xref: /aosp_15_r20/external/libvpx/vp9/encoder/x86/vp9_denoiser_sse2.c (revision fb1b10ab9aebc7c7068eedab379b749d7e3900be)
1 /*
2  *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <emmintrin.h>
12 
13 #include "./vpx_config.h"
14 #include "./vp9_rtcd.h"
15 
16 #include "vpx/vpx_integer.h"
17 #include "vp9/common/vp9_reconinter.h"
18 #include "vp9/encoder/vp9_context_tree.h"
19 #include "vp9/encoder/vp9_denoiser.h"
20 #include "vpx_mem/vpx_mem.h"
21 
22 // Compute the sum of all pixel differences of this MB.
sum_diff_16x1(__m128i acc_diff)23 static INLINE int sum_diff_16x1(__m128i acc_diff) {
24   const __m128i k_1 = _mm_set1_epi16(1);
25   const __m128i acc_diff_lo =
26       _mm_srai_epi16(_mm_unpacklo_epi8(acc_diff, acc_diff), 8);
27   const __m128i acc_diff_hi =
28       _mm_srai_epi16(_mm_unpackhi_epi8(acc_diff, acc_diff), 8);
29   const __m128i acc_diff_16 = _mm_add_epi16(acc_diff_lo, acc_diff_hi);
30   const __m128i hg_fe_dc_ba = _mm_madd_epi16(acc_diff_16, k_1);
31   const __m128i hgfe_dcba =
32       _mm_add_epi32(hg_fe_dc_ba, _mm_srli_si128(hg_fe_dc_ba, 8));
33   const __m128i hgfedcba =
34       _mm_add_epi32(hgfe_dcba, _mm_srli_si128(hgfe_dcba, 4));
35   return _mm_cvtsi128_si32(hgfedcba);
36 }
37 
38 // Denoise a 16x1 vector.
vp9_denoiser_16x1_sse2(const uint8_t * sig,const uint8_t * mc_running_avg_y,uint8_t * running_avg_y,const __m128i * k_0,const __m128i * k_4,const __m128i * k_8,const __m128i * k_16,const __m128i * l3,const __m128i * l32,const __m128i * l21,__m128i acc_diff)39 static INLINE __m128i vp9_denoiser_16x1_sse2(
40     const uint8_t *sig, const uint8_t *mc_running_avg_y, uint8_t *running_avg_y,
41     const __m128i *k_0, const __m128i *k_4, const __m128i *k_8,
42     const __m128i *k_16, const __m128i *l3, const __m128i *l32,
43     const __m128i *l21, __m128i acc_diff) {
44   // Calculate differences
45   const __m128i v_sig = _mm_loadu_si128((const __m128i *)(&sig[0]));
46   const __m128i v_mc_running_avg_y =
47       _mm_loadu_si128((const __m128i *)(&mc_running_avg_y[0]));
48   __m128i v_running_avg_y;
49   const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig);
50   const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y);
51   // Obtain the sign. FF if diff is negative.
52   const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, *k_0);
53   // Clamp absolute difference to 16 to be used to get mask. Doing this
54   // allows us to use _mm_cmpgt_epi8, which operates on signed byte.
55   const __m128i clamped_absdiff =
56       _mm_min_epu8(_mm_or_si128(pdiff, ndiff), *k_16);
57   // Get masks for l2 l1 and l0 adjustments.
58   const __m128i mask2 = _mm_cmpgt_epi8(*k_16, clamped_absdiff);
59   const __m128i mask1 = _mm_cmpgt_epi8(*k_8, clamped_absdiff);
60   const __m128i mask0 = _mm_cmpgt_epi8(*k_4, clamped_absdiff);
61   // Get adjustments for l2, l1, and l0.
62   __m128i adj2 = _mm_and_si128(mask2, *l32);
63   const __m128i adj1 = _mm_and_si128(mask1, *l21);
64   const __m128i adj0 = _mm_and_si128(mask0, clamped_absdiff);
65   __m128i adj, padj, nadj;
66 
67   // Combine the adjustments and get absolute adjustments.
68   adj2 = _mm_add_epi8(adj2, adj1);
69   adj = _mm_sub_epi8(*l3, adj2);
70   adj = _mm_andnot_si128(mask0, adj);
71   adj = _mm_or_si128(adj, adj0);
72 
73   // Restore the sign and get positive and negative adjustments.
74   padj = _mm_andnot_si128(diff_sign, adj);
75   nadj = _mm_and_si128(diff_sign, adj);
76 
77   // Calculate filtered value.
78   v_running_avg_y = _mm_adds_epu8(v_sig, padj);
79   v_running_avg_y = _mm_subs_epu8(v_running_avg_y, nadj);
80   _mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y);
81 
82   // Adjustments <=7, and each element in acc_diff can fit in signed
83   // char.
84   acc_diff = _mm_adds_epi8(acc_diff, padj);
85   acc_diff = _mm_subs_epi8(acc_diff, nadj);
86   return acc_diff;
87 }
88 
89 // Denoise a 16x1 vector with a weaker filter.
vp9_denoiser_adj_16x1_sse2(const uint8_t * sig,const uint8_t * mc_running_avg_y,uint8_t * running_avg_y,const __m128i k_0,const __m128i k_delta,__m128i acc_diff)90 static INLINE __m128i vp9_denoiser_adj_16x1_sse2(
91     const uint8_t *sig, const uint8_t *mc_running_avg_y, uint8_t *running_avg_y,
92     const __m128i k_0, const __m128i k_delta, __m128i acc_diff) {
93   __m128i v_running_avg_y = _mm_loadu_si128((__m128i *)(&running_avg_y[0]));
94   // Calculate differences.
95   const __m128i v_sig = _mm_loadu_si128((const __m128i *)(&sig[0]));
96   const __m128i v_mc_running_avg_y =
97       _mm_loadu_si128((const __m128i *)(&mc_running_avg_y[0]));
98   const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig);
99   const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y);
100   // Obtain the sign. FF if diff is negative.
101   const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, k_0);
102   // Clamp absolute difference to delta to get the adjustment.
103   const __m128i adj = _mm_min_epu8(_mm_or_si128(pdiff, ndiff), k_delta);
104   // Restore the sign and get positive and negative adjustments.
105   __m128i padj, nadj;
106   padj = _mm_andnot_si128(diff_sign, adj);
107   nadj = _mm_and_si128(diff_sign, adj);
108   // Calculate filtered value.
109   v_running_avg_y = _mm_subs_epu8(v_running_avg_y, padj);
110   v_running_avg_y = _mm_adds_epu8(v_running_avg_y, nadj);
111   _mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y);
112 
113   // Accumulate the adjustments.
114   acc_diff = _mm_subs_epi8(acc_diff, padj);
115   acc_diff = _mm_adds_epi8(acc_diff, nadj);
116   return acc_diff;
117 }
118 
119 // Denoise 8x8 and 8x16 blocks.
vp9_denoiser_NxM_sse2_small(const uint8_t * sig,int sig_stride,const uint8_t * mc_running_avg_y,int mc_avg_y_stride,uint8_t * running_avg_y,int avg_y_stride,int increase_denoising,BLOCK_SIZE bs,int motion_magnitude,int width)120 static int vp9_denoiser_NxM_sse2_small(const uint8_t *sig, int sig_stride,
121                                        const uint8_t *mc_running_avg_y,
122                                        int mc_avg_y_stride,
123                                        uint8_t *running_avg_y, int avg_y_stride,
124                                        int increase_denoising, BLOCK_SIZE bs,
125                                        int motion_magnitude, int width) {
126   int sum_diff_thresh, r, sum_diff = 0;
127   const int shift_inc =
128       (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD)
129           ? 1
130           : 0;
131   uint8_t sig_buffer[8][16], mc_running_buffer[8][16], running_buffer[8][16];
132   __m128i acc_diff = _mm_setzero_si128();
133   const __m128i k_0 = _mm_setzero_si128();
134   const __m128i k_4 = _mm_set1_epi8(4 + shift_inc);
135   const __m128i k_8 = _mm_set1_epi8(8);
136   const __m128i k_16 = _mm_set1_epi8(16);
137   // Modify each level's adjustment according to motion_magnitude.
138   const __m128i l3 = _mm_set1_epi8(
139       (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 7 + shift_inc : 6);
140   // Difference between level 3 and level 2 is 2.
141   const __m128i l32 = _mm_set1_epi8(2);
142   // Difference between level 2 and level 1 is 1.
143   const __m128i l21 = _mm_set1_epi8(1);
144   const int b_height = (4 << b_height_log2_lookup[bs]) >> 1;
145 
146   for (r = 0; r < b_height; ++r) {
147     memcpy(sig_buffer[r], sig, width);
148     memcpy(sig_buffer[r] + width, sig + sig_stride, width);
149     memcpy(mc_running_buffer[r], mc_running_avg_y, width);
150     memcpy(mc_running_buffer[r] + width, mc_running_avg_y + mc_avg_y_stride,
151            width);
152     memcpy(running_buffer[r], running_avg_y, width);
153     memcpy(running_buffer[r] + width, running_avg_y + avg_y_stride, width);
154     acc_diff = vp9_denoiser_16x1_sse2(sig_buffer[r], mc_running_buffer[r],
155                                       running_buffer[r], &k_0, &k_4, &k_8,
156                                       &k_16, &l3, &l32, &l21, acc_diff);
157     memcpy(running_avg_y, running_buffer[r], width);
158     memcpy(running_avg_y + avg_y_stride, running_buffer[r] + width, width);
159     // Update pointers for next iteration.
160     sig += (sig_stride << 1);
161     mc_running_avg_y += (mc_avg_y_stride << 1);
162     running_avg_y += (avg_y_stride << 1);
163   }
164 
165   {
166     sum_diff = sum_diff_16x1(acc_diff);
167     sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising);
168     if (abs(sum_diff) > sum_diff_thresh) {
169       // Before returning to copy the block (i.e., apply no denoising),
170       // check if we can still apply some (weaker) temporal filtering to
171       // this block, that would otherwise not be denoised at all. Simplest
172       // is to apply an additional adjustment to running_avg_y to bring it
173       // closer to sig. The adjustment is capped by a maximum delta, and
174       // chosen such that in most cases the resulting sum_diff will be
175       // within the acceptable range given by sum_diff_thresh.
176 
177       // The delta is set by the excess of absolute pixel diff over the
178       // threshold.
179       const int delta =
180           ((abs(sum_diff) - sum_diff_thresh) >> num_pels_log2_lookup[bs]) + 1;
181       // Only apply the adjustment for max delta up to 3.
182       if (delta < 4) {
183         const __m128i k_delta = _mm_set1_epi8(delta);
184         running_avg_y -= avg_y_stride * (b_height << 1);
185         for (r = 0; r < b_height; ++r) {
186           acc_diff = vp9_denoiser_adj_16x1_sse2(
187               sig_buffer[r], mc_running_buffer[r], running_buffer[r], k_0,
188               k_delta, acc_diff);
189           memcpy(running_avg_y, running_buffer[r], width);
190           memcpy(running_avg_y + avg_y_stride, running_buffer[r] + width,
191                  width);
192           // Update pointers for next iteration.
193           running_avg_y += (avg_y_stride << 1);
194         }
195         sum_diff = sum_diff_16x1(acc_diff);
196         if (abs(sum_diff) > sum_diff_thresh) {
197           return COPY_BLOCK;
198         }
199       } else {
200         return COPY_BLOCK;
201       }
202     }
203   }
204   return FILTER_BLOCK;
205 }
206 
207 // Denoise 16x16, 16x32, 32x16, 32x32, 32x64, 64x32 and 64x64 blocks.
vp9_denoiser_NxM_sse2_big(const uint8_t * sig,int sig_stride,const uint8_t * mc_running_avg_y,int mc_avg_y_stride,uint8_t * running_avg_y,int avg_y_stride,int increase_denoising,BLOCK_SIZE bs,int motion_magnitude)208 static int vp9_denoiser_NxM_sse2_big(const uint8_t *sig, int sig_stride,
209                                      const uint8_t *mc_running_avg_y,
210                                      int mc_avg_y_stride,
211                                      uint8_t *running_avg_y, int avg_y_stride,
212                                      int increase_denoising, BLOCK_SIZE bs,
213                                      int motion_magnitude) {
214   int sum_diff_thresh, r, c, sum_diff = 0;
215   const int shift_inc =
216       (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD)
217           ? 1
218           : 0;
219   __m128i acc_diff[4][4];
220   const __m128i k_0 = _mm_setzero_si128();
221   const __m128i k_4 = _mm_set1_epi8(4 + shift_inc);
222   const __m128i k_8 = _mm_set1_epi8(8);
223   const __m128i k_16 = _mm_set1_epi8(16);
224   // Modify each level's adjustment according to motion_magnitude.
225   const __m128i l3 = _mm_set1_epi8(
226       (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 7 + shift_inc : 6);
227   // Difference between level 3 and level 2 is 2.
228   const __m128i l32 = _mm_set1_epi8(2);
229   // Difference between level 2 and level 1 is 1.
230   const __m128i l21 = _mm_set1_epi8(1);
231   const int b_width = (4 << b_width_log2_lookup[bs]);
232   const int b_height = (4 << b_height_log2_lookup[bs]);
233   const int b_width_shift4 = b_width >> 4;
234 
235   for (r = 0; r < 4; ++r) {
236     for (c = 0; c < b_width_shift4; ++c) {
237       acc_diff[c][r] = _mm_setzero_si128();
238     }
239   }
240 
241   for (r = 0; r < b_height; ++r) {
242     for (c = 0; c < b_width_shift4; ++c) {
243       acc_diff[c][r >> 4] = vp9_denoiser_16x1_sse2(
244           sig, mc_running_avg_y, running_avg_y, &k_0, &k_4, &k_8, &k_16, &l3,
245           &l32, &l21, acc_diff[c][r >> 4]);
246       // Update pointers for next iteration.
247       sig += 16;
248       mc_running_avg_y += 16;
249       running_avg_y += 16;
250     }
251 
252     if ((r & 0xf) == 0xf || (bs == BLOCK_16X8 && r == 7)) {
253       for (c = 0; c < b_width_shift4; ++c) {
254         sum_diff += sum_diff_16x1(acc_diff[c][r >> 4]);
255       }
256     }
257 
258     // Update pointers for next iteration.
259     sig = sig - b_width + sig_stride;
260     mc_running_avg_y = mc_running_avg_y - b_width + mc_avg_y_stride;
261     running_avg_y = running_avg_y - b_width + avg_y_stride;
262   }
263 
264   {
265     sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising);
266     if (abs(sum_diff) > sum_diff_thresh) {
267       const int delta =
268           ((abs(sum_diff) - sum_diff_thresh) >> num_pels_log2_lookup[bs]) + 1;
269 
270       // Only apply the adjustment for max delta up to 3.
271       if (delta < 4) {
272         const __m128i k_delta = _mm_set1_epi8(delta);
273         sig -= sig_stride * b_height;
274         mc_running_avg_y -= mc_avg_y_stride * b_height;
275         running_avg_y -= avg_y_stride * b_height;
276         sum_diff = 0;
277         for (r = 0; r < b_height; ++r) {
278           for (c = 0; c < b_width_shift4; ++c) {
279             acc_diff[c][r >> 4] =
280                 vp9_denoiser_adj_16x1_sse2(sig, mc_running_avg_y, running_avg_y,
281                                            k_0, k_delta, acc_diff[c][r >> 4]);
282             // Update pointers for next iteration.
283             sig += 16;
284             mc_running_avg_y += 16;
285             running_avg_y += 16;
286           }
287 
288           if ((r & 0xf) == 0xf || (bs == BLOCK_16X8 && r == 7)) {
289             for (c = 0; c < b_width_shift4; ++c) {
290               sum_diff += sum_diff_16x1(acc_diff[c][r >> 4]);
291             }
292           }
293           sig = sig - b_width + sig_stride;
294           mc_running_avg_y = mc_running_avg_y - b_width + mc_avg_y_stride;
295           running_avg_y = running_avg_y - b_width + avg_y_stride;
296         }
297         if (abs(sum_diff) > sum_diff_thresh) {
298           return COPY_BLOCK;
299         }
300       } else {
301         return COPY_BLOCK;
302       }
303     }
304   }
305   return FILTER_BLOCK;
306 }
307 
vp9_denoiser_filter_sse2(const uint8_t * sig,int sig_stride,const uint8_t * mc_avg,int mc_avg_stride,uint8_t * avg,int avg_stride,int increase_denoising,BLOCK_SIZE bs,int motion_magnitude)308 int vp9_denoiser_filter_sse2(const uint8_t *sig, int sig_stride,
309                              const uint8_t *mc_avg, int mc_avg_stride,
310                              uint8_t *avg, int avg_stride,
311                              int increase_denoising, BLOCK_SIZE bs,
312                              int motion_magnitude) {
313   // Rank by frequency of the block type to have an early termination.
314   if (bs == BLOCK_16X16 || bs == BLOCK_32X32 || bs == BLOCK_64X64 ||
315       bs == BLOCK_16X32 || bs == BLOCK_16X8 || bs == BLOCK_32X16 ||
316       bs == BLOCK_32X64 || bs == BLOCK_64X32) {
317     return vp9_denoiser_NxM_sse2_big(sig, sig_stride, mc_avg, mc_avg_stride,
318                                      avg, avg_stride, increase_denoising, bs,
319                                      motion_magnitude);
320   } else if (bs == BLOCK_8X8 || bs == BLOCK_8X16) {
321     return vp9_denoiser_NxM_sse2_small(sig, sig_stride, mc_avg, mc_avg_stride,
322                                        avg, avg_stride, increase_denoising, bs,
323                                        motion_magnitude, 8);
324   } else {
325     return COPY_BLOCK;
326   }
327 }
328