1 /*
2 * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <assert.h>
12 #include <limits.h>
13 #include "./vpx_config.h"
14 #include "vpx_dsp/vpx_dsp_common.h"
15 #include "vpx_mem/vpx_mem.h"
16 #include "vpx_util/vpx_pthread.h"
17 #include "vp9/common/vp9_entropymode.h"
18 #include "vp9/common/vp9_thread_common.h"
19 #include "vp9/common/vp9_reconinter.h"
20 #include "vp9/common/vp9_loopfilter.h"
21
22 #if CONFIG_MULTITHREAD
mutex_lock(pthread_mutex_t * const mutex)23 static INLINE void mutex_lock(pthread_mutex_t *const mutex) {
24 const int kMaxTryLocks = 4000;
25 int locked = 0;
26 int i;
27
28 for (i = 0; i < kMaxTryLocks; ++i) {
29 if (!pthread_mutex_trylock(mutex)) {
30 locked = 1;
31 break;
32 }
33 }
34
35 if (!locked) pthread_mutex_lock(mutex);
36 }
37 #endif // CONFIG_MULTITHREAD
38
sync_read(VP9LfSync * const lf_sync,int r,int c)39 static INLINE void sync_read(VP9LfSync *const lf_sync, int r, int c) {
40 #if CONFIG_MULTITHREAD
41 const int nsync = lf_sync->sync_range;
42
43 if (r && !(c & (nsync - 1))) {
44 pthread_mutex_t *const mutex = &lf_sync->mutex[r - 1];
45 mutex_lock(mutex);
46
47 while (c > lf_sync->cur_sb_col[r - 1] - nsync) {
48 pthread_cond_wait(&lf_sync->cond[r - 1], mutex);
49 }
50 pthread_mutex_unlock(mutex);
51 }
52 #else
53 (void)lf_sync;
54 (void)r;
55 (void)c;
56 #endif // CONFIG_MULTITHREAD
57 }
58
sync_write(VP9LfSync * const lf_sync,int r,int c,const int sb_cols)59 static INLINE void sync_write(VP9LfSync *const lf_sync, int r, int c,
60 const int sb_cols) {
61 #if CONFIG_MULTITHREAD
62 const int nsync = lf_sync->sync_range;
63 int cur;
64 // Only signal when there are enough filtered SB for next row to run.
65 int sig = 1;
66
67 if (c < sb_cols - 1) {
68 cur = c;
69 if (c % nsync) sig = 0;
70 } else {
71 cur = sb_cols + nsync;
72 }
73
74 if (sig) {
75 mutex_lock(&lf_sync->mutex[r]);
76
77 lf_sync->cur_sb_col[r] = cur;
78
79 pthread_cond_signal(&lf_sync->cond[r]);
80 pthread_mutex_unlock(&lf_sync->mutex[r]);
81 }
82 #else
83 (void)lf_sync;
84 (void)r;
85 (void)c;
86 (void)sb_cols;
87 #endif // CONFIG_MULTITHREAD
88 }
89
90 // Implement row loopfiltering for each thread.
thread_loop_filter_rows(const YV12_BUFFER_CONFIG * const frame_buffer,VP9_COMMON * const cm,struct macroblockd_plane planes[MAX_MB_PLANE],int start,int stop,int y_only,VP9LfSync * const lf_sync)91 static INLINE void thread_loop_filter_rows(
92 const YV12_BUFFER_CONFIG *const frame_buffer, VP9_COMMON *const cm,
93 struct macroblockd_plane planes[MAX_MB_PLANE], int start, int stop,
94 int y_only, VP9LfSync *const lf_sync) {
95 const int num_planes = y_only ? 1 : MAX_MB_PLANE;
96 const int sb_cols = mi_cols_aligned_to_sb(cm->mi_cols) >> MI_BLOCK_SIZE_LOG2;
97 const int num_active_workers = lf_sync->num_active_workers;
98 int mi_row, mi_col;
99 enum lf_path path;
100 if (y_only)
101 path = LF_PATH_444;
102 else if (planes[1].subsampling_y == 1 && planes[1].subsampling_x == 1)
103 path = LF_PATH_420;
104 else if (planes[1].subsampling_y == 0 && planes[1].subsampling_x == 0)
105 path = LF_PATH_444;
106 else
107 path = LF_PATH_SLOW;
108
109 assert(num_active_workers > 0);
110
111 for (mi_row = start; mi_row < stop;
112 mi_row += num_active_workers * MI_BLOCK_SIZE) {
113 MODE_INFO **const mi = cm->mi_grid_visible + mi_row * cm->mi_stride;
114 LOOP_FILTER_MASK *lfm = get_lfm(&cm->lf, mi_row, 0);
115
116 for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE, ++lfm) {
117 const int r = mi_row >> MI_BLOCK_SIZE_LOG2;
118 const int c = mi_col >> MI_BLOCK_SIZE_LOG2;
119 int plane;
120
121 sync_read(lf_sync, r, c);
122
123 vp9_setup_dst_planes(planes, frame_buffer, mi_row, mi_col);
124
125 vp9_adjust_mask(cm, mi_row, mi_col, lfm);
126
127 vp9_filter_block_plane_ss00(cm, &planes[0], mi_row, lfm);
128 for (plane = 1; plane < num_planes; ++plane) {
129 switch (path) {
130 case LF_PATH_420:
131 vp9_filter_block_plane_ss11(cm, &planes[plane], mi_row, lfm);
132 break;
133 case LF_PATH_444:
134 vp9_filter_block_plane_ss00(cm, &planes[plane], mi_row, lfm);
135 break;
136 case LF_PATH_SLOW:
137 vp9_filter_block_plane_non420(cm, &planes[plane], mi + mi_col,
138 mi_row, mi_col);
139 break;
140 }
141 }
142
143 sync_write(lf_sync, r, c, sb_cols);
144 }
145 }
146 }
147
148 // Row-based multi-threaded loopfilter hook
loop_filter_row_worker(void * arg1,void * arg2)149 static int loop_filter_row_worker(void *arg1, void *arg2) {
150 VP9LfSync *const lf_sync = (VP9LfSync *)arg1;
151 LFWorkerData *const lf_data = (LFWorkerData *)arg2;
152 thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes,
153 lf_data->start, lf_data->stop, lf_data->y_only,
154 lf_sync);
155 return 1;
156 }
157
loop_filter_rows_mt(YV12_BUFFER_CONFIG * frame,VP9_COMMON * cm,struct macroblockd_plane planes[MAX_MB_PLANE],int start,int stop,int y_only,VPxWorker * workers,int nworkers,VP9LfSync * lf_sync)158 static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, VP9_COMMON *cm,
159 struct macroblockd_plane planes[MAX_MB_PLANE],
160 int start, int stop, int y_only,
161 VPxWorker *workers, int nworkers,
162 VP9LfSync *lf_sync) {
163 const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
164 // Number of superblock rows and cols
165 const int sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2;
166 const int num_tile_cols = 1 << cm->log2_tile_cols;
167 // Limit the number of workers to prevent changes in frame dimensions from
168 // causing incorrect sync calculations when sb_rows < threads/tile_cols.
169 // Further restrict them by the number of tile columns should the user
170 // request more as this implementation doesn't scale well beyond that.
171 const int num_workers = VPXMIN(nworkers, VPXMIN(num_tile_cols, sb_rows));
172 int i;
173
174 if (!lf_sync->sync_range || sb_rows != lf_sync->rows ||
175 num_workers > lf_sync->num_workers) {
176 vp9_loop_filter_dealloc(lf_sync);
177 vp9_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers);
178 }
179 lf_sync->num_active_workers = num_workers;
180
181 // Initialize cur_sb_col to -1 for all SB rows.
182 memset(lf_sync->cur_sb_col, -1, sizeof(*lf_sync->cur_sb_col) * sb_rows);
183
184 // Set up loopfilter thread data.
185 // The decoder is capping num_workers because it has been observed that using
186 // more threads on the loopfilter than there are cores will hurt performance
187 // on Android. This is because the system will only schedule the tile decode
188 // workers on cores equal to the number of tile columns. Then if the decoder
189 // tries to use more threads for the loopfilter, it will hurt performance
190 // because of contention. If the multithreading code changes in the future
191 // then the number of workers used by the loopfilter should be revisited.
192 for (i = 0; i < num_workers; ++i) {
193 VPxWorker *const worker = &workers[i];
194 LFWorkerData *const lf_data = &lf_sync->lfdata[i];
195
196 worker->hook = loop_filter_row_worker;
197 worker->data1 = lf_sync;
198 worker->data2 = lf_data;
199
200 // Loopfilter data
201 vp9_loop_filter_data_reset(lf_data, frame, cm, planes);
202 lf_data->start = start + i * MI_BLOCK_SIZE;
203 lf_data->stop = stop;
204 lf_data->y_only = y_only;
205
206 // Start loopfiltering
207 if (i == num_workers - 1) {
208 winterface->execute(worker);
209 } else {
210 winterface->launch(worker);
211 }
212 }
213
214 // Wait till all rows are finished
215 for (i = 0; i < num_workers; ++i) {
216 winterface->sync(&workers[i]);
217 }
218 }
219
vp9_loop_filter_frame_mt(YV12_BUFFER_CONFIG * frame,VP9_COMMON * cm,struct macroblockd_plane planes[MAX_MB_PLANE],int frame_filter_level,int y_only,int partial_frame,VPxWorker * workers,int num_workers,VP9LfSync * lf_sync)220 void vp9_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, VP9_COMMON *cm,
221 struct macroblockd_plane planes[MAX_MB_PLANE],
222 int frame_filter_level, int y_only,
223 int partial_frame, VPxWorker *workers,
224 int num_workers, VP9LfSync *lf_sync) {
225 int start_mi_row, end_mi_row, mi_rows_to_filter;
226
227 if (!frame_filter_level) return;
228
229 start_mi_row = 0;
230 mi_rows_to_filter = cm->mi_rows;
231 if (partial_frame && cm->mi_rows > 8) {
232 start_mi_row = cm->mi_rows >> 1;
233 start_mi_row &= 0xfffffff8;
234 mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8);
235 }
236 end_mi_row = start_mi_row + mi_rows_to_filter;
237 vp9_loop_filter_frame_init(cm, frame_filter_level);
238
239 loop_filter_rows_mt(frame, cm, planes, start_mi_row, end_mi_row, y_only,
240 workers, num_workers, lf_sync);
241 }
242
vp9_lpf_mt_init(VP9LfSync * lf_sync,VP9_COMMON * cm,int frame_filter_level,int num_workers)243 void vp9_lpf_mt_init(VP9LfSync *lf_sync, VP9_COMMON *cm, int frame_filter_level,
244 int num_workers) {
245 const int sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2;
246
247 if (!frame_filter_level) return;
248
249 if (!lf_sync->sync_range || sb_rows != lf_sync->rows ||
250 num_workers > lf_sync->num_workers) {
251 vp9_loop_filter_dealloc(lf_sync);
252 vp9_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers);
253 }
254
255 // Initialize cur_sb_col to -1 for all SB rows.
256 memset(lf_sync->cur_sb_col, -1, sizeof(*lf_sync->cur_sb_col) * sb_rows);
257
258 lf_sync->corrupted = 0;
259
260 memset(lf_sync->num_tiles_done, 0,
261 sizeof(*lf_sync->num_tiles_done) * sb_rows);
262 cm->lf_row = 0;
263 }
264
265 // Set up nsync by width.
get_sync_range(int width)266 static INLINE int get_sync_range(int width) {
267 // nsync numbers are picked by testing. For example, for 4k
268 // video, using 4 gives best performance.
269 if (width < 640)
270 return 1;
271 else if (width <= 1280)
272 return 2;
273 else if (width <= 4096)
274 return 4;
275 else
276 return 8;
277 }
278
279 // Allocate memory for lf row synchronization
vp9_loop_filter_alloc(VP9LfSync * lf_sync,VP9_COMMON * cm,int rows,int width,int num_workers)280 void vp9_loop_filter_alloc(VP9LfSync *lf_sync, VP9_COMMON *cm, int rows,
281 int width, int num_workers) {
282 lf_sync->rows = rows;
283 #if CONFIG_MULTITHREAD
284 {
285 int i;
286
287 CHECK_MEM_ERROR(&cm->error, lf_sync->mutex,
288 vpx_malloc(sizeof(*lf_sync->mutex) * rows));
289 if (lf_sync->mutex) {
290 for (i = 0; i < rows; ++i) {
291 pthread_mutex_init(&lf_sync->mutex[i], NULL);
292 }
293 }
294
295 CHECK_MEM_ERROR(&cm->error, lf_sync->cond,
296 vpx_malloc(sizeof(*lf_sync->cond) * rows));
297 if (lf_sync->cond) {
298 for (i = 0; i < rows; ++i) {
299 pthread_cond_init(&lf_sync->cond[i], NULL);
300 }
301 }
302
303 CHECK_MEM_ERROR(&cm->error, lf_sync->lf_mutex,
304 vpx_malloc(sizeof(*lf_sync->lf_mutex)));
305 pthread_mutex_init(lf_sync->lf_mutex, NULL);
306
307 CHECK_MEM_ERROR(&cm->error, lf_sync->recon_done_mutex,
308 vpx_malloc(sizeof(*lf_sync->recon_done_mutex) * rows));
309 if (lf_sync->recon_done_mutex) {
310 for (i = 0; i < rows; ++i) {
311 pthread_mutex_init(&lf_sync->recon_done_mutex[i], NULL);
312 }
313 }
314
315 CHECK_MEM_ERROR(&cm->error, lf_sync->recon_done_cond,
316 vpx_malloc(sizeof(*lf_sync->recon_done_cond) * rows));
317 if (lf_sync->recon_done_cond) {
318 for (i = 0; i < rows; ++i) {
319 pthread_cond_init(&lf_sync->recon_done_cond[i], NULL);
320 }
321 }
322 }
323 #endif // CONFIG_MULTITHREAD
324
325 CHECK_MEM_ERROR(&cm->error, lf_sync->lfdata,
326 vpx_malloc(num_workers * sizeof(*lf_sync->lfdata)));
327 lf_sync->num_workers = num_workers;
328 lf_sync->num_active_workers = lf_sync->num_workers;
329
330 CHECK_MEM_ERROR(&cm->error, lf_sync->cur_sb_col,
331 vpx_malloc(sizeof(*lf_sync->cur_sb_col) * rows));
332
333 CHECK_MEM_ERROR(&cm->error, lf_sync->num_tiles_done,
334 vpx_malloc(sizeof(*lf_sync->num_tiles_done) *
335 mi_cols_aligned_to_sb(cm->mi_rows) >>
336 MI_BLOCK_SIZE_LOG2));
337
338 // Set up nsync.
339 lf_sync->sync_range = get_sync_range(width);
340 }
341
342 // Deallocate lf synchronization related mutex and data
vp9_loop_filter_dealloc(VP9LfSync * lf_sync)343 void vp9_loop_filter_dealloc(VP9LfSync *lf_sync) {
344 assert(lf_sync != NULL);
345
346 #if CONFIG_MULTITHREAD
347 if (lf_sync->mutex != NULL) {
348 int i;
349 for (i = 0; i < lf_sync->rows; ++i) {
350 pthread_mutex_destroy(&lf_sync->mutex[i]);
351 }
352 vpx_free(lf_sync->mutex);
353 }
354 if (lf_sync->cond != NULL) {
355 int i;
356 for (i = 0; i < lf_sync->rows; ++i) {
357 pthread_cond_destroy(&lf_sync->cond[i]);
358 }
359 vpx_free(lf_sync->cond);
360 }
361 if (lf_sync->recon_done_mutex != NULL) {
362 int i;
363 for (i = 0; i < lf_sync->rows; ++i) {
364 pthread_mutex_destroy(&lf_sync->recon_done_mutex[i]);
365 }
366 vpx_free(lf_sync->recon_done_mutex);
367 }
368
369 if (lf_sync->lf_mutex != NULL) {
370 pthread_mutex_destroy(lf_sync->lf_mutex);
371 vpx_free(lf_sync->lf_mutex);
372 }
373 if (lf_sync->recon_done_cond != NULL) {
374 int i;
375 for (i = 0; i < lf_sync->rows; ++i) {
376 pthread_cond_destroy(&lf_sync->recon_done_cond[i]);
377 }
378 vpx_free(lf_sync->recon_done_cond);
379 }
380 #endif // CONFIG_MULTITHREAD
381
382 vpx_free(lf_sync->lfdata);
383 vpx_free(lf_sync->cur_sb_col);
384 vpx_free(lf_sync->num_tiles_done);
385 // clear the structure as the source of this call may be a resize in which
386 // case this call will be followed by an _alloc() which may fail.
387 vp9_zero(*lf_sync);
388 }
389
get_next_row(VP9_COMMON * cm,VP9LfSync * lf_sync)390 static int get_next_row(VP9_COMMON *cm, VP9LfSync *lf_sync) {
391 int return_val = -1;
392 const int max_rows = cm->mi_rows;
393
394 #if CONFIG_MULTITHREAD
395 int cur_row;
396 const int tile_cols = 1 << cm->log2_tile_cols;
397
398 pthread_mutex_lock(lf_sync->lf_mutex);
399 if (cm->lf_row < max_rows) {
400 cur_row = cm->lf_row >> MI_BLOCK_SIZE_LOG2;
401 return_val = cm->lf_row;
402 cm->lf_row += MI_BLOCK_SIZE;
403 if (cm->lf_row < max_rows) {
404 /* If this is not the last row, make sure the next row is also decoded.
405 * This is because the intra predict has to happen before loop filter */
406 cur_row += 1;
407 }
408 }
409 pthread_mutex_unlock(lf_sync->lf_mutex);
410
411 if (return_val == -1) return return_val;
412
413 pthread_mutex_lock(&lf_sync->recon_done_mutex[cur_row]);
414 if (lf_sync->num_tiles_done[cur_row] < tile_cols) {
415 pthread_cond_wait(&lf_sync->recon_done_cond[cur_row],
416 &lf_sync->recon_done_mutex[cur_row]);
417 }
418 pthread_mutex_unlock(&lf_sync->recon_done_mutex[cur_row]);
419 pthread_mutex_lock(lf_sync->lf_mutex);
420 if (lf_sync->corrupted) {
421 int row = return_val >> MI_BLOCK_SIZE_LOG2;
422 pthread_mutex_lock(&lf_sync->mutex[row]);
423 lf_sync->cur_sb_col[row] = INT_MAX;
424 pthread_cond_signal(&lf_sync->cond[row]);
425 pthread_mutex_unlock(&lf_sync->mutex[row]);
426 return_val = -1;
427 }
428 pthread_mutex_unlock(lf_sync->lf_mutex);
429 #else
430 (void)lf_sync;
431 if (cm->lf_row < max_rows) {
432 return_val = cm->lf_row;
433 cm->lf_row += MI_BLOCK_SIZE;
434 }
435 #endif // CONFIG_MULTITHREAD
436
437 return return_val;
438 }
439
vp9_loopfilter_rows(LFWorkerData * lf_data,VP9LfSync * lf_sync)440 void vp9_loopfilter_rows(LFWorkerData *lf_data, VP9LfSync *lf_sync) {
441 int mi_row;
442 VP9_COMMON *cm = lf_data->cm;
443
444 while ((mi_row = get_next_row(cm, lf_sync)) != -1 && mi_row < cm->mi_rows) {
445 lf_data->start = mi_row;
446 lf_data->stop = mi_row + MI_BLOCK_SIZE;
447
448 thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes,
449 lf_data->start, lf_data->stop, lf_data->y_only,
450 lf_sync);
451 }
452 }
453
vp9_set_row(VP9LfSync * lf_sync,int num_tiles,int row,int is_last_row,int corrupted)454 void vp9_set_row(VP9LfSync *lf_sync, int num_tiles, int row, int is_last_row,
455 int corrupted) {
456 #if CONFIG_MULTITHREAD
457 pthread_mutex_lock(lf_sync->lf_mutex);
458 lf_sync->corrupted |= corrupted;
459 pthread_mutex_unlock(lf_sync->lf_mutex);
460 pthread_mutex_lock(&lf_sync->recon_done_mutex[row]);
461 lf_sync->num_tiles_done[row] += 1;
462 if (num_tiles == lf_sync->num_tiles_done[row]) {
463 if (is_last_row) {
464 /* The last 2 rows wait on the last row to be done.
465 * So, we have to broadcast the signal in this case.
466 */
467 pthread_cond_broadcast(&lf_sync->recon_done_cond[row]);
468 } else {
469 pthread_cond_signal(&lf_sync->recon_done_cond[row]);
470 }
471 }
472 pthread_mutex_unlock(&lf_sync->recon_done_mutex[row]);
473 #else
474 (void)lf_sync;
475 (void)num_tiles;
476 (void)row;
477 (void)is_last_row;
478 (void)corrupted;
479 #endif // CONFIG_MULTITHREAD
480 }
481
vp9_loopfilter_job(LFWorkerData * lf_data,VP9LfSync * lf_sync)482 void vp9_loopfilter_job(LFWorkerData *lf_data, VP9LfSync *lf_sync) {
483 thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes,
484 lf_data->start, lf_data->stop, lf_data->y_only,
485 lf_sync);
486 }
487
488 // Accumulate frame counts.
vp9_accumulate_frame_counts(FRAME_COUNTS * accum,const FRAME_COUNTS * counts,int is_dec)489 void vp9_accumulate_frame_counts(FRAME_COUNTS *accum,
490 const FRAME_COUNTS *counts, int is_dec) {
491 int i, j, k, l, m;
492
493 for (i = 0; i < BLOCK_SIZE_GROUPS; i++)
494 for (j = 0; j < INTRA_MODES; j++)
495 accum->y_mode[i][j] += counts->y_mode[i][j];
496
497 for (i = 0; i < INTRA_MODES; i++)
498 for (j = 0; j < INTRA_MODES; j++)
499 accum->uv_mode[i][j] += counts->uv_mode[i][j];
500
501 for (i = 0; i < PARTITION_CONTEXTS; i++)
502 for (j = 0; j < PARTITION_TYPES; j++)
503 accum->partition[i][j] += counts->partition[i][j];
504
505 if (is_dec) {
506 int n;
507 for (i = 0; i < TX_SIZES; i++)
508 for (j = 0; j < PLANE_TYPES; j++)
509 for (k = 0; k < REF_TYPES; k++)
510 for (l = 0; l < COEF_BANDS; l++)
511 for (m = 0; m < COEFF_CONTEXTS; m++) {
512 accum->eob_branch[i][j][k][l][m] +=
513 counts->eob_branch[i][j][k][l][m];
514 for (n = 0; n < UNCONSTRAINED_NODES + 1; n++)
515 accum->coef[i][j][k][l][m][n] += counts->coef[i][j][k][l][m][n];
516 }
517 } else {
518 for (i = 0; i < TX_SIZES; i++)
519 for (j = 0; j < PLANE_TYPES; j++)
520 for (k = 0; k < REF_TYPES; k++)
521 for (l = 0; l < COEF_BANDS; l++)
522 for (m = 0; m < COEFF_CONTEXTS; m++)
523 accum->eob_branch[i][j][k][l][m] +=
524 counts->eob_branch[i][j][k][l][m];
525 // In the encoder, coef is only updated at frame
526 // level, so not need to accumulate it here.
527 // for (n = 0; n < UNCONSTRAINED_NODES + 1; n++)
528 // accum->coef[i][j][k][l][m][n] +=
529 // counts->coef[i][j][k][l][m][n];
530 }
531
532 for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
533 for (j = 0; j < SWITCHABLE_FILTERS; j++)
534 accum->switchable_interp[i][j] += counts->switchable_interp[i][j];
535
536 for (i = 0; i < INTER_MODE_CONTEXTS; i++)
537 for (j = 0; j < INTER_MODES; j++)
538 accum->inter_mode[i][j] += counts->inter_mode[i][j];
539
540 for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
541 for (j = 0; j < 2; j++)
542 accum->intra_inter[i][j] += counts->intra_inter[i][j];
543
544 for (i = 0; i < COMP_INTER_CONTEXTS; i++)
545 for (j = 0; j < 2; j++) accum->comp_inter[i][j] += counts->comp_inter[i][j];
546
547 for (i = 0; i < REF_CONTEXTS; i++)
548 for (j = 0; j < 2; j++)
549 for (k = 0; k < 2; k++)
550 accum->single_ref[i][j][k] += counts->single_ref[i][j][k];
551
552 for (i = 0; i < REF_CONTEXTS; i++)
553 for (j = 0; j < 2; j++) accum->comp_ref[i][j] += counts->comp_ref[i][j];
554
555 for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
556 for (j = 0; j < TX_SIZES; j++)
557 accum->tx.p32x32[i][j] += counts->tx.p32x32[i][j];
558
559 for (j = 0; j < TX_SIZES - 1; j++)
560 accum->tx.p16x16[i][j] += counts->tx.p16x16[i][j];
561
562 for (j = 0; j < TX_SIZES - 2; j++)
563 accum->tx.p8x8[i][j] += counts->tx.p8x8[i][j];
564 }
565
566 for (i = 0; i < TX_SIZES; i++)
567 accum->tx.tx_totals[i] += counts->tx.tx_totals[i];
568
569 for (i = 0; i < SKIP_CONTEXTS; i++)
570 for (j = 0; j < 2; j++) accum->skip[i][j] += counts->skip[i][j];
571
572 for (i = 0; i < MV_JOINTS; i++) accum->mv.joints[i] += counts->mv.joints[i];
573
574 for (k = 0; k < 2; k++) {
575 nmv_component_counts *const comps = &accum->mv.comps[k];
576 const nmv_component_counts *const comps_t = &counts->mv.comps[k];
577
578 for (i = 0; i < 2; i++) {
579 comps->sign[i] += comps_t->sign[i];
580 comps->class0_hp[i] += comps_t->class0_hp[i];
581 comps->hp[i] += comps_t->hp[i];
582 }
583
584 for (i = 0; i < MV_CLASSES; i++) comps->classes[i] += comps_t->classes[i];
585
586 for (i = 0; i < CLASS0_SIZE; i++) {
587 comps->class0[i] += comps_t->class0[i];
588 for (j = 0; j < MV_FP_SIZE; j++)
589 comps->class0_fp[i][j] += comps_t->class0_fp[i][j];
590 }
591
592 for (i = 0; i < MV_OFFSET_BITS; i++)
593 for (j = 0; j < 2; j++) comps->bits[i][j] += comps_t->bits[i][j];
594
595 for (i = 0; i < MV_FP_SIZE; i++) comps->fp[i] += comps_t->fp[i];
596 }
597 }
598