xref: /aosp_15_r20/external/llvm-libc/src/__support/File/file.cpp (revision 71db0c75aadcf003ffe3238005f61d7618a3fead)
1 //===--- Implementation of a platform independent file data structure -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "file.h"
10 
11 #include "hdr/func/realloc.h"
12 #include "hdr/stdio_macros.h"
13 #include "hdr/types/off_t.h"
14 #include "src/__support/CPP/new.h"
15 #include "src/__support/CPP/span.h"
16 #include "src/__support/macros/config.h"
17 #include "src/errno/libc_errno.h" // For error macros
18 
19 namespace LIBC_NAMESPACE_DECL {
20 
write_unlocked(const void * data,size_t len)21 FileIOResult File::write_unlocked(const void *data, size_t len) {
22   if (!write_allowed()) {
23     err = true;
24     return {0, EBADF};
25   }
26 
27   prev_op = FileOp::WRITE;
28 
29   if (bufmode == _IONBF) { // unbuffered.
30     size_t ret_val =
31         write_unlocked_nbf(static_cast<const uint8_t *>(data), len);
32     flush_unlocked();
33     return ret_val;
34   } else if (bufmode == _IOFBF) { // fully buffered
35     return write_unlocked_fbf(static_cast<const uint8_t *>(data), len);
36   } else /*if (bufmode == _IOLBF) */ { // line buffered
37     return write_unlocked_lbf(static_cast<const uint8_t *>(data), len);
38   }
39 }
40 
write_unlocked_nbf(const uint8_t * data,size_t len)41 FileIOResult File::write_unlocked_nbf(const uint8_t *data, size_t len) {
42   if (pos > 0) { // If the buffer is not empty
43     // Flush the buffer
44     const size_t write_size = pos;
45     auto write_result = platform_write(this, buf, write_size);
46     pos = 0; // Buffer is now empty so reset pos to the beginning.
47     // If less bytes were written than expected, then an error occurred.
48     if (write_result < write_size) {
49       err = true;
50       // No bytes from data were written, so return 0.
51       return {0, write_result.error};
52     }
53   }
54 
55   auto write_result = platform_write(this, data, len);
56   if (write_result < len)
57     err = true;
58   return write_result;
59 }
60 
write_unlocked_fbf(const uint8_t * data,size_t len)61 FileIOResult File::write_unlocked_fbf(const uint8_t *data, size_t len) {
62   const size_t init_pos = pos;
63   const size_t bufspace = bufsize - pos;
64 
65   // If data is too large to be buffered at all, then just write it unbuffered.
66   if (len > bufspace + bufsize)
67     return write_unlocked_nbf(data, len);
68 
69   // we split |data| (conceptually) using the split point. Then we handle the
70   // two pieces separately.
71   const size_t split_point = len < bufspace ? len : bufspace;
72 
73   // The primary piece is the piece of |data| we want to write to the buffer
74   // before flushing. It will always fit into the buffer, since the split point
75   // is defined as being min(len, bufspace), and it will always exist if len is
76   // non-zero.
77   cpp::span<const uint8_t> primary(data, split_point);
78 
79   // The second piece is the remainder of |data|. It is written to the buffer if
80   // it fits, or written directly to the output if it doesn't. If the primary
81   // piece fits entirely in the buffer, the remainder may be nothing.
82   cpp::span<const uint8_t> remainder(
83       static_cast<const uint8_t *>(data) + split_point, len - split_point);
84 
85   cpp::span<uint8_t> bufref(static_cast<uint8_t *>(buf), bufsize);
86 
87   // Copy the first piece into the buffer.
88   // TODO: Replace the for loop below with a call to internal memcpy.
89   for (size_t i = 0; i < primary.size(); ++i)
90     bufref[pos + i] = primary[i];
91   pos += primary.size();
92 
93   // If there is no remainder, we can return early, since the first piece has
94   // fit completely into the buffer.
95   if (remainder.size() == 0)
96     return len;
97 
98   // We need to flush the buffer now, since there is still data and the buffer
99   // is full.
100   const size_t write_size = pos;
101 
102   auto buf_result = platform_write(this, buf, write_size);
103   size_t bytes_written = buf_result.value;
104 
105   pos = 0; // Buffer is now empty so reset pos to the beginning.
106   // If less bytes were written than expected, then an error occurred. Return
107   // the number of bytes that have been written from |data|.
108   if (buf_result.has_error() || bytes_written < write_size) {
109     err = true;
110     return {bytes_written <= init_pos ? 0 : bytes_written - init_pos,
111             buf_result.error};
112   }
113 
114   // The second piece is handled basically the same as the first, although we
115   // know that if the second piece has data in it then the buffer has been
116   // flushed, meaning that pos is always 0.
117   if (remainder.size() < bufsize) {
118     // TODO: Replace the for loop below with a call to internal memcpy.
119     for (size_t i = 0; i < remainder.size(); ++i)
120       bufref[i] = remainder[i];
121     pos = remainder.size();
122   } else {
123 
124     auto result = platform_write(this, remainder.data(), remainder.size());
125     size_t bytes_written = buf_result.value;
126 
127     // If less bytes were written than expected, then an error occurred. Return
128     // the number of bytes that have been written from |data|.
129     if (result.has_error() || bytes_written < remainder.size()) {
130       err = true;
131       return {primary.size() + bytes_written, result.error};
132     }
133   }
134 
135   return len;
136 }
137 
write_unlocked_lbf(const uint8_t * data,size_t len)138 FileIOResult File::write_unlocked_lbf(const uint8_t *data, size_t len) {
139   constexpr uint8_t NEWLINE_CHAR = '\n';
140   size_t last_newline = len;
141   for (size_t i = len; i >= 1; --i) {
142     if (data[i - 1] == NEWLINE_CHAR) {
143       last_newline = i - 1;
144       break;
145     }
146   }
147 
148   // If there is no newline, treat this as fully buffered.
149   if (last_newline == len) {
150     return write_unlocked_fbf(data, len);
151   }
152 
153   // we split |data| (conceptually) using the split point. Then we handle the
154   // two pieces separately.
155   const size_t split_point = last_newline + 1;
156 
157   // The primary piece is everything in |data| up to the newline. It's written
158   // unbuffered to the output.
159   cpp::span<const uint8_t> primary(data, split_point);
160 
161   // The second piece is the remainder of |data|. It is written fully buffered,
162   // meaning it may stay in the buffer if it fits.
163   cpp::span<const uint8_t> remainder(
164       static_cast<const uint8_t *>(data) + split_point, len - split_point);
165 
166   size_t written = 0;
167 
168   written = write_unlocked_nbf(primary.data(), primary.size());
169   if (written < primary.size()) {
170     err = true;
171     return written;
172   }
173 
174   flush_unlocked();
175 
176   written += write_unlocked_fbf(remainder.data(), remainder.size());
177   if (written < len) {
178     err = true;
179     return written;
180   }
181 
182   return len;
183 }
184 
read_unlocked(void * data,size_t len)185 FileIOResult File::read_unlocked(void *data, size_t len) {
186   if (!read_allowed()) {
187     err = true;
188     return {0, EBADF};
189   }
190 
191   prev_op = FileOp::READ;
192 
193   cpp::span<uint8_t> bufref(static_cast<uint8_t *>(buf), bufsize);
194   cpp::span<uint8_t> dataref(static_cast<uint8_t *>(data), len);
195 
196   // Because read_limit is always greater than equal to pos,
197   // available_data is never a wrapped around value.
198   size_t available_data = read_limit - pos;
199   if (len <= available_data) {
200     // TODO: Replace the for loop below with a call to internal memcpy.
201     for (size_t i = 0; i < len; ++i)
202       dataref[i] = bufref[i + pos];
203     pos += len;
204     return len;
205   }
206 
207   // Copy all of the available data.
208   // TODO: Replace the for loop with a call to internal memcpy.
209   for (size_t i = 0; i < available_data; ++i)
210     dataref[i] = bufref[i + pos];
211   read_limit = pos = 0; // Reset the pointers.
212   // Update the dataref to reflect that fact that we have already
213   // copied |available_data| into |data|.
214   dataref = cpp::span<uint8_t>(dataref.data() + available_data,
215                                dataref.size() - available_data);
216 
217   size_t to_fetch = len - available_data;
218   if (to_fetch > bufsize) {
219     auto result = platform_read(this, dataref.data(), to_fetch);
220     size_t fetched_size = result.value;
221     if (result.has_error() || fetched_size < to_fetch) {
222       if (!result.has_error())
223         eof = true;
224       else
225         err = true;
226       return {available_data + fetched_size, result.has_error()};
227     }
228     return len;
229   }
230 
231   // Fetch and buffer another buffer worth of data.
232   auto result = platform_read(this, buf, bufsize);
233   size_t fetched_size = result.value;
234   read_limit += fetched_size;
235   size_t transfer_size = fetched_size >= to_fetch ? to_fetch : fetched_size;
236   for (size_t i = 0; i < transfer_size; ++i)
237     dataref[i] = bufref[i];
238   pos += transfer_size;
239   if (result.has_error() || fetched_size < to_fetch) {
240     if (!result.has_error())
241       eof = true;
242     else
243       err = true;
244   }
245   return {transfer_size + available_data, result.error};
246 }
247 
ungetc_unlocked(int c)248 int File::ungetc_unlocked(int c) {
249   // There is no meaning to unget if:
250   // 1. You are trying to push back EOF.
251   // 2. Read operations are not allowed on this file.
252   // 3. The previous operation was a write operation.
253   if (c == EOF || !read_allowed() || (prev_op == FileOp::WRITE))
254     return EOF;
255 
256   cpp::span<uint8_t> bufref(static_cast<uint8_t *>(buf), bufsize);
257   if (read_limit == 0) {
258     // If |read_limit| is zero, it can mean three things:
259     //   a. This file was just created.
260     //   b. The previous operation was a seek operation.
261     //   c. The previous operation was a read operation which emptied
262     //      the buffer.
263     // For all the above cases, we simply write |c| at the beginning
264     // of the buffer and bump |read_limit|. Note that |pos| will also
265     // be zero in this case, so we don't need to adjust it.
266     bufref[0] = static_cast<unsigned char>(c);
267     ++read_limit;
268   } else {
269     // If |read_limit| is non-zero, it means that there is data in the buffer
270     // from a previous read operation. Which would also mean that |pos| is not
271     // zero. So, we decrement |pos| and write |c| in to the buffer at the new
272     // |pos|. If too many ungetc operations are performed without reads, it
273     // can lead to (pos == 0 but read_limit != 0). We will just error out in
274     // such a case.
275     if (pos == 0)
276       return EOF;
277     --pos;
278     bufref[pos] = static_cast<unsigned char>(c);
279   }
280 
281   eof = false; // There is atleast one character that can be read now.
282   err = false; // This operation was a success.
283   return c;
284 }
285 
seek(off_t offset,int whence)286 ErrorOr<int> File::seek(off_t offset, int whence) {
287   FileLock lock(this);
288   if (prev_op == FileOp::WRITE && pos > 0) {
289 
290     auto buf_result = platform_write(this, buf, pos);
291     if (buf_result.has_error() || buf_result.value < pos) {
292       err = true;
293       return Error(buf_result.error);
294     }
295   } else if (prev_op == FileOp::READ && whence == SEEK_CUR) {
296     // More data could have been read out from the platform file than was
297     // required. So, we have to adjust the offset we pass to platform seek
298     // function. Note that read_limit >= pos is always true.
299     offset -= (read_limit - pos);
300   }
301   pos = read_limit = 0;
302   prev_op = FileOp::SEEK;
303   // Reset the eof flag as a seek might move the file positon to some place
304   // readable.
305   eof = false;
306   auto result = platform_seek(this, offset, whence);
307   if (!result.has_value())
308     return Error(result.error());
309   return 0;
310 }
311 
tell()312 ErrorOr<off_t> File::tell() {
313   FileLock lock(this);
314   auto seek_target = eof ? SEEK_END : SEEK_CUR;
315   auto result = platform_seek(this, 0, seek_target);
316   if (!result.has_value() || result.value() < 0)
317     return Error(result.error());
318   off_t platform_offset = result.value();
319   if (prev_op == FileOp::READ)
320     return platform_offset - (read_limit - pos);
321   if (prev_op == FileOp::WRITE)
322     return platform_offset + pos;
323   return platform_offset;
324 }
325 
flush_unlocked()326 int File::flush_unlocked() {
327   if (prev_op == FileOp::WRITE && pos > 0) {
328     auto buf_result = platform_write(this, buf, pos);
329     if (buf_result.has_error() || buf_result.value < pos) {
330       err = true;
331       return buf_result.error;
332     }
333     pos = 0;
334   }
335   // TODO: Add POSIX behavior for input streams.
336   return 0;
337 }
338 
set_buffer(void * buffer,size_t size,int buffer_mode)339 int File::set_buffer(void *buffer, size_t size, int buffer_mode) {
340   // We do not need to lock the file as this method should be called before
341   // other operations are performed on the file.
342   if (buffer != nullptr && size == 0)
343     return EINVAL;
344 
345   switch (buffer_mode) {
346   case _IOFBF:
347   case _IOLBF:
348   case _IONBF:
349     break;
350   default:
351     return EINVAL;
352   }
353 
354   if (buffer == nullptr && size != 0 && buffer_mode != _IONBF) {
355     // We exclude the case of buffer_mode == _IONBF in this branch
356     // because we don't need to allocate buffer in such a case.
357     if (own_buf) {
358       // This is one of the places where use a C allocation functon
359       // as C++ does not have an equivalent of realloc.
360       buf = reinterpret_cast<uint8_t *>(realloc(buf, size));
361       if (buf == nullptr)
362         return ENOMEM;
363     } else {
364       AllocChecker ac;
365       buf = new (ac) uint8_t[size];
366       if (!ac)
367         return ENOMEM;
368       own_buf = true;
369     }
370     bufsize = size;
371     // TODO: Handle allocation failures.
372   } else {
373     if (own_buf)
374       delete buf;
375     if (buffer_mode != _IONBF) {
376       buf = static_cast<uint8_t *>(buffer);
377       bufsize = size;
378     } else {
379       // We don't need any buffer.
380       buf = nullptr;
381       bufsize = 0;
382     }
383     own_buf = false;
384   }
385   bufmode = buffer_mode;
386   adjust_buf();
387   return 0;
388 }
389 
mode_flags(const char * mode)390 File::ModeFlags File::mode_flags(const char *mode) {
391   // First character in |mode| should be 'a', 'r' or 'w'.
392   if (*mode != 'a' && *mode != 'r' && *mode != 'w')
393     return 0;
394 
395   // There should be exaclty one main mode ('a', 'r' or 'w') character.
396   // If there are more than one main mode characters listed, then
397   // we will consider |mode| as incorrect and return 0;
398   int main_mode_count = 0;
399 
400   ModeFlags flags = 0;
401   for (; *mode != '\0'; ++mode) {
402     switch (*mode) {
403     case 'r':
404       flags |= static_cast<ModeFlags>(OpenMode::READ);
405       ++main_mode_count;
406       break;
407     case 'w':
408       flags |= static_cast<ModeFlags>(OpenMode::WRITE);
409       ++main_mode_count;
410       break;
411     case '+':
412       flags |= static_cast<ModeFlags>(OpenMode::PLUS);
413       break;
414     case 'b':
415       flags |= static_cast<ModeFlags>(ContentType::BINARY);
416       break;
417     case 'a':
418       flags |= static_cast<ModeFlags>(OpenMode::APPEND);
419       ++main_mode_count;
420       break;
421     case 'x':
422       flags |= static_cast<ModeFlags>(CreateType::EXCLUSIVE);
423       break;
424     default:
425       return 0;
426     }
427   }
428 
429   if (main_mode_count != 1)
430     return 0;
431 
432   return flags;
433 }
434 
435 } // namespace LIBC_NAMESPACE_DECL
436