xref: /aosp_15_r20/external/llvm-libc/src/math/generic/exp.cpp (revision 71db0c75aadcf003ffe3238005f61d7618a3fead)
1 //===-- Double-precision e^x function -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "src/math/exp.h"
10 #include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2.
11 #include "explogxf.h"         // ziv_test_denorm.
12 #include "src/__support/CPP/bit.h"
13 #include "src/__support/CPP/optional.h"
14 #include "src/__support/FPUtil/FEnvImpl.h"
15 #include "src/__support/FPUtil/FPBits.h"
16 #include "src/__support/FPUtil/PolyEval.h"
17 #include "src/__support/FPUtil/double_double.h"
18 #include "src/__support/FPUtil/dyadic_float.h"
19 #include "src/__support/FPUtil/multiply_add.h"
20 #include "src/__support/FPUtil/nearest_integer.h"
21 #include "src/__support/FPUtil/rounding_mode.h"
22 #include "src/__support/FPUtil/triple_double.h"
23 #include "src/__support/common.h"
24 #include "src/__support/integer_literals.h"
25 #include "src/__support/macros/config.h"
26 #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
27 
28 namespace LIBC_NAMESPACE_DECL {
29 
30 using fputil::DoubleDouble;
31 using fputil::TripleDouble;
32 using Float128 = typename fputil::DyadicFloat<128>;
33 
34 using LIBC_NAMESPACE::operator""_u128;
35 
36 // log2(e)
37 constexpr double LOG2_E = 0x1.71547652b82fep+0;
38 
39 // Error bounds:
40 // Errors when using double precision.
41 constexpr double ERR_D = 0x1.8p-63;
42 // Errors when using double-double precision.
43 constexpr double ERR_DD = 0x1.0p-99;
44 
45 // -2^-12 * log(2)
46 // > a = -2^-12 * log(2);
47 // > b = round(a, 30, RN);
48 // > c = round(a - b, 30, RN);
49 // > d = round(a - b - c, D, RN);
50 // Errors < 1.5 * 2^-133
51 constexpr double MLOG_2_EXP2_M12_HI = -0x1.62e42ffp-13;
52 constexpr double MLOG_2_EXP2_M12_MID = 0x1.718432a1b0e26p-47;
53 constexpr double MLOG_2_EXP2_M12_MID_30 = 0x1.718432ap-47;
54 constexpr double MLOG_2_EXP2_M12_LO = 0x1.b0e2633fe0685p-79;
55 
56 namespace {
57 
58 // Polynomial approximations with double precision:
59 // Return expm1(dx) / x ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24.
60 // For |dx| < 2^-13 + 2^-30:
61 //   | output - expm1(dx) / dx | < 2^-51.
poly_approx_d(double dx)62 LIBC_INLINE double poly_approx_d(double dx) {
63   // dx^2
64   double dx2 = dx * dx;
65   // c0 = 1 + dx / 2
66   double c0 = fputil::multiply_add(dx, 0.5, 1.0);
67   // c1 = 1/6 + dx / 24
68   double c1 =
69       fputil::multiply_add(dx, 0x1.5555555555555p-5, 0x1.5555555555555p-3);
70   // p = dx^2 * c1 + c0 = 1 + dx / 2 + dx^2 / 6 + dx^3 / 24
71   double p = fputil::multiply_add(dx2, c1, c0);
72   return p;
73 }
74 
75 // Polynomial approximation with double-double precision:
76 // Return exp(dx) ~ 1 + dx + dx^2 / 2 + ... + dx^6 / 720
77 // For |dx| < 2^-13 + 2^-30:
78 //   | output - exp(dx) | < 2^-101
poly_approx_dd(const DoubleDouble & dx)79 DoubleDouble poly_approx_dd(const DoubleDouble &dx) {
80   // Taylor polynomial.
81   constexpr DoubleDouble COEFFS[] = {
82       {0, 0x1p0},                                      // 1
83       {0, 0x1p0},                                      // 1
84       {0, 0x1p-1},                                     // 1/2
85       {0x1.5555555555555p-57, 0x1.5555555555555p-3},   // 1/6
86       {0x1.5555555555555p-59, 0x1.5555555555555p-5},   // 1/24
87       {0x1.1111111111111p-63, 0x1.1111111111111p-7},   // 1/120
88       {-0x1.f49f49f49f49fp-65, 0x1.6c16c16c16c17p-10}, // 1/720
89   };
90 
91   DoubleDouble p = fputil::polyeval(dx, COEFFS[0], COEFFS[1], COEFFS[2],
92                                     COEFFS[3], COEFFS[4], COEFFS[5], COEFFS[6]);
93   return p;
94 }
95 
96 // Polynomial approximation with 128-bit precision:
97 // Return exp(dx) ~ 1 + dx + dx^2 / 2 + ... + dx^7 / 5040
98 // For |dx| < 2^-13 + 2^-30:
99 //   | output - exp(dx) | < 2^-126.
poly_approx_f128(const Float128 & dx)100 Float128 poly_approx_f128(const Float128 &dx) {
101   constexpr Float128 COEFFS_128[]{
102       {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0
103       {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0
104       {Sign::POS, -128, 0x80000000'00000000'00000000'00000000_u128}, // 0.5
105       {Sign::POS, -130, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/6
106       {Sign::POS, -132, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/24
107       {Sign::POS, -134, 0x88888888'88888888'88888888'88888889_u128}, // 1/120
108       {Sign::POS, -137, 0xb60b60b6'0b60b60b'60b60b60'b60b60b6_u128}, // 1/720
109       {Sign::POS, -140, 0xd00d00d0'0d00d00d'00d00d00'd00d00d0_u128}, // 1/5040
110   };
111 
112   Float128 p = fputil::polyeval(dx, COEFFS_128[0], COEFFS_128[1], COEFFS_128[2],
113                                 COEFFS_128[3], COEFFS_128[4], COEFFS_128[5],
114                                 COEFFS_128[6], COEFFS_128[7]);
115   return p;
116 }
117 
118 // Compute exp(x) using 128-bit precision.
119 // TODO(lntue): investigate triple-double precision implementation for this
120 // step.
exp_f128(double x,double kd,int idx1,int idx2)121 Float128 exp_f128(double x, double kd, int idx1, int idx2) {
122   // Recalculate dx:
123 
124   double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact
125   double t2 = kd * MLOG_2_EXP2_M12_MID_30;                     // exact
126   double t3 = kd * MLOG_2_EXP2_M12_LO;                         // Error < 2^-133
127 
128   Float128 dx = fputil::quick_add(
129       Float128(t1), fputil::quick_add(Float128(t2), Float128(t3)));
130 
131   // TODO: Skip recalculating exp_mid1 and exp_mid2.
132   Float128 exp_mid1 =
133       fputil::quick_add(Float128(EXP2_MID1[idx1].hi),
134                         fputil::quick_add(Float128(EXP2_MID1[idx1].mid),
135                                           Float128(EXP2_MID1[idx1].lo)));
136 
137   Float128 exp_mid2 =
138       fputil::quick_add(Float128(EXP2_MID2[idx2].hi),
139                         fputil::quick_add(Float128(EXP2_MID2[idx2].mid),
140                                           Float128(EXP2_MID2[idx2].lo)));
141 
142   Float128 exp_mid = fputil::quick_mul(exp_mid1, exp_mid2);
143 
144   Float128 p = poly_approx_f128(dx);
145 
146   Float128 r = fputil::quick_mul(exp_mid, p);
147 
148   r.exponent += static_cast<int>(kd) >> 12;
149 
150   return r;
151 }
152 
153 // Compute exp(x) with double-double precision.
exp_double_double(double x,double kd,const DoubleDouble & exp_mid)154 DoubleDouble exp_double_double(double x, double kd,
155                                const DoubleDouble &exp_mid) {
156   // Recalculate dx:
157   //   dx = x - k * 2^-12 * log(2)
158   double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact
159   double t2 = kd * MLOG_2_EXP2_M12_MID_30;                     // exact
160   double t3 = kd * MLOG_2_EXP2_M12_LO;                         // Error < 2^-130
161 
162   DoubleDouble dx = fputil::exact_add(t1, t2);
163   dx.lo += t3;
164 
165   // Degree-6 Taylor polynomial approximation in double-double precision.
166   // | p - exp(x) | < 2^-100.
167   DoubleDouble p = poly_approx_dd(dx);
168 
169   // Error bounds: 2^-99.
170   DoubleDouble r = fputil::quick_mult(exp_mid, p);
171 
172   return r;
173 }
174 
175 // Check for exceptional cases when
176 // |x| <= 2^-53 or x < log(2^-1075) or x >= 0x1.6232bdd7abcd3p+9
set_exceptional(double x)177 double set_exceptional(double x) {
178   using FPBits = typename fputil::FPBits<double>;
179   FPBits xbits(x);
180 
181   uint64_t x_u = xbits.uintval();
182   uint64_t x_abs = xbits.abs().uintval();
183 
184   // |x| <= 2^-53
185   if (x_abs <= 0x3ca0'0000'0000'0000ULL) {
186     // exp(x) ~ 1 + x
187     return 1 + x;
188   }
189 
190   // x <= log(2^-1075) || x >= 0x1.6232bdd7abcd3p+9 or inf/nan.
191 
192   // x <= log(2^-1075) or -inf/nan
193   if (x_u >= 0xc087'4910'd52d'3052ULL) {
194     // exp(-Inf) = 0
195     if (xbits.is_inf())
196       return 0.0;
197 
198     // exp(nan) = nan
199     if (xbits.is_nan())
200       return x;
201 
202     if (fputil::quick_get_round() == FE_UPWARD)
203       return FPBits::min_subnormal().get_val();
204     fputil::set_errno_if_required(ERANGE);
205     fputil::raise_except_if_required(FE_UNDERFLOW);
206     return 0.0;
207   }
208 
209   // x >= round(log(MAX_NORMAL), D, RU) = 0x1.62e42fefa39fp+9 or +inf/nan
210   // x is finite
211   if (x_u < 0x7ff0'0000'0000'0000ULL) {
212     int rounding = fputil::quick_get_round();
213     if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
214       return FPBits::max_normal().get_val();
215 
216     fputil::set_errno_if_required(ERANGE);
217     fputil::raise_except_if_required(FE_OVERFLOW);
218   }
219   // x is +inf or nan
220   return x + FPBits::inf().get_val();
221 }
222 
223 } // namespace
224 
225 LLVM_LIBC_FUNCTION(double, exp, (double x)) {
226   using FPBits = typename fputil::FPBits<double>;
227   FPBits xbits(x);
228 
229   uint64_t x_u = xbits.uintval();
230 
231   // Upper bound: max normal number = 2^1023 * (2 - 2^-52)
232   // > round(log (2^1023 ( 2 - 2^-52 )), D, RU) = 0x1.62e42fefa39fp+9
233   // > round(log (2^1023 ( 2 - 2^-52 )), D, RD) = 0x1.62e42fefa39efp+9
234   // > round(log (2^1023 ( 2 - 2^-52 )), D, RN) = 0x1.62e42fefa39efp+9
235   // > round(exp(0x1.62e42fefa39fp+9), D, RN) = infty
236 
237   // Lower bound: min denormal number / 2 = 2^-1075
238   // > round(log(2^-1075), D, RN) = -0x1.74910d52d3052p9
239 
240   // Another lower bound: min normal number = 2^-1022
241   // > round(log(2^-1022), D, RN) = -0x1.6232bdd7abcd2p9
242 
243   // x < log(2^-1075) or x >= 0x1.6232bdd7abcd3p+9 or |x| < 2^-53.
244   if (LIBC_UNLIKELY(x_u >= 0xc0874910d52d3052 ||
245                     (x_u < 0xbca0000000000000 && x_u >= 0x40862e42fefa39f0) ||
246                     x_u < 0x3ca0000000000000)) {
247     return set_exceptional(x);
248   }
249 
250   // Now log(2^-1075) <= x <= -2^-53 or 2^-53 <= x < log(2^1023 * (2 - 2^-52))
251 
252   // Range reduction:
253   // Let x = log(2) * (hi + mid1 + mid2) + lo
254   // in which:
255   //   hi is an integer
256   //   mid1 * 2^6 is an integer
257   //   mid2 * 2^12 is an integer
258   // then:
259   //   exp(x) = 2^hi * 2^(mid1) * 2^(mid2) * exp(lo).
260   // With this formula:
261   //   - multiplying by 2^hi is exact and cheap, simply by adding the exponent
262   //     field.
263   //   - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables.
264   //   - exp(lo) ~ 1 + lo + a0 * lo^2 + ...
265   //
266   // They can be defined by:
267   //   hi + mid1 + mid2 = 2^(-12) * round(2^12 * log_2(e) * x)
268   // If we store L2E = round(log2(e), D, RN), then:
269   //   log2(e) - L2E ~ 1.5 * 2^(-56)
270   // So the errors when computing in double precision is:
271   //   | x * 2^12 * log_2(e) - D(x * 2^12 * L2E) | <=
272   //  <= | x * 2^12 * log_2(e) - x * 2^12 * L2E | +
273   //     + | x * 2^12 * L2E - D(x * 2^12 * L2E) |
274   //  <= 2^12 * ( |x| * 1.5 * 2^-56 + eps(x))  for RN
275   //     2^12 * ( |x| * 1.5 * 2^-56 + 2*eps(x)) for other rounding modes.
276   // So if:
277   //   hi + mid1 + mid2 = 2^(-12) * round(x * 2^12 * L2E) is computed entirely
278   // in double precision, the reduced argument:
279   //   lo = x - log(2) * (hi + mid1 + mid2) is bounded by:
280   //   |lo| <= 2^-13 + (|x| * 1.5 * 2^-56 + 2*eps(x))
281   //         < 2^-13 + (1.5 * 2^9 * 1.5 * 2^-56 + 2*2^(9 - 52))
282   //         < 2^-13 + 2^-41
283   //
284 
285   // The following trick computes the round(x * L2E) more efficiently
286   // than using the rounding instructions, with the tradeoff for less accuracy,
287   // and hence a slightly larger range for the reduced argument `lo`.
288   //
289   // To be precise, since |x| < |log(2^-1075)| < 1.5 * 2^9,
290   //   |x * 2^12 * L2E| < 1.5 * 2^9 * 1.5 < 2^23,
291   // So we can fit the rounded result round(x * 2^12 * L2E) in int32_t.
292   // Thus, the goal is to be able to use an additional addition and fixed width
293   // shift to get an int32_t representing round(x * 2^12 * L2E).
294   //
295   // Assuming int32_t using 2-complement representation, since the mantissa part
296   // of a double precision is unsigned with the leading bit hidden, if we add an
297   // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^25 to the product, the
298   // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be
299   // considered as a proper 2-complement representations of x*2^12*L2E.
300   //
301   // One small problem with this approach is that the sum (x*2^12*L2E + C) in
302   // double precision is rounded to the least significant bit of the dorminant
303   // factor C.  In order to minimize the rounding errors from this addition, we
304   // want to minimize e1.  Another constraint that we want is that after
305   // shifting the mantissa so that the least significant bit of int32_t
306   // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without
307   // any adjustment.  So combining these 2 requirements, we can choose
308   //   C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence
309   // after right shifting the mantissa, the resulting int32_t has correct sign.
310   // With this choice of C, the number of mantissa bits we need to shift to the
311   // right is: 52 - 33 = 19.
312   //
313   // Moreover, since the integer right shifts are equivalent to rounding down,
314   // we can add an extra 0.5 so that it will become round-to-nearest, tie-to-
315   // +infinity.  So in particular, we can compute:
316   //   hmm = x * 2^12 * L2E + C,
317   // where C = 2^33 + 2^32 + 2^-1, then if
318   //   k = int32_t(lower 51 bits of double(x * 2^12 * L2E + C) >> 19),
319   // the reduced argument:
320   //   lo = x - log(2) * 2^-12 * k is bounded by:
321   //   |lo| <= 2^-13 + 2^-41 + 2^-12*2^-19
322   //         = 2^-13 + 2^-31 + 2^-41.
323   //
324   // Finally, notice that k only uses the mantissa of x * 2^12 * L2E, so the
325   // exponent 2^12 is not needed.  So we can simply define
326   //   C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and
327   //   k = int32_t(lower 51 bits of double(x * L2E + C) >> 19).
328 
329   // Rounding errors <= 2^-31 + 2^-41.
330   double tmp = fputil::multiply_add(x, LOG2_E, 0x1.8000'0000'4p21);
331   int k = static_cast<int>(cpp::bit_cast<uint64_t>(tmp) >> 19);
332   double kd = static_cast<double>(k);
333 
334   uint32_t idx1 = (k >> 6) & 0x3f;
335   uint32_t idx2 = k & 0x3f;
336   int hi = k >> 12;
337 
338   bool denorm = (hi <= -1022);
339 
340   DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi};
341   DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi};
342 
343   DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2);
344 
345   // |x - (hi + mid1 + mid2) * log(2) - dx| < 2^11 * eps(M_LOG_2_EXP2_M12.lo)
346   //                                        = 2^11 * 2^-13 * 2^-52
347   //                                        = 2^-54.
348   // |dx| < 2^-13 + 2^-30.
349   double lo_h = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact
350   double dx = fputil::multiply_add(kd, MLOG_2_EXP2_M12_MID, lo_h);
351 
352   // We use the degree-4 Taylor polynomial to approximate exp(lo):
353   //   exp(lo) ~ 1 + lo + lo^2 / 2 + lo^3 / 6 + lo^4 / 24 = 1 + lo * P(lo)
354   // So that the errors are bounded by:
355   //   |P(lo) - expm1(lo)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58
356   // Let P_ be an evaluation of P where all intermediate computations are in
357   // double precision.  Using either Horner's or Estrin's schemes, the evaluated
358   // errors can be bounded by:
359   //      |P_(dx) - P(dx)| < 2^-51
360   //   => |dx * P_(dx) - expm1(lo) | < 1.5 * 2^-64
361   //   => 2^(mid1 + mid2) * |dx * P_(dx) - expm1(lo)| < 1.5 * 2^-63.
362   // Since we approximate
363   //   2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo,
364   // We use the expression:
365   //    (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~
366   //  ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo)
367   // with errors bounded by 1.5 * 2^-63.
368 
369   double mid_lo = dx * exp_mid.hi;
370 
371   // Approximate expm1(dx)/dx ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24.
372   double p = poly_approx_d(dx);
373 
374   double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo);
375 
376   if (LIBC_UNLIKELY(denorm)) {
377     if (auto r = ziv_test_denorm(hi, exp_mid.hi, lo, ERR_D);
378         LIBC_LIKELY(r.has_value()))
379       return r.value();
380   } else {
381     double upper = exp_mid.hi + (lo + ERR_D);
382     double lower = exp_mid.hi + (lo - ERR_D);
383 
384     if (LIBC_LIKELY(upper == lower)) {
385       // to multiply by 2^hi, a fast way is to simply add hi to the exponent
386       // field.
387       int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
388       double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper));
389       return r;
390     }
391   }
392 
393   // Use double-double
394   DoubleDouble r_dd = exp_double_double(x, kd, exp_mid);
395 
396   if (LIBC_UNLIKELY(denorm)) {
397     if (auto r = ziv_test_denorm(hi, r_dd.hi, r_dd.lo, ERR_DD);
398         LIBC_LIKELY(r.has_value()))
399       return r.value();
400   } else {
401     double upper_dd = r_dd.hi + (r_dd.lo + ERR_DD);
402     double lower_dd = r_dd.hi + (r_dd.lo - ERR_DD);
403 
404     if (LIBC_LIKELY(upper_dd == lower_dd)) {
405       int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
406       double r =
407           cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper_dd));
408       return r;
409     }
410   }
411 
412   // Use 128-bit precision
413   Float128 r_f128 = exp_f128(x, kd, idx1, idx2);
414 
415   return static_cast<double>(r_f128);
416 }
417 
418 } // namespace LIBC_NAMESPACE_DECL
419