xref: /aosp_15_r20/external/libopus/dnn/torch/lossgen/test_lossgen.py (revision a58d3d2adb790c104798cd88c8a3aff4fa8b82cc)
1import lossgen
2import os
3import argparse
4import torch
5import numpy as np
6
7
8parser = argparse.ArgumentParser()
9
10parser.add_argument('model', type=str, help='CELPNet model')
11parser.add_argument('percentage', type=float, help='percentage loss')
12parser.add_argument('output', type=str, help='path to output file (ascii)')
13
14parser.add_argument('--length', type=int, help="length of sequence to generate", default=500)
15
16args = parser.parse_args()
17
18
19
20checkpoint = torch.load(args.model, map_location='cpu')
21model = lossgen.LossGen(*checkpoint['model_args'], **checkpoint['model_kwargs'])
22model.load_state_dict(checkpoint['state_dict'], strict=False)
23
24states=None
25last = torch.zeros((1,1,1))
26perc = torch.tensor((args.percentage,))[None,None,:]
27seq = torch.zeros((0,1,1))
28
29one = torch.ones((1,1,1))
30zero = torch.zeros((1,1,1))
31
32if __name__ == '__main__':
33    for i in range(args.length):
34        prob, states = model(last, perc, states=states)
35        prob = torch.sigmoid(prob)
36        states[0] = states[0].detach()
37        states[1] = states[1].detach()
38        loss = one if np.random.rand() < prob else zero
39        last = loss
40        seq = torch.cat([seq, loss])
41
42np.savetxt(args.output, seq[:,:,0].numpy().astype('int'), fmt='%d')
43