntraPredictors] = {
972 "f5540f4874c02aa2222a3ba75106f841",
973 "17e5d20f798a96c39abc8a81e7aa7bc6",
974 "0fe9ea14c9dcae466b4a36f1c7db6978",
975 };
976 static const char* const kDigests32x8[kNumDirectionalIntraPredictors] = {
977 "aff9429951ab1885c0d9ed29aa1b6a9f",
978 "4b686e2a879bf0b4aadd06b412e0eb48",
979 "39325d71cddc272bfa1dd2dc80d09ffe",
980 };
981 static const char* const kDigests32x16[kNumDirectionalIntraPredictors] = {
982 "b83dffdf8bad2b7c3808925b6138ca1e",
983 "3656b58c7aaf2025979b4a3ed8a2841e",
984 "cfcc0c6ae3fa5e7d45dec581479459f6",
985 };
986 static const char* const kDigests32x32[kNumDirectionalIntraPredictors] = {
987 "3c91b3b9e2df73ffb718e0bf53c5a5c2",
988 "0dbe27603e111158e70d99e181befb83",
989 "edecbffb32ae1e49b66b6e55ad0af6c6",
990 };
991 static const char* const kDigests32x64[kNumDirectionalIntraPredictors] = {
992 "a3290917f755c7ccdc7b77eb3c6c89a7",
993 "42f89db41fbb366ddb78ef79a043f3e3",
994 "7f7bcbe33aa003b166677c68d12490e9",
995 };
996 static const char* const kDigests64x16[kNumDirectionalIntraPredictors] = {
997 "d4f4c6b70a82695f843e9227bd7d9cc8",
998 "550a0bd87936801651d552e229b683e9",
999 "a4c730ad71f566a930c5672e1b2f48f1",
1000 };
1001 static const char* const kDigests64x32[kNumDirectionalIntraPredictors] = {
1002 "2087c9264c4c5fea9a6fe20dcedbe2b9",
1003 "d4dd51d9578a3fc2eb75086fba867c22",
1004 "6121a67d63e40107e780d0938aeb3d21",
1005 };
1006 static const char* const kDigests64x64[kNumDirectionalIntraPredictors] = {
1007 "09c3818a07bc54467634c2bfce66f58f",
1008 "8da453b8d72d73d71ba15a14ddd59db4",
1009 "9bc939aa54445722469b120b8a505cb3",
1010 };
1011
1012 switch (tx_size) {
1013 case kTransformSize4x4:
1014 return kDigests4x4;
1015 case kTransformSize4x8:
1016 return kDigests4x8;
1017 case kTransformSize4x16:
1018 return kDigests4x16;
1019 case kTransformSize8x4:
1020 return kDigests8x4;
1021 case kTransformSize8x8:
1022 return kDigests8x8;
1023 case kTransformSize8x16:
1024 return kDigests8x16;
1025 case kTransformSize8x32:
1026 return kDigests8x32;
1027 case kTransformSize16x4:
1028 return kDigests16x4;
1029 case kTransformSize16x8:
1030 return kDigests16x8;
1031 case kTransformSize16x16:
1032 return kDigests16x16;
1033 case kTransformSize16x32:
1034 return kDigests16x32;
1035 case kTransformSize16x64:
1036 return kDigests16x64;
1037 case kTransformSize32x8:
1038 return kDigests32x8;
1039 case kTransformSize32x16:
1040 return kDigests32x16;
1041 case kTransformSize32x32:
1042 return kDigests32x32;
1043 case kTransformSize32x64:
1044 return kDigests32x64;
1045 case kTransformSize64x16:
1046 return kDigests64x16;
1047 case kTransformSize64x32:
1048 return kDigests64x32;
1049 case kTransformSize64x64:
1050 return kDigests64x64;
1051 default:
1052 ADD_FAILURE() << "Unknown transform size: " << tx_size;
1053 return nullptr;
1054 }
1055 }
1056
TEST_P(DirectionalIntraPredTest12bpp,DISABLED_Speed)1057 TEST_P(DirectionalIntraPredTest12bpp, DISABLED_Speed) {
1058 #if LIBGAV1_ENABLE_NEON
1059 const int num_runs = static_cast<int>(2e7 / (block_width_ * block_height_));
1060 #else
1061 const int num_runs = static_cast<int>(4e7 / (block_width_ * block_height_));
1062 #endif
1063 for (int i = kZone1; i < kNumZones; ++i) {
1064 TestSpeed(GetDirectionalIntraPredDigests12bpp(tx_size_),
1065 static_cast<Zone>(i), num_runs);
1066 }
1067 }
1068
TEST_P(DirectionalIntraPredTest12bpp,FixedInput)1069 TEST_P(DirectionalIntraPredTest12bpp, FixedInput) {
1070 for (int i = kZone1; i < kNumZones; ++i) {
1071 TestSpeed(GetDirectionalIntraPredDigests12bpp(tx_size_),
1072 static_cast<Zone>(i), 1);
1073 }
1074 }
1075
TEST_P(DirectionalIntraPredTest12bpp,Overflow)1076 TEST_P(DirectionalIntraPredTest12bpp, Overflow) { TestSaturatedValues(); }
TEST_P(DirectionalIntraPredTest12bpp,Random)1077 TEST_P(DirectionalIntraPredTest12bpp, Random) { TestRandomValues(); }
1078 #endif // LIBGAV1_MAX_BITDEPTH == 12
1079
1080 constexpr TransformSize kTransformSizes[] = {
1081 kTransformSize4x4, kTransformSize4x8, kTransformSize4x16,
1082 kTransformSize8x4, kTransformSize8x8, kTransformSize8x16,
1083 kTransformSize8x32, kTransformSize16x4, kTransformSize16x8,
1084 kTransformSize16x16, kTransformSize16x32, kTransformSize16x64,
1085 kTransformSize32x8, kTransformSize32x16, kTransformSize32x32,
1086 kTransformSize32x64, kTransformSize64x16, kTransformSize64x32,
1087 kTransformSize64x64};
1088
1089 INSTANTIATE_TEST_SUITE_P(C, DirectionalIntraPredTest8bpp,
1090 testing::ValuesIn(kTransformSizes));
1091 #if LIBGAV1_ENABLE_SSE4_1
1092 INSTANTIATE_TEST_SUITE_P(SSE41, DirectionalIntraPredTest8bpp,
1093 testing::ValuesIn(kTransformSizes));
1094 #endif // LIBGAV1_ENABLE_SSE4_1
1095 #if LIBGAV1_ENABLE_NEON
1096 INSTANTIATE_TEST_SUITE_P(NEON, DirectionalIntraPredTest8bpp,
1097 testing::ValuesIn(kTransformSizes));
1098 #endif // LIBGAV1_ENABLE_NEON
1099
1100 #if LIBGAV1_MAX_BITDEPTH >= 10
1101 INSTANTIATE_TEST_SUITE_P(C, DirectionalIntraPredTest10bpp,
1102 testing::ValuesIn(kTransformSizes));
1103 #if LIBGAV1_ENABLE_SSE4_1
1104 INSTANTIATE_TEST_SUITE_P(SSE41, DirectionalIntraPredTest10bpp,
1105 testing::ValuesIn(kTransformSizes));
1106 #endif // LIBGAV1_ENABLE_SSE4_1
1107 #if LIBGAV1_ENABLE_NEON
1108 INSTANTIATE_TEST_SUITE_P(NEON, DirectionalIntraPredTest10bpp,
1109 testing::ValuesIn(kTransformSizes));
1110 #endif // LIBGAV1_ENABLE_NEON
1111 #endif // LIBGAV1_MAX_BITDEPTH >= 10
1112
1113 #if LIBGAV1_MAX_BITDEPTH == 12
1114 INSTANTIATE_TEST_SUITE_P(C, DirectionalIntraPredTest12bpp,
1115 testing::ValuesIn(kTransformSizes));
1116 #endif // LIBGAV1_MAX_BITDEPTH == 12
1117
1118 } // namespace
1119 } // namespace dsp
1120
operator <<(std::ostream & os,const TransformSize tx_size)1121 static std::ostream& operator<<(std::ostream& os, const TransformSize tx_size) {
1122 return os << ToString(tx_size);
1123 }
1124
1125 } // namespace libgav1
1126