1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <assert.h>
12 #include <math.h>
13 #include "./vpx_dsp_rtcd.h"
14 #include "vpx_dsp/ssim.h"
15 #include "vpx_ports/mem.h"
16 #include "vpx_ports/system_state.h"
17
vpx_ssim_parms_8x8_c(const uint8_t * s,int sp,const uint8_t * r,int rp,uint32_t * sum_s,uint32_t * sum_r,uint32_t * sum_sq_s,uint32_t * sum_sq_r,uint32_t * sum_sxr)18 void vpx_ssim_parms_8x8_c(const uint8_t *s, int sp, const uint8_t *r, int rp,
19 uint32_t *sum_s, uint32_t *sum_r, uint32_t *sum_sq_s,
20 uint32_t *sum_sq_r, uint32_t *sum_sxr) {
21 int i, j;
22 for (i = 0; i < 8; i++, s += sp, r += rp) {
23 for (j = 0; j < 8; j++) {
24 *sum_s += s[j];
25 *sum_r += r[j];
26 *sum_sq_s += s[j] * s[j];
27 *sum_sq_r += r[j] * r[j];
28 *sum_sxr += s[j] * r[j];
29 }
30 }
31 }
32
33 #if CONFIG_VP9_HIGHBITDEPTH
vpx_highbd_ssim_parms_8x8_c(const uint16_t * s,int sp,const uint16_t * r,int rp,uint32_t * sum_s,uint32_t * sum_r,uint32_t * sum_sq_s,uint32_t * sum_sq_r,uint32_t * sum_sxr)34 void vpx_highbd_ssim_parms_8x8_c(const uint16_t *s, int sp, const uint16_t *r,
35 int rp, uint32_t *sum_s, uint32_t *sum_r,
36 uint32_t *sum_sq_s, uint32_t *sum_sq_r,
37 uint32_t *sum_sxr) {
38 int i, j;
39 for (i = 0; i < 8; i++, s += sp, r += rp) {
40 for (j = 0; j < 8; j++) {
41 *sum_s += s[j];
42 *sum_r += r[j];
43 *sum_sq_s += s[j] * s[j];
44 *sum_sq_r += r[j] * r[j];
45 *sum_sxr += s[j] * r[j];
46 }
47 }
48 }
49 #endif // CONFIG_VP9_HIGHBITDEPTH
50
51 static const int64_t cc1 = 26634; // (64^2*(.01*255)^2
52 static const int64_t cc2 = 239708; // (64^2*(.03*255)^2
53 static const int64_t cc1_10 = 428658; // (64^2*(.01*1023)^2
54 static const int64_t cc2_10 = 3857925; // (64^2*(.03*1023)^2
55 static const int64_t cc1_12 = 6868593; // (64^2*(.01*4095)^2
56 static const int64_t cc2_12 = 61817334; // (64^2*(.03*4095)^2
57
similarity(uint32_t sum_s,uint32_t sum_r,uint32_t sum_sq_s,uint32_t sum_sq_r,uint32_t sum_sxr,int count,uint32_t bd)58 static double similarity(uint32_t sum_s, uint32_t sum_r, uint32_t sum_sq_s,
59 uint32_t sum_sq_r, uint32_t sum_sxr, int count,
60 uint32_t bd) {
61 double ssim_n, ssim_d;
62 int64_t c1, c2;
63 if (bd == 8) {
64 // scale the constants by number of pixels
65 c1 = (cc1 * count * count) >> 12;
66 c2 = (cc2 * count * count) >> 12;
67 } else if (bd == 10) {
68 c1 = (cc1_10 * count * count) >> 12;
69 c2 = (cc2_10 * count * count) >> 12;
70 } else if (bd == 12) {
71 c1 = (cc1_12 * count * count) >> 12;
72 c2 = (cc2_12 * count * count) >> 12;
73 } else {
74 c1 = c2 = 0;
75 assert(0);
76 }
77
78 ssim_n = (2.0 * sum_s * sum_r + c1) *
79 (2.0 * count * sum_sxr - 2.0 * sum_s * sum_r + c2);
80
81 ssim_d = ((double)sum_s * sum_s + (double)sum_r * sum_r + c1) *
82 ((double)count * sum_sq_s - (double)sum_s * sum_s +
83 (double)count * sum_sq_r - (double)sum_r * sum_r + c2);
84
85 return ssim_n / ssim_d;
86 }
87
ssim_8x8(const uint8_t * s,int sp,const uint8_t * r,int rp)88 static double ssim_8x8(const uint8_t *s, int sp, const uint8_t *r, int rp) {
89 uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
90 vpx_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
91 &sum_sxr);
92 return similarity(sum_s, sum_r, sum_sq_s, sum_sq_r, sum_sxr, 64, 8);
93 }
94
95 #if CONFIG_VP9_HIGHBITDEPTH
highbd_ssim_8x8(const uint16_t * s,int sp,const uint16_t * r,int rp,uint32_t bd,uint32_t shift)96 static double highbd_ssim_8x8(const uint16_t *s, int sp, const uint16_t *r,
97 int rp, uint32_t bd, uint32_t shift) {
98 uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
99 vpx_highbd_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
100 &sum_sxr);
101 return similarity(sum_s >> shift, sum_r >> shift, sum_sq_s >> (2 * shift),
102 sum_sq_r >> (2 * shift), sum_sxr >> (2 * shift), 64, bd);
103 }
104 #endif // CONFIG_VP9_HIGHBITDEPTH
105
106 // We are using a 8x8 moving window with starting location of each 8x8 window
107 // on the 4x4 pixel grid. Such arrangement allows the windows to overlap
108 // block boundaries to penalize blocking artifacts.
vpx_ssim2(const uint8_t * img1,const uint8_t * img2,int stride_img1,int stride_img2,int width,int height)109 static double vpx_ssim2(const uint8_t *img1, const uint8_t *img2,
110 int stride_img1, int stride_img2, int width,
111 int height) {
112 int i, j;
113 int samples = 0;
114 double ssim_total = 0;
115
116 // sample point start with each 4x4 location
117 for (i = 0; i <= height - 8;
118 i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
119 for (j = 0; j <= width - 8; j += 4) {
120 double v = ssim_8x8(img1 + j, stride_img1, img2 + j, stride_img2);
121 ssim_total += v;
122 samples++;
123 }
124 }
125 ssim_total /= samples;
126 return ssim_total;
127 }
128
129 #if CONFIG_VP9_HIGHBITDEPTH
vpx_highbd_ssim2(const uint8_t * img1,const uint8_t * img2,int stride_img1,int stride_img2,int width,int height,uint32_t bd,uint32_t shift)130 static double vpx_highbd_ssim2(const uint8_t *img1, const uint8_t *img2,
131 int stride_img1, int stride_img2, int width,
132 int height, uint32_t bd, uint32_t shift) {
133 int i, j;
134 int samples = 0;
135 double ssim_total = 0;
136
137 // sample point start with each 4x4 location
138 for (i = 0; i <= height - 8;
139 i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
140 for (j = 0; j <= width - 8; j += 4) {
141 double v = highbd_ssim_8x8(CONVERT_TO_SHORTPTR(img1 + j), stride_img1,
142 CONVERT_TO_SHORTPTR(img2 + j), stride_img2, bd,
143 shift);
144 ssim_total += v;
145 samples++;
146 }
147 }
148 ssim_total /= samples;
149 return ssim_total;
150 }
151 #endif // CONFIG_VP9_HIGHBITDEPTH
152
vpx_calc_ssim(const YV12_BUFFER_CONFIG * source,const YV12_BUFFER_CONFIG * dest,double * weight)153 double vpx_calc_ssim(const YV12_BUFFER_CONFIG *source,
154 const YV12_BUFFER_CONFIG *dest, double *weight) {
155 double a, b, c;
156 double ssimv;
157
158 a = vpx_ssim2(source->y_buffer, dest->y_buffer, source->y_stride,
159 dest->y_stride, source->y_crop_width, source->y_crop_height);
160
161 b = vpx_ssim2(source->u_buffer, dest->u_buffer, source->uv_stride,
162 dest->uv_stride, source->uv_crop_width, source->uv_crop_height);
163
164 c = vpx_ssim2(source->v_buffer, dest->v_buffer, source->uv_stride,
165 dest->uv_stride, source->uv_crop_width, source->uv_crop_height);
166
167 ssimv = a * .8 + .1 * (b + c);
168
169 *weight = 1;
170
171 return ssimv;
172 }
173
174 // traditional ssim as per: http://en.wikipedia.org/wiki/Structural_similarity
175 //
176 // Re working out the math ->
177 //
178 // ssim(x,y) = (2*mean(x)*mean(y) + c1)*(2*cov(x,y)+c2) /
179 // ((mean(x)^2+mean(y)^2+c1)*(var(x)+var(y)+c2))
180 //
181 // mean(x) = sum(x) / n
182 //
183 // cov(x,y) = (n*sum(xi*yi)-sum(x)*sum(y))/(n*n)
184 //
185 // var(x) = (n*sum(xi*xi)-sum(xi)*sum(xi))/(n*n)
186 //
187 // ssim(x,y) =
188 // (2*sum(x)*sum(y)/(n*n) + c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))/(n*n)+c2) /
189 // (((sum(x)*sum(x)+sum(y)*sum(y))/(n*n) +c1) *
190 // ((n*sum(xi*xi) - sum(xi)*sum(xi))/(n*n)+
191 // (n*sum(yi*yi) - sum(yi)*sum(yi))/(n*n)+c2)))
192 //
193 // factoring out n*n
194 //
195 // ssim(x,y) =
196 // (2*sum(x)*sum(y) + n*n*c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))+n*n*c2) /
197 // (((sum(x)*sum(x)+sum(y)*sum(y)) + n*n*c1) *
198 // (n*sum(xi*xi)-sum(xi)*sum(xi)+n*sum(yi*yi)-sum(yi)*sum(yi)+n*n*c2))
199 //
200 // Replace c1 with n*n * c1 for the final step that leads to this code:
201 // The final step scales by 12 bits so we don't lose precision in the constants.
202
ssimv_similarity(const Ssimv * sv,int64_t n)203 static double ssimv_similarity(const Ssimv *sv, int64_t n) {
204 // Scale the constants by number of pixels.
205 const int64_t c1 = (cc1 * n * n) >> 12;
206 const int64_t c2 = (cc2 * n * n) >> 12;
207
208 const double l = 1.0 * (2 * sv->sum_s * sv->sum_r + c1) /
209 (sv->sum_s * sv->sum_s + sv->sum_r * sv->sum_r + c1);
210
211 // Since these variables are unsigned sums, convert to double so
212 // math is done in double arithmetic.
213 const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) /
214 (n * sv->sum_sq_s - sv->sum_s * sv->sum_s +
215 n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2);
216
217 return l * v;
218 }
219
220 // The first term of the ssim metric is a luminance factor.
221 //
222 // (2*mean(x)*mean(y) + c1)/ (mean(x)^2+mean(y)^2+c1)
223 //
224 // This luminance factor is super sensitive to the dark side of luminance
225 // values and completely insensitive on the white side. check out 2 sets
226 // (1,3) and (250,252) the term gives ( 2*1*3/(1+9) = .60
227 // 2*250*252/ (250^2+252^2) => .99999997
228 //
229 // As a result in this tweaked version of the calculation in which the
230 // luminance is taken as percentage off from peak possible.
231 //
232 // 255 * 255 - (sum_s - sum_r) / count * (sum_s - sum_r) / count
233 //
ssimv_similarity2(const Ssimv * sv,int64_t n)234 static double ssimv_similarity2(const Ssimv *sv, int64_t n) {
235 // Scale the constants by number of pixels.
236 const int64_t c1 = (cc1 * n * n) >> 12;
237 const int64_t c2 = (cc2 * n * n) >> 12;
238
239 const double mean_diff = (1.0 * sv->sum_s - sv->sum_r) / n;
240 const double l = (255 * 255 - mean_diff * mean_diff + c1) / (255 * 255 + c1);
241
242 // Since these variables are unsigned, sums convert to double so
243 // math is done in double arithmetic.
244 const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) /
245 (n * sv->sum_sq_s - sv->sum_s * sv->sum_s +
246 n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2);
247
248 return l * v;
249 }
ssimv_parms(uint8_t * img1,int img1_pitch,uint8_t * img2,int img2_pitch,Ssimv * sv)250 static void ssimv_parms(uint8_t *img1, int img1_pitch, uint8_t *img2,
251 int img2_pitch, Ssimv *sv) {
252 vpx_ssim_parms_8x8(img1, img1_pitch, img2, img2_pitch, &sv->sum_s, &sv->sum_r,
253 &sv->sum_sq_s, &sv->sum_sq_r, &sv->sum_sxr);
254 }
255
vpx_get_ssim_metrics(uint8_t * img1,int img1_pitch,uint8_t * img2,int img2_pitch,int width,int height,Ssimv * sv2,Metrics * m,int do_inconsistency)256 double vpx_get_ssim_metrics(uint8_t *img1, int img1_pitch, uint8_t *img2,
257 int img2_pitch, int width, int height, Ssimv *sv2,
258 Metrics *m, int do_inconsistency) {
259 double dssim_total = 0;
260 double ssim_total = 0;
261 double ssim2_total = 0;
262 double inconsistency_total = 0;
263 int i, j;
264 int c = 0;
265 double norm;
266 double old_ssim_total = 0;
267 vpx_clear_system_state();
268 // We can sample points as frequently as we like start with 1 per 4x4.
269 for (i = 0; i < height;
270 i += 4, img1 += img1_pitch * 4, img2 += img2_pitch * 4) {
271 for (j = 0; j < width; j += 4, ++c) {
272 Ssimv sv = { 0, 0, 0, 0, 0, 0 };
273 double ssim;
274 double ssim2;
275 double dssim;
276 uint32_t var_new;
277 uint32_t var_old;
278 uint32_t mean_new;
279 uint32_t mean_old;
280 double ssim_new;
281 double ssim_old;
282
283 // Not sure there's a great way to handle the edge pixels
284 // in ssim when using a window. Seems biased against edge pixels
285 // however you handle this. This uses only samples that are
286 // fully in the frame.
287 if (j + 8 <= width && i + 8 <= height) {
288 ssimv_parms(img1 + j, img1_pitch, img2 + j, img2_pitch, &sv);
289 }
290
291 ssim = ssimv_similarity(&sv, 64);
292 ssim2 = ssimv_similarity2(&sv, 64);
293
294 sv.ssim = ssim2;
295
296 // dssim is calculated to use as an actual error metric and
297 // is scaled up to the same range as sum square error.
298 // Since we are subsampling every 16th point maybe this should be
299 // *16 ?
300 dssim = 255 * 255 * (1 - ssim2) / 2;
301
302 // Here I introduce a new error metric: consistency-weighted
303 // SSIM-inconsistency. This metric isolates frames where the
304 // SSIM 'suddenly' changes, e.g. if one frame in every 8 is much
305 // sharper or blurrier than the others. Higher values indicate a
306 // temporally inconsistent SSIM. There are two ideas at work:
307 //
308 // 1) 'SSIM-inconsistency': the total inconsistency value
309 // reflects how much SSIM values are changing between this
310 // source / reference frame pair and the previous pair.
311 //
312 // 2) 'consistency-weighted': weights de-emphasize areas in the
313 // frame where the scene content has changed. Changes in scene
314 // content are detected via changes in local variance and local
315 // mean.
316 //
317 // Thus the overall measure reflects how inconsistent the SSIM
318 // values are, over consistent regions of the frame.
319 //
320 // The metric has three terms:
321 //
322 // term 1 -> uses change in scene Variance to weight error score
323 // 2 * var(Fi)*var(Fi-1) / (var(Fi)^2+var(Fi-1)^2)
324 // larger changes from one frame to the next mean we care
325 // less about consistency.
326 //
327 // term 2 -> uses change in local scene luminance to weight error
328 // 2 * avg(Fi)*avg(Fi-1) / (avg(Fi)^2+avg(Fi-1)^2)
329 // larger changes from one frame to the next mean we care
330 // less about consistency.
331 //
332 // term3 -> measures inconsistency in ssim scores between frames
333 // 1 - ( 2 * ssim(Fi)*ssim(Fi-1)/(ssim(Fi)^2+sssim(Fi-1)^2).
334 //
335 // This term compares the ssim score for the same location in 2
336 // subsequent frames.
337 var_new = sv.sum_sq_s - sv.sum_s * sv.sum_s / 64;
338 var_old = sv2[c].sum_sq_s - sv2[c].sum_s * sv2[c].sum_s / 64;
339 mean_new = sv.sum_s;
340 mean_old = sv2[c].sum_s;
341 ssim_new = sv.ssim;
342 ssim_old = sv2[c].ssim;
343
344 if (do_inconsistency) {
345 // We do the metric once for every 4x4 block in the image. Since
346 // we are scaling the error to SSE for use in a psnr calculation
347 // 1.0 = 4x4x255x255 the worst error we can possibly have.
348 static const double kScaling = 4. * 4 * 255 * 255;
349
350 // The constants have to be non 0 to avoid potential divide by 0
351 // issues other than that they affect kind of a weighting between
352 // the terms. No testing of what the right terms should be has been
353 // done.
354 static const double c1 = 1, c2 = 1, c3 = 1;
355
356 // This measures how much consistent variance is in two consecutive
357 // source frames. 1.0 means they have exactly the same variance.
358 const double variance_term =
359 (2.0 * var_old * var_new + c1) /
360 (1.0 * var_old * var_old + 1.0 * var_new * var_new + c1);
361
362 // This measures how consistent the local mean are between two
363 // consecutive frames. 1.0 means they have exactly the same mean.
364 const double mean_term =
365 (2.0 * mean_old * mean_new + c2) /
366 (1.0 * mean_old * mean_old + 1.0 * mean_new * mean_new + c2);
367
368 // This measures how consistent the ssims of two
369 // consecutive frames is. 1.0 means they are exactly the same.
370 double ssim_term =
371 pow((2.0 * ssim_old * ssim_new + c3) /
372 (ssim_old * ssim_old + ssim_new * ssim_new + c3),
373 5);
374
375 double this_inconsistency;
376
377 // Floating point math sometimes makes this > 1 by a tiny bit.
378 // We want the metric to scale between 0 and 1.0 so we can convert
379 // it to an snr scaled value.
380 if (ssim_term > 1) ssim_term = 1;
381
382 // This converts the consistency metric to an inconsistency metric
383 // ( so we can scale it like psnr to something like sum square error.
384 // The reason for the variance and mean terms is the assumption that
385 // if there are big changes in the source we shouldn't penalize
386 // inconsistency in ssim scores a bit less as it will be less visible
387 // to the user.
388 this_inconsistency = (1 - ssim_term) * variance_term * mean_term;
389
390 this_inconsistency *= kScaling;
391 inconsistency_total += this_inconsistency;
392 }
393 sv2[c] = sv;
394 ssim_total += ssim;
395 ssim2_total += ssim2;
396 dssim_total += dssim;
397
398 old_ssim_total += ssim_old;
399 }
400 old_ssim_total += 0;
401 }
402
403 norm = 1. / (width / 4) / (height / 4);
404 ssim_total *= norm;
405 ssim2_total *= norm;
406 m->ssim2 = ssim2_total;
407 m->ssim = ssim_total;
408 if (old_ssim_total == 0) inconsistency_total = 0;
409
410 m->ssimc = inconsistency_total;
411
412 m->dssim = dssim_total;
413 return inconsistency_total;
414 }
415
416 #if CONFIG_VP9_HIGHBITDEPTH
vpx_highbd_calc_ssim(const YV12_BUFFER_CONFIG * source,const YV12_BUFFER_CONFIG * dest,double * weight,uint32_t bd,uint32_t in_bd)417 double vpx_highbd_calc_ssim(const YV12_BUFFER_CONFIG *source,
418 const YV12_BUFFER_CONFIG *dest, double *weight,
419 uint32_t bd, uint32_t in_bd) {
420 double a, b, c;
421 double ssimv;
422 uint32_t shift = 0;
423
424 assert(bd >= in_bd);
425 shift = bd - in_bd;
426
427 a = vpx_highbd_ssim2(source->y_buffer, dest->y_buffer, source->y_stride,
428 dest->y_stride, source->y_crop_width,
429 source->y_crop_height, in_bd, shift);
430
431 b = vpx_highbd_ssim2(source->u_buffer, dest->u_buffer, source->uv_stride,
432 dest->uv_stride, source->uv_crop_width,
433 source->uv_crop_height, in_bd, shift);
434
435 c = vpx_highbd_ssim2(source->v_buffer, dest->v_buffer, source->uv_stride,
436 dest->uv_stride, source->uv_crop_width,
437 source->uv_crop_height, in_bd, shift);
438
439 ssimv = a * .8 + .1 * (b + c);
440
441 *weight = 1;
442
443 return ssimv;
444 }
445
446 #endif // CONFIG_VP9_HIGHBITDEPTH
447