1 /*
2 * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <emmintrin.h>
12
13 #include "./vpx_config.h"
14 #include "./vp9_rtcd.h"
15
16 #include "vpx/vpx_integer.h"
17 #include "vp9/common/vp9_reconinter.h"
18 #include "vp9/encoder/vp9_context_tree.h"
19 #include "vp9/encoder/vp9_denoiser.h"
20 #include "vpx_mem/vpx_mem.h"
21
22 // Compute the sum of all pixel differences of this MB.
sum_diff_16x1(__m128i acc_diff)23 static INLINE int sum_diff_16x1(__m128i acc_diff) {
24 const __m128i k_1 = _mm_set1_epi16(1);
25 const __m128i acc_diff_lo =
26 _mm_srai_epi16(_mm_unpacklo_epi8(acc_diff, acc_diff), 8);
27 const __m128i acc_diff_hi =
28 _mm_srai_epi16(_mm_unpackhi_epi8(acc_diff, acc_diff), 8);
29 const __m128i acc_diff_16 = _mm_add_epi16(acc_diff_lo, acc_diff_hi);
30 const __m128i hg_fe_dc_ba = _mm_madd_epi16(acc_diff_16, k_1);
31 const __m128i hgfe_dcba =
32 _mm_add_epi32(hg_fe_dc_ba, _mm_srli_si128(hg_fe_dc_ba, 8));
33 const __m128i hgfedcba =
34 _mm_add_epi32(hgfe_dcba, _mm_srli_si128(hgfe_dcba, 4));
35 return _mm_cvtsi128_si32(hgfedcba);
36 }
37
38 // Denoise a 16x1 vector.
vp9_denoiser_16x1_sse2(const uint8_t * sig,const uint8_t * mc_running_avg_y,uint8_t * running_avg_y,const __m128i * k_0,const __m128i * k_4,const __m128i * k_8,const __m128i * k_16,const __m128i * l3,const __m128i * l32,const __m128i * l21,__m128i acc_diff)39 static INLINE __m128i vp9_denoiser_16x1_sse2(
40 const uint8_t *sig, const uint8_t *mc_running_avg_y, uint8_t *running_avg_y,
41 const __m128i *k_0, const __m128i *k_4, const __m128i *k_8,
42 const __m128i *k_16, const __m128i *l3, const __m128i *l32,
43 const __m128i *l21, __m128i acc_diff) {
44 // Calculate differences
45 const __m128i v_sig = _mm_loadu_si128((const __m128i *)(&sig[0]));
46 const __m128i v_mc_running_avg_y =
47 _mm_loadu_si128((const __m128i *)(&mc_running_avg_y[0]));
48 __m128i v_running_avg_y;
49 const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig);
50 const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y);
51 // Obtain the sign. FF if diff is negative.
52 const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, *k_0);
53 // Clamp absolute difference to 16 to be used to get mask. Doing this
54 // allows us to use _mm_cmpgt_epi8, which operates on signed byte.
55 const __m128i clamped_absdiff =
56 _mm_min_epu8(_mm_or_si128(pdiff, ndiff), *k_16);
57 // Get masks for l2 l1 and l0 adjustments.
58 const __m128i mask2 = _mm_cmpgt_epi8(*k_16, clamped_absdiff);
59 const __m128i mask1 = _mm_cmpgt_epi8(*k_8, clamped_absdiff);
60 const __m128i mask0 = _mm_cmpgt_epi8(*k_4, clamped_absdiff);
61 // Get adjustments for l2, l1, and l0.
62 __m128i adj2 = _mm_and_si128(mask2, *l32);
63 const __m128i adj1 = _mm_and_si128(mask1, *l21);
64 const __m128i adj0 = _mm_and_si128(mask0, clamped_absdiff);
65 __m128i adj, padj, nadj;
66
67 // Combine the adjustments and get absolute adjustments.
68 adj2 = _mm_add_epi8(adj2, adj1);
69 adj = _mm_sub_epi8(*l3, adj2);
70 adj = _mm_andnot_si128(mask0, adj);
71 adj = _mm_or_si128(adj, adj0);
72
73 // Restore the sign and get positive and negative adjustments.
74 padj = _mm_andnot_si128(diff_sign, adj);
75 nadj = _mm_and_si128(diff_sign, adj);
76
77 // Calculate filtered value.
78 v_running_avg_y = _mm_adds_epu8(v_sig, padj);
79 v_running_avg_y = _mm_subs_epu8(v_running_avg_y, nadj);
80 _mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y);
81
82 // Adjustments <=7, and each element in acc_diff can fit in signed
83 // char.
84 acc_diff = _mm_adds_epi8(acc_diff, padj);
85 acc_diff = _mm_subs_epi8(acc_diff, nadj);
86 return acc_diff;
87 }
88
89 // Denoise a 16x1 vector with a weaker filter.
vp9_denoiser_adj_16x1_sse2(const uint8_t * sig,const uint8_t * mc_running_avg_y,uint8_t * running_avg_y,const __m128i k_0,const __m128i k_delta,__m128i acc_diff)90 static INLINE __m128i vp9_denoiser_adj_16x1_sse2(
91 const uint8_t *sig, const uint8_t *mc_running_avg_y, uint8_t *running_avg_y,
92 const __m128i k_0, const __m128i k_delta, __m128i acc_diff) {
93 __m128i v_running_avg_y = _mm_loadu_si128((__m128i *)(&running_avg_y[0]));
94 // Calculate differences.
95 const __m128i v_sig = _mm_loadu_si128((const __m128i *)(&sig[0]));
96 const __m128i v_mc_running_avg_y =
97 _mm_loadu_si128((const __m128i *)(&mc_running_avg_y[0]));
98 const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig);
99 const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y);
100 // Obtain the sign. FF if diff is negative.
101 const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, k_0);
102 // Clamp absolute difference to delta to get the adjustment.
103 const __m128i adj = _mm_min_epu8(_mm_or_si128(pdiff, ndiff), k_delta);
104 // Restore the sign and get positive and negative adjustments.
105 __m128i padj, nadj;
106 padj = _mm_andnot_si128(diff_sign, adj);
107 nadj = _mm_and_si128(diff_sign, adj);
108 // Calculate filtered value.
109 v_running_avg_y = _mm_subs_epu8(v_running_avg_y, padj);
110 v_running_avg_y = _mm_adds_epu8(v_running_avg_y, nadj);
111 _mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y);
112
113 // Accumulate the adjustments.
114 acc_diff = _mm_subs_epi8(acc_diff, padj);
115 acc_diff = _mm_adds_epi8(acc_diff, nadj);
116 return acc_diff;
117 }
118
119 // Denoise 8x8 and 8x16 blocks.
vp9_denoiser_NxM_sse2_small(const uint8_t * sig,int sig_stride,const uint8_t * mc_running_avg_y,int mc_avg_y_stride,uint8_t * running_avg_y,int avg_y_stride,int increase_denoising,BLOCK_SIZE bs,int motion_magnitude,int width)120 static int vp9_denoiser_NxM_sse2_small(const uint8_t *sig, int sig_stride,
121 const uint8_t *mc_running_avg_y,
122 int mc_avg_y_stride,
123 uint8_t *running_avg_y, int avg_y_stride,
124 int increase_denoising, BLOCK_SIZE bs,
125 int motion_magnitude, int width) {
126 int sum_diff_thresh, r, sum_diff = 0;
127 const int shift_inc =
128 (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD)
129 ? 1
130 : 0;
131 uint8_t sig_buffer[8][16], mc_running_buffer[8][16], running_buffer[8][16];
132 __m128i acc_diff = _mm_setzero_si128();
133 const __m128i k_0 = _mm_setzero_si128();
134 const __m128i k_4 = _mm_set1_epi8(4 + shift_inc);
135 const __m128i k_8 = _mm_set1_epi8(8);
136 const __m128i k_16 = _mm_set1_epi8(16);
137 // Modify each level's adjustment according to motion_magnitude.
138 const __m128i l3 = _mm_set1_epi8(
139 (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 7 + shift_inc : 6);
140 // Difference between level 3 and level 2 is 2.
141 const __m128i l32 = _mm_set1_epi8(2);
142 // Difference between level 2 and level 1 is 1.
143 const __m128i l21 = _mm_set1_epi8(1);
144 const int b_height = (4 << b_height_log2_lookup[bs]) >> 1;
145
146 for (r = 0; r < b_height; ++r) {
147 memcpy(sig_buffer[r], sig, width);
148 memcpy(sig_buffer[r] + width, sig + sig_stride, width);
149 memcpy(mc_running_buffer[r], mc_running_avg_y, width);
150 memcpy(mc_running_buffer[r] + width, mc_running_avg_y + mc_avg_y_stride,
151 width);
152 memcpy(running_buffer[r], running_avg_y, width);
153 memcpy(running_buffer[r] + width, running_avg_y + avg_y_stride, width);
154 acc_diff = vp9_denoiser_16x1_sse2(sig_buffer[r], mc_running_buffer[r],
155 running_buffer[r], &k_0, &k_4, &k_8,
156 &k_16, &l3, &l32, &l21, acc_diff);
157 memcpy(running_avg_y, running_buffer[r], width);
158 memcpy(running_avg_y + avg_y_stride, running_buffer[r] + width, width);
159 // Update pointers for next iteration.
160 sig += (sig_stride << 1);
161 mc_running_avg_y += (mc_avg_y_stride << 1);
162 running_avg_y += (avg_y_stride << 1);
163 }
164
165 {
166 sum_diff = sum_diff_16x1(acc_diff);
167 sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising);
168 if (abs(sum_diff) > sum_diff_thresh) {
169 // Before returning to copy the block (i.e., apply no denoising),
170 // check if we can still apply some (weaker) temporal filtering to
171 // this block, that would otherwise not be denoised at all. Simplest
172 // is to apply an additional adjustment to running_avg_y to bring it
173 // closer to sig. The adjustment is capped by a maximum delta, and
174 // chosen such that in most cases the resulting sum_diff will be
175 // within the acceptable range given by sum_diff_thresh.
176
177 // The delta is set by the excess of absolute pixel diff over the
178 // threshold.
179 const int delta =
180 ((abs(sum_diff) - sum_diff_thresh) >> num_pels_log2_lookup[bs]) + 1;
181 // Only apply the adjustment for max delta up to 3.
182 if (delta < 4) {
183 const __m128i k_delta = _mm_set1_epi8(delta);
184 running_avg_y -= avg_y_stride * (b_height << 1);
185 for (r = 0; r < b_height; ++r) {
186 acc_diff = vp9_denoiser_adj_16x1_sse2(
187 sig_buffer[r], mc_running_buffer[r], running_buffer[r], k_0,
188 k_delta, acc_diff);
189 memcpy(running_avg_y, running_buffer[r], width);
190 memcpy(running_avg_y + avg_y_stride, running_buffer[r] + width,
191 width);
192 // Update pointers for next iteration.
193 running_avg_y += (avg_y_stride << 1);
194 }
195 sum_diff = sum_diff_16x1(acc_diff);
196 if (abs(sum_diff) > sum_diff_thresh) {
197 return COPY_BLOCK;
198 }
199 } else {
200 return COPY_BLOCK;
201 }
202 }
203 }
204 return FILTER_BLOCK;
205 }
206
207 // Denoise 16x16, 16x32, 32x16, 32x32, 32x64, 64x32 and 64x64 blocks.
vp9_denoiser_NxM_sse2_big(const uint8_t * sig,int sig_stride,const uint8_t * mc_running_avg_y,int mc_avg_y_stride,uint8_t * running_avg_y,int avg_y_stride,int increase_denoising,BLOCK_SIZE bs,int motion_magnitude)208 static int vp9_denoiser_NxM_sse2_big(const uint8_t *sig, int sig_stride,
209 const uint8_t *mc_running_avg_y,
210 int mc_avg_y_stride,
211 uint8_t *running_avg_y, int avg_y_stride,
212 int increase_denoising, BLOCK_SIZE bs,
213 int motion_magnitude) {
214 int sum_diff_thresh, r, c, sum_diff = 0;
215 const int shift_inc =
216 (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD)
217 ? 1
218 : 0;
219 __m128i acc_diff[4][4];
220 const __m128i k_0 = _mm_setzero_si128();
221 const __m128i k_4 = _mm_set1_epi8(4 + shift_inc);
222 const __m128i k_8 = _mm_set1_epi8(8);
223 const __m128i k_16 = _mm_set1_epi8(16);
224 // Modify each level's adjustment according to motion_magnitude.
225 const __m128i l3 = _mm_set1_epi8(
226 (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 7 + shift_inc : 6);
227 // Difference between level 3 and level 2 is 2.
228 const __m128i l32 = _mm_set1_epi8(2);
229 // Difference between level 2 and level 1 is 1.
230 const __m128i l21 = _mm_set1_epi8(1);
231 const int b_width = (4 << b_width_log2_lookup[bs]);
232 const int b_height = (4 << b_height_log2_lookup[bs]);
233 const int b_width_shift4 = b_width >> 4;
234
235 for (r = 0; r < 4; ++r) {
236 for (c = 0; c < b_width_shift4; ++c) {
237 acc_diff[c][r] = _mm_setzero_si128();
238 }
239 }
240
241 for (r = 0; r < b_height; ++r) {
242 for (c = 0; c < b_width_shift4; ++c) {
243 acc_diff[c][r >> 4] = vp9_denoiser_16x1_sse2(
244 sig, mc_running_avg_y, running_avg_y, &k_0, &k_4, &k_8, &k_16, &l3,
245 &l32, &l21, acc_diff[c][r >> 4]);
246 // Update pointers for next iteration.
247 sig += 16;
248 mc_running_avg_y += 16;
249 running_avg_y += 16;
250 }
251
252 if ((r & 0xf) == 0xf || (bs == BLOCK_16X8 && r == 7)) {
253 for (c = 0; c < b_width_shift4; ++c) {
254 sum_diff += sum_diff_16x1(acc_diff[c][r >> 4]);
255 }
256 }
257
258 // Update pointers for next iteration.
259 sig = sig - b_width + sig_stride;
260 mc_running_avg_y = mc_running_avg_y - b_width + mc_avg_y_stride;
261 running_avg_y = running_avg_y - b_width + avg_y_stride;
262 }
263
264 {
265 sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising);
266 if (abs(sum_diff) > sum_diff_thresh) {
267 const int delta =
268 ((abs(sum_diff) - sum_diff_thresh) >> num_pels_log2_lookup[bs]) + 1;
269
270 // Only apply the adjustment for max delta up to 3.
271 if (delta < 4) {
272 const __m128i k_delta = _mm_set1_epi8(delta);
273 sig -= sig_stride * b_height;
274 mc_running_avg_y -= mc_avg_y_stride * b_height;
275 running_avg_y -= avg_y_stride * b_height;
276 sum_diff = 0;
277 for (r = 0; r < b_height; ++r) {
278 for (c = 0; c < b_width_shift4; ++c) {
279 acc_diff[c][r >> 4] =
280 vp9_denoiser_adj_16x1_sse2(sig, mc_running_avg_y, running_avg_y,
281 k_0, k_delta, acc_diff[c][r >> 4]);
282 // Update pointers for next iteration.
283 sig += 16;
284 mc_running_avg_y += 16;
285 running_avg_y += 16;
286 }
287
288 if ((r & 0xf) == 0xf || (bs == BLOCK_16X8 && r == 7)) {
289 for (c = 0; c < b_width_shift4; ++c) {
290 sum_diff += sum_diff_16x1(acc_diff[c][r >> 4]);
291 }
292 }
293 sig = sig - b_width + sig_stride;
294 mc_running_avg_y = mc_running_avg_y - b_width + mc_avg_y_stride;
295 running_avg_y = running_avg_y - b_width + avg_y_stride;
296 }
297 if (abs(sum_diff) > sum_diff_thresh) {
298 return COPY_BLOCK;
299 }
300 } else {
301 return COPY_BLOCK;
302 }
303 }
304 }
305 return FILTER_BLOCK;
306 }
307
vp9_denoiser_filter_sse2(const uint8_t * sig,int sig_stride,const uint8_t * mc_avg,int mc_avg_stride,uint8_t * avg,int avg_stride,int increase_denoising,BLOCK_SIZE bs,int motion_magnitude)308 int vp9_denoiser_filter_sse2(const uint8_t *sig, int sig_stride,
309 const uint8_t *mc_avg, int mc_avg_stride,
310 uint8_t *avg, int avg_stride,
311 int increase_denoising, BLOCK_SIZE bs,
312 int motion_magnitude) {
313 // Rank by frequency of the block type to have an early termination.
314 if (bs == BLOCK_16X16 || bs == BLOCK_32X32 || bs == BLOCK_64X64 ||
315 bs == BLOCK_16X32 || bs == BLOCK_16X8 || bs == BLOCK_32X16 ||
316 bs == BLOCK_32X64 || bs == BLOCK_64X32) {
317 return vp9_denoiser_NxM_sse2_big(sig, sig_stride, mc_avg, mc_avg_stride,
318 avg, avg_stride, increase_denoising, bs,
319 motion_magnitude);
320 } else if (bs == BLOCK_8X8 || bs == BLOCK_8X16) {
321 return vp9_denoiser_NxM_sse2_small(sig, sig_stride, mc_avg, mc_avg_stride,
322 avg, avg_stride, increase_denoising, bs,
323 motion_magnitude, 8);
324 } else {
325 return COPY_BLOCK;
326 }
327 }
328