1import torch 2import numpy as np 3import fargan 4 5class FARGANDataset(torch.utils.data.Dataset): 6 def __init__(self, 7 feature_file, 8 signal_file, 9 frame_size=160, 10 sequence_length=15, 11 lookahead=1, 12 nb_used_features=20, 13 nb_features=36): 14 15 self.frame_size = frame_size 16 self.sequence_length = sequence_length 17 self.lookahead = lookahead 18 self.nb_features = nb_features 19 self.nb_used_features = nb_used_features 20 pcm_chunk_size = self.frame_size*self.sequence_length 21 22 self.data = np.memmap(signal_file, dtype='int16', mode='r') 23 #self.data = self.data[1::2] 24 self.nb_sequences = len(self.data)//(pcm_chunk_size)-4 25 self.data = self.data[(4-self.lookahead)*self.frame_size:] 26 self.data = self.data[:self.nb_sequences*pcm_chunk_size] 27 28 29 #self.data = np.reshape(self.data, (self.nb_sequences, pcm_chunk_size)) 30 sizeof = self.data.strides[-1] 31 self.data = np.lib.stride_tricks.as_strided(self.data, shape=(self.nb_sequences, pcm_chunk_size*2), 32 strides=(pcm_chunk_size*sizeof, sizeof)) 33 34 self.features = np.reshape(np.memmap(feature_file, dtype='float32', mode='r'), (-1, nb_features)) 35 sizeof = self.features.strides[-1] 36 self.features = np.lib.stride_tricks.as_strided(self.features, shape=(self.nb_sequences, self.sequence_length*2+4, nb_features), 37 strides=(self.sequence_length*self.nb_features*sizeof, self.nb_features*sizeof, sizeof)) 38 #self.periods = np.round(50*self.features[:,:,self.nb_used_features-2]+100).astype('int') 39 self.periods = np.round(np.clip(256./2**(self.features[:,:,self.nb_used_features-2]+1.5), 32, 255)).astype('int') 40 41 self.lpc = self.features[:, :, self.nb_used_features:] 42 self.features = self.features[:, :, :self.nb_used_features] 43 print("lpc_size:", self.lpc.shape) 44 45 def __len__(self): 46 return self.nb_sequences 47 48 def __getitem__(self, index): 49 features = self.features[index, :, :].copy() 50 if self.lookahead != 0: 51 lpc = self.lpc[index, 4-self.lookahead:-self.lookahead, :].copy() 52 else: 53 lpc = self.lpc[index, 4:, :].copy() 54 data = self.data[index, :].copy().astype(np.float32) / 2**15 55 periods = self.periods[index, :].copy() 56 #lpc = lpc*(self.gamma**np.arange(1,17)) 57 #lpc=lpc[None,:,:] 58 #lpc = fargan.interp_lpc(lpc, 4) 59 #lpc=lpc[0,:,:] 60 61 return features, periods, data, lpc 62