1""" 2/* Copyright (c) 2023 Amazon 3 Written by Jan Buethe */ 4/* 5 Redistribution and use in source and binary forms, with or without 6 modification, are permitted provided that the following conditions 7 are met: 8 9 - Redistributions of source code must retain the above copyright 10 notice, this list of conditions and the following disclaimer. 11 12 - Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER 20 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 21 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 22 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 23 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 24 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 25 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 26 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27*/ 28""" 29 30import os 31import argparse 32import sys 33import math as m 34import random 35 36import yaml 37 38from tqdm import tqdm 39 40try: 41 import git 42 has_git = True 43except: 44 has_git = False 45 46import torch 47from torch.optim.lr_scheduler import LambdaLR 48import torch.nn.functional as F 49 50from scipy.io import wavfile 51import numpy as np 52import pesq 53 54from data import LPCNetVocodingDataset 55from models import model_dict 56 57 58from utils.lpcnet_features import load_lpcnet_features 59from utils.misc import count_parameters 60 61from losses.stft_loss import MRSTFTLoss, MRLogMelLoss 62 63 64parser = argparse.ArgumentParser() 65 66parser.add_argument('setup', type=str, help='setup yaml file') 67parser.add_argument('output', type=str, help='output path') 68parser.add_argument('--device', type=str, help='compute device', default=None) 69parser.add_argument('--initial-checkpoint', type=str, help='initial checkpoint', default=None) 70parser.add_argument('--test-features', type=str, help='path to features for testing', default=None) 71parser.add_argument('--no-redirect', action='store_true', help='disables re-direction of stdout') 72 73args = parser.parse_args() 74 75 76torch.set_num_threads(4) 77 78with open(args.setup, 'r') as f: 79 setup = yaml.load(f.read(), yaml.FullLoader) 80 81checkpoint_prefix = 'checkpoint' 82output_prefix = 'output' 83setup_name = 'setup.yml' 84output_file='out.txt' 85 86 87# check model 88if not 'name' in setup['model']: 89 print(f'warning: did not find model entry in setup, using default PitchPostFilter') 90 model_name = 'pitchpostfilter' 91else: 92 model_name = setup['model']['name'] 93 94# prepare output folder 95if os.path.exists(args.output): 96 print("warning: output folder exists") 97 98 reply = input('continue? (y/n): ') 99 while reply not in {'y', 'n'}: 100 reply = input('continue? (y/n): ') 101 102 if reply == 'n': 103 os._exit() 104else: 105 os.makedirs(args.output, exist_ok=True) 106 107checkpoint_dir = os.path.join(args.output, 'checkpoints') 108os.makedirs(checkpoint_dir, exist_ok=True) 109 110# add repo info to setup 111if has_git: 112 working_dir = os.path.split(__file__)[0] 113 try: 114 repo = git.Repo(working_dir, search_parent_directories=True) 115 setup['repo'] = dict() 116 hash = repo.head.object.hexsha 117 urls = list(repo.remote().urls) 118 is_dirty = repo.is_dirty() 119 120 if is_dirty: 121 print("warning: repo is dirty") 122 123 setup['repo']['hash'] = hash 124 setup['repo']['urls'] = urls 125 setup['repo']['dirty'] = is_dirty 126 except: 127 has_git = False 128 129# dump setup 130with open(os.path.join(args.output, setup_name), 'w') as f: 131 yaml.dump(setup, f) 132 133 134ref = None 135# prepare inference test if wanted 136inference_test = False 137if type(args.test_features) != type(None): 138 test_features = load_lpcnet_features(args.test_features) 139 features = test_features['features'] 140 periods = test_features['periods'] 141 inference_folder = os.path.join(args.output, 'inference_test') 142 os.makedirs(inference_folder, exist_ok=True) 143 inference_test = True 144 145 146# training parameters 147batch_size = setup['training']['batch_size'] 148epochs = setup['training']['epochs'] 149lr = setup['training']['lr'] 150lr_decay_factor = setup['training']['lr_decay_factor'] 151lr_gen = lr * setup['training']['gen_lr_reduction'] 152lambda_feat = setup['training']['lambda_feat'] 153lambda_reg = setup['training']['lambda_reg'] 154adv_target = setup['training'].get('adv_target', 'target') 155 156 157# load training dataset 158data_config = setup['data'] 159data = LPCNetVocodingDataset(setup['dataset'], **data_config) 160 161# load validation dataset if given 162if 'validation_dataset' in setup: 163 validation_data = LPCNetVocodingDataset(setup['validation_dataset'], **data_config) 164 165 validation_dataloader = torch.utils.data.DataLoader(validation_data, batch_size=batch_size, drop_last=True, num_workers=4) 166 167 run_validation = True 168else: 169 run_validation = False 170 171# create model 172model = model_dict[model_name](*setup['model']['args'], **setup['model']['kwargs']) 173 174 175# create discriminator 176disc_name = setup['discriminator']['name'] 177disc = model_dict[disc_name]( 178 *setup['discriminator']['args'], **setup['discriminator']['kwargs'] 179) 180 181 182 183# set compute device 184if type(args.device) == type(None): 185 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 186else: 187 device = torch.device(args.device) 188 189 190 191# dataloader 192dataloader = torch.utils.data.DataLoader(data, batch_size=batch_size, drop_last=True, shuffle=True, num_workers=4) 193 194# optimizer is introduced to trainable parameters 195parameters = [p for p in model.parameters() if p.requires_grad] 196optimizer = torch.optim.Adam(parameters, lr=lr_gen) 197 198# disc optimizer 199parameters = [p for p in disc.parameters() if p.requires_grad] 200optimizer_disc = torch.optim.Adam(parameters, lr=lr, betas=[0.5, 0.9]) 201 202# learning rate scheduler 203scheduler = LambdaLR(optimizer=optimizer, lr_lambda=lambda x : 1 / (1 + lr_decay_factor * x)) 204 205if args.initial_checkpoint is not None: 206 print(f"loading state dict from {args.initial_checkpoint}...") 207 chkpt = torch.load(args.initial_checkpoint, map_location=device) 208 model.load_state_dict(chkpt['state_dict']) 209 210 if 'disc_state_dict' in chkpt: 211 print(f"loading discriminator state dict from {args.initial_checkpoint}...") 212 disc.load_state_dict(chkpt['disc_state_dict']) 213 214 if 'optimizer_state_dict' in chkpt: 215 print(f"loading optimizer state dict from {args.initial_checkpoint}...") 216 optimizer.load_state_dict(chkpt['optimizer_state_dict']) 217 218 if 'disc_optimizer_state_dict' in chkpt: 219 print(f"loading discriminator optimizer state dict from {args.initial_checkpoint}...") 220 optimizer_disc.load_state_dict(chkpt['disc_optimizer_state_dict']) 221 222 if 'scheduler_state_disc' in chkpt: 223 print(f"loading scheduler state dict from {args.initial_checkpoint}...") 224 scheduler.load_state_dict(chkpt['scheduler_state_dict']) 225 226 # if 'torch_rng_state' in chkpt: 227 # print(f"setting torch RNG state from {args.initial_checkpoint}...") 228 # torch.set_rng_state(chkpt['torch_rng_state']) 229 230 if 'numpy_rng_state' in chkpt: 231 print(f"setting numpy RNG state from {args.initial_checkpoint}...") 232 np.random.set_state(chkpt['numpy_rng_state']) 233 234 if 'python_rng_state' in chkpt: 235 print(f"setting Python RNG state from {args.initial_checkpoint}...") 236 random.setstate(chkpt['python_rng_state']) 237 238# loss 239w_l1 = setup['training']['loss']['w_l1'] 240w_lm = setup['training']['loss']['w_lm'] 241w_slm = setup['training']['loss']['w_slm'] 242w_sc = setup['training']['loss']['w_sc'] 243w_logmel = setup['training']['loss']['w_logmel'] 244w_wsc = setup['training']['loss']['w_wsc'] 245w_xcorr = setup['training']['loss']['w_xcorr'] 246w_sxcorr = setup['training']['loss']['w_sxcorr'] 247w_l2 = setup['training']['loss']['w_l2'] 248 249w_sum = w_l1 + w_lm + w_sc + w_logmel + w_wsc + w_slm + w_xcorr + w_sxcorr + w_l2 250 251stftloss = MRSTFTLoss(sc_weight=w_sc, log_mag_weight=w_lm, wsc_weight=w_wsc, smooth_log_mag_weight=w_slm, sxcorr_weight=w_sxcorr).to(device) 252logmelloss = MRLogMelLoss().to(device) 253 254def xcorr_loss(y_true, y_pred): 255 dims = list(range(1, len(y_true.shape))) 256 257 loss = 1 - torch.sum(y_true * y_pred, dim=dims) / torch.sqrt(torch.sum(y_true ** 2, dim=dims) * torch.sum(y_pred ** 2, dim=dims) + 1e-9) 258 259 return torch.mean(loss) 260 261def td_l2_norm(y_true, y_pred): 262 dims = list(range(1, len(y_true.shape))) 263 264 loss = torch.mean((y_true - y_pred) ** 2, dim=dims) / (torch.mean(y_pred ** 2, dim=dims) ** .5 + 1e-6) 265 266 return loss.mean() 267 268def td_l1(y_true, y_pred, pow=0): 269 dims = list(range(1, len(y_true.shape))) 270 tmp = torch.mean(torch.abs(y_true - y_pred), dim=dims) / ((torch.mean(torch.abs(y_pred), dim=dims) + 1e-9) ** pow) 271 272 return torch.mean(tmp) 273 274def criterion(x, y): 275 276 return (w_l1 * td_l1(x, y, pow=1) + stftloss(x, y) + w_logmel * logmelloss(x, y) 277 + w_xcorr * xcorr_loss(x, y) + w_l2 * td_l2_norm(x, y)) / w_sum 278 279 280# model checkpoint 281checkpoint = { 282 'setup' : setup, 283 'state_dict' : model.state_dict(), 284 'loss' : -1 285} 286 287 288if not args.no_redirect: 289 print(f"re-directing output to {os.path.join(args.output, output_file)}") 290 sys.stdout = open(os.path.join(args.output, output_file), "w") 291 292 293print("summary:") 294 295print(f"generator: {count_parameters(model.cpu()) / 1e6:5.3f} M parameters") 296if hasattr(model, 'flop_count'): 297 print(f"generator: {model.flop_count(16000) / 1e6:5.3f} MFLOPS") 298print(f"discriminator: {count_parameters(disc.cpu()) / 1e6:5.3f} M parameters") 299 300if ref is not None: 301 noisy = np.fromfile(os.path.join(args.testdata, 'noisy.s16'), dtype=np.int16) 302 initial_mos = pesq.pesq(16000, ref, noisy, mode='wb') 303 print(f"initial MOS (PESQ): {initial_mos}") 304 305best_loss = 1e9 306log_interval = 10 307 308 309m_r = 0 310m_f = 0 311s_r = 1 312s_f = 1 313 314def optimizer_to(optim, device): 315 for param in optim.state.values(): 316 if isinstance(param, torch.Tensor): 317 param.data = param.data.to(device) 318 if param._grad is not None: 319 param._grad.data = param._grad.data.to(device) 320 elif isinstance(param, dict): 321 for subparam in param.values(): 322 if isinstance(subparam, torch.Tensor): 323 subparam.data = subparam.data.to(device) 324 if subparam._grad is not None: 325 subparam._grad.data = subparam._grad.data.to(device) 326 327optimizer_to(optimizer, device) 328optimizer_to(optimizer_disc, device) 329 330 331for ep in range(1, epochs + 1): 332 print(f"training epoch {ep}...") 333 334 model.to(device) 335 disc.to(device) 336 model.train() 337 disc.train() 338 339 running_disc_loss = 0 340 running_adv_loss = 0 341 running_feature_loss = 0 342 running_reg_loss = 0 343 344 with tqdm(dataloader, unit='batch', file=sys.stdout) as tepoch: 345 for i, batch in enumerate(tepoch): 346 347 # set gradients to zero 348 optimizer.zero_grad() 349 350 # push batch to device 351 for key in batch: 352 batch[key] = batch[key].to(device) 353 354 target = batch['target'].to(device) 355 disc_target = batch[adv_target].to(device) 356 357 # calculate model output 358 output = model(batch['features'], batch['periods']) 359 360 # discriminator update 361 scores_gen = disc(output.detach()) 362 scores_real = disc(disc_target.unsqueeze(1)) 363 364 disc_loss = 0 365 for scale in scores_gen: 366 disc_loss += ((scale[-1]) ** 2).mean() 367 m_f = 0.9 * m_f + 0.1 * scale[-1].detach().mean().cpu().item() 368 s_f = 0.9 * s_f + 0.1 * scale[-1].detach().std().cpu().item() 369 370 for scale in scores_real: 371 disc_loss += ((1 - scale[-1]) ** 2).mean() 372 m_r = 0.9 * m_r + 0.1 * scale[-1].detach().mean().cpu().item() 373 s_r = 0.9 * s_r + 0.1 * scale[-1].detach().std().cpu().item() 374 375 disc_loss = 0.5 * disc_loss / len(scores_gen) 376 winning_chance = 0.5 * m.erfc( (m_r - m_f) / m.sqrt(2 * (s_f**2 + s_r**2)) ) 377 378 disc.zero_grad() 379 disc_loss.backward() 380 optimizer_disc.step() 381 382 # generator update 383 scores_gen = disc(output) 384 385 386 # calculate loss 387 loss_reg = criterion(output.squeeze(1), target) 388 389 num_discs = len(scores_gen) 390 loss_gen = 0 391 for scale in scores_gen: 392 loss_gen += ((1 - scale[-1]) ** 2).mean() / num_discs 393 394 loss_feat = 0 395 for k in range(num_discs): 396 num_layers = len(scores_gen[k]) - 1 397 f = 4 / num_discs / num_layers 398 for l in range(num_layers): 399 loss_feat += f * F.l1_loss(scores_gen[k][l], scores_real[k][l].detach()) 400 401 model.zero_grad() 402 403 (loss_gen + lambda_feat * loss_feat + lambda_reg * loss_reg).backward() 404 405 optimizer.step() 406 407 running_adv_loss += loss_gen.detach().cpu().item() 408 running_disc_loss += disc_loss.detach().cpu().item() 409 running_feature_loss += lambda_feat * loss_feat.detach().cpu().item() 410 running_reg_loss += lambda_reg * loss_reg.detach().cpu().item() 411 412 # update status bar 413 if i % log_interval == 0: 414 tepoch.set_postfix(adv_loss=f"{running_adv_loss/(i + 1):8.7f}", 415 disc_loss=f"{running_disc_loss/(i + 1):8.7f}", 416 feat_loss=f"{running_feature_loss/(i + 1):8.7f}", 417 reg_loss=f"{running_reg_loss/(i + 1):8.7f}", 418 wc=f"{100*winning_chance:5.2f}%") 419 420 421 # save checkpoint 422 checkpoint['state_dict'] = model.state_dict() 423 checkpoint['disc_state_dict'] = disc.state_dict() 424 checkpoint['optimizer_state_dict'] = optimizer.state_dict() 425 checkpoint['disc_optimizer_state_dict'] = optimizer_disc.state_dict() 426 checkpoint['scheduler_state_dict'] = scheduler.state_dict() 427 checkpoint['torch_rng_state'] = torch.get_rng_state() 428 checkpoint['numpy_rng_state'] = np.random.get_state() 429 checkpoint['python_rng_state'] = random.getstate() 430 checkpoint['adv_loss'] = running_adv_loss/(i + 1) 431 checkpoint['disc_loss'] = running_disc_loss/(i + 1) 432 checkpoint['feature_loss'] = running_feature_loss/(i + 1) 433 checkpoint['reg_loss'] = running_reg_loss/(i + 1) 434 435 436 if inference_test: 437 print("running inference test...") 438 out = model.process(features, periods).cpu().numpy() 439 wavfile.write(os.path.join(inference_folder, f'{model_name}_epoch_{ep}.wav'), 16000, out) 440 if ref is not None: 441 mos = pesq.pesq(16000, ref, out, mode='wb') 442 print(f"MOS (PESQ): {mos}") 443 444 445 torch.save(checkpoint, os.path.join(checkpoint_dir, checkpoint_prefix + f'_epoch_{ep}.pth')) 446 torch.save(checkpoint, os.path.join(checkpoint_dir, checkpoint_prefix + f'_last.pth')) 447 448 449 print() 450 451print('Done') 452