1 /*
2 * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <assert.h>
12 #include <limits.h>
13 #include <math.h>
14 #include <stdio.h>
15
16 #include "./vp9_rtcd.h"
17 #include "./vpx_dsp_rtcd.h"
18
19 #include "vpx/vpx_codec.h"
20 #include "vpx_dsp/vpx_dsp_common.h"
21 #include "vpx_mem/vpx_mem.h"
22 #include "vpx_ports/compiler_attributes.h"
23
24 #include "vp9/common/vp9_blockd.h"
25 #include "vp9/common/vp9_common.h"
26 #include "vp9/common/vp9_mvref_common.h"
27 #include "vp9/common/vp9_pred_common.h"
28 #include "vp9/common/vp9_reconinter.h"
29 #include "vp9/common/vp9_reconintra.h"
30 #include "vp9/common/vp9_scan.h"
31
32 #include "vp9/encoder/vp9_cost.h"
33 #include "vp9/encoder/vp9_encoder.h"
34 #include "vp9/encoder/vp9_pickmode.h"
35 #include "vp9/encoder/vp9_ratectrl.h"
36 #include "vp9/encoder/vp9_rd.h"
37
38 typedef struct {
39 uint8_t *data;
40 int stride;
41 int in_use;
42 } PRED_BUFFER;
43
44 typedef struct {
45 PRED_BUFFER *best_pred;
46 PREDICTION_MODE best_mode;
47 TX_SIZE best_tx_size;
48 TX_SIZE best_intra_tx_size;
49 MV_REFERENCE_FRAME best_ref_frame;
50 MV_REFERENCE_FRAME best_second_ref_frame;
51 uint8_t best_mode_skip_txfm;
52 INTERP_FILTER best_pred_filter;
53 } BEST_PICKMODE;
54
55 static const int pos_shift_16x16[4][4] = {
56 { 9, 10, 13, 14 }, { 11, 12, 15, 16 }, { 17, 18, 21, 22 }, { 19, 20, 23, 24 }
57 };
58
mv_refs_rt(VP9_COMP * cpi,const VP9_COMMON * cm,const MACROBLOCK * x,const MACROBLOCKD * xd,const TileInfo * const tile,MODE_INFO * mi,MV_REFERENCE_FRAME ref_frame,int_mv * mv_ref_list,int_mv * base_mv,int mi_row,int mi_col,int use_base_mv)59 static int mv_refs_rt(VP9_COMP *cpi, const VP9_COMMON *cm, const MACROBLOCK *x,
60 const MACROBLOCKD *xd, const TileInfo *const tile,
61 MODE_INFO *mi, MV_REFERENCE_FRAME ref_frame,
62 int_mv *mv_ref_list, int_mv *base_mv, int mi_row,
63 int mi_col, int use_base_mv) {
64 const int *ref_sign_bias = cm->ref_frame_sign_bias;
65 int i, refmv_count = 0;
66
67 const POSITION *const mv_ref_search = mv_ref_blocks[mi->sb_type];
68
69 int different_ref_found = 0;
70 int context_counter = 0;
71 int const_motion = 0;
72
73 // Blank the reference vector list
74 memset(mv_ref_list, 0, sizeof(*mv_ref_list) * MAX_MV_REF_CANDIDATES);
75
76 // The nearest 2 blocks are treated differently
77 // if the size < 8x8 we get the mv from the bmi substructure,
78 // and we also need to keep a mode count.
79 for (i = 0; i < 2; ++i) {
80 const POSITION *const mv_ref = &mv_ref_search[i];
81 if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
82 const MODE_INFO *const candidate_mi =
83 xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride];
84 // Keep counts for entropy encoding.
85 context_counter += mode_2_counter[candidate_mi->mode];
86 different_ref_found = 1;
87
88 if (candidate_mi->ref_frame[0] == ref_frame)
89 ADD_MV_REF_LIST(get_sub_block_mv(candidate_mi, 0, mv_ref->col, -1),
90 refmv_count, mv_ref_list, Done);
91 }
92 }
93
94 const_motion = 1;
95
96 // Check the rest of the neighbors in much the same way
97 // as before except we don't need to keep track of sub blocks or
98 // mode counts.
99 for (; i < MVREF_NEIGHBOURS && !refmv_count; ++i) {
100 const POSITION *const mv_ref = &mv_ref_search[i];
101 if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
102 const MODE_INFO *const candidate_mi =
103 xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride];
104 different_ref_found = 1;
105
106 if (candidate_mi->ref_frame[0] == ref_frame)
107 ADD_MV_REF_LIST(candidate_mi->mv[0], refmv_count, mv_ref_list, Done);
108 }
109 }
110
111 // Since we couldn't find 2 mvs from the same reference frame
112 // go back through the neighbors and find motion vectors from
113 // different reference frames.
114 if (different_ref_found && !refmv_count) {
115 for (i = 0; i < MVREF_NEIGHBOURS; ++i) {
116 const POSITION *mv_ref = &mv_ref_search[i];
117 if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
118 const MODE_INFO *const candidate_mi =
119 xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride];
120
121 // If the candidate is INTRA we don't want to consider its mv.
122 IF_DIFF_REF_FRAME_ADD_MV(candidate_mi, ref_frame, ref_sign_bias,
123 refmv_count, mv_ref_list, Done);
124 }
125 }
126 }
127 if (use_base_mv &&
128 !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame &&
129 ref_frame == LAST_FRAME) {
130 // Get base layer mv.
131 MV_REF *candidate =
132 &cm->prev_frame
133 ->mvs[(mi_col >> 1) + (mi_row >> 1) * (cm->mi_cols >> 1)];
134 if (candidate->mv[0].as_int != INVALID_MV) {
135 base_mv->as_mv.row = (candidate->mv[0].as_mv.row * 2);
136 base_mv->as_mv.col = (candidate->mv[0].as_mv.col * 2);
137 clamp_mv_ref(&base_mv->as_mv, xd);
138 } else {
139 base_mv->as_int = INVALID_MV;
140 }
141 }
142
143 Done:
144
145 x->mbmi_ext->mode_context[ref_frame] = counter_to_context[context_counter];
146
147 // Clamp vectors
148 for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i)
149 clamp_mv_ref(&mv_ref_list[i].as_mv, xd);
150
151 return const_motion;
152 }
153
combined_motion_search(VP9_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,int mi_row,int mi_col,int_mv * tmp_mv,int * rate_mv,int64_t best_rd_sofar,int use_base_mv)154 static int combined_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
155 BLOCK_SIZE bsize, int mi_row, int mi_col,
156 int_mv *tmp_mv, int *rate_mv,
157 int64_t best_rd_sofar, int use_base_mv) {
158 MACROBLOCKD *xd = &x->e_mbd;
159 MODE_INFO *mi = xd->mi[0];
160 struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0 } };
161 const int step_param = cpi->sf.mv.fullpel_search_step_param;
162 const int sadpb = x->sadperbit16;
163 MV mvp_full;
164 const int ref = mi->ref_frame[0];
165 const MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv;
166 MV center_mv;
167 uint32_t dis;
168 int rate_mode;
169 const MvLimits tmp_mv_limits = x->mv_limits;
170 int rv = 0;
171 int cost_list[5];
172 int search_subpel = 1;
173 const YV12_BUFFER_CONFIG *scaled_ref_frame =
174 vp9_get_scaled_ref_frame(cpi, ref);
175 if (scaled_ref_frame) {
176 int i;
177 // Swap out the reference frame for a version that's been scaled to
178 // match the resolution of the current frame, allowing the existing
179 // motion search code to be used without additional modifications.
180 for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0];
181 vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
182 }
183 vp9_set_mv_search_range(&x->mv_limits, &ref_mv);
184
185 // Limit motion vector for large lightning change.
186 if (cpi->oxcf.speed > 5 && x->lowvar_highsumdiff) {
187 x->mv_limits.col_min = VPXMAX(x->mv_limits.col_min, -10);
188 x->mv_limits.row_min = VPXMAX(x->mv_limits.row_min, -10);
189 x->mv_limits.col_max = VPXMIN(x->mv_limits.col_max, 10);
190 x->mv_limits.row_max = VPXMIN(x->mv_limits.row_max, 10);
191 }
192
193 assert(x->mv_best_ref_index[ref] <= 2);
194 if (x->mv_best_ref_index[ref] < 2)
195 mvp_full = x->mbmi_ext->ref_mvs[ref][x->mv_best_ref_index[ref]].as_mv;
196 else
197 mvp_full = x->pred_mv[ref];
198
199 mvp_full.col >>= 3;
200 mvp_full.row >>= 3;
201
202 if (!use_base_mv)
203 center_mv = ref_mv;
204 else
205 center_mv = tmp_mv->as_mv;
206
207 if (x->sb_use_mv_part) {
208 tmp_mv->as_mv.row = x->sb_mvrow_part >> 3;
209 tmp_mv->as_mv.col = x->sb_mvcol_part >> 3;
210 } else {
211 vp9_full_pixel_search(
212 cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method, sadpb,
213 cond_cost_list(cpi, cost_list), ¢er_mv, &tmp_mv->as_mv, INT_MAX, 0);
214 }
215
216 x->mv_limits = tmp_mv_limits;
217
218 // calculate the bit cost on motion vector
219 mvp_full.row = tmp_mv->as_mv.row * 8;
220 mvp_full.col = tmp_mv->as_mv.col * 8;
221
222 *rate_mv = vp9_mv_bit_cost(&mvp_full, &ref_mv, x->nmvjointcost, x->mvcost,
223 MV_COST_WEIGHT);
224
225 rate_mode =
226 cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref]][INTER_OFFSET(NEWMV)];
227 rv =
228 !(RDCOST(x->rdmult, x->rddiv, (*rate_mv + rate_mode), 0) > best_rd_sofar);
229
230 // For SVC on non-reference frame, avoid subpel for (0, 0) motion.
231 if (cpi->use_svc && cpi->svc.non_reference_frame) {
232 if (mvp_full.row == 0 && mvp_full.col == 0) search_subpel = 0;
233 }
234
235 if (rv && search_subpel) {
236 SUBPEL_FORCE_STOP subpel_force_stop = cpi->sf.mv.subpel_force_stop;
237 if (use_base_mv && cpi->sf.base_mv_aggressive) subpel_force_stop = HALF_PEL;
238 if (cpi->sf.mv.enable_adaptive_subpel_force_stop) {
239 const int mv_thresh = cpi->sf.mv.adapt_subpel_force_stop.mv_thresh;
240 if (abs(tmp_mv->as_mv.row) >= mv_thresh ||
241 abs(tmp_mv->as_mv.col) >= mv_thresh)
242 subpel_force_stop = cpi->sf.mv.adapt_subpel_force_stop.force_stop_above;
243 else
244 subpel_force_stop = cpi->sf.mv.adapt_subpel_force_stop.force_stop_below;
245 }
246 cpi->find_fractional_mv_step(
247 x, &tmp_mv->as_mv, &ref_mv, cpi->common.allow_high_precision_mv,
248 x->errorperbit, &cpi->fn_ptr[bsize], subpel_force_stop,
249 cpi->sf.mv.subpel_search_level, cond_cost_list(cpi, cost_list),
250 x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, 0, 0,
251 cpi->sf.use_accurate_subpel_search);
252 *rate_mv = vp9_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->nmvjointcost,
253 x->mvcost, MV_COST_WEIGHT);
254 }
255
256 if (scaled_ref_frame) {
257 int i;
258 for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i];
259 }
260 return rv;
261 }
262
block_variance(const uint8_t * src,int src_stride,const uint8_t * ref,int ref_stride,int w,int h,unsigned int * sse,int * sum,int block_size,int use_highbitdepth,vpx_bit_depth_t bd,uint32_t * sse8x8,int * sum8x8,uint32_t * var8x8)263 static void block_variance(const uint8_t *src, int src_stride,
264 const uint8_t *ref, int ref_stride, int w, int h,
265 unsigned int *sse, int *sum, int block_size,
266 #if CONFIG_VP9_HIGHBITDEPTH
267 int use_highbitdepth, vpx_bit_depth_t bd,
268 #endif
269 uint32_t *sse8x8, int *sum8x8, uint32_t *var8x8) {
270 int i, j, k = 0;
271 uint32_t k_sqr = 0;
272
273 *sse = 0;
274 *sum = 0;
275
276 for (i = 0; i < h; i += block_size) {
277 for (j = 0; j < w; j += block_size) {
278 #if CONFIG_VP9_HIGHBITDEPTH
279 if (use_highbitdepth) {
280 switch (bd) {
281 case VPX_BITS_8:
282 vpx_highbd_8_get8x8var(src + src_stride * i + j, src_stride,
283 ref + ref_stride * i + j, ref_stride,
284 &sse8x8[k], &sum8x8[k]);
285 break;
286 case VPX_BITS_10:
287 vpx_highbd_10_get8x8var(src + src_stride * i + j, src_stride,
288 ref + ref_stride * i + j, ref_stride,
289 &sse8x8[k], &sum8x8[k]);
290 break;
291 case VPX_BITS_12:
292 vpx_highbd_12_get8x8var(src + src_stride * i + j, src_stride,
293 ref + ref_stride * i + j, ref_stride,
294 &sse8x8[k], &sum8x8[k]);
295 break;
296 }
297 } else {
298 vpx_get8x8var(src + src_stride * i + j, src_stride,
299 ref + ref_stride * i + j, ref_stride, &sse8x8[k],
300 &sum8x8[k]);
301 }
302 #else
303 vpx_get8x8var(src + src_stride * i + j, src_stride,
304 ref + ref_stride * i + j, ref_stride, &sse8x8[k],
305 &sum8x8[k]);
306 #endif
307 *sse += sse8x8[k];
308 *sum += sum8x8[k];
309 k_sqr = (uint32_t)(((int64_t)sum8x8[k] * sum8x8[k]) >> 6);
310 var8x8[k] = sse8x8[k] > k_sqr ? sse8x8[k] - k_sqr : k_sqr - sse8x8[k];
311 k++;
312 }
313 }
314 }
315
calculate_variance(int bw,int bh,TX_SIZE tx_size,unsigned int * sse_i,int * sum_i,unsigned int * var_o,unsigned int * sse_o,int * sum_o)316 static void calculate_variance(int bw, int bh, TX_SIZE tx_size,
317 unsigned int *sse_i, int *sum_i,
318 unsigned int *var_o, unsigned int *sse_o,
319 int *sum_o) {
320 const BLOCK_SIZE unit_size = txsize_to_bsize[tx_size];
321 const int nw = 1 << (bw - b_width_log2_lookup[unit_size]);
322 const int nh = 1 << (bh - b_height_log2_lookup[unit_size]);
323 int i, j, k = 0;
324 uint32_t k_sqr = 0;
325
326 for (i = 0; i < nh; i += 2) {
327 for (j = 0; j < nw; j += 2) {
328 sse_o[k] = sse_i[i * nw + j] + sse_i[i * nw + j + 1] +
329 sse_i[(i + 1) * nw + j] + sse_i[(i + 1) * nw + j + 1];
330 sum_o[k] = sum_i[i * nw + j] + sum_i[i * nw + j + 1] +
331 sum_i[(i + 1) * nw + j] + sum_i[(i + 1) * nw + j + 1];
332 k_sqr = (uint32_t)(((int64_t)sum_o[k] * sum_o[k]) >>
333 (b_width_log2_lookup[unit_size] +
334 b_height_log2_lookup[unit_size] + 6));
335 var_o[k] = sse_o[k] > k_sqr ? sse_o[k] - k_sqr : k_sqr - sse_o[k];
336 k++;
337 }
338 }
339 }
340
341 // Adjust the ac_thr according to speed, width, height and normalized sum
ac_thr_factor(const int speed,const int width,const int height,const int norm_sum)342 static int ac_thr_factor(const int speed, const int width, const int height,
343 const int norm_sum) {
344 if (speed >= 8 && norm_sum < 5) {
345 if (width <= 640 && height <= 480)
346 return 4;
347 else
348 return 2;
349 }
350 return 1;
351 }
352
calculate_tx_size(VP9_COMP * const cpi,BLOCK_SIZE bsize,MACROBLOCKD * const xd,unsigned int var,unsigned int sse,int64_t ac_thr,unsigned int source_variance,int is_intra)353 static TX_SIZE calculate_tx_size(VP9_COMP *const cpi, BLOCK_SIZE bsize,
354 MACROBLOCKD *const xd, unsigned int var,
355 unsigned int sse, int64_t ac_thr,
356 unsigned int source_variance, int is_intra) {
357 // TODO(marpan): Tune selection for intra-modes, screen content, etc.
358 TX_SIZE tx_size;
359 unsigned int var_thresh = is_intra ? (unsigned int)ac_thr : 1;
360 int limit_tx = 1;
361 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
362 (source_variance == 0 || var < var_thresh))
363 limit_tx = 0;
364 if (cpi->common.tx_mode == TX_MODE_SELECT) {
365 if (sse > (var << 2))
366 tx_size = VPXMIN(max_txsize_lookup[bsize],
367 tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
368 else
369 tx_size = TX_8X8;
370 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && limit_tx &&
371 cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id))
372 tx_size = TX_8X8;
373 else if (tx_size > TX_16X16 && limit_tx)
374 tx_size = TX_16X16;
375 // For screen-content force 4X4 tx_size over 8X8, for large variance.
376 if (cpi->oxcf.content == VP9E_CONTENT_SCREEN && tx_size == TX_8X8 &&
377 bsize <= BLOCK_16X16 && ((var >> 5) > (unsigned int)ac_thr))
378 tx_size = TX_4X4;
379 } else {
380 tx_size = VPXMIN(max_txsize_lookup[bsize],
381 tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
382 }
383 return tx_size;
384 }
385
compute_intra_yprediction(PREDICTION_MODE mode,BLOCK_SIZE bsize,MACROBLOCK * x,MACROBLOCKD * xd)386 static void compute_intra_yprediction(PREDICTION_MODE mode, BLOCK_SIZE bsize,
387 MACROBLOCK *x, MACROBLOCKD *xd) {
388 struct macroblockd_plane *const pd = &xd->plane[0];
389 struct macroblock_plane *const p = &x->plane[0];
390 uint8_t *const src_buf_base = p->src.buf;
391 uint8_t *const dst_buf_base = pd->dst.buf;
392 const int src_stride = p->src.stride;
393 const int dst_stride = pd->dst.stride;
394 // block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
395 // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
396 const TX_SIZE tx_size = max_txsize_lookup[bsize];
397 const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
398 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
399 int row, col;
400 // If mb_to_right_edge is < 0 we are in a situation in which
401 // the current block size extends into the UMV and we won't
402 // visit the sub blocks that are wholly within the UMV.
403 const int max_blocks_wide =
404 num_4x4_w + (xd->mb_to_right_edge >= 0
405 ? 0
406 : xd->mb_to_right_edge >> (5 + pd->subsampling_x));
407 const int max_blocks_high =
408 num_4x4_h + (xd->mb_to_bottom_edge >= 0
409 ? 0
410 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
411
412 // Keep track of the row and column of the blocks we use so that we know
413 // if we are in the unrestricted motion border.
414 for (row = 0; row < max_blocks_high; row += (1 << tx_size)) {
415 // Skip visiting the sub blocks that are wholly within the UMV.
416 for (col = 0; col < max_blocks_wide; col += (1 << tx_size)) {
417 p->src.buf = &src_buf_base[4 * (row * (int64_t)src_stride + col)];
418 pd->dst.buf = &dst_buf_base[4 * (row * (int64_t)dst_stride + col)];
419 vp9_predict_intra_block(xd, b_width_log2_lookup[bsize], tx_size, mode,
420 x->skip_encode ? p->src.buf : pd->dst.buf,
421 x->skip_encode ? src_stride : dst_stride,
422 pd->dst.buf, dst_stride, col, row, 0);
423 }
424 }
425 p->src.buf = src_buf_base;
426 pd->dst.buf = dst_buf_base;
427 }
428
model_rd_for_sb_y_large(VP9_COMP * cpi,BLOCK_SIZE bsize,MACROBLOCK * x,MACROBLOCKD * xd,int * out_rate_sum,int64_t * out_dist_sum,unsigned int * var_y,unsigned int * sse_y,int mi_row,int mi_col,int * early_term,int * flag_preduv_computed)429 static void model_rd_for_sb_y_large(VP9_COMP *cpi, BLOCK_SIZE bsize,
430 MACROBLOCK *x, MACROBLOCKD *xd,
431 int *out_rate_sum, int64_t *out_dist_sum,
432 unsigned int *var_y, unsigned int *sse_y,
433 int mi_row, int mi_col, int *early_term,
434 int *flag_preduv_computed) {
435 // Note our transform coeffs are 8 times an orthogonal transform.
436 // Hence quantizer step is also 8 times. To get effective quantizer
437 // we need to divide by 8 before sending to modeling function.
438 unsigned int sse;
439 int rate;
440 int64_t dist;
441 struct macroblock_plane *const p = &x->plane[0];
442 struct macroblockd_plane *const pd = &xd->plane[0];
443 const uint32_t dc_quant = pd->dequant[0];
444 const uint32_t ac_quant = pd->dequant[1];
445 int64_t dc_thr = dc_quant * dc_quant >> 6;
446 int64_t ac_thr = ac_quant * ac_quant >> 6;
447 unsigned int var;
448 int sum;
449 int skip_dc = 0;
450
451 const int bw = b_width_log2_lookup[bsize];
452 const int bh = b_height_log2_lookup[bsize];
453 const int num8x8 = 1 << (bw + bh - 2);
454 unsigned int sse8x8[64] = { 0 };
455 int sum8x8[64] = { 0 };
456 unsigned int var8x8[64] = { 0 };
457 TX_SIZE tx_size;
458 int i, k;
459 uint32_t sum_sqr;
460 #if CONFIG_VP9_HIGHBITDEPTH
461 const vpx_bit_depth_t bd = cpi->common.bit_depth;
462 #endif
463 // Calculate variance for whole partition, and also save 8x8 blocks' variance
464 // to be used in following transform skipping test.
465 block_variance(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
466 4 << bw, 4 << bh, &sse, &sum, 8,
467 #if CONFIG_VP9_HIGHBITDEPTH
468 cpi->common.use_highbitdepth, bd,
469 #endif
470 sse8x8, sum8x8, var8x8);
471 sum_sqr = (uint32_t)((int64_t)sum * sum) >> (bw + bh + 4);
472 var = sse > sum_sqr ? sse - sum_sqr : sum_sqr - sse;
473
474 *var_y = var;
475 *sse_y = sse;
476
477 #if CONFIG_VP9_TEMPORAL_DENOISING
478 if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) &&
479 cpi->oxcf.speed > 5)
480 ac_thr = vp9_scale_acskip_thresh(ac_thr, cpi->denoiser.denoising_level,
481 (abs(sum) >> (bw + bh)),
482 cpi->svc.temporal_layer_id);
483 else
484 ac_thr *= ac_thr_factor(cpi->oxcf.speed, cpi->common.width,
485 cpi->common.height, abs(sum) >> (bw + bh));
486 #else
487 ac_thr *= ac_thr_factor(cpi->oxcf.speed, cpi->common.width,
488 cpi->common.height, abs(sum) >> (bw + bh));
489 #endif
490
491 tx_size = calculate_tx_size(cpi, bsize, xd, var, sse, ac_thr,
492 x->source_variance, 0);
493 // The code below for setting skip flag assumes tranform size of at least 8x8,
494 // so force this lower limit on transform.
495 if (tx_size < TX_8X8) tx_size = TX_8X8;
496 xd->mi[0]->tx_size = tx_size;
497
498 if (cpi->oxcf.content == VP9E_CONTENT_SCREEN && x->zero_temp_sad_source &&
499 x->source_variance == 0)
500 dc_thr = dc_thr << 1;
501
502 // Evaluate if the partition block is a skippable block in Y plane.
503 {
504 unsigned int sse16x16[16] = { 0 };
505 int sum16x16[16] = { 0 };
506 unsigned int var16x16[16] = { 0 };
507 const int num16x16 = num8x8 >> 2;
508
509 unsigned int sse32x32[4] = { 0 };
510 int sum32x32[4] = { 0 };
511 unsigned int var32x32[4] = { 0 };
512 const int num32x32 = num8x8 >> 4;
513
514 int ac_test = 1;
515 int dc_test = 1;
516 const int num = (tx_size == TX_8X8)
517 ? num8x8
518 : ((tx_size == TX_16X16) ? num16x16 : num32x32);
519 const unsigned int *sse_tx =
520 (tx_size == TX_8X8) ? sse8x8
521 : ((tx_size == TX_16X16) ? sse16x16 : sse32x32);
522 const unsigned int *var_tx =
523 (tx_size == TX_8X8) ? var8x8
524 : ((tx_size == TX_16X16) ? var16x16 : var32x32);
525
526 // Calculate variance if tx_size > TX_8X8
527 if (tx_size >= TX_16X16)
528 calculate_variance(bw, bh, TX_8X8, sse8x8, sum8x8, var16x16, sse16x16,
529 sum16x16);
530 if (tx_size == TX_32X32)
531 calculate_variance(bw, bh, TX_16X16, sse16x16, sum16x16, var32x32,
532 sse32x32, sum32x32);
533
534 // Skipping test
535 x->skip_txfm[0] = SKIP_TXFM_NONE;
536 for (k = 0; k < num; k++)
537 // Check if all ac coefficients can be quantized to zero.
538 if (!(var_tx[k] < ac_thr || var == 0)) {
539 ac_test = 0;
540 break;
541 }
542
543 for (k = 0; k < num; k++)
544 // Check if dc coefficient can be quantized to zero.
545 if (!(sse_tx[k] - var_tx[k] < dc_thr || sse == var)) {
546 dc_test = 0;
547 break;
548 }
549
550 if (ac_test) {
551 x->skip_txfm[0] = SKIP_TXFM_AC_ONLY;
552
553 if (dc_test) x->skip_txfm[0] = SKIP_TXFM_AC_DC;
554 } else if (dc_test) {
555 skip_dc = 1;
556 }
557 }
558
559 if (x->skip_txfm[0] == SKIP_TXFM_AC_DC) {
560 int skip_uv[2] = { 0 };
561 unsigned int var_uv[2];
562 unsigned int sse_uv[2];
563
564 *out_rate_sum = 0;
565 *out_dist_sum = sse << 4;
566
567 // Transform skipping test in UV planes.
568 for (i = 1; i <= 2; i++) {
569 struct macroblock_plane *const p_uv = &x->plane[i];
570 struct macroblockd_plane *const pd_uv = &xd->plane[i];
571 const TX_SIZE uv_tx_size = get_uv_tx_size(xd->mi[0], pd_uv);
572 const BLOCK_SIZE unit_size = txsize_to_bsize[uv_tx_size];
573 const BLOCK_SIZE uv_bsize = get_plane_block_size(bsize, pd_uv);
574 const int uv_bw = b_width_log2_lookup[uv_bsize];
575 const int uv_bh = b_height_log2_lookup[uv_bsize];
576 const int sf = (uv_bw - b_width_log2_lookup[unit_size]) +
577 (uv_bh - b_height_log2_lookup[unit_size]);
578 const uint32_t uv_dc_thr =
579 pd_uv->dequant[0] * pd_uv->dequant[0] >> (6 - sf);
580 const uint32_t uv_ac_thr =
581 pd_uv->dequant[1] * pd_uv->dequant[1] >> (6 - sf);
582 int j = i - 1;
583
584 vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, i);
585 flag_preduv_computed[i - 1] = 1;
586 var_uv[j] = cpi->fn_ptr[uv_bsize].vf(p_uv->src.buf, p_uv->src.stride,
587 pd_uv->dst.buf, pd_uv->dst.stride,
588 &sse_uv[j]);
589
590 if ((var_uv[j] < uv_ac_thr || var_uv[j] == 0) &&
591 (sse_uv[j] - var_uv[j] < uv_dc_thr || sse_uv[j] == var_uv[j]))
592 skip_uv[j] = 1;
593 else
594 break;
595 }
596
597 // If the transform in YUV planes are skippable, the mode search checks
598 // fewer inter modes and doesn't check intra modes.
599 if (skip_uv[0] & skip_uv[1]) {
600 *early_term = 1;
601 }
602 return;
603 }
604
605 if (!skip_dc) {
606 #if CONFIG_VP9_HIGHBITDEPTH
607 vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
608 dc_quant >> (xd->bd - 5), &rate, &dist);
609 #else
610 vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
611 dc_quant >> 3, &rate, &dist);
612 #endif // CONFIG_VP9_HIGHBITDEPTH
613 }
614
615 if (!skip_dc) {
616 *out_rate_sum = rate >> 1;
617 *out_dist_sum = dist << 3;
618 } else {
619 *out_rate_sum = 0;
620 *out_dist_sum = (sse - var) << 4;
621 }
622
623 #if CONFIG_VP9_HIGHBITDEPTH
624 vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
625 ac_quant >> (xd->bd - 5), &rate, &dist);
626 #else
627 vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], ac_quant >> 3,
628 &rate, &dist);
629 #endif // CONFIG_VP9_HIGHBITDEPTH
630
631 *out_rate_sum += rate;
632 *out_dist_sum += dist << 4;
633 }
634
model_rd_for_sb_y(VP9_COMP * cpi,BLOCK_SIZE bsize,MACROBLOCK * x,MACROBLOCKD * xd,int * out_rate_sum,int64_t * out_dist_sum,unsigned int * var_y,unsigned int * sse_y,int is_intra)635 static void model_rd_for_sb_y(VP9_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x,
636 MACROBLOCKD *xd, int *out_rate_sum,
637 int64_t *out_dist_sum, unsigned int *var_y,
638 unsigned int *sse_y, int is_intra) {
639 // Note our transform coeffs are 8 times an orthogonal transform.
640 // Hence quantizer step is also 8 times. To get effective quantizer
641 // we need to divide by 8 before sending to modeling function.
642 unsigned int sse;
643 int rate;
644 int64_t dist;
645 struct macroblock_plane *const p = &x->plane[0];
646 struct macroblockd_plane *const pd = &xd->plane[0];
647 const int64_t dc_thr = p->quant_thred[0] >> 6;
648 const int64_t ac_thr = p->quant_thred[1] >> 6;
649 const uint32_t dc_quant = pd->dequant[0];
650 const uint32_t ac_quant = pd->dequant[1];
651 unsigned int var = cpi->fn_ptr[bsize].vf(p->src.buf, p->src.stride,
652 pd->dst.buf, pd->dst.stride, &sse);
653 int skip_dc = 0;
654
655 *var_y = var;
656 *sse_y = sse;
657
658 xd->mi[0]->tx_size = calculate_tx_size(cpi, bsize, xd, var, sse, ac_thr,
659 x->source_variance, is_intra);
660
661 // Evaluate if the partition block is a skippable block in Y plane.
662 {
663 const BLOCK_SIZE unit_size = txsize_to_bsize[xd->mi[0]->tx_size];
664 const unsigned int num_blk_log2 =
665 (b_width_log2_lookup[bsize] - b_width_log2_lookup[unit_size]) +
666 (b_height_log2_lookup[bsize] - b_height_log2_lookup[unit_size]);
667 const unsigned int sse_tx = sse >> num_blk_log2;
668 const unsigned int var_tx = var >> num_blk_log2;
669
670 x->skip_txfm[0] = SKIP_TXFM_NONE;
671 // Check if all ac coefficients can be quantized to zero.
672 if (var_tx < ac_thr || var == 0) {
673 x->skip_txfm[0] = SKIP_TXFM_AC_ONLY;
674 // Check if dc coefficient can be quantized to zero.
675 if (sse_tx - var_tx < dc_thr || sse == var)
676 x->skip_txfm[0] = SKIP_TXFM_AC_DC;
677 } else {
678 if (sse_tx - var_tx < dc_thr || sse == var) skip_dc = 1;
679 }
680 }
681
682 if (x->skip_txfm[0] == SKIP_TXFM_AC_DC) {
683 *out_rate_sum = 0;
684 *out_dist_sum = sse << 4;
685 return;
686 }
687
688 if (!skip_dc) {
689 #if CONFIG_VP9_HIGHBITDEPTH
690 vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
691 dc_quant >> (xd->bd - 5), &rate, &dist);
692 #else
693 vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
694 dc_quant >> 3, &rate, &dist);
695 #endif // CONFIG_VP9_HIGHBITDEPTH
696 }
697
698 if (!skip_dc) {
699 *out_rate_sum = rate >> 1;
700 *out_dist_sum = dist << 3;
701 } else {
702 *out_rate_sum = 0;
703 *out_dist_sum = (sse - var) << 4;
704 }
705
706 #if CONFIG_VP9_HIGHBITDEPTH
707 vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
708 ac_quant >> (xd->bd - 5), &rate, &dist);
709 #else
710 vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], ac_quant >> 3,
711 &rate, &dist);
712 #endif // CONFIG_VP9_HIGHBITDEPTH
713
714 *out_rate_sum += rate;
715 *out_dist_sum += dist << 4;
716 }
717
block_yrd(VP9_COMP * cpi,MACROBLOCK * x,RD_COST * this_rdc,int * skippable,int64_t * sse,BLOCK_SIZE bsize,TX_SIZE tx_size,int rd_computed,int is_intra)718 static void block_yrd(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *this_rdc,
719 int *skippable, int64_t *sse, BLOCK_SIZE bsize,
720 TX_SIZE tx_size, int rd_computed, int is_intra) {
721 MACROBLOCKD *xd = &x->e_mbd;
722 const struct macroblockd_plane *pd = &xd->plane[0];
723 struct macroblock_plane *const p = &x->plane[0];
724 const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
725 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
726 const int step = 1 << (tx_size << 1);
727 const int block_step = (1 << tx_size);
728 int block = 0, r, c;
729 const int max_blocks_wide =
730 num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5);
731 const int max_blocks_high =
732 num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5);
733 int eob_cost = 0;
734 const int bw = 4 * num_4x4_w;
735 const int bh = 4 * num_4x4_h;
736
737 if (cpi->sf.use_simple_block_yrd && cpi->common.frame_type != KEY_FRAME &&
738 (bsize < BLOCK_32X32 ||
739 (cpi->use_svc &&
740 (bsize < BLOCK_32X32 || cpi->svc.temporal_layer_id > 0)))) {
741 unsigned int var_y, sse_y;
742 (void)tx_size;
743 if (!rd_computed)
744 model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc->rate, &this_rdc->dist,
745 &var_y, &sse_y, is_intra);
746 *sse = INT_MAX;
747 *skippable = 0;
748 return;
749 }
750
751 (void)cpi;
752
753 // The max tx_size passed in is TX_16X16.
754 assert(tx_size != TX_32X32);
755 #if CONFIG_VP9_HIGHBITDEPTH
756 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
757 vpx_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf,
758 p->src.stride, pd->dst.buf, pd->dst.stride,
759 x->e_mbd.bd);
760 } else {
761 vpx_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
762 pd->dst.buf, pd->dst.stride);
763 }
764 #else
765 vpx_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
766 pd->dst.buf, pd->dst.stride);
767 #endif
768 *skippable = 1;
769 // Keep track of the row and column of the blocks we use so that we know
770 // if we are in the unrestricted motion border.
771 for (r = 0; r < max_blocks_high; r += block_step) {
772 for (c = 0; c < num_4x4_w; c += block_step) {
773 if (c < max_blocks_wide) {
774 const ScanOrder *const scan_order = &vp9_default_scan_orders[tx_size];
775 tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
776 tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
777 tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
778 uint16_t *const eob = &p->eobs[block];
779 const int diff_stride = bw;
780 const int16_t *src_diff;
781 src_diff = &p->src_diff[(r * diff_stride + c) << 2];
782
783 // skip block condition should be handled before this is called.
784 assert(!x->skip_block);
785
786 switch (tx_size) {
787 case TX_16X16:
788 vpx_hadamard_16x16(src_diff, diff_stride, coeff);
789 vp9_quantize_fp(coeff, 256, p, qcoeff, dqcoeff, pd->dequant, eob,
790 scan_order);
791 break;
792 case TX_8X8:
793 vpx_hadamard_8x8(src_diff, diff_stride, coeff);
794 vp9_quantize_fp(coeff, 64, p, qcoeff, dqcoeff, pd->dequant, eob,
795 scan_order);
796 break;
797 default:
798 assert(tx_size == TX_4X4);
799 x->fwd_txfm4x4(src_diff, coeff, diff_stride);
800 vp9_quantize_fp(coeff, 16, p, qcoeff, dqcoeff, pd->dequant, eob,
801 scan_order);
802 break;
803 }
804 *skippable &= (*eob == 0);
805 eob_cost += 1;
806 }
807 block += step;
808 }
809 }
810
811 this_rdc->rate = 0;
812 if (*sse < INT64_MAX) {
813 *sse = (*sse << 6) >> 2;
814 if (*skippable) {
815 this_rdc->dist = *sse;
816 return;
817 }
818 }
819
820 block = 0;
821 this_rdc->dist = 0;
822 for (r = 0; r < max_blocks_high; r += block_step) {
823 for (c = 0; c < num_4x4_w; c += block_step) {
824 if (c < max_blocks_wide) {
825 tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
826 tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
827 tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
828 uint16_t *const eob = &p->eobs[block];
829
830 if (*eob == 1)
831 this_rdc->rate += (int)abs(qcoeff[0]);
832 else if (*eob > 1)
833 this_rdc->rate += vpx_satd(qcoeff, step << 4);
834
835 this_rdc->dist += vp9_block_error_fp(coeff, dqcoeff, step << 4) >> 2;
836 }
837 block += step;
838 }
839 }
840
841 // If skippable is set, rate gets clobbered later.
842 this_rdc->rate <<= (2 + VP9_PROB_COST_SHIFT);
843 this_rdc->rate += (eob_cost << VP9_PROB_COST_SHIFT);
844 }
845
model_rd_for_sb_uv(VP9_COMP * cpi,BLOCK_SIZE plane_bsize,MACROBLOCK * x,MACROBLOCKD * xd,RD_COST * this_rdc,unsigned int * var_y,unsigned int * sse_y,int start_plane,int stop_plane)846 static void model_rd_for_sb_uv(VP9_COMP *cpi, BLOCK_SIZE plane_bsize,
847 MACROBLOCK *x, MACROBLOCKD *xd,
848 RD_COST *this_rdc, unsigned int *var_y,
849 unsigned int *sse_y, int start_plane,
850 int stop_plane) {
851 // Note our transform coeffs are 8 times an orthogonal transform.
852 // Hence quantizer step is also 8 times. To get effective quantizer
853 // we need to divide by 8 before sending to modeling function.
854 unsigned int sse;
855 int rate;
856 int64_t dist;
857 int i;
858 #if CONFIG_VP9_HIGHBITDEPTH
859 uint64_t tot_var = *var_y;
860 uint64_t tot_sse = *sse_y;
861 #else
862 uint32_t tot_var = *var_y;
863 uint32_t tot_sse = *sse_y;
864 #endif
865
866 this_rdc->rate = 0;
867 this_rdc->dist = 0;
868
869 for (i = start_plane; i <= stop_plane; ++i) {
870 struct macroblock_plane *const p = &x->plane[i];
871 struct macroblockd_plane *const pd = &xd->plane[i];
872 const uint32_t dc_quant = pd->dequant[0];
873 const uint32_t ac_quant = pd->dequant[1];
874 const BLOCK_SIZE bs = plane_bsize;
875 unsigned int var;
876 if (!x->color_sensitivity[i - 1]) continue;
877
878 var = cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf,
879 pd->dst.stride, &sse);
880 assert(sse >= var);
881 tot_var += var;
882 tot_sse += sse;
883
884 #if CONFIG_VP9_HIGHBITDEPTH
885 vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
886 dc_quant >> (xd->bd - 5), &rate, &dist);
887 #else
888 vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
889 dc_quant >> 3, &rate, &dist);
890 #endif // CONFIG_VP9_HIGHBITDEPTH
891
892 this_rdc->rate += rate >> 1;
893 this_rdc->dist += dist << 3;
894
895 #if CONFIG_VP9_HIGHBITDEPTH
896 vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs],
897 ac_quant >> (xd->bd - 5), &rate, &dist);
898 #else
899 vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], ac_quant >> 3,
900 &rate, &dist);
901 #endif // CONFIG_VP9_HIGHBITDEPTH
902
903 this_rdc->rate += rate;
904 this_rdc->dist += dist << 4;
905 }
906
907 #if CONFIG_VP9_HIGHBITDEPTH
908 *var_y = tot_var > UINT32_MAX ? UINT32_MAX : (uint32_t)tot_var;
909 *sse_y = tot_sse > UINT32_MAX ? UINT32_MAX : (uint32_t)tot_sse;
910 #else
911 *var_y = tot_var;
912 *sse_y = tot_sse;
913 #endif
914 }
915
get_pred_buffer(PRED_BUFFER * p,int len)916 static int get_pred_buffer(PRED_BUFFER *p, int len) {
917 int i;
918
919 for (i = 0; i < len; i++) {
920 if (!p[i].in_use) {
921 p[i].in_use = 1;
922 return i;
923 }
924 }
925 return -1;
926 }
927
free_pred_buffer(PRED_BUFFER * p)928 static void free_pred_buffer(PRED_BUFFER *p) {
929 if (p != NULL) p->in_use = 0;
930 }
931
encode_breakout_test(VP9_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,int mi_row,int mi_col,MV_REFERENCE_FRAME ref_frame,PREDICTION_MODE this_mode,unsigned int var_y,unsigned int sse_y,struct buf_2d yv12_mb[][MAX_MB_PLANE],int * rate,int64_t * dist,int * flag_preduv_computed)932 static void encode_breakout_test(
933 VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, int mi_col,
934 MV_REFERENCE_FRAME ref_frame, PREDICTION_MODE this_mode, unsigned int var_y,
935 unsigned int sse_y, struct buf_2d yv12_mb[][MAX_MB_PLANE], int *rate,
936 int64_t *dist, int *flag_preduv_computed) {
937 MACROBLOCKD *xd = &x->e_mbd;
938 MODE_INFO *const mi = xd->mi[0];
939 const BLOCK_SIZE uv_size = get_plane_block_size(bsize, &xd->plane[1]);
940 unsigned int var = var_y, sse = sse_y;
941 // Skipping threshold for ac.
942 unsigned int thresh_ac;
943 // Skipping threshold for dc.
944 unsigned int thresh_dc;
945 int motion_low = 1;
946
947 if (cpi->use_svc && ref_frame == GOLDEN_FRAME) return;
948 if (mi->mv[0].as_mv.row > 64 || mi->mv[0].as_mv.row < -64 ||
949 mi->mv[0].as_mv.col > 64 || mi->mv[0].as_mv.col < -64)
950 motion_low = 0;
951 if (x->encode_breakout > 0 && motion_low == 1) {
952 // Set a maximum for threshold to avoid big PSNR loss in low bit rate
953 // case. Use extreme low threshold for static frames to limit
954 // skipping.
955 const unsigned int max_thresh = 36000;
956 // The encode_breakout input
957 const unsigned int min_thresh =
958 VPXMIN(((unsigned int)x->encode_breakout << 4), max_thresh);
959 #if CONFIG_VP9_HIGHBITDEPTH
960 const int shift = (xd->bd << 1) - 16;
961 #endif
962
963 // Calculate threshold according to dequant value.
964 thresh_ac = (xd->plane[0].dequant[1] * xd->plane[0].dequant[1]) >> 3;
965 #if CONFIG_VP9_HIGHBITDEPTH
966 if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) {
967 thresh_ac = ROUND_POWER_OF_TWO(thresh_ac, shift);
968 }
969 #endif // CONFIG_VP9_HIGHBITDEPTH
970 thresh_ac = clamp(thresh_ac, min_thresh, max_thresh);
971
972 // Adjust ac threshold according to partition size.
973 thresh_ac >>=
974 8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
975
976 thresh_dc = (xd->plane[0].dequant[0] * xd->plane[0].dequant[0] >> 6);
977 #if CONFIG_VP9_HIGHBITDEPTH
978 if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) {
979 thresh_dc = ROUND_POWER_OF_TWO(thresh_dc, shift);
980 }
981 #endif // CONFIG_VP9_HIGHBITDEPTH
982 } else {
983 thresh_ac = 0;
984 thresh_dc = 0;
985 }
986
987 // Y skipping condition checking for ac and dc.
988 if (var <= thresh_ac && (sse - var) <= thresh_dc) {
989 unsigned int sse_u, sse_v;
990 unsigned int var_u, var_v;
991 unsigned int thresh_ac_uv = thresh_ac;
992 unsigned int thresh_dc_uv = thresh_dc;
993 if (x->sb_is_skin) {
994 thresh_ac_uv = 0;
995 thresh_dc_uv = 0;
996 }
997
998 if (!flag_preduv_computed[0] || !flag_preduv_computed[1]) {
999 xd->plane[1].pre[0] = yv12_mb[ref_frame][1];
1000 xd->plane[2].pre[0] = yv12_mb[ref_frame][2];
1001 vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, bsize);
1002 }
1003
1004 var_u = cpi->fn_ptr[uv_size].vf(x->plane[1].src.buf, x->plane[1].src.stride,
1005 xd->plane[1].dst.buf,
1006 xd->plane[1].dst.stride, &sse_u);
1007
1008 // U skipping condition checking
1009 if (((var_u << 2) <= thresh_ac_uv) && (sse_u - var_u <= thresh_dc_uv)) {
1010 var_v = cpi->fn_ptr[uv_size].vf(
1011 x->plane[2].src.buf, x->plane[2].src.stride, xd->plane[2].dst.buf,
1012 xd->plane[2].dst.stride, &sse_v);
1013
1014 // V skipping condition checking
1015 if (((var_v << 2) <= thresh_ac_uv) && (sse_v - var_v <= thresh_dc_uv)) {
1016 x->skip = 1;
1017
1018 // The cost of skip bit needs to be added.
1019 *rate = cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]]
1020 [INTER_OFFSET(this_mode)];
1021
1022 // More on this part of rate
1023 // rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
1024
1025 // Scaling factor for SSE from spatial domain to frequency
1026 // domain is 16. Adjust distortion accordingly.
1027 // TODO(yunqingwang): In this function, only y-plane dist is
1028 // calculated.
1029 *dist = (sse << 4); // + ((sse_u + sse_v) << 4);
1030
1031 // *disable_skip = 1;
1032 }
1033 }
1034 }
1035 }
1036
1037 struct estimate_block_intra_args {
1038 VP9_COMP *cpi;
1039 MACROBLOCK *x;
1040 PREDICTION_MODE mode;
1041 int skippable;
1042 RD_COST *rdc;
1043 };
1044
estimate_block_intra(int plane,int block,int row,int col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg)1045 static void estimate_block_intra(int plane, int block, int row, int col,
1046 BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
1047 void *arg) {
1048 struct estimate_block_intra_args *const args = arg;
1049 VP9_COMP *const cpi = args->cpi;
1050 MACROBLOCK *const x = args->x;
1051 MACROBLOCKD *const xd = &x->e_mbd;
1052 struct macroblock_plane *const p = &x->plane[plane];
1053 struct macroblockd_plane *const pd = &xd->plane[plane];
1054 const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size];
1055 uint8_t *const src_buf_base = p->src.buf;
1056 uint8_t *const dst_buf_base = pd->dst.buf;
1057 const int src_stride = p->src.stride;
1058 const int dst_stride = pd->dst.stride;
1059 RD_COST this_rdc;
1060
1061 (void)block;
1062
1063 p->src.buf = &src_buf_base[4 * (row * (int64_t)src_stride + col)];
1064 pd->dst.buf = &dst_buf_base[4 * (row * (int64_t)dst_stride + col)];
1065 // Use source buffer as an approximation for the fully reconstructed buffer.
1066 vp9_predict_intra_block(xd, b_width_log2_lookup[plane_bsize], tx_size,
1067 args->mode, x->skip_encode ? p->src.buf : pd->dst.buf,
1068 x->skip_encode ? src_stride : dst_stride, pd->dst.buf,
1069 dst_stride, col, row, plane);
1070
1071 if (plane == 0) {
1072 int64_t this_sse = INT64_MAX;
1073 block_yrd(cpi, x, &this_rdc, &args->skippable, &this_sse, bsize_tx,
1074 VPXMIN(tx_size, TX_16X16), 0, 1);
1075 } else {
1076 unsigned int var = 0;
1077 unsigned int sse = 0;
1078 model_rd_for_sb_uv(cpi, bsize_tx, x, xd, &this_rdc, &var, &sse, plane,
1079 plane);
1080 }
1081
1082 p->src.buf = src_buf_base;
1083 pd->dst.buf = dst_buf_base;
1084 args->rdc->rate += this_rdc.rate;
1085 args->rdc->dist += this_rdc.dist;
1086 }
1087
1088 static const THR_MODES mode_idx[MAX_REF_FRAMES][4] = {
1089 { THR_DC, THR_V_PRED, THR_H_PRED, THR_TM },
1090 { THR_NEARESTMV, THR_NEARMV, THR_ZEROMV, THR_NEWMV },
1091 { THR_NEARESTG, THR_NEARG, THR_ZEROG, THR_NEWG },
1092 { THR_NEARESTA, THR_NEARA, THR_ZEROA, THR_NEWA },
1093 };
1094
1095 static const PREDICTION_MODE intra_mode_list[] = { DC_PRED, V_PRED, H_PRED,
1096 TM_PRED };
1097
mode_offset(const PREDICTION_MODE mode)1098 static int mode_offset(const PREDICTION_MODE mode) {
1099 if (mode >= NEARESTMV) {
1100 return INTER_OFFSET(mode);
1101 } else {
1102 switch (mode) {
1103 case DC_PRED: return 0;
1104 case V_PRED: return 1;
1105 case H_PRED: return 2;
1106 case TM_PRED: return 3;
1107 default: return -1;
1108 }
1109 }
1110 }
1111
rd_less_than_thresh_row_mt(int64_t best_rd,int thresh,const int * const thresh_fact)1112 static INLINE int rd_less_than_thresh_row_mt(int64_t best_rd, int thresh,
1113 const int *const thresh_fact) {
1114 int is_rd_less_than_thresh;
1115 is_rd_less_than_thresh =
1116 best_rd < ((int64_t)thresh * (*thresh_fact) >> 5) || thresh == INT_MAX;
1117 return is_rd_less_than_thresh;
1118 }
1119
update_thresh_freq_fact_row_mt(VP9_COMP * cpi,TileDataEnc * tile_data,unsigned int source_variance,int thresh_freq_fact_idx,MV_REFERENCE_FRAME ref_frame,THR_MODES best_mode_idx,PREDICTION_MODE mode)1120 static INLINE void update_thresh_freq_fact_row_mt(
1121 VP9_COMP *cpi, TileDataEnc *tile_data, unsigned int source_variance,
1122 int thresh_freq_fact_idx, MV_REFERENCE_FRAME ref_frame,
1123 THR_MODES best_mode_idx, PREDICTION_MODE mode) {
1124 THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)];
1125 int freq_fact_idx = thresh_freq_fact_idx + thr_mode_idx;
1126 int *freq_fact = &tile_data->row_base_thresh_freq_fact[freq_fact_idx];
1127 if (thr_mode_idx == best_mode_idx)
1128 *freq_fact -= (*freq_fact >> 4);
1129 else if (cpi->sf.limit_newmv_early_exit && mode == NEWMV &&
1130 ref_frame == LAST_FRAME && source_variance < 5) {
1131 *freq_fact = VPXMIN(*freq_fact + RD_THRESH_INC, 32);
1132 } else {
1133 *freq_fact = VPXMIN(*freq_fact + RD_THRESH_INC,
1134 cpi->sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT);
1135 }
1136 }
1137
update_thresh_freq_fact(VP9_COMP * cpi,TileDataEnc * tile_data,unsigned int source_variance,BLOCK_SIZE bsize,MV_REFERENCE_FRAME ref_frame,THR_MODES best_mode_idx,PREDICTION_MODE mode)1138 static INLINE void update_thresh_freq_fact(
1139 VP9_COMP *cpi, TileDataEnc *tile_data, unsigned int source_variance,
1140 BLOCK_SIZE bsize, MV_REFERENCE_FRAME ref_frame, THR_MODES best_mode_idx,
1141 PREDICTION_MODE mode) {
1142 THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)];
1143 int *freq_fact = &tile_data->thresh_freq_fact[bsize][thr_mode_idx];
1144 if (thr_mode_idx == best_mode_idx)
1145 *freq_fact -= (*freq_fact >> 4);
1146 else if (cpi->sf.limit_newmv_early_exit && mode == NEWMV &&
1147 ref_frame == LAST_FRAME && source_variance < 5) {
1148 *freq_fact = VPXMIN(*freq_fact + RD_THRESH_INC, 32);
1149 } else {
1150 *freq_fact = VPXMIN(*freq_fact + RD_THRESH_INC,
1151 cpi->sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT);
1152 }
1153 }
1154
vp9_pick_intra_mode(VP9_COMP * cpi,MACROBLOCK * x,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)1155 void vp9_pick_intra_mode(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *rd_cost,
1156 BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
1157 MACROBLOCKD *const xd = &x->e_mbd;
1158 MODE_INFO *const mi = xd->mi[0];
1159 RD_COST this_rdc, best_rdc;
1160 PREDICTION_MODE this_mode;
1161 struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 };
1162 const TX_SIZE intra_tx_size =
1163 VPXMIN(max_txsize_lookup[bsize],
1164 tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
1165 MODE_INFO *const mic = xd->mi[0];
1166 int *bmode_costs;
1167 const MODE_INFO *above_mi = xd->above_mi;
1168 const MODE_INFO *left_mi = xd->left_mi;
1169 const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, 0);
1170 const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, 0);
1171 bmode_costs = cpi->y_mode_costs[A][L];
1172
1173 (void)ctx;
1174 vp9_rd_cost_reset(&best_rdc);
1175 vp9_rd_cost_reset(&this_rdc);
1176
1177 mi->ref_frame[0] = INTRA_FRAME;
1178 // Initialize interp_filter here so we do not have to check for inter block
1179 // modes in get_pred_context_switchable_interp()
1180 mi->interp_filter = SWITCHABLE_FILTERS;
1181
1182 mi->mv[0].as_int = INVALID_MV;
1183 mi->uv_mode = DC_PRED;
1184 memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
1185
1186 // Change the limit of this loop to add other intra prediction
1187 // mode tests.
1188 for (this_mode = DC_PRED; this_mode <= H_PRED; ++this_mode) {
1189 this_rdc.dist = this_rdc.rate = 0;
1190 args.mode = this_mode;
1191 args.skippable = 1;
1192 args.rdc = &this_rdc;
1193 mi->tx_size = intra_tx_size;
1194 vp9_foreach_transformed_block_in_plane(xd, bsize, 0, estimate_block_intra,
1195 &args);
1196 if (args.skippable) {
1197 x->skip_txfm[0] = SKIP_TXFM_AC_DC;
1198 this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(&cpi->common, xd), 1);
1199 } else {
1200 x->skip_txfm[0] = SKIP_TXFM_NONE;
1201 this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(&cpi->common, xd), 0);
1202 }
1203 this_rdc.rate += bmode_costs[this_mode];
1204 this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
1205
1206 if (this_rdc.rdcost < best_rdc.rdcost) {
1207 best_rdc = this_rdc;
1208 mi->mode = this_mode;
1209 }
1210 }
1211
1212 *rd_cost = best_rdc;
1213 }
1214
init_ref_frame_cost(VP9_COMMON * const cm,MACROBLOCKD * const xd,int ref_frame_cost[MAX_REF_FRAMES])1215 static void init_ref_frame_cost(VP9_COMMON *const cm, MACROBLOCKD *const xd,
1216 int ref_frame_cost[MAX_REF_FRAMES]) {
1217 vpx_prob intra_inter_p = vp9_get_intra_inter_prob(cm, xd);
1218 vpx_prob ref_single_p1 = vp9_get_pred_prob_single_ref_p1(cm, xd);
1219 vpx_prob ref_single_p2 = vp9_get_pred_prob_single_ref_p2(cm, xd);
1220
1221 ref_frame_cost[INTRA_FRAME] = vp9_cost_bit(intra_inter_p, 0);
1222 ref_frame_cost[LAST_FRAME] = ref_frame_cost[GOLDEN_FRAME] =
1223 ref_frame_cost[ALTREF_FRAME] = vp9_cost_bit(intra_inter_p, 1);
1224
1225 ref_frame_cost[LAST_FRAME] += vp9_cost_bit(ref_single_p1, 0);
1226 ref_frame_cost[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p1, 1);
1227 ref_frame_cost[ALTREF_FRAME] += vp9_cost_bit(ref_single_p1, 1);
1228 ref_frame_cost[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p2, 0);
1229 ref_frame_cost[ALTREF_FRAME] += vp9_cost_bit(ref_single_p2, 1);
1230 }
1231
1232 typedef struct {
1233 MV_REFERENCE_FRAME ref_frame;
1234 PREDICTION_MODE pred_mode;
1235 } REF_MODE;
1236
1237 #define RT_INTER_MODES 12
1238 static const REF_MODE ref_mode_set[RT_INTER_MODES] = {
1239 { LAST_FRAME, ZEROMV }, { LAST_FRAME, NEARESTMV },
1240 { GOLDEN_FRAME, ZEROMV }, { LAST_FRAME, NEARMV },
1241 { LAST_FRAME, NEWMV }, { GOLDEN_FRAME, NEARESTMV },
1242 { GOLDEN_FRAME, NEARMV }, { GOLDEN_FRAME, NEWMV },
1243 { ALTREF_FRAME, ZEROMV }, { ALTREF_FRAME, NEARESTMV },
1244 { ALTREF_FRAME, NEARMV }, { ALTREF_FRAME, NEWMV }
1245 };
1246
1247 #define RT_INTER_MODES_SVC 8
1248 static const REF_MODE ref_mode_set_svc[RT_INTER_MODES_SVC] = {
1249 { LAST_FRAME, ZEROMV }, { LAST_FRAME, NEARESTMV },
1250 { LAST_FRAME, NEARMV }, { GOLDEN_FRAME, ZEROMV },
1251 { GOLDEN_FRAME, NEARESTMV }, { GOLDEN_FRAME, NEARMV },
1252 { LAST_FRAME, NEWMV }, { GOLDEN_FRAME, NEWMV }
1253 };
1254
find_predictors(VP9_COMP * cpi,MACROBLOCK * x,MV_REFERENCE_FRAME ref_frame,int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES],int const_motion[MAX_REF_FRAMES],int * ref_frame_skip_mask,TileDataEnc * tile_data,int mi_row,int mi_col,struct buf_2d yv12_mb[4][MAX_MB_PLANE],BLOCK_SIZE bsize,int force_skip_low_temp_var,int comp_pred_allowed)1255 static INLINE void find_predictors(
1256 VP9_COMP *cpi, MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame,
1257 int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES],
1258 int const_motion[MAX_REF_FRAMES], int *ref_frame_skip_mask,
1259 TileDataEnc *tile_data, int mi_row, int mi_col,
1260 struct buf_2d yv12_mb[4][MAX_MB_PLANE], BLOCK_SIZE bsize,
1261 int force_skip_low_temp_var, int comp_pred_allowed) {
1262 VP9_COMMON *const cm = &cpi->common;
1263 MACROBLOCKD *const xd = &x->e_mbd;
1264 const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
1265 TileInfo *const tile_info = &tile_data->tile_info;
1266 // TODO(jingning) placeholder for inter-frame non-RD mode decision.
1267 x->pred_mv_sad[ref_frame] = INT_MAX;
1268 frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
1269 frame_mv[ZEROMV][ref_frame].as_int = 0;
1270 // this needs various further optimizations. to be continued..
1271 if ((cpi->ref_frame_flags & ref_frame_to_flag(ref_frame)) && (yv12 != NULL)) {
1272 int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame];
1273 const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf;
1274 vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf);
1275 if (cm->use_prev_frame_mvs || comp_pred_allowed) {
1276 vp9_find_mv_refs(cm, xd, xd->mi[0], ref_frame, candidates, mi_row, mi_col,
1277 x->mbmi_ext->mode_context);
1278 } else {
1279 const_motion[ref_frame] =
1280 mv_refs_rt(cpi, cm, x, xd, tile_info, xd->mi[0], ref_frame,
1281 candidates, &frame_mv[NEWMV][ref_frame], mi_row, mi_col,
1282 (int)(cpi->svc.use_base_mv && cpi->svc.spatial_layer_id));
1283 }
1284 vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates,
1285 &frame_mv[NEARESTMV][ref_frame],
1286 &frame_mv[NEARMV][ref_frame]);
1287 // Early exit for golden frame if force_skip_low_temp_var is set.
1288 if (!vp9_is_scaled(sf) && bsize >= BLOCK_8X8 &&
1289 !(force_skip_low_temp_var && ref_frame == GOLDEN_FRAME)) {
1290 vp9_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame,
1291 bsize);
1292 }
1293 } else {
1294 *ref_frame_skip_mask |= (1 << ref_frame);
1295 }
1296 }
1297
vp9_NEWMV_diff_bias(const NOISE_ESTIMATE * ne,MACROBLOCKD * xd,PREDICTION_MODE this_mode,RD_COST * this_rdc,BLOCK_SIZE bsize,int mv_row,int mv_col,int is_last_frame,int lowvar_highsumdiff,int is_skin)1298 static void vp9_NEWMV_diff_bias(const NOISE_ESTIMATE *ne, MACROBLOCKD *xd,
1299 PREDICTION_MODE this_mode, RD_COST *this_rdc,
1300 BLOCK_SIZE bsize, int mv_row, int mv_col,
1301 int is_last_frame, int lowvar_highsumdiff,
1302 int is_skin) {
1303 // Bias against MVs associated with NEWMV mode that are very different from
1304 // top/left neighbors.
1305 if (this_mode == NEWMV) {
1306 int al_mv_average_row;
1307 int al_mv_average_col;
1308 int left_row, left_col;
1309 int row_diff, col_diff;
1310 int above_mv_valid = 0;
1311 int left_mv_valid = 0;
1312 int above_row = 0;
1313 int above_col = 0;
1314
1315 if (xd->above_mi) {
1316 above_mv_valid = xd->above_mi->mv[0].as_int != INVALID_MV;
1317 above_row = xd->above_mi->mv[0].as_mv.row;
1318 above_col = xd->above_mi->mv[0].as_mv.col;
1319 }
1320 if (xd->left_mi) {
1321 left_mv_valid = xd->left_mi->mv[0].as_int != INVALID_MV;
1322 left_row = xd->left_mi->mv[0].as_mv.row;
1323 left_col = xd->left_mi->mv[0].as_mv.col;
1324 }
1325 if (above_mv_valid && left_mv_valid) {
1326 al_mv_average_row = (above_row + left_row + 1) >> 1;
1327 al_mv_average_col = (above_col + left_col + 1) >> 1;
1328 } else if (above_mv_valid) {
1329 al_mv_average_row = above_row;
1330 al_mv_average_col = above_col;
1331 } else if (left_mv_valid) {
1332 al_mv_average_row = left_row;
1333 al_mv_average_col = left_col;
1334 } else {
1335 al_mv_average_row = al_mv_average_col = 0;
1336 }
1337 row_diff = (al_mv_average_row - mv_row);
1338 col_diff = (al_mv_average_col - mv_col);
1339 if (row_diff > 48 || row_diff < -48 || col_diff > 48 || col_diff < -48) {
1340 if (bsize > BLOCK_32X32)
1341 this_rdc->rdcost = this_rdc->rdcost << 1;
1342 else
1343 this_rdc->rdcost = 3 * this_rdc->rdcost >> 1;
1344 }
1345 }
1346 // If noise estimation is enabled, and estimated level is above threshold,
1347 // add a bias to LAST reference with small motion, for large blocks.
1348 if (ne->enabled && ne->level >= kMedium && bsize >= BLOCK_32X32 &&
1349 is_last_frame && mv_row < 8 && mv_row > -8 && mv_col < 8 && mv_col > -8)
1350 this_rdc->rdcost = 7 * (this_rdc->rdcost >> 3);
1351 else if (lowvar_highsumdiff && !is_skin && bsize >= BLOCK_16X16 &&
1352 is_last_frame && mv_row < 16 && mv_row > -16 && mv_col < 16 &&
1353 mv_col > -16)
1354 this_rdc->rdcost = 7 * (this_rdc->rdcost >> 3);
1355 }
1356
1357 #if CONFIG_VP9_TEMPORAL_DENOISING
vp9_pickmode_ctx_den_update(VP9_PICKMODE_CTX_DEN * ctx_den,int64_t zero_last_cost_orig,int ref_frame_cost[MAX_REF_FRAMES],int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES],int reuse_inter_pred,BEST_PICKMODE * bp)1358 static void vp9_pickmode_ctx_den_update(
1359 VP9_PICKMODE_CTX_DEN *ctx_den, int64_t zero_last_cost_orig,
1360 int ref_frame_cost[MAX_REF_FRAMES],
1361 int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES], int reuse_inter_pred,
1362 BEST_PICKMODE *bp) {
1363 ctx_den->zero_last_cost_orig = zero_last_cost_orig;
1364 ctx_den->ref_frame_cost = ref_frame_cost;
1365 ctx_den->frame_mv = frame_mv;
1366 ctx_den->reuse_inter_pred = reuse_inter_pred;
1367 ctx_den->best_tx_size = bp->best_tx_size;
1368 ctx_den->best_mode = bp->best_mode;
1369 ctx_den->best_ref_frame = bp->best_ref_frame;
1370 ctx_den->best_pred_filter = bp->best_pred_filter;
1371 ctx_den->best_mode_skip_txfm = bp->best_mode_skip_txfm;
1372 }
1373
recheck_zeromv_after_denoising(VP9_COMP * cpi,MODE_INFO * const mi,MACROBLOCK * x,MACROBLOCKD * const xd,VP9_DENOISER_DECISION decision,VP9_PICKMODE_CTX_DEN * ctx_den,struct buf_2d yv12_mb[4][MAX_MB_PLANE],RD_COST * best_rdc,BLOCK_SIZE bsize,int mi_row,int mi_col)1374 static void recheck_zeromv_after_denoising(
1375 VP9_COMP *cpi, MODE_INFO *const mi, MACROBLOCK *x, MACROBLOCKD *const xd,
1376 VP9_DENOISER_DECISION decision, VP9_PICKMODE_CTX_DEN *ctx_den,
1377 struct buf_2d yv12_mb[4][MAX_MB_PLANE], RD_COST *best_rdc, BLOCK_SIZE bsize,
1378 int mi_row, int mi_col) {
1379 // If INTRA or GOLDEN reference was selected, re-evaluate ZEROMV on
1380 // denoised result. Only do this under noise conditions, and if rdcost of
1381 // ZEROMV onoriginal source is not significantly higher than rdcost of best
1382 // mode.
1383 if (cpi->noise_estimate.enabled && cpi->noise_estimate.level > kLow &&
1384 ctx_den->zero_last_cost_orig < (best_rdc->rdcost << 3) &&
1385 ((ctx_den->best_ref_frame == INTRA_FRAME && decision >= FILTER_BLOCK) ||
1386 (ctx_den->best_ref_frame == GOLDEN_FRAME &&
1387 cpi->svc.number_spatial_layers == 1 &&
1388 decision == FILTER_ZEROMV_BLOCK))) {
1389 // Check if we should pick ZEROMV on denoised signal.
1390 VP9_COMMON *const cm = &cpi->common;
1391 int rate = 0;
1392 int64_t dist = 0;
1393 uint32_t var_y = UINT_MAX;
1394 uint32_t sse_y = UINT_MAX;
1395 RD_COST this_rdc;
1396 mi->mode = ZEROMV;
1397 mi->ref_frame[0] = LAST_FRAME;
1398 mi->ref_frame[1] = NO_REF_FRAME;
1399 set_ref_ptrs(cm, xd, mi->ref_frame[0], NO_REF_FRAME);
1400 mi->mv[0].as_int = 0;
1401 mi->interp_filter = EIGHTTAP;
1402 if (cpi->sf.default_interp_filter == BILINEAR) mi->interp_filter = BILINEAR;
1403 xd->plane[0].pre[0] = yv12_mb[LAST_FRAME][0];
1404 vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
1405 model_rd_for_sb_y(cpi, bsize, x, xd, &rate, &dist, &var_y, &sse_y, 0);
1406 this_rdc.rate = rate + ctx_den->ref_frame_cost[LAST_FRAME] +
1407 cpi->inter_mode_cost[x->mbmi_ext->mode_context[LAST_FRAME]]
1408 [INTER_OFFSET(ZEROMV)];
1409 this_rdc.dist = dist;
1410 this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, rate, dist);
1411 // Don't switch to ZEROMV if the rdcost for ZEROMV on denoised source
1412 // is higher than best_ref mode (on original source).
1413 if (this_rdc.rdcost > best_rdc->rdcost) {
1414 this_rdc = *best_rdc;
1415 mi->mode = ctx_den->best_mode;
1416 mi->ref_frame[0] = ctx_den->best_ref_frame;
1417 set_ref_ptrs(cm, xd, mi->ref_frame[0], NO_REF_FRAME);
1418 mi->interp_filter = ctx_den->best_pred_filter;
1419 if (ctx_den->best_ref_frame == INTRA_FRAME) {
1420 mi->mv[0].as_int = INVALID_MV;
1421 mi->interp_filter = SWITCHABLE_FILTERS;
1422 } else if (ctx_den->best_ref_frame == GOLDEN_FRAME) {
1423 mi->mv[0].as_int =
1424 ctx_den->frame_mv[ctx_den->best_mode][ctx_den->best_ref_frame]
1425 .as_int;
1426 if (ctx_den->reuse_inter_pred) {
1427 xd->plane[0].pre[0] = yv12_mb[GOLDEN_FRAME][0];
1428 vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
1429 }
1430 }
1431 mi->tx_size = ctx_den->best_tx_size;
1432 x->skip_txfm[0] = ctx_den->best_mode_skip_txfm;
1433 } else {
1434 ctx_den->best_ref_frame = LAST_FRAME;
1435 *best_rdc = this_rdc;
1436 }
1437 }
1438 }
1439 #endif // CONFIG_VP9_TEMPORAL_DENOISING
1440
get_force_skip_low_temp_var(uint8_t * variance_low,int mi_row,int mi_col,BLOCK_SIZE bsize)1441 static INLINE int get_force_skip_low_temp_var(uint8_t *variance_low, int mi_row,
1442 int mi_col, BLOCK_SIZE bsize) {
1443 const int i = (mi_row & 0x7) >> 1;
1444 const int j = (mi_col & 0x7) >> 1;
1445 int force_skip_low_temp_var = 0;
1446 // Set force_skip_low_temp_var based on the block size and block offset.
1447 if (bsize == BLOCK_64X64) {
1448 force_skip_low_temp_var = variance_low[0];
1449 } else if (bsize == BLOCK_64X32) {
1450 if (!(mi_col & 0x7) && !(mi_row & 0x7)) {
1451 force_skip_low_temp_var = variance_low[1];
1452 } else if (!(mi_col & 0x7) && (mi_row & 0x7)) {
1453 force_skip_low_temp_var = variance_low[2];
1454 }
1455 } else if (bsize == BLOCK_32X64) {
1456 if (!(mi_col & 0x7) && !(mi_row & 0x7)) {
1457 force_skip_low_temp_var = variance_low[3];
1458 } else if ((mi_col & 0x7) && !(mi_row & 0x7)) {
1459 force_skip_low_temp_var = variance_low[4];
1460 }
1461 } else if (bsize == BLOCK_32X32) {
1462 if (!(mi_col & 0x7) && !(mi_row & 0x7)) {
1463 force_skip_low_temp_var = variance_low[5];
1464 } else if ((mi_col & 0x7) && !(mi_row & 0x7)) {
1465 force_skip_low_temp_var = variance_low[6];
1466 } else if (!(mi_col & 0x7) && (mi_row & 0x7)) {
1467 force_skip_low_temp_var = variance_low[7];
1468 } else if ((mi_col & 0x7) && (mi_row & 0x7)) {
1469 force_skip_low_temp_var = variance_low[8];
1470 }
1471 } else if (bsize == BLOCK_16X16) {
1472 force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]];
1473 } else if (bsize == BLOCK_32X16) {
1474 // The col shift index for the second 16x16 block.
1475 const int j2 = ((mi_col + 2) & 0x7) >> 1;
1476 // Only if each 16x16 block inside has low temporal variance.
1477 force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]] &&
1478 variance_low[pos_shift_16x16[i][j2]];
1479 } else if (bsize == BLOCK_16X32) {
1480 // The row shift index for the second 16x16 block.
1481 const int i2 = ((mi_row + 2) & 0x7) >> 1;
1482 force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]] &&
1483 variance_low[pos_shift_16x16[i2][j]];
1484 }
1485 return force_skip_low_temp_var;
1486 }
1487
search_filter_ref(VP9_COMP * cpi,MACROBLOCK * x,RD_COST * this_rdc,int mi_row,int mi_col,PRED_BUFFER * tmp,BLOCK_SIZE bsize,int reuse_inter_pred,PRED_BUFFER ** this_mode_pred,unsigned int * var_y,unsigned int * sse_y,int force_smooth_filter,int * this_early_term,int * flag_preduv_computed,int use_model_yrd_large)1488 static void search_filter_ref(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *this_rdc,
1489 int mi_row, int mi_col, PRED_BUFFER *tmp,
1490 BLOCK_SIZE bsize, int reuse_inter_pred,
1491 PRED_BUFFER **this_mode_pred, unsigned int *var_y,
1492 unsigned int *sse_y, int force_smooth_filter,
1493 int *this_early_term, int *flag_preduv_computed,
1494 int use_model_yrd_large) {
1495 MACROBLOCKD *const xd = &x->e_mbd;
1496 MODE_INFO *const mi = xd->mi[0];
1497 struct macroblockd_plane *const pd = &xd->plane[0];
1498 const int bw = num_4x4_blocks_wide_lookup[bsize] << 2;
1499
1500 int pf_rate[3] = { 0 };
1501 int64_t pf_dist[3] = { 0 };
1502 int curr_rate[3] = { 0 };
1503 unsigned int pf_var[3] = { 0 };
1504 unsigned int pf_sse[3] = { 0 };
1505 TX_SIZE pf_tx_size[3] = { 0 };
1506 int64_t best_cost = INT64_MAX;
1507 INTERP_FILTER best_filter = SWITCHABLE, filter;
1508 PRED_BUFFER *current_pred = *this_mode_pred;
1509 uint8_t skip_txfm = SKIP_TXFM_NONE;
1510 int best_early_term = 0;
1511 int best_flag_preduv_computed[2] = { 0 };
1512 INTERP_FILTER filter_start = force_smooth_filter ? EIGHTTAP_SMOOTH : EIGHTTAP;
1513 INTERP_FILTER filter_end = EIGHTTAP_SMOOTH;
1514 for (filter = filter_start; filter <= filter_end; ++filter) {
1515 int64_t cost;
1516 mi->interp_filter = filter;
1517 vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
1518 // For large partition blocks, extra testing is done.
1519 if (use_model_yrd_large)
1520 model_rd_for_sb_y_large(cpi, bsize, x, xd, &pf_rate[filter],
1521 &pf_dist[filter], &pf_var[filter],
1522 &pf_sse[filter], mi_row, mi_col, this_early_term,
1523 flag_preduv_computed);
1524 else
1525 model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rate[filter], &pf_dist[filter],
1526 &pf_var[filter], &pf_sse[filter], 0);
1527 curr_rate[filter] = pf_rate[filter];
1528 pf_rate[filter] += vp9_get_switchable_rate(cpi, xd);
1529 cost = RDCOST(x->rdmult, x->rddiv, pf_rate[filter], pf_dist[filter]);
1530 pf_tx_size[filter] = mi->tx_size;
1531 if (cost < best_cost) {
1532 best_filter = filter;
1533 best_cost = cost;
1534 skip_txfm = x->skip_txfm[0];
1535 best_early_term = *this_early_term;
1536 best_flag_preduv_computed[0] = flag_preduv_computed[0];
1537 best_flag_preduv_computed[1] = flag_preduv_computed[1];
1538
1539 if (reuse_inter_pred) {
1540 if (*this_mode_pred != current_pred) {
1541 free_pred_buffer(*this_mode_pred);
1542 *this_mode_pred = current_pred;
1543 }
1544 if (filter != filter_end) {
1545 current_pred = &tmp[get_pred_buffer(tmp, 3)];
1546 pd->dst.buf = current_pred->data;
1547 pd->dst.stride = bw;
1548 }
1549 }
1550 }
1551 }
1552
1553 if (reuse_inter_pred && *this_mode_pred != current_pred)
1554 free_pred_buffer(current_pred);
1555
1556 mi->interp_filter = best_filter;
1557 mi->tx_size = pf_tx_size[best_filter];
1558 this_rdc->rate = curr_rate[best_filter];
1559 this_rdc->dist = pf_dist[best_filter];
1560 *var_y = pf_var[best_filter];
1561 *sse_y = pf_sse[best_filter];
1562 x->skip_txfm[0] = skip_txfm;
1563 *this_early_term = best_early_term;
1564 flag_preduv_computed[0] = best_flag_preduv_computed[0];
1565 flag_preduv_computed[1] = best_flag_preduv_computed[1];
1566 if (reuse_inter_pred) {
1567 pd->dst.buf = (*this_mode_pred)->data;
1568 pd->dst.stride = (*this_mode_pred)->stride;
1569 } else if (best_filter < filter_end) {
1570 mi->interp_filter = best_filter;
1571 vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
1572 }
1573 }
1574
search_new_mv(VP9_COMP * cpi,MACROBLOCK * x,int_mv frame_mv[][MAX_REF_FRAMES],MV_REFERENCE_FRAME ref_frame,int gf_temporal_ref,BLOCK_SIZE bsize,int mi_row,int mi_col,int best_pred_sad,int * rate_mv,unsigned int best_sse_sofar,RD_COST * best_rdc)1575 static int search_new_mv(VP9_COMP *cpi, MACROBLOCK *x,
1576 int_mv frame_mv[][MAX_REF_FRAMES],
1577 MV_REFERENCE_FRAME ref_frame, int gf_temporal_ref,
1578 BLOCK_SIZE bsize, int mi_row, int mi_col,
1579 int best_pred_sad, int *rate_mv,
1580 unsigned int best_sse_sofar, RD_COST *best_rdc) {
1581 SVC *const svc = &cpi->svc;
1582 MACROBLOCKD *const xd = &x->e_mbd;
1583 MODE_INFO *const mi = xd->mi[0];
1584 SPEED_FEATURES *const sf = &cpi->sf;
1585
1586 if (ref_frame > LAST_FRAME && gf_temporal_ref &&
1587 cpi->oxcf.rc_mode == VPX_CBR) {
1588 int tmp_sad;
1589 uint32_t dis;
1590 int cost_list[5] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX, INT_MAX };
1591
1592 if (bsize < BLOCK_16X16) return -1;
1593
1594 tmp_sad = vp9_int_pro_motion_estimation(
1595 cpi, x, bsize, mi_row, mi_col,
1596 &x->mbmi_ext->ref_mvs[ref_frame][0].as_mv);
1597
1598 if (tmp_sad > x->pred_mv_sad[LAST_FRAME]) return -1;
1599 if (tmp_sad + (num_pels_log2_lookup[bsize] << 4) > best_pred_sad) return -1;
1600
1601 frame_mv[NEWMV][ref_frame].as_int = mi->mv[0].as_int;
1602 *rate_mv = vp9_mv_bit_cost(&frame_mv[NEWMV][ref_frame].as_mv,
1603 &x->mbmi_ext->ref_mvs[ref_frame][0].as_mv,
1604 x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
1605 frame_mv[NEWMV][ref_frame].as_mv.row >>= 3;
1606 frame_mv[NEWMV][ref_frame].as_mv.col >>= 3;
1607
1608 cpi->find_fractional_mv_step(
1609 x, &frame_mv[NEWMV][ref_frame].as_mv,
1610 &x->mbmi_ext->ref_mvs[ref_frame][0].as_mv,
1611 cpi->common.allow_high_precision_mv, x->errorperbit,
1612 &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop,
1613 cpi->sf.mv.subpel_search_level, cond_cost_list(cpi, cost_list),
1614 x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref_frame], NULL, 0, 0,
1615 cpi->sf.use_accurate_subpel_search);
1616 } else if (svc->use_base_mv && svc->spatial_layer_id) {
1617 if (frame_mv[NEWMV][ref_frame].as_int != INVALID_MV) {
1618 const int pre_stride = xd->plane[0].pre[0].stride;
1619 unsigned int base_mv_sse = UINT_MAX;
1620 int scale = (cpi->rc.avg_frame_low_motion > 60) ? 2 : 4;
1621 const uint8_t *const pre_buf =
1622 xd->plane[0].pre[0].buf +
1623 (frame_mv[NEWMV][ref_frame].as_mv.row >> 3) * pre_stride +
1624 (frame_mv[NEWMV][ref_frame].as_mv.col >> 3);
1625 cpi->fn_ptr[bsize].vf(x->plane[0].src.buf, x->plane[0].src.stride,
1626 pre_buf, pre_stride, &base_mv_sse);
1627
1628 // Exit NEWMV search if base_mv is (0,0) && bsize < BLOCK_16x16,
1629 // for SVC encoding.
1630 if (cpi->use_svc && svc->use_base_mv && bsize < BLOCK_16X16 &&
1631 frame_mv[NEWMV][ref_frame].as_mv.row == 0 &&
1632 frame_mv[NEWMV][ref_frame].as_mv.col == 0)
1633 return -1;
1634
1635 // Exit NEWMV search if base_mv_sse is large.
1636 if (sf->base_mv_aggressive && (base_mv_sse >> scale) > best_sse_sofar)
1637 return -1;
1638 if ((base_mv_sse >> 1) < best_sse_sofar) {
1639 // Base layer mv is good.
1640 // Exit NEWMV search if the base_mv is (0, 0) and sse is low, since
1641 // (0, 0) mode is already tested.
1642 unsigned int base_mv_sse_normalized =
1643 base_mv_sse >>
1644 (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
1645 if (sf->base_mv_aggressive && base_mv_sse <= best_sse_sofar &&
1646 base_mv_sse_normalized < 400 &&
1647 frame_mv[NEWMV][ref_frame].as_mv.row == 0 &&
1648 frame_mv[NEWMV][ref_frame].as_mv.col == 0)
1649 return -1;
1650 if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col,
1651 &frame_mv[NEWMV][ref_frame], rate_mv,
1652 best_rdc->rdcost, 1)) {
1653 return -1;
1654 }
1655 } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col,
1656 &frame_mv[NEWMV][ref_frame], rate_mv,
1657 best_rdc->rdcost, 0)) {
1658 return -1;
1659 }
1660 } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col,
1661 &frame_mv[NEWMV][ref_frame], rate_mv,
1662 best_rdc->rdcost, 0)) {
1663 return -1;
1664 }
1665 } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col,
1666 &frame_mv[NEWMV][ref_frame], rate_mv,
1667 best_rdc->rdcost, 0)) {
1668 return -1;
1669 }
1670
1671 return 0;
1672 }
1673
init_best_pickmode(BEST_PICKMODE * bp)1674 static INLINE void init_best_pickmode(BEST_PICKMODE *bp) {
1675 bp->best_mode = ZEROMV;
1676 bp->best_ref_frame = LAST_FRAME;
1677 bp->best_tx_size = TX_SIZES;
1678 bp->best_intra_tx_size = TX_SIZES;
1679 bp->best_pred_filter = EIGHTTAP;
1680 bp->best_mode_skip_txfm = SKIP_TXFM_NONE;
1681 bp->best_second_ref_frame = NO_REF_FRAME;
1682 bp->best_pred = NULL;
1683 }
1684
vp9_pick_inter_mode(VP9_COMP * cpi,MACROBLOCK * x,TileDataEnc * tile_data,int mi_row,int mi_col,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)1685 void vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x, TileDataEnc *tile_data,
1686 int mi_row, int mi_col, RD_COST *rd_cost,
1687 BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
1688 VP9_COMMON *const cm = &cpi->common;
1689 SPEED_FEATURES *const sf = &cpi->sf;
1690 SVC *const svc = &cpi->svc;
1691 MACROBLOCKD *const xd = &x->e_mbd;
1692 MODE_INFO *const mi = xd->mi[0];
1693 struct macroblockd_plane *const pd = &xd->plane[0];
1694
1695 BEST_PICKMODE best_pickmode;
1696
1697 MV_REFERENCE_FRAME ref_frame;
1698 MV_REFERENCE_FRAME usable_ref_frame, second_ref_frame;
1699 int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
1700 uint8_t mode_checked[MB_MODE_COUNT][MAX_REF_FRAMES];
1701 struct buf_2d yv12_mb[4][MAX_MB_PLANE] = { 0 };
1702 RD_COST this_rdc, best_rdc;
1703 // var_y and sse_y are saved to be used in skipping checking
1704 unsigned int var_y = UINT_MAX;
1705 unsigned int sse_y = UINT_MAX;
1706 const int intra_cost_penalty =
1707 vp9_get_intra_cost_penalty(cpi, bsize, cm->base_qindex, cm->y_dc_delta_q);
1708 int64_t inter_mode_thresh =
1709 RDCOST(x->rdmult, x->rddiv, intra_cost_penalty, 0);
1710 const int *const rd_threshes = cpi->rd.threshes[mi->segment_id][bsize];
1711 const int sb_row = mi_row >> MI_BLOCK_SIZE_LOG2;
1712 int thresh_freq_fact_idx = (sb_row * BLOCK_SIZES + bsize) * MAX_MODES;
1713 const int *const rd_thresh_freq_fact =
1714 (cpi->sf.adaptive_rd_thresh_row_mt)
1715 ? &(tile_data->row_base_thresh_freq_fact[thresh_freq_fact_idx])
1716 : tile_data->thresh_freq_fact[bsize];
1717 #if CONFIG_VP9_TEMPORAL_DENOISING
1718 const int denoise_recheck_zeromv = 1;
1719 #endif
1720 INTERP_FILTER filter_ref;
1721 int pred_filter_search = cm->interp_filter == SWITCHABLE;
1722 int const_motion[MAX_REF_FRAMES] = { 0 };
1723 const int bh = num_4x4_blocks_high_lookup[bsize] << 2;
1724 const int bw = num_4x4_blocks_wide_lookup[bsize] << 2;
1725 // For speed 6, the result of interp filter is reused later in actual encoding
1726 // process.
1727 // tmp[3] points to dst buffer, and the other 3 point to allocated buffers.
1728 PRED_BUFFER tmp[4];
1729 DECLARE_ALIGNED(16, uint8_t, pred_buf[3 * 64 * 64] VPX_UNINITIALIZED);
1730 #if CONFIG_VP9_HIGHBITDEPTH
1731 DECLARE_ALIGNED(16, uint16_t, pred_buf_16[3 * 64 * 64] VPX_UNINITIALIZED);
1732 #endif
1733 struct buf_2d orig_dst = pd->dst;
1734 PRED_BUFFER *this_mode_pred = NULL;
1735 const int pixels_in_block = bh * bw;
1736 int reuse_inter_pred = cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready;
1737 int ref_frame_skip_mask = 0;
1738 int idx;
1739 int best_pred_sad = INT_MAX;
1740 int best_early_term = 0;
1741 int ref_frame_cost[MAX_REF_FRAMES];
1742 int svc_force_zero_mode[3] = { 0 };
1743 int perform_intra_pred = 1;
1744 int use_golden_nonzeromv = 1;
1745 int force_skip_low_temp_var = 0;
1746 int skip_ref_find_pred[4] = { 0 };
1747 unsigned int sse_zeromv_normalized = UINT_MAX;
1748 unsigned int best_sse_sofar = UINT_MAX;
1749 int gf_temporal_ref = 0;
1750 int force_test_gf_zeromv = 0;
1751 #if CONFIG_VP9_TEMPORAL_DENOISING
1752 VP9_PICKMODE_CTX_DEN ctx_den;
1753 int64_t zero_last_cost_orig = INT64_MAX;
1754 int denoise_svc_pickmode = 1;
1755 #endif
1756 INTERP_FILTER filter_gf_svc = EIGHTTAP;
1757 MV_REFERENCE_FRAME inter_layer_ref = GOLDEN_FRAME;
1758 const struct segmentation *const seg = &cm->seg;
1759 int comp_modes = 0;
1760 int num_inter_modes = (cpi->use_svc) ? RT_INTER_MODES_SVC : RT_INTER_MODES;
1761 int flag_svc_subpel = 0;
1762 int svc_mv_col = 0;
1763 int svc_mv_row = 0;
1764 int no_scaling = 0;
1765 int large_block = 0;
1766 int use_model_yrd_large = 0;
1767 unsigned int thresh_svc_skip_golden = 500;
1768 unsigned int thresh_skip_golden = 500;
1769 int force_smooth_filter = cpi->sf.force_smooth_interpol;
1770 int scene_change_detected =
1771 cpi->rc.high_source_sad ||
1772 (cpi->use_svc && cpi->svc.high_source_sad_superframe);
1773
1774 init_best_pickmode(&best_pickmode);
1775
1776 x->encode_breakout = seg->enabled
1777 ? cpi->segment_encode_breakout[mi->segment_id]
1778 : cpi->encode_breakout;
1779
1780 x->source_variance = UINT_MAX;
1781 if (cpi->sf.default_interp_filter == BILINEAR) {
1782 best_pickmode.best_pred_filter = BILINEAR;
1783 filter_gf_svc = BILINEAR;
1784 }
1785 if (cpi->use_svc && svc->spatial_layer_id > 0) {
1786 int layer =
1787 LAYER_IDS_TO_IDX(svc->spatial_layer_id - 1, svc->temporal_layer_id,
1788 svc->number_temporal_layers);
1789 LAYER_CONTEXT *const lc = &svc->layer_context[layer];
1790 if (lc->scaling_factor_num == lc->scaling_factor_den) no_scaling = 1;
1791 }
1792 if (svc->spatial_layer_id > 0 &&
1793 (svc->high_source_sad_superframe || no_scaling))
1794 thresh_svc_skip_golden = 0;
1795 // Lower the skip threshold if lower spatial layer is better quality relative
1796 // to current layer.
1797 else if (svc->spatial_layer_id > 0 && cm->base_qindex > 150 &&
1798 cm->base_qindex > svc->lower_layer_qindex + 15)
1799 thresh_svc_skip_golden = 100;
1800 // Increase skip threshold if lower spatial layer is lower quality relative
1801 // to current layer.
1802 else if (svc->spatial_layer_id > 0 && cm->base_qindex < 140 &&
1803 cm->base_qindex < svc->lower_layer_qindex - 20)
1804 thresh_svc_skip_golden = 1000;
1805
1806 if (!cpi->use_svc ||
1807 (svc->use_gf_temporal_ref_current_layer &&
1808 !svc->layer_context[svc->temporal_layer_id].is_key_frame)) {
1809 struct scale_factors *const sf_last = &cm->frame_refs[LAST_FRAME - 1].sf;
1810 struct scale_factors *const sf_golden =
1811 &cm->frame_refs[GOLDEN_FRAME - 1].sf;
1812 gf_temporal_ref = 1;
1813 // For temporal long term prediction, check that the golden reference
1814 // is same scale as last reference, otherwise disable.
1815 if ((sf_last->x_scale_fp != sf_golden->x_scale_fp) ||
1816 (sf_last->y_scale_fp != sf_golden->y_scale_fp)) {
1817 gf_temporal_ref = 0;
1818 } else {
1819 if (cpi->rc.avg_frame_low_motion > 70)
1820 thresh_svc_skip_golden = 500;
1821 else
1822 thresh_svc_skip_golden = 0;
1823 }
1824 }
1825
1826 init_ref_frame_cost(cm, xd, ref_frame_cost);
1827 memset(&mode_checked[0][0], 0, MB_MODE_COUNT * MAX_REF_FRAMES);
1828
1829 if (reuse_inter_pred) {
1830 int i;
1831 for (i = 0; i < 3; i++) {
1832 #if CONFIG_VP9_HIGHBITDEPTH
1833 if (cm->use_highbitdepth)
1834 tmp[i].data = CONVERT_TO_BYTEPTR(&pred_buf_16[pixels_in_block * i]);
1835 else
1836 tmp[i].data = &pred_buf[pixels_in_block * i];
1837 #else
1838 tmp[i].data = &pred_buf[pixels_in_block * i];
1839 #endif // CONFIG_VP9_HIGHBITDEPTH
1840 tmp[i].stride = bw;
1841 tmp[i].in_use = 0;
1842 }
1843 tmp[3].data = pd->dst.buf;
1844 tmp[3].stride = pd->dst.stride;
1845 tmp[3].in_use = 0;
1846 }
1847
1848 x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
1849 x->skip = 0;
1850
1851 if (cpi->sf.cb_pred_filter_search) {
1852 const int bsl = mi_width_log2_lookup[bsize];
1853 pred_filter_search = cm->interp_filter == SWITCHABLE
1854 ? (((mi_row + mi_col) >> bsl) +
1855 get_chessboard_index(cm->current_video_frame)) &
1856 0x1
1857 : 0;
1858 }
1859 // Instead of using vp9_get_pred_context_switchable_interp(xd) to assign
1860 // filter_ref, we use a less strict condition on assigning filter_ref.
1861 // This is to reduce the probabily of entering the flow of not assigning
1862 // filter_ref and then skip filter search.
1863 filter_ref = cm->interp_filter;
1864 if (cpi->sf.default_interp_filter != BILINEAR) {
1865 if (xd->above_mi && is_inter_block(xd->above_mi))
1866 filter_ref = xd->above_mi->interp_filter;
1867 else if (xd->left_mi && is_inter_block(xd->left_mi))
1868 filter_ref = xd->left_mi->interp_filter;
1869 }
1870
1871 // initialize mode decisions
1872 vp9_rd_cost_reset(&best_rdc);
1873 vp9_rd_cost_reset(rd_cost);
1874 mi->sb_type = bsize;
1875 mi->ref_frame[0] = NO_REF_FRAME;
1876 mi->ref_frame[1] = NO_REF_FRAME;
1877
1878 mi->tx_size =
1879 VPXMIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[cm->tx_mode]);
1880
1881 if (sf->short_circuit_flat_blocks || sf->limit_newmv_early_exit) {
1882 #if CONFIG_VP9_HIGHBITDEPTH
1883 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
1884 x->source_variance = vp9_high_get_sby_perpixel_variance(
1885 cpi, &x->plane[0].src, bsize, xd->bd);
1886 else
1887 #endif // CONFIG_VP9_HIGHBITDEPTH
1888 x->source_variance =
1889 vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
1890
1891 if (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
1892 cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && mi->segment_id > 0 &&
1893 x->zero_temp_sad_source && x->source_variance == 0) {
1894 mi->segment_id = 0;
1895 vp9_init_plane_quantizers(cpi, x);
1896 }
1897 }
1898
1899 #if CONFIG_VP9_TEMPORAL_DENOISING
1900 if (cpi->oxcf.noise_sensitivity > 0) {
1901 if (cpi->use_svc) denoise_svc_pickmode = vp9_denoise_svc_non_key(cpi);
1902 if (cpi->denoiser.denoising_level > kDenLowLow && denoise_svc_pickmode)
1903 vp9_denoiser_reset_frame_stats(ctx);
1904 }
1905 #endif
1906
1907 if (cpi->rc.frames_since_golden == 0 && gf_temporal_ref &&
1908 !cpi->rc.alt_ref_gf_group && !cpi->rc.last_frame_is_src_altref) {
1909 usable_ref_frame = LAST_FRAME;
1910 } else {
1911 usable_ref_frame = GOLDEN_FRAME;
1912 }
1913
1914 if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR) {
1915 if (cpi->rc.alt_ref_gf_group || cpi->rc.is_src_frame_alt_ref)
1916 usable_ref_frame = ALTREF_FRAME;
1917
1918 if (cpi->rc.is_src_frame_alt_ref) {
1919 skip_ref_find_pred[LAST_FRAME] = 1;
1920 skip_ref_find_pred[GOLDEN_FRAME] = 1;
1921 }
1922 if (!cm->show_frame) {
1923 if (cpi->rc.frames_since_key == 1) {
1924 usable_ref_frame = LAST_FRAME;
1925 skip_ref_find_pred[GOLDEN_FRAME] = 1;
1926 skip_ref_find_pred[ALTREF_FRAME] = 1;
1927 }
1928 }
1929 }
1930
1931 // For svc mode, on spatial_layer_id > 0: if the reference has different scale
1932 // constrain the inter mode to only test zero motion.
1933 if (cpi->use_svc && svc->force_zero_mode_spatial_ref &&
1934 svc->spatial_layer_id > 0 && !gf_temporal_ref) {
1935 if (cpi->ref_frame_flags & VP9_LAST_FLAG) {
1936 struct scale_factors *const ref_sf = &cm->frame_refs[LAST_FRAME - 1].sf;
1937 if (vp9_is_scaled(ref_sf)) {
1938 svc_force_zero_mode[LAST_FRAME - 1] = 1;
1939 inter_layer_ref = LAST_FRAME;
1940 }
1941 }
1942 if (cpi->ref_frame_flags & VP9_GOLD_FLAG) {
1943 struct scale_factors *const ref_sf = &cm->frame_refs[GOLDEN_FRAME - 1].sf;
1944 if (vp9_is_scaled(ref_sf)) {
1945 svc_force_zero_mode[GOLDEN_FRAME - 1] = 1;
1946 inter_layer_ref = GOLDEN_FRAME;
1947 }
1948 }
1949 }
1950
1951 if (cpi->sf.short_circuit_low_temp_var) {
1952 force_skip_low_temp_var =
1953 get_force_skip_low_temp_var(&x->variance_low[0], mi_row, mi_col, bsize);
1954 // If force_skip_low_temp_var is set, and for short circuit mode = 1 and 3,
1955 // skip golden reference.
1956 if ((cpi->sf.short_circuit_low_temp_var == 1 ||
1957 cpi->sf.short_circuit_low_temp_var == 3) &&
1958 force_skip_low_temp_var) {
1959 usable_ref_frame = LAST_FRAME;
1960 }
1961 }
1962
1963 if (sf->disable_golden_ref && (x->content_state_sb != kVeryHighSad ||
1964 cpi->rc.avg_frame_low_motion < 60))
1965 usable_ref_frame = LAST_FRAME;
1966
1967 if (!((cpi->ref_frame_flags & VP9_GOLD_FLAG) &&
1968 !svc_force_zero_mode[GOLDEN_FRAME - 1] && !force_skip_low_temp_var))
1969 use_golden_nonzeromv = 0;
1970
1971 if (cpi->oxcf.speed >= 8 && !cpi->use_svc &&
1972 ((cpi->rc.frames_since_golden + 1) < x->last_sb_high_content ||
1973 x->last_sb_high_content > 40 || cpi->rc.frames_since_golden > 120))
1974 usable_ref_frame = LAST_FRAME;
1975
1976 // Compound prediction modes: (0,0) on LAST/GOLDEN and ARF.
1977 if (cm->reference_mode == REFERENCE_MODE_SELECT &&
1978 cpi->sf.use_compound_nonrd_pickmode && usable_ref_frame == ALTREF_FRAME)
1979 comp_modes = 2;
1980
1981 // If the segment reference frame feature is enabled and it's set to GOLDEN
1982 // reference, then make sure we don't skip checking GOLDEN, this is to
1983 // prevent possibility of not picking any mode.
1984 if (segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME) &&
1985 get_segdata(seg, mi->segment_id, SEG_LVL_REF_FRAME) == GOLDEN_FRAME) {
1986 usable_ref_frame = GOLDEN_FRAME;
1987 skip_ref_find_pred[GOLDEN_FRAME] = 0;
1988 thresh_svc_skip_golden = 0;
1989 }
1990
1991 for (ref_frame = LAST_FRAME; ref_frame <= usable_ref_frame; ++ref_frame) {
1992 // Skip find_predictor if the reference frame is not in the
1993 // ref_frame_flags (i.e., not used as a reference for this frame).
1994 skip_ref_find_pred[ref_frame] =
1995 !(cpi->ref_frame_flags & ref_frame_to_flag(ref_frame));
1996 if (!skip_ref_find_pred[ref_frame]) {
1997 find_predictors(cpi, x, ref_frame, frame_mv, const_motion,
1998 &ref_frame_skip_mask, tile_data, mi_row, mi_col, yv12_mb,
1999 bsize, force_skip_low_temp_var, comp_modes > 0);
2000 }
2001 }
2002
2003 if (cpi->use_svc || cpi->oxcf.speed <= 7 || bsize < BLOCK_32X32)
2004 x->sb_use_mv_part = 0;
2005
2006 // Set the flag_svc_subpel to 1 for SVC if the lower spatial layer used
2007 // an averaging filter for downsampling (phase = 8). If so, we will test
2008 // a nonzero motion mode on the spatial reference.
2009 // The nonzero motion is half pixel shifted to left and top (-4, -4).
2010 if (cpi->use_svc && svc->spatial_layer_id > 0 &&
2011 svc_force_zero_mode[inter_layer_ref - 1] &&
2012 svc->downsample_filter_phase[svc->spatial_layer_id - 1] == 8 &&
2013 !gf_temporal_ref) {
2014 svc_mv_col = -4;
2015 svc_mv_row = -4;
2016 flag_svc_subpel = 1;
2017 }
2018
2019 // For SVC with quality layers, when QP of lower layer is lower
2020 // than current layer: force check of GF-ZEROMV before early exit
2021 // due to skip flag.
2022 if (svc->spatial_layer_id > 0 && no_scaling &&
2023 (cpi->ref_frame_flags & VP9_GOLD_FLAG) &&
2024 cm->base_qindex > svc->lower_layer_qindex + 10)
2025 force_test_gf_zeromv = 1;
2026
2027 // For low motion content use x->sb_is_skin in addition to VeryHighSad
2028 // for setting large_block.
2029 large_block = (x->content_state_sb == kVeryHighSad ||
2030 (x->sb_is_skin && cpi->rc.avg_frame_low_motion > 70) ||
2031 cpi->oxcf.speed < 7)
2032 ? bsize > BLOCK_32X32
2033 : bsize >= BLOCK_32X32;
2034 use_model_yrd_large =
2035 cpi->oxcf.rc_mode == VPX_CBR && large_block &&
2036 !cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) &&
2037 cm->base_qindex;
2038
2039 for (idx = 0; idx < num_inter_modes + comp_modes; ++idx) {
2040 int rate_mv = 0;
2041 int mode_rd_thresh;
2042 int mode_index;
2043 int i;
2044 int64_t this_sse;
2045 int is_skippable;
2046 int this_early_term = 0;
2047 int rd_computed = 0;
2048 int flag_preduv_computed[2] = { 0 };
2049 int inter_mv_mode = 0;
2050 int skip_this_mv = 0;
2051 int comp_pred = 0;
2052 int force_mv_inter_layer = 0;
2053 PREDICTION_MODE this_mode;
2054 second_ref_frame = NO_REF_FRAME;
2055
2056 if (idx < num_inter_modes) {
2057 this_mode = ref_mode_set[idx].pred_mode;
2058 ref_frame = ref_mode_set[idx].ref_frame;
2059
2060 if (cpi->use_svc) {
2061 this_mode = ref_mode_set_svc[idx].pred_mode;
2062 ref_frame = ref_mode_set_svc[idx].ref_frame;
2063 }
2064 } else {
2065 // Add (0,0) compound modes.
2066 this_mode = ZEROMV;
2067 ref_frame = LAST_FRAME;
2068 if (idx == num_inter_modes + comp_modes - 1) ref_frame = GOLDEN_FRAME;
2069 second_ref_frame = ALTREF_FRAME;
2070 comp_pred = 1;
2071 }
2072
2073 if (ref_frame > usable_ref_frame) continue;
2074 if (skip_ref_find_pred[ref_frame]) continue;
2075
2076 if (svc->previous_frame_is_intra_only) {
2077 if (ref_frame != LAST_FRAME || frame_mv[this_mode][ref_frame].as_int != 0)
2078 continue;
2079 }
2080
2081 // If the segment reference frame feature is enabled then do nothing if the
2082 // current ref frame is not allowed.
2083 if (segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME) &&
2084 get_segdata(seg, mi->segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame)
2085 continue;
2086
2087 if (flag_svc_subpel && ref_frame == inter_layer_ref) {
2088 force_mv_inter_layer = 1;
2089 // Only test mode if NEARESTMV/NEARMV is (svc_mv_col, svc_mv_row),
2090 // otherwise set NEWMV to (svc_mv_col, svc_mv_row).
2091 if (this_mode == NEWMV) {
2092 frame_mv[this_mode][ref_frame].as_mv.col = svc_mv_col;
2093 frame_mv[this_mode][ref_frame].as_mv.row = svc_mv_row;
2094 } else if (frame_mv[this_mode][ref_frame].as_mv.col != svc_mv_col ||
2095 frame_mv[this_mode][ref_frame].as_mv.row != svc_mv_row) {
2096 continue;
2097 }
2098 }
2099
2100 if (comp_pred) {
2101 if (!cpi->allow_comp_inter_inter) continue;
2102 // Skip compound inter modes if ARF is not available.
2103 if (!(cpi->ref_frame_flags & ref_frame_to_flag(second_ref_frame)))
2104 continue;
2105 // Do not allow compound prediction if the segment level reference frame
2106 // feature is in use as in this case there can only be one reference.
2107 if (segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME)) continue;
2108 }
2109
2110 // For CBR mode: skip the golden reference search if sse of zeromv_last is
2111 // below threshold.
2112 if (ref_frame == GOLDEN_FRAME && cpi->oxcf.rc_mode == VPX_CBR &&
2113 ((cpi->use_svc && sse_zeromv_normalized < thresh_svc_skip_golden) ||
2114 (!cpi->use_svc && sse_zeromv_normalized < thresh_skip_golden)))
2115 continue;
2116
2117 if (!(cpi->ref_frame_flags & ref_frame_to_flag(ref_frame))) continue;
2118
2119 // For screen content. If zero_temp_sad source is computed: skip
2120 // non-zero motion check for stationary blocks. If the superblock is
2121 // non-stationary then for flat blocks skip the zero last check (keep golden
2122 // as it may be inter-layer reference). Otherwise (if zero_temp_sad_source
2123 // is not computed) skip non-zero motion check for flat blocks.
2124 // TODO(marpan): Compute zero_temp_sad_source per coding block.
2125 if (cpi->oxcf.content == VP9E_CONTENT_SCREEN) {
2126 if (cpi->compute_source_sad_onepass && cpi->sf.use_source_sad) {
2127 if ((frame_mv[this_mode][ref_frame].as_int != 0 &&
2128 x->zero_temp_sad_source) ||
2129 (frame_mv[this_mode][ref_frame].as_int == 0 &&
2130 x->source_variance == 0 && ref_frame == LAST_FRAME &&
2131 !x->zero_temp_sad_source))
2132 continue;
2133 } else if (frame_mv[this_mode][ref_frame].as_int != 0 &&
2134 x->source_variance == 0) {
2135 continue;
2136 }
2137 }
2138
2139 if (!(cpi->sf.inter_mode_mask[bsize] & (1 << this_mode))) continue;
2140
2141 if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR) {
2142 if (cpi->rc.is_src_frame_alt_ref &&
2143 (ref_frame != ALTREF_FRAME ||
2144 frame_mv[this_mode][ref_frame].as_int != 0))
2145 continue;
2146
2147 if (!cm->show_frame && ref_frame == ALTREF_FRAME &&
2148 frame_mv[this_mode][ref_frame].as_int != 0)
2149 continue;
2150
2151 if (cpi->rc.alt_ref_gf_group && cm->show_frame &&
2152 cpi->rc.frames_since_golden > (cpi->rc.baseline_gf_interval >> 1) &&
2153 ref_frame == GOLDEN_FRAME &&
2154 frame_mv[this_mode][ref_frame].as_int != 0)
2155 continue;
2156
2157 if (cpi->rc.alt_ref_gf_group && cm->show_frame &&
2158 cpi->rc.frames_since_golden > 0 &&
2159 cpi->rc.frames_since_golden < (cpi->rc.baseline_gf_interval >> 1) &&
2160 ref_frame == ALTREF_FRAME &&
2161 frame_mv[this_mode][ref_frame].as_int != 0)
2162 continue;
2163 }
2164
2165 if (const_motion[ref_frame] && this_mode == NEARMV) continue;
2166
2167 // Skip non-zeromv mode search for golden frame if force_skip_low_temp_var
2168 // is set. If nearestmv for golden frame is 0, zeromv mode will be skipped
2169 // later.
2170 if (!force_mv_inter_layer && force_skip_low_temp_var &&
2171 ref_frame == GOLDEN_FRAME &&
2172 frame_mv[this_mode][ref_frame].as_int != 0) {
2173 continue;
2174 }
2175
2176 if (x->content_state_sb != kVeryHighSad &&
2177 (cpi->sf.short_circuit_low_temp_var >= 2 ||
2178 (cpi->sf.short_circuit_low_temp_var == 1 && bsize == BLOCK_64X64)) &&
2179 force_skip_low_temp_var && ref_frame == LAST_FRAME &&
2180 this_mode == NEWMV) {
2181 continue;
2182 }
2183
2184 if (cpi->use_svc) {
2185 if (!force_mv_inter_layer && svc_force_zero_mode[ref_frame - 1] &&
2186 frame_mv[this_mode][ref_frame].as_int != 0)
2187 continue;
2188 }
2189
2190 // Disable this drop out case if the ref frame segment level feature is
2191 // enabled for this segment. This is to prevent the possibility that we end
2192 // up unable to pick any mode.
2193 if (!segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME)) {
2194 if (sf->reference_masking &&
2195 !(frame_mv[this_mode][ref_frame].as_int == 0 &&
2196 ref_frame == LAST_FRAME)) {
2197 if (usable_ref_frame < ALTREF_FRAME) {
2198 if (!force_skip_low_temp_var && usable_ref_frame > LAST_FRAME) {
2199 i = (ref_frame == LAST_FRAME) ? GOLDEN_FRAME : LAST_FRAME;
2200 if ((cpi->ref_frame_flags & ref_frame_to_flag(i)))
2201 if (x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[i] << 1))
2202 ref_frame_skip_mask |= (1 << ref_frame);
2203 }
2204 } else if (!cpi->rc.is_src_frame_alt_ref &&
2205 !(frame_mv[this_mode][ref_frame].as_int == 0 &&
2206 ref_frame == ALTREF_FRAME)) {
2207 int ref1 = (ref_frame == GOLDEN_FRAME) ? LAST_FRAME : GOLDEN_FRAME;
2208 int ref2 = (ref_frame == ALTREF_FRAME) ? LAST_FRAME : ALTREF_FRAME;
2209 if (((cpi->ref_frame_flags & ref_frame_to_flag(ref1)) &&
2210 (x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[ref1] << 1))) ||
2211 ((cpi->ref_frame_flags & ref_frame_to_flag(ref2)) &&
2212 (x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[ref2] << 1))))
2213 ref_frame_skip_mask |= (1 << ref_frame);
2214 }
2215 }
2216 if (ref_frame_skip_mask & (1 << ref_frame)) continue;
2217 }
2218
2219 // Select prediction reference frames.
2220 for (i = 0; i < MAX_MB_PLANE; i++) {
2221 xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
2222 if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
2223 }
2224
2225 mi->ref_frame[0] = ref_frame;
2226 mi->ref_frame[1] = second_ref_frame;
2227 set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
2228
2229 mode_index = mode_idx[ref_frame][INTER_OFFSET(this_mode)];
2230 mode_rd_thresh = best_pickmode.best_mode_skip_txfm
2231 ? rd_threshes[mode_index] << 1
2232 : rd_threshes[mode_index];
2233
2234 // Increase mode_rd_thresh value for GOLDEN_FRAME for improved encoding
2235 // speed with little/no subjective quality loss.
2236 if (cpi->sf.bias_golden && ref_frame == GOLDEN_FRAME &&
2237 cpi->rc.frames_since_golden > 4)
2238 mode_rd_thresh = mode_rd_thresh << 3;
2239
2240 if ((cpi->sf.adaptive_rd_thresh_row_mt &&
2241 rd_less_than_thresh_row_mt(best_rdc.rdcost, mode_rd_thresh,
2242 &rd_thresh_freq_fact[mode_index])) ||
2243 (!cpi->sf.adaptive_rd_thresh_row_mt &&
2244 rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh,
2245 &rd_thresh_freq_fact[mode_index])))
2246 if (frame_mv[this_mode][ref_frame].as_int != 0) continue;
2247
2248 if (this_mode == NEWMV && !force_mv_inter_layer) {
2249 if (search_new_mv(cpi, x, frame_mv, ref_frame, gf_temporal_ref, bsize,
2250 mi_row, mi_col, best_pred_sad, &rate_mv, best_sse_sofar,
2251 &best_rdc))
2252 continue;
2253 }
2254
2255 // TODO(jianj): Skipping the testing of (duplicate) non-zero motion vector
2256 // causes some regression, leave it for duplicate zero-mv for now, until
2257 // regression issue is resolved.
2258 for (inter_mv_mode = NEARESTMV; inter_mv_mode <= NEWMV; inter_mv_mode++) {
2259 if (inter_mv_mode == this_mode || comp_pred) continue;
2260 if (mode_checked[inter_mv_mode][ref_frame] &&
2261 frame_mv[this_mode][ref_frame].as_int ==
2262 frame_mv[inter_mv_mode][ref_frame].as_int &&
2263 frame_mv[inter_mv_mode][ref_frame].as_int == 0) {
2264 skip_this_mv = 1;
2265 break;
2266 }
2267 }
2268
2269 if (skip_this_mv) continue;
2270
2271 // If use_golden_nonzeromv is false, NEWMV mode is skipped for golden, no
2272 // need to compute best_pred_sad which is only used to skip golden NEWMV.
2273 if (use_golden_nonzeromv && this_mode == NEWMV && ref_frame == LAST_FRAME &&
2274 frame_mv[NEWMV][LAST_FRAME].as_int != INVALID_MV) {
2275 const int pre_stride = xd->plane[0].pre[0].stride;
2276 const uint8_t *const pre_buf =
2277 xd->plane[0].pre[0].buf +
2278 (frame_mv[NEWMV][LAST_FRAME].as_mv.row >> 3) * pre_stride +
2279 (frame_mv[NEWMV][LAST_FRAME].as_mv.col >> 3);
2280 best_pred_sad = cpi->fn_ptr[bsize].sdf(
2281 x->plane[0].src.buf, x->plane[0].src.stride, pre_buf, pre_stride);
2282 x->pred_mv_sad[LAST_FRAME] = best_pred_sad;
2283 }
2284
2285 if (this_mode != NEARESTMV && !comp_pred &&
2286 frame_mv[this_mode][ref_frame].as_int ==
2287 frame_mv[NEARESTMV][ref_frame].as_int)
2288 continue;
2289
2290 mi->mode = this_mode;
2291 mi->mv[0].as_int = frame_mv[this_mode][ref_frame].as_int;
2292 mi->mv[1].as_int = 0;
2293
2294 // Search for the best prediction filter type, when the resulting
2295 // motion vector is at sub-pixel accuracy level for luma component, i.e.,
2296 // the last three bits are all zeros.
2297 if (reuse_inter_pred) {
2298 if (!this_mode_pred) {
2299 this_mode_pred = &tmp[3];
2300 } else {
2301 this_mode_pred = &tmp[get_pred_buffer(tmp, 3)];
2302 pd->dst.buf = this_mode_pred->data;
2303 pd->dst.stride = bw;
2304 }
2305 }
2306
2307 if ((this_mode == NEWMV || filter_ref == SWITCHABLE) &&
2308 pred_filter_search &&
2309 (ref_frame == LAST_FRAME ||
2310 (ref_frame == GOLDEN_FRAME && !force_mv_inter_layer &&
2311 (cpi->use_svc || cpi->oxcf.rc_mode == VPX_VBR))) &&
2312 (((mi->mv[0].as_mv.row | mi->mv[0].as_mv.col) & 0x07) != 0)) {
2313 rd_computed = 1;
2314 search_filter_ref(cpi, x, &this_rdc, mi_row, mi_col, tmp, bsize,
2315 reuse_inter_pred, &this_mode_pred, &var_y, &sse_y,
2316 force_smooth_filter, &this_early_term,
2317 flag_preduv_computed, use_model_yrd_large);
2318 } else {
2319 mi->interp_filter = (filter_ref == SWITCHABLE) ? EIGHTTAP : filter_ref;
2320
2321 if (cpi->use_svc && ref_frame == GOLDEN_FRAME &&
2322 svc_force_zero_mode[ref_frame - 1])
2323 mi->interp_filter = filter_gf_svc;
2324
2325 vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
2326
2327 // For large partition blocks, extra testing is done.
2328 if (use_model_yrd_large) {
2329 rd_computed = 1;
2330 model_rd_for_sb_y_large(cpi, bsize, x, xd, &this_rdc.rate,
2331 &this_rdc.dist, &var_y, &sse_y, mi_row, mi_col,
2332 &this_early_term, flag_preduv_computed);
2333 } else {
2334 rd_computed = 1;
2335 model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist,
2336 &var_y, &sse_y, 0);
2337 }
2338 // Save normalized sse (between current and last frame) for (0, 0) motion.
2339 if (ref_frame == LAST_FRAME &&
2340 frame_mv[this_mode][ref_frame].as_int == 0) {
2341 sse_zeromv_normalized =
2342 sse_y >> (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
2343 }
2344 if (sse_y < best_sse_sofar) best_sse_sofar = sse_y;
2345 }
2346
2347 if (!this_early_term) {
2348 this_sse = (int64_t)sse_y;
2349 block_yrd(cpi, x, &this_rdc, &is_skippable, &this_sse, bsize,
2350 VPXMIN(mi->tx_size, TX_16X16), rd_computed, 0);
2351 x->skip_txfm[0] = is_skippable;
2352 if (is_skippable) {
2353 this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
2354 } else {
2355 if (RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist) <
2356 RDCOST(x->rdmult, x->rddiv, 0, this_sse)) {
2357 this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0);
2358 } else {
2359 this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
2360 this_rdc.dist = this_sse;
2361 x->skip_txfm[0] = SKIP_TXFM_AC_DC;
2362 }
2363 }
2364
2365 if (cm->interp_filter == SWITCHABLE) {
2366 if ((mi->mv[0].as_mv.row | mi->mv[0].as_mv.col) & 0x07)
2367 this_rdc.rate += vp9_get_switchable_rate(cpi, xd);
2368 }
2369 } else {
2370 if (cm->interp_filter == SWITCHABLE) {
2371 if ((mi->mv[0].as_mv.row | mi->mv[0].as_mv.col) & 0x07)
2372 this_rdc.rate += vp9_get_switchable_rate(cpi, xd);
2373 }
2374 this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
2375 }
2376
2377 if (!this_early_term &&
2378 (x->color_sensitivity[0] || x->color_sensitivity[1])) {
2379 RD_COST rdc_uv;
2380 const BLOCK_SIZE uv_bsize = get_plane_block_size(bsize, &xd->plane[1]);
2381 if (x->color_sensitivity[0] && !flag_preduv_computed[0]) {
2382 vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, 1);
2383 flag_preduv_computed[0] = 1;
2384 }
2385 if (x->color_sensitivity[1] && !flag_preduv_computed[1]) {
2386 vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, 2);
2387 flag_preduv_computed[1] = 1;
2388 }
2389 model_rd_for_sb_uv(cpi, uv_bsize, x, xd, &rdc_uv, &var_y, &sse_y, 1, 2);
2390 this_rdc.rate += rdc_uv.rate;
2391 this_rdc.dist += rdc_uv.dist;
2392 }
2393
2394 this_rdc.rate += rate_mv;
2395 this_rdc.rate += cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]]
2396 [INTER_OFFSET(this_mode)];
2397 // TODO(marpan): Add costing for compound mode.
2398 this_rdc.rate += ref_frame_cost[ref_frame];
2399 this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
2400
2401 // Bias against NEWMV that is very different from its neighbors, and bias
2402 // to small motion-lastref for noisy input.
2403 if (cpi->oxcf.rc_mode == VPX_CBR && cpi->oxcf.speed >= 5 &&
2404 cpi->oxcf.content != VP9E_CONTENT_SCREEN) {
2405 vp9_NEWMV_diff_bias(&cpi->noise_estimate, xd, this_mode, &this_rdc, bsize,
2406 frame_mv[this_mode][ref_frame].as_mv.row,
2407 frame_mv[this_mode][ref_frame].as_mv.col,
2408 ref_frame == LAST_FRAME, x->lowvar_highsumdiff,
2409 x->sb_is_skin);
2410 }
2411
2412 // Skipping checking: test to see if this block can be reconstructed by
2413 // prediction only.
2414 if (cpi->allow_encode_breakout && !xd->lossless && !scene_change_detected &&
2415 !svc->high_num_blocks_with_motion) {
2416 encode_breakout_test(cpi, x, bsize, mi_row, mi_col, ref_frame, this_mode,
2417 var_y, sse_y, yv12_mb, &this_rdc.rate,
2418 &this_rdc.dist, flag_preduv_computed);
2419 if (x->skip) {
2420 this_rdc.rate += rate_mv;
2421 this_rdc.rdcost =
2422 RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
2423 }
2424 }
2425
2426 // On spatially flat blocks for screne content: bias against zero-last
2427 // if the sse_y is non-zero. Only on scene change or high motion frames.
2428 if (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
2429 (scene_change_detected || svc->high_num_blocks_with_motion) &&
2430 ref_frame == LAST_FRAME && frame_mv[this_mode][ref_frame].as_int == 0 &&
2431 svc->spatial_layer_id == 0 && x->source_variance == 0 && sse_y > 0) {
2432 this_rdc.rdcost = this_rdc.rdcost << 2;
2433 }
2434
2435 #if CONFIG_VP9_TEMPORAL_DENOISING
2436 if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc_pickmode &&
2437 cpi->denoiser.denoising_level > kDenLowLow) {
2438 vp9_denoiser_update_frame_stats(mi, sse_y, this_mode, ctx);
2439 // Keep track of zero_last cost.
2440 if (ref_frame == LAST_FRAME && frame_mv[this_mode][ref_frame].as_int == 0)
2441 zero_last_cost_orig = this_rdc.rdcost;
2442 }
2443 #else
2444 (void)ctx;
2445 #endif
2446
2447 mode_checked[this_mode][ref_frame] = 1;
2448
2449 if (this_rdc.rdcost < best_rdc.rdcost || x->skip) {
2450 best_rdc = this_rdc;
2451 best_early_term = this_early_term;
2452 best_pickmode.best_mode = this_mode;
2453 best_pickmode.best_pred_filter = mi->interp_filter;
2454 best_pickmode.best_tx_size = mi->tx_size;
2455 best_pickmode.best_ref_frame = ref_frame;
2456 best_pickmode.best_mode_skip_txfm = x->skip_txfm[0];
2457 best_pickmode.best_second_ref_frame = second_ref_frame;
2458
2459 if (reuse_inter_pred) {
2460 free_pred_buffer(best_pickmode.best_pred);
2461 best_pickmode.best_pred = this_mode_pred;
2462 }
2463 } else {
2464 if (reuse_inter_pred) free_pred_buffer(this_mode_pred);
2465 }
2466
2467 if (x->skip &&
2468 (!force_test_gf_zeromv || mode_checked[ZEROMV][GOLDEN_FRAME]))
2469 break;
2470
2471 // If early termination flag is 1 and at least 2 modes are checked,
2472 // the mode search is terminated.
2473 if (best_early_term && idx > 0 && !scene_change_detected &&
2474 (!force_test_gf_zeromv || mode_checked[ZEROMV][GOLDEN_FRAME])) {
2475 x->skip = 1;
2476 break;
2477 }
2478 }
2479
2480 mi->mode = best_pickmode.best_mode;
2481 mi->interp_filter = best_pickmode.best_pred_filter;
2482 mi->tx_size = best_pickmode.best_tx_size;
2483 mi->ref_frame[0] = best_pickmode.best_ref_frame;
2484 mi->mv[0].as_int =
2485 frame_mv[best_pickmode.best_mode][best_pickmode.best_ref_frame].as_int;
2486 xd->mi[0]->bmi[0].as_mv[0].as_int = mi->mv[0].as_int;
2487 x->skip_txfm[0] = best_pickmode.best_mode_skip_txfm;
2488 mi->ref_frame[1] = best_pickmode.best_second_ref_frame;
2489
2490 // For spatial enhancemanent layer: perform intra prediction only if base
2491 // layer is chosen as the reference. Always perform intra prediction if
2492 // LAST is the only reference, or is_key_frame is set, or on base
2493 // temporal layer.
2494 if (svc->spatial_layer_id && !gf_temporal_ref) {
2495 perform_intra_pred =
2496 svc->temporal_layer_id == 0 ||
2497 svc->layer_context[svc->temporal_layer_id].is_key_frame ||
2498 !(cpi->ref_frame_flags & VP9_GOLD_FLAG) ||
2499 (!svc->layer_context[svc->temporal_layer_id].is_key_frame &&
2500 svc_force_zero_mode[best_pickmode.best_ref_frame - 1]);
2501 inter_mode_thresh = (inter_mode_thresh << 1) + inter_mode_thresh;
2502 }
2503 if ((cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR &&
2504 cpi->rc.is_src_frame_alt_ref) ||
2505 svc->previous_frame_is_intra_only)
2506 perform_intra_pred = 0;
2507
2508 // If the segment reference frame feature is enabled and set then
2509 // skip the intra prediction.
2510 if (segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME) &&
2511 get_segdata(seg, mi->segment_id, SEG_LVL_REF_FRAME) > 0)
2512 perform_intra_pred = 0;
2513
2514 // Perform intra prediction search, if the best SAD is above a certain
2515 // threshold.
2516 if (best_rdc.rdcost == INT64_MAX ||
2517 (cpi->oxcf.content == VP9E_CONTENT_SCREEN && x->source_variance == 0) ||
2518 (scene_change_detected && perform_intra_pred) ||
2519 ((!force_skip_low_temp_var || bsize < BLOCK_32X32 ||
2520 x->content_state_sb == kVeryHighSad) &&
2521 perform_intra_pred && !x->skip && best_rdc.rdcost > inter_mode_thresh &&
2522 bsize <= cpi->sf.max_intra_bsize && !x->skip_low_source_sad &&
2523 !x->lowvar_highsumdiff)) {
2524 struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 };
2525 int64_t this_sse = INT64_MAX;
2526 int i;
2527 PRED_BUFFER *const best_pred = best_pickmode.best_pred;
2528 TX_SIZE intra_tx_size =
2529 VPXMIN(max_txsize_lookup[bsize],
2530 tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
2531
2532 if (reuse_inter_pred && best_pred != NULL) {
2533 if (best_pred->data == orig_dst.buf) {
2534 this_mode_pred = &tmp[get_pred_buffer(tmp, 3)];
2535 #if CONFIG_VP9_HIGHBITDEPTH
2536 if (cm->use_highbitdepth)
2537 vpx_highbd_convolve_copy(
2538 CONVERT_TO_SHORTPTR(best_pred->data), best_pred->stride,
2539 CONVERT_TO_SHORTPTR(this_mode_pred->data), this_mode_pred->stride,
2540 NULL, 0, 0, 0, 0, bw, bh, xd->bd);
2541 else
2542 vpx_convolve_copy(best_pred->data, best_pred->stride,
2543 this_mode_pred->data, this_mode_pred->stride, NULL,
2544 0, 0, 0, 0, bw, bh);
2545 #else
2546 vpx_convolve_copy(best_pred->data, best_pred->stride,
2547 this_mode_pred->data, this_mode_pred->stride, NULL, 0,
2548 0, 0, 0, bw, bh);
2549 #endif // CONFIG_VP9_HIGHBITDEPTH
2550 best_pickmode.best_pred = this_mode_pred;
2551 }
2552 }
2553 pd->dst = orig_dst;
2554
2555 for (i = 0; i < 4; ++i) {
2556 const PREDICTION_MODE this_mode = intra_mode_list[i];
2557 THR_MODES mode_index = mode_idx[INTRA_FRAME][mode_offset(this_mode)];
2558 int mode_rd_thresh = rd_threshes[mode_index];
2559 // For spatially flat blocks, under short_circuit_flat_blocks flag:
2560 // only check DC mode for stationary blocks, otherwise also check
2561 // H and V mode.
2562 if (sf->short_circuit_flat_blocks && x->source_variance == 0 &&
2563 ((x->zero_temp_sad_source && this_mode != DC_PRED) || i > 2)) {
2564 continue;
2565 }
2566
2567 if (!((1 << this_mode) & cpi->sf.intra_y_mode_bsize_mask[bsize]))
2568 continue;
2569
2570 if (cpi->sf.rt_intra_dc_only_low_content && this_mode != DC_PRED &&
2571 x->content_state_sb != kVeryHighSad)
2572 continue;
2573
2574 if ((cpi->sf.adaptive_rd_thresh_row_mt &&
2575 rd_less_than_thresh_row_mt(best_rdc.rdcost, mode_rd_thresh,
2576 &rd_thresh_freq_fact[mode_index])) ||
2577 (!cpi->sf.adaptive_rd_thresh_row_mt &&
2578 rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh,
2579 &rd_thresh_freq_fact[mode_index]))) {
2580 // Avoid this early exit for screen on base layer, for scene
2581 // changes or high motion frames.
2582 if (cpi->oxcf.content != VP9E_CONTENT_SCREEN ||
2583 svc->spatial_layer_id > 0 ||
2584 (!scene_change_detected && !svc->high_num_blocks_with_motion))
2585 continue;
2586 }
2587
2588 mi->mode = this_mode;
2589 mi->ref_frame[0] = INTRA_FRAME;
2590 this_rdc.dist = this_rdc.rate = 0;
2591 args.mode = this_mode;
2592 args.skippable = 1;
2593 args.rdc = &this_rdc;
2594 mi->tx_size = intra_tx_size;
2595
2596 compute_intra_yprediction(this_mode, bsize, x, xd);
2597 model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist,
2598 &var_y, &sse_y, 1);
2599 block_yrd(cpi, x, &this_rdc, &args.skippable, &this_sse, bsize,
2600 VPXMIN(mi->tx_size, TX_16X16), 1, 1);
2601
2602 // Check skip cost here since skippable is not set for for uv, this
2603 // mirrors the behavior used by inter
2604 if (args.skippable) {
2605 x->skip_txfm[0] = SKIP_TXFM_AC_DC;
2606 this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(&cpi->common, xd), 1);
2607 } else {
2608 x->skip_txfm[0] = SKIP_TXFM_NONE;
2609 this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(&cpi->common, xd), 0);
2610 }
2611 // Inter and intra RD will mismatch in scale for non-screen content.
2612 if (cpi->oxcf.content == VP9E_CONTENT_SCREEN) {
2613 if (x->color_sensitivity[0])
2614 vp9_foreach_transformed_block_in_plane(xd, bsize, 1,
2615 estimate_block_intra, &args);
2616 if (x->color_sensitivity[1])
2617 vp9_foreach_transformed_block_in_plane(xd, bsize, 2,
2618 estimate_block_intra, &args);
2619 }
2620 this_rdc.rate += cpi->mbmode_cost[this_mode];
2621 this_rdc.rate += ref_frame_cost[INTRA_FRAME];
2622 this_rdc.rate += intra_cost_penalty;
2623 this_rdc.rdcost =
2624 RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
2625
2626 if (this_rdc.rdcost < best_rdc.rdcost) {
2627 best_rdc = this_rdc;
2628 best_pickmode.best_mode = this_mode;
2629 best_pickmode.best_intra_tx_size = mi->tx_size;
2630 best_pickmode.best_ref_frame = INTRA_FRAME;
2631 best_pickmode.best_second_ref_frame = NO_REF_FRAME;
2632 mi->uv_mode = this_mode;
2633 mi->mv[0].as_int = INVALID_MV;
2634 mi->mv[1].as_int = INVALID_MV;
2635 best_pickmode.best_mode_skip_txfm = x->skip_txfm[0];
2636 }
2637 }
2638
2639 // Reset mb_mode_info to the best inter mode.
2640 if (best_pickmode.best_ref_frame != INTRA_FRAME) {
2641 mi->tx_size = best_pickmode.best_tx_size;
2642 } else {
2643 mi->tx_size = best_pickmode.best_intra_tx_size;
2644 }
2645 }
2646
2647 pd->dst = orig_dst;
2648 mi->mode = best_pickmode.best_mode;
2649 mi->ref_frame[0] = best_pickmode.best_ref_frame;
2650 mi->ref_frame[1] = best_pickmode.best_second_ref_frame;
2651 x->skip_txfm[0] = best_pickmode.best_mode_skip_txfm;
2652
2653 if (!is_inter_block(mi)) {
2654 mi->interp_filter = SWITCHABLE_FILTERS;
2655 }
2656
2657 if (reuse_inter_pred && best_pickmode.best_pred != NULL) {
2658 PRED_BUFFER *const best_pred = best_pickmode.best_pred;
2659 if (best_pred->data != orig_dst.buf && is_inter_mode(mi->mode)) {
2660 #if CONFIG_VP9_HIGHBITDEPTH
2661 if (cm->use_highbitdepth)
2662 vpx_highbd_convolve_copy(
2663 CONVERT_TO_SHORTPTR(best_pred->data), best_pred->stride,
2664 CONVERT_TO_SHORTPTR(pd->dst.buf), pd->dst.stride, NULL, 0, 0, 0, 0,
2665 bw, bh, xd->bd);
2666 else
2667 vpx_convolve_copy(best_pred->data, best_pred->stride, pd->dst.buf,
2668 pd->dst.stride, NULL, 0, 0, 0, 0, bw, bh);
2669 #else
2670 vpx_convolve_copy(best_pred->data, best_pred->stride, pd->dst.buf,
2671 pd->dst.stride, NULL, 0, 0, 0, 0, bw, bh);
2672 #endif // CONFIG_VP9_HIGHBITDEPTH
2673 }
2674 }
2675
2676 #if CONFIG_VP9_TEMPORAL_DENOISING
2677 if (cpi->oxcf.noise_sensitivity > 0 && cpi->resize_pending == 0 &&
2678 denoise_svc_pickmode && cpi->denoiser.denoising_level > kDenLowLow &&
2679 cpi->denoiser.reset == 0) {
2680 VP9_DENOISER_DECISION decision = COPY_BLOCK;
2681 ctx->sb_skip_denoising = 0;
2682 // TODO(marpan): There is an issue with denoising when the
2683 // superblock partitioning scheme is based on the pickmode.
2684 // Remove this condition when the issue is resolved.
2685 if (x->sb_pickmode_part) ctx->sb_skip_denoising = 1;
2686 vp9_pickmode_ctx_den_update(&ctx_den, zero_last_cost_orig, ref_frame_cost,
2687 frame_mv, reuse_inter_pred, &best_pickmode);
2688 vp9_denoiser_denoise(cpi, x, mi_row, mi_col, bsize, ctx, &decision,
2689 gf_temporal_ref);
2690 if (denoise_recheck_zeromv)
2691 recheck_zeromv_after_denoising(cpi, mi, x, xd, decision, &ctx_den,
2692 yv12_mb, &best_rdc, bsize, mi_row, mi_col);
2693 best_pickmode.best_ref_frame = ctx_den.best_ref_frame;
2694 }
2695 #endif
2696
2697 if (best_pickmode.best_ref_frame == ALTREF_FRAME ||
2698 best_pickmode.best_second_ref_frame == ALTREF_FRAME)
2699 x->arf_frame_usage++;
2700 else if (best_pickmode.best_ref_frame != INTRA_FRAME)
2701 x->lastgolden_frame_usage++;
2702
2703 if (cpi->sf.adaptive_rd_thresh) {
2704 THR_MODES best_mode_idx =
2705 mode_idx[best_pickmode.best_ref_frame][mode_offset(mi->mode)];
2706
2707 if (best_pickmode.best_ref_frame == INTRA_FRAME) {
2708 // Only consider the modes that are included in the intra_mode_list.
2709 int intra_modes = sizeof(intra_mode_list) / sizeof(PREDICTION_MODE);
2710 int i;
2711
2712 // TODO(yunqingwang): Check intra mode mask and only update freq_fact
2713 // for those valid modes.
2714 for (i = 0; i < intra_modes; i++) {
2715 if (cpi->sf.adaptive_rd_thresh_row_mt)
2716 update_thresh_freq_fact_row_mt(cpi, tile_data, x->source_variance,
2717 thresh_freq_fact_idx, INTRA_FRAME,
2718 best_mode_idx, intra_mode_list[i]);
2719 else
2720 update_thresh_freq_fact(cpi, tile_data, x->source_variance, bsize,
2721 INTRA_FRAME, best_mode_idx,
2722 intra_mode_list[i]);
2723 }
2724 } else {
2725 for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) {
2726 PREDICTION_MODE this_mode;
2727 if (best_pickmode.best_ref_frame != ref_frame) continue;
2728 for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
2729 if (cpi->sf.adaptive_rd_thresh_row_mt)
2730 update_thresh_freq_fact_row_mt(cpi, tile_data, x->source_variance,
2731 thresh_freq_fact_idx, ref_frame,
2732 best_mode_idx, this_mode);
2733 else
2734 update_thresh_freq_fact(cpi, tile_data, x->source_variance, bsize,
2735 ref_frame, best_mode_idx, this_mode);
2736 }
2737 }
2738 }
2739 }
2740
2741 *rd_cost = best_rdc;
2742 }
2743
vp9_pick_inter_mode_sub8x8(VP9_COMP * cpi,MACROBLOCK * x,int mi_row,int mi_col,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)2744 void vp9_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x, int mi_row,
2745 int mi_col, RD_COST *rd_cost, BLOCK_SIZE bsize,
2746 PICK_MODE_CONTEXT *ctx) {
2747 VP9_COMMON *const cm = &cpi->common;
2748 SPEED_FEATURES *const sf = &cpi->sf;
2749 MACROBLOCKD *const xd = &x->e_mbd;
2750 MODE_INFO *const mi = xd->mi[0];
2751 MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
2752 const struct segmentation *const seg = &cm->seg;
2753 MV_REFERENCE_FRAME ref_frame, second_ref_frame = NO_REF_FRAME;
2754 MV_REFERENCE_FRAME best_ref_frame = NO_REF_FRAME;
2755 unsigned char segment_id = mi->segment_id;
2756 struct buf_2d yv12_mb[4][MAX_MB_PLANE];
2757 int64_t best_rd = INT64_MAX;
2758 b_mode_info bsi[MAX_REF_FRAMES][4];
2759 int ref_frame_skip_mask = 0;
2760 const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
2761 const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
2762 int idx, idy;
2763
2764 x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
2765 ctx->pred_pixel_ready = 0;
2766
2767 for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) {
2768 const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
2769 int_mv dummy_mv[2];
2770 x->pred_mv_sad[ref_frame] = INT_MAX;
2771
2772 if ((cpi->ref_frame_flags & ref_frame_to_flag(ref_frame)) &&
2773 (yv12 != NULL)) {
2774 int_mv *const candidates = mbmi_ext->ref_mvs[ref_frame];
2775 const struct scale_factors *const ref_sf =
2776 &cm->frame_refs[ref_frame - 1].sf;
2777 vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, ref_sf,
2778 ref_sf);
2779 vp9_find_mv_refs(cm, xd, xd->mi[0], ref_frame, candidates, mi_row, mi_col,
2780 mbmi_ext->mode_context);
2781
2782 vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates,
2783 &dummy_mv[0], &dummy_mv[1]);
2784 } else {
2785 ref_frame_skip_mask |= (1 << ref_frame);
2786 }
2787 }
2788
2789 mi->sb_type = bsize;
2790 mi->tx_size = TX_4X4;
2791 mi->uv_mode = DC_PRED;
2792 mi->ref_frame[0] = LAST_FRAME;
2793 mi->ref_frame[1] = NO_REF_FRAME;
2794 mi->interp_filter =
2795 cm->interp_filter == SWITCHABLE ? EIGHTTAP : cm->interp_filter;
2796
2797 for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) {
2798 int64_t this_rd = 0;
2799 int plane;
2800
2801 if (ref_frame_skip_mask & (1 << ref_frame)) continue;
2802
2803 #if CONFIG_BETTER_HW_COMPATIBILITY
2804 if ((bsize == BLOCK_8X4 || bsize == BLOCK_4X8) && ref_frame > INTRA_FRAME &&
2805 vp9_is_scaled(&cm->frame_refs[ref_frame - 1].sf))
2806 continue;
2807 #endif
2808
2809 // TODO(jingning, agrange): Scaling reference frame not supported for
2810 // sub8x8 blocks. Is this supported now?
2811 if (ref_frame > INTRA_FRAME &&
2812 vp9_is_scaled(&cm->frame_refs[ref_frame - 1].sf))
2813 continue;
2814
2815 // If the segment reference frame feature is enabled....
2816 // then do nothing if the current ref frame is not allowed..
2817 if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
2818 get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame)
2819 continue;
2820
2821 mi->ref_frame[0] = ref_frame;
2822 x->skip = 0;
2823 set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
2824
2825 // Select prediction reference frames.
2826 for (plane = 0; plane < MAX_MB_PLANE; plane++)
2827 xd->plane[plane].pre[0] = yv12_mb[ref_frame][plane];
2828
2829 for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
2830 for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
2831 int_mv b_mv[MB_MODE_COUNT];
2832 int64_t b_best_rd = INT64_MAX;
2833 const int i = idy * 2 + idx;
2834 PREDICTION_MODE this_mode;
2835 RD_COST this_rdc;
2836 unsigned int var_y, sse_y;
2837
2838 struct macroblock_plane *p = &x->plane[0];
2839 struct macroblockd_plane *pd = &xd->plane[0];
2840
2841 const struct buf_2d orig_src = p->src;
2842 const struct buf_2d orig_dst = pd->dst;
2843 struct buf_2d orig_pre[2];
2844 memcpy(orig_pre, xd->plane[0].pre, sizeof(orig_pre));
2845
2846 // set buffer pointers for sub8x8 motion search.
2847 p->src.buf =
2848 &p->src.buf[vp9_raster_block_offset(BLOCK_8X8, i, p->src.stride)];
2849 pd->dst.buf =
2850 &pd->dst.buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->dst.stride)];
2851 pd->pre[0].buf =
2852 &pd->pre[0]
2853 .buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->pre[0].stride)];
2854
2855 b_mv[ZEROMV].as_int = 0;
2856 b_mv[NEWMV].as_int = INVALID_MV;
2857 vp9_append_sub8x8_mvs_for_idx(cm, xd, i, 0, mi_row, mi_col,
2858 &b_mv[NEARESTMV], &b_mv[NEARMV],
2859 mbmi_ext->mode_context);
2860
2861 for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
2862 int b_rate = 0;
2863 xd->mi[0]->bmi[i].as_mv[0].as_int = b_mv[this_mode].as_int;
2864
2865 if (this_mode == NEWMV) {
2866 const int step_param = cpi->sf.mv.fullpel_search_step_param;
2867 MV mvp_full;
2868 MV tmp_mv;
2869 int cost_list[5];
2870 const MvLimits tmp_mv_limits = x->mv_limits;
2871 uint32_t dummy_dist;
2872
2873 if (i == 0) {
2874 mvp_full.row = b_mv[NEARESTMV].as_mv.row >> 3;
2875 mvp_full.col = b_mv[NEARESTMV].as_mv.col >> 3;
2876 } else {
2877 mvp_full.row = xd->mi[0]->bmi[0].as_mv[0].as_mv.row >> 3;
2878 mvp_full.col = xd->mi[0]->bmi[0].as_mv[0].as_mv.col >> 3;
2879 }
2880
2881 vp9_set_mv_search_range(&x->mv_limits,
2882 &mbmi_ext->ref_mvs[ref_frame][0].as_mv);
2883
2884 vp9_full_pixel_search(
2885 cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method,
2886 x->sadperbit4, cond_cost_list(cpi, cost_list),
2887 &mbmi_ext->ref_mvs[ref_frame][0].as_mv, &tmp_mv, INT_MAX, 0);
2888
2889 x->mv_limits = tmp_mv_limits;
2890
2891 // calculate the bit cost on motion vector
2892 mvp_full.row = tmp_mv.row * 8;
2893 mvp_full.col = tmp_mv.col * 8;
2894
2895 b_rate += vp9_mv_bit_cost(
2896 &mvp_full, &mbmi_ext->ref_mvs[ref_frame][0].as_mv,
2897 x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
2898
2899 b_rate += cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]]
2900 [INTER_OFFSET(NEWMV)];
2901 if (RDCOST(x->rdmult, x->rddiv, b_rate, 0) > b_best_rd) continue;
2902
2903 cpi->find_fractional_mv_step(
2904 x, &tmp_mv, &mbmi_ext->ref_mvs[ref_frame][0].as_mv,
2905 cpi->common.allow_high_precision_mv, x->errorperbit,
2906 &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop,
2907 cpi->sf.mv.subpel_search_level, cond_cost_list(cpi, cost_list),
2908 x->nmvjointcost, x->mvcost, &dummy_dist,
2909 &x->pred_sse[ref_frame], NULL, 0, 0,
2910 cpi->sf.use_accurate_subpel_search);
2911
2912 xd->mi[0]->bmi[i].as_mv[0].as_mv = tmp_mv;
2913 } else {
2914 b_rate += cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]]
2915 [INTER_OFFSET(this_mode)];
2916 }
2917
2918 #if CONFIG_VP9_HIGHBITDEPTH
2919 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
2920 vp9_highbd_build_inter_predictor(
2921 CONVERT_TO_SHORTPTR(pd->pre[0].buf), pd->pre[0].stride,
2922 CONVERT_TO_SHORTPTR(pd->dst.buf), pd->dst.stride,
2923 &xd->mi[0]->bmi[i].as_mv[0].as_mv, &xd->block_refs[0]->sf,
2924 4 * num_4x4_blocks_wide, 4 * num_4x4_blocks_high, 0,
2925 vp9_filter_kernels[mi->interp_filter], MV_PRECISION_Q3,
2926 mi_col * MI_SIZE + 4 * (i & 0x01),
2927 mi_row * MI_SIZE + 4 * (i >> 1), xd->bd);
2928 } else {
2929 #endif
2930 vp9_build_inter_predictor(
2931 pd->pre[0].buf, pd->pre[0].stride, pd->dst.buf, pd->dst.stride,
2932 &xd->mi[0]->bmi[i].as_mv[0].as_mv, &xd->block_refs[0]->sf,
2933 4 * num_4x4_blocks_wide, 4 * num_4x4_blocks_high, 0,
2934 vp9_filter_kernels[mi->interp_filter], MV_PRECISION_Q3,
2935 mi_col * MI_SIZE + 4 * (i & 0x01),
2936 mi_row * MI_SIZE + 4 * (i >> 1));
2937
2938 #if CONFIG_VP9_HIGHBITDEPTH
2939 }
2940 #endif
2941
2942 model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist,
2943 &var_y, &sse_y, 0);
2944
2945 this_rdc.rate += b_rate;
2946 this_rdc.rdcost =
2947 RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
2948 if (this_rdc.rdcost < b_best_rd) {
2949 b_best_rd = this_rdc.rdcost;
2950 bsi[ref_frame][i].as_mode = this_mode;
2951 bsi[ref_frame][i].as_mv[0].as_mv = xd->mi[0]->bmi[i].as_mv[0].as_mv;
2952 }
2953 } // mode search
2954
2955 // restore source and prediction buffer pointers.
2956 p->src = orig_src;
2957 pd->pre[0] = orig_pre[0];
2958 pd->dst = orig_dst;
2959 this_rd += b_best_rd;
2960
2961 xd->mi[0]->bmi[i] = bsi[ref_frame][i];
2962 if (num_4x4_blocks_wide > 1) xd->mi[0]->bmi[i + 1] = xd->mi[0]->bmi[i];
2963 if (num_4x4_blocks_high > 1) xd->mi[0]->bmi[i + 2] = xd->mi[0]->bmi[i];
2964 }
2965 } // loop through sub8x8 blocks
2966
2967 if (this_rd < best_rd) {
2968 best_rd = this_rd;
2969 best_ref_frame = ref_frame;
2970 }
2971 } // reference frames
2972
2973 mi->tx_size = TX_4X4;
2974 mi->ref_frame[0] = best_ref_frame;
2975 for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
2976 for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
2977 const int block = idy * 2 + idx;
2978 xd->mi[0]->bmi[block] = bsi[best_ref_frame][block];
2979 if (num_4x4_blocks_wide > 1)
2980 xd->mi[0]->bmi[block + 1] = bsi[best_ref_frame][block];
2981 if (num_4x4_blocks_high > 1)
2982 xd->mi[0]->bmi[block + 2] = bsi[best_ref_frame][block];
2983 }
2984 }
2985 mi->mode = xd->mi[0]->bmi[3].as_mode;
2986 ctx->mic = *(xd->mi[0]);
2987 ctx->mbmi_ext = *x->mbmi_ext;
2988 ctx->skip_txfm[0] = SKIP_TXFM_NONE;
2989 ctx->skip = 0;
2990 // Dummy assignment for speed -5. No effect in speed -6.
2991 rd_cost->rdcost = best_rd;
2992 }
2993