xref: /aosp_15_r20/external/llvm-libc/src/math/generic/explogxf.h (revision 71db0c75aadcf003ffe3238005f61d7618a3fead)
1 //===-- Single-precision general exp/log functions ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H
10 #define LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H
11 
12 #include "common_constants.h"
13 #include "src/__support/CPP/bit.h"
14 #include "src/__support/CPP/optional.h"
15 #include "src/__support/FPUtil/FEnvImpl.h"
16 #include "src/__support/FPUtil/FPBits.h"
17 #include "src/__support/FPUtil/PolyEval.h"
18 #include "src/__support/FPUtil/nearest_integer.h"
19 #include "src/__support/common.h"
20 #include "src/__support/macros/config.h"
21 #include "src/__support/macros/properties/cpu_features.h"
22 
23 namespace LIBC_NAMESPACE_DECL {
24 
25 struct ExpBase {
26   // Base = e
27   static constexpr int MID_BITS = 5;
28   static constexpr int MID_MASK = (1 << MID_BITS) - 1;
29   // log2(e) * 2^5
30   static constexpr double LOG2_B = 0x1.71547652b82fep+0 * (1 << MID_BITS);
31   // High and low parts of -log(2) * 2^(-5)
32   static constexpr double M_LOGB_2_HI = -0x1.62e42fefa0000p-1 / (1 << MID_BITS);
33   static constexpr double M_LOGB_2_LO =
34       -0x1.cf79abc9e3b3ap-40 / (1 << MID_BITS);
35   // Look up table for bit fields of 2^(i/32) for i = 0..31, generated by Sollya
36   // with:
37   // > for i from 0 to 31 do printdouble(round(2^(i/32), D, RN));
38   static constexpr int64_t EXP_2_MID[1 << MID_BITS] = {
39       0x3ff0000000000000, 0x3ff059b0d3158574, 0x3ff0b5586cf9890f,
40       0x3ff11301d0125b51, 0x3ff172b83c7d517b, 0x3ff1d4873168b9aa,
41       0x3ff2387a6e756238, 0x3ff29e9df51fdee1, 0x3ff306fe0a31b715,
42       0x3ff371a7373aa9cb, 0x3ff3dea64c123422, 0x3ff44e086061892d,
43       0x3ff4bfdad5362a27, 0x3ff5342b569d4f82, 0x3ff5ab07dd485429,
44       0x3ff6247eb03a5585, 0x3ff6a09e667f3bcd, 0x3ff71f75e8ec5f74,
45       0x3ff7a11473eb0187, 0x3ff82589994cce13, 0x3ff8ace5422aa0db,
46       0x3ff93737b0cdc5e5, 0x3ff9c49182a3f090, 0x3ffa5503b23e255d,
47       0x3ffae89f995ad3ad, 0x3ffb7f76f2fb5e47, 0x3ffc199bdd85529c,
48       0x3ffcb720dcef9069, 0x3ffd5818dcfba487, 0x3ffdfc97337b9b5f,
49       0x3ffea4afa2a490da, 0x3fff50765b6e4540,
50   };
51 
52   // Approximating e^dx with degree-5 minimax polynomial generated by Sollya:
53   // > Q = fpminimax(expm1(x)/x, 4, [|1, D...|], [-log(2)/64, log(2)/64]);
54   // Then:
55   //   e^dx ~ P(dx) = 1 + dx + COEFFS[0] * dx^2 + ... + COEFFS[3] * dx^5.
56   static constexpr double COEFFS[4] = {
57       0x1.ffffffffe5bc8p-2, 0x1.555555555cd67p-3, 0x1.5555c2a9b48b4p-5,
58       0x1.11112a0e34bdbp-7};
59 
powb_loExpBase60   LIBC_INLINE static double powb_lo(double dx) {
61     using fputil::multiply_add;
62     double dx2 = dx * dx;
63     double c0 = 1.0 + dx;
64     // c1 = COEFFS[0] + COEFFS[1] * dx
65     double c1 = multiply_add(dx, ExpBase::COEFFS[1], ExpBase::COEFFS[0]);
66     // c2 = COEFFS[2] + COEFFS[3] * dx
67     double c2 = multiply_add(dx, ExpBase::COEFFS[3], ExpBase::COEFFS[2]);
68     // r = c4 + c5 * dx^4
69     //   = 1 + dx + COEFFS[0] * dx^2 + ... + COEFFS[5] * dx^7
70     return fputil::polyeval(dx2, c0, c1, c2);
71   }
72 };
73 
74 struct Exp10Base : public ExpBase {
75   // log2(10) * 2^5
76   static constexpr double LOG2_B = 0x1.a934f0979a371p1 * (1 << MID_BITS);
77   // High and low parts of -log10(2) * 2^(-5).
78   // Notice that since |x * log2(10)| < 150:
79   //   |k| = |round(x * log2(10) * 2^5)| < 2^8 * 2^5 = 2^13
80   // So when the FMA instructions are not available, in order for the product
81   //   k * M_LOGB_2_HI
82   // to be exact, we only store the high part of log10(2) up to 38 bits
83   // (= 53 - 15) of precision.
84   // It is generated by Sollya with:
85   // > round(log10(2), 44, RN);
86   static constexpr double M_LOGB_2_HI = -0x1.34413509f8p-2 / (1 << MID_BITS);
87   // > round(log10(2) - 0x1.34413509f8p-2, D, RN);
88   static constexpr double M_LOGB_2_LO = 0x1.80433b83b532ap-44 / (1 << MID_BITS);
89 
90   // Approximating 10^dx with degree-5 minimax polynomial generated by Sollya:
91   // > Q = fpminimax((10^x - 1)/x, 4, [|D...|], [-log10(2)/2^6, log10(2)/2^6]);
92   // Then:
93   //   10^dx ~ P(dx) = 1 + COEFFS[0] * dx + ... + COEFFS[4] * dx^5.
94   static constexpr double COEFFS[5] = {0x1.26bb1bbb55515p1, 0x1.53524c73bd3eap1,
95                                        0x1.0470591dff149p1, 0x1.2bd7c0a9fbc4dp0,
96                                        0x1.1429e74a98f43p-1};
97 
powb_loExp10Base98   static double powb_lo(double dx) {
99     using fputil::multiply_add;
100     double dx2 = dx * dx;
101     // c0 = 1 + COEFFS[0] * dx
102     double c0 = multiply_add(dx, Exp10Base::COEFFS[0], 1.0);
103     // c1 = COEFFS[1] + COEFFS[2] * dx
104     double c1 = multiply_add(dx, Exp10Base::COEFFS[2], Exp10Base::COEFFS[1]);
105     // c2 = COEFFS[3] + COEFFS[4] * dx
106     double c2 = multiply_add(dx, Exp10Base::COEFFS[4], Exp10Base::COEFFS[3]);
107     // r = c0 + dx^2 * (c1 + c2 * dx^2)
108     //   = c0 + c1 * dx^2 + c2 * dx^4
109     //   = 1 + COEFFS[0] * dx + ... + COEFFS[4] * dx^5.
110     return fputil::polyeval(dx2, c0, c1, c2);
111   }
112 };
113 
114 constexpr int LOG_P1_BITS = 6;
115 constexpr int LOG_P1_SIZE = 1 << LOG_P1_BITS;
116 
117 // N[Table[Log[2, 1 + x], {x, 0/64, 63/64, 1/64}], 40]
118 extern const double LOG_P1_LOG2[LOG_P1_SIZE];
119 
120 // N[Table[1/(1 + x), {x, 0/64, 63/64, 1/64}], 40]
121 extern const double LOG_P1_1_OVER[LOG_P1_SIZE];
122 
123 // Taylor series expansion for Log[2, 1 + x] splitted to EVEN AND ODD numbers
124 // K_LOG2_ODD starts from x^3
125 extern const double K_LOG2_ODD[4];
126 extern const double K_LOG2_EVEN[4];
127 
128 // Output of range reduction for exp_b: (2^(mid + hi), lo)
129 // where:
130 //   b^x = 2^(mid + hi) * b^lo
131 struct exp_b_reduc_t {
132   double mh; // 2^(mid + hi)
133   double lo;
134 };
135 
136 // The function correctly calculates b^x value with at least float precision
137 // in a limited range.
138 // Range reduction:
139 //   b^x = 2^(hi + mid) * b^lo
140 // where:
141 //   x = (hi + mid) * log_b(2) + lo
142 //   hi is an integer,
143 //   0 <= mid * 2^MID_BITS < 2^MID_BITS is an integer
144 //   -2^(-MID_BITS - 1) <= lo * log2(b) <= 2^(-MID_BITS - 1)
145 // Base class needs to provide the following constants:
146 //   - MID_BITS    : number of bits after decimal points used for mid
147 //   - MID_MASK    : 2^MID_BITS - 1, mask to extract mid bits
148 //   - LOG2_B      : log2(b) * 2^MID_BITS for scaling
149 //   - M_LOGB_2_HI : high part of -log_b(2) * 2^(-MID_BITS)
150 //   - M_LOGB_2_LO : low part of -log_b(2) * 2^(-MID_BITS)
151 //   - EXP_2_MID   : look up table for bit fields of 2^mid
152 // Return:
153 //   { 2^(hi + mid), lo }
exp_b_range_reduc(float x)154 template <class Base> LIBC_INLINE exp_b_reduc_t exp_b_range_reduc(float x) {
155   double xd = static_cast<double>(x);
156   // kd = round((hi + mid) * log2(b) * 2^MID_BITS)
157   double kd = fputil::nearest_integer(Base::LOG2_B * xd);
158   // k = round((hi + mid) * log2(b) * 2^MID_BITS)
159   int k = static_cast<int>(kd);
160   // hi = floor(kd * 2^(-MID_BITS))
161   // exp_hi = shift hi to the exponent field of double precision.
162   uint64_t exp_hi = static_cast<uint64_t>(k >> Base::MID_BITS)
163                     << fputil::FPBits<double>::FRACTION_LEN;
164   // mh = 2^hi * 2^mid
165   // mh_bits = bit field of mh
166   uint64_t mh_bits = Base::EXP_2_MID[k & Base::MID_MASK] + exp_hi;
167   double mh = fputil::FPBits<double>(mh_bits).get_val();
168   // dx = lo = x - (hi + mid) * log(2)
169   double dx = fputil::multiply_add(
170       kd, Base::M_LOGB_2_LO, fputil::multiply_add(kd, Base::M_LOGB_2_HI, xd));
171   return {mh, dx};
172 }
173 
174 // The function correctly calculates sinh(x) and cosh(x) by calculating exp(x)
175 // and exp(-x) simultaneously.
176 // To compute e^x, we perform the following range
177 // reduction: find hi, mid, lo such that:
178 //   x = (hi + mid) * log(2) + lo, in which
179 //     hi is an integer,
180 //     0 <= mid * 2^5 < 32 is an integer
181 //     -2^(-6) <= lo * log2(e) <= 2^-6.
182 // In particular,
183 //   hi + mid = round(x * log2(e) * 2^5) * 2^(-5).
184 // Then,
185 //   e^x = 2^(hi + mid) * e^lo = 2^hi * 2^mid * e^lo.
186 // 2^mid is stored in the lookup table of 32 elements.
187 // e^lo is computed using a degree-5 minimax polynomial
188 // generated by Sollya:
189 //   e^lo ~ P(lo) = 1 + lo + c2 * lo^2 + ... + c5 * lo^5
190 //        = (1 + c2*lo^2 + c4*lo^4) + lo * (1 + c3*lo^2 + c5*lo^4)
191 //        = P_even + lo * P_odd
192 // We perform 2^hi * 2^mid by simply add hi to the exponent field
193 // of 2^mid.
194 // To compute e^(-x), notice that:
195 //   e^(-x) = 2^(-(hi + mid)) * e^(-lo)
196 //          ~ 2^(-(hi + mid)) * P(-lo)
197 //          = 2^(-(hi + mid)) * (P_even - lo * P_odd)
198 // So:
199 //   sinh(x) = (e^x - e^(-x)) / 2
200 //           ~ 0.5 * (2^(hi + mid) * (P_even + lo * P_odd) -
201 //                    2^(-(hi + mid)) * (P_even - lo * P_odd))
202 //           = 0.5 * (P_even * (2^(hi + mid) - 2^(-(hi + mid))) +
203 //                    lo * P_odd * (2^(hi + mid) + 2^(-(hi + mid))))
204 // And similarly:
205 //   cosh(x) = (e^x + e^(-x)) / 2
206 //           ~ 0.5 * (P_even * (2^(hi + mid) + 2^(-(hi + mid))) +
207 //                    lo * P_odd * (2^(hi + mid) - 2^(-(hi + mid))))
208 // The main point of these formulas is that the expensive part of calculating
209 // the polynomials approximating lower parts of e^(x) and e^(-x) are shared
210 // and only done once.
exp_pm_eval(float x)211 template <bool is_sinh> LIBC_INLINE double exp_pm_eval(float x) {
212   double xd = static_cast<double>(x);
213 
214   // kd = round(x * log2(e) * 2^5)
215   // k_p = round(x * log2(e) * 2^5)
216   // k_m = round(-x * log2(e) * 2^5)
217   double kd;
218   int k_p, k_m;
219 
220 #ifdef LIBC_TARGET_CPU_HAS_NEAREST_INT
221   kd = fputil::nearest_integer(ExpBase::LOG2_B * xd);
222   k_p = static_cast<int>(kd);
223   k_m = -k_p;
224 #else
225   constexpr double HALF_WAY[2] = {0.5, -0.5};
226 
227   k_p = static_cast<int>(
228       fputil::multiply_add(xd, ExpBase::LOG2_B, HALF_WAY[x < 0.0f]));
229   k_m = -k_p;
230   kd = static_cast<double>(k_p);
231 #endif // LIBC_TARGET_CPU_HAS_NEAREST_INT
232 
233   // hi = floor(kf * 2^(-5))
234   // exp_hi = shift hi to the exponent field of double precision.
235   int64_t exp_hi_p = static_cast<int64_t>((k_p >> ExpBase::MID_BITS))
236                      << fputil::FPBits<double>::FRACTION_LEN;
237   int64_t exp_hi_m = static_cast<int64_t>((k_m >> ExpBase::MID_BITS))
238                      << fputil::FPBits<double>::FRACTION_LEN;
239   // mh_p = 2^(hi + mid)
240   // mh_m = 2^(-(hi + mid))
241   // mh_bits_* = bit field of mh_*
242   int64_t mh_bits_p = ExpBase::EXP_2_MID[k_p & ExpBase::MID_MASK] + exp_hi_p;
243   int64_t mh_bits_m = ExpBase::EXP_2_MID[k_m & ExpBase::MID_MASK] + exp_hi_m;
244   double mh_p = fputil::FPBits<double>(uint64_t(mh_bits_p)).get_val();
245   double mh_m = fputil::FPBits<double>(uint64_t(mh_bits_m)).get_val();
246   // mh_sum = 2^(hi + mid) + 2^(-(hi + mid))
247   double mh_sum = mh_p + mh_m;
248   // mh_diff = 2^(hi + mid) - 2^(-(hi + mid))
249   double mh_diff = mh_p - mh_m;
250 
251   // dx = lo = x - (hi + mid) * log(2)
252   double dx =
253       fputil::multiply_add(kd, ExpBase::M_LOGB_2_LO,
254                            fputil::multiply_add(kd, ExpBase::M_LOGB_2_HI, xd));
255   double dx2 = dx * dx;
256 
257   // c0 = 1 + COEFFS[0] * lo^2
258   // P_even = (1 + COEFFS[0] * lo^2 + COEFFS[2] * lo^4) / 2
259   double p_even = fputil::polyeval(dx2, 0.5, ExpBase::COEFFS[0] * 0.5,
260                                    ExpBase::COEFFS[2] * 0.5);
261   // P_odd = (1 + COEFFS[1] * lo^2 + COEFFS[3] * lo^4) / 2
262   double p_odd = fputil::polyeval(dx2, 0.5, ExpBase::COEFFS[1] * 0.5,
263                                   ExpBase::COEFFS[3] * 0.5);
264 
265   double r;
266   if constexpr (is_sinh)
267     r = fputil::multiply_add(dx * mh_sum, p_odd, p_even * mh_diff);
268   else
269     r = fputil::multiply_add(dx * mh_diff, p_odd, p_even * mh_sum);
270   return r;
271 }
272 
273 // x should be positive, normal finite value
log2_eval(double x)274 LIBC_INLINE static double log2_eval(double x) {
275   using FPB = fputil::FPBits<double>;
276   FPB bs(x);
277 
278   double result = 0;
279   result += bs.get_exponent();
280 
281   int p1 = (bs.get_mantissa() >> (FPB::FRACTION_LEN - LOG_P1_BITS)) &
282            (LOG_P1_SIZE - 1);
283 
284   bs.set_uintval(bs.uintval() & (FPB::FRACTION_MASK >> LOG_P1_BITS));
285   bs.set_biased_exponent(FPB::EXP_BIAS);
286   double dx = (bs.get_val() - 1.0) * LOG_P1_1_OVER[p1];
287 
288   // Taylor series for log(2,1+x)
289   double c1 = fputil::multiply_add(dx, K_LOG2_ODD[0], K_LOG2_EVEN[0]);
290   double c2 = fputil::multiply_add(dx, K_LOG2_ODD[1], K_LOG2_EVEN[1]);
291   double c3 = fputil::multiply_add(dx, K_LOG2_ODD[2], K_LOG2_EVEN[2]);
292   double c4 = fputil::multiply_add(dx, K_LOG2_ODD[3], K_LOG2_EVEN[3]);
293 
294   // c0 = dx * (1.0 / ln(2)) + LOG_P1_LOG2[p1]
295   double c0 = fputil::multiply_add(dx, 0x1.71547652b82fep+0, LOG_P1_LOG2[p1]);
296   result += LIBC_NAMESPACE::fputil::polyeval(dx * dx, c0, c1, c2, c3, c4);
297   return result;
298 }
299 
300 // x should be positive, normal finite value
log_eval(double x)301 LIBC_INLINE static double log_eval(double x) {
302   // For x = 2^ex * (1 + mx)
303   //   log(x) = ex * log(2) + log(1 + mx)
304   using FPB = fputil::FPBits<double>;
305   FPB bs(x);
306 
307   double ex = static_cast<double>(bs.get_exponent());
308 
309   // p1 is the leading 7 bits of mx, i.e.
310   // p1 * 2^(-7) <= m_x < (p1 + 1) * 2^(-7).
311   int p1 = static_cast<int>(bs.get_mantissa() >> (FPB::FRACTION_LEN - 7));
312 
313   // Set bs to (1 + (mx - p1*2^(-7))
314   bs.set_uintval(bs.uintval() & (FPB::FRACTION_MASK >> 7));
315   bs.set_biased_exponent(FPB::EXP_BIAS);
316   // dx = (mx - p1*2^(-7)) / (1 + p1*2^(-7)).
317   double dx = (bs.get_val() - 1.0) * ONE_OVER_F[p1];
318 
319   // Minimax polynomial of log(1 + dx) generated by Sollya with:
320   // > P = fpminimax(log(1 + x)/x, 6, [|D...|], [0, 2^-7]);
321   const double COEFFS[6] = {-0x1.ffffffffffffcp-2, 0x1.5555555552ddep-2,
322                             -0x1.ffffffefe562dp-3, 0x1.9999817d3a50fp-3,
323                             -0x1.554317b3f67a5p-3, 0x1.1dc5c45e09c18p-3};
324   double dx2 = dx * dx;
325   double c1 = fputil::multiply_add(dx, COEFFS[1], COEFFS[0]);
326   double c2 = fputil::multiply_add(dx, COEFFS[3], COEFFS[2]);
327   double c3 = fputil::multiply_add(dx, COEFFS[5], COEFFS[4]);
328 
329   double p = fputil::polyeval(dx2, dx, c1, c2, c3);
330   double result =
331       fputil::multiply_add(ex, /*log(2)*/ 0x1.62e42fefa39efp-1, LOG_F[p1] + p);
332   return result;
333 }
334 
335 // Rounding tests for 2^hi * (mid + lo) when the output might be denormal. We
336 // assume further that 1 <= mid < 2, mid + lo < 2, and |lo| << mid.
337 // Notice that, if 0 < x < 2^-1022,
338 //   double(2^-1022 + x) - 2^-1022 = double(x).
339 // So if we scale x up by 2^1022, we can use
340 //   double(1.0 + 2^1022 * x) - 1.0 to test how x is rounded in denormal range.
ziv_test_denorm(int hi,double mid,double lo,double err)341 LIBC_INLINE cpp::optional<double> ziv_test_denorm(int hi, double mid, double lo,
342                                                   double err) {
343   using FPBits = typename fputil::FPBits<double>;
344 
345   // Scaling factor = 1/(min normal number) = 2^1022
346   int64_t exp_hi = static_cast<int64_t>(hi + 1022) << FPBits::FRACTION_LEN;
347   double mid_hi = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(mid));
348   double lo_scaled =
349       (lo != 0.0) ? cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(lo))
350                   : 0.0;
351 
352   double extra_factor = 0.0;
353   uint64_t scale_down = 0x3FE0'0000'0000'0000; // 1022 in the exponent field.
354 
355   // Result is denormal if (mid_hi + lo_scale < 1.0).
356   if ((1.0 - mid_hi) > lo_scaled) {
357     // Extra rounding step is needed, which adds more rounding errors.
358     err += 0x1.0p-52;
359     extra_factor = 1.0;
360     scale_down = 0x3FF0'0000'0000'0000; // 1023 in the exponent field.
361   }
362 
363   double err_scaled =
364       cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(err));
365 
366   double lo_u = lo_scaled + err_scaled;
367   double lo_l = lo_scaled - err_scaled;
368 
369   // By adding 1.0, the results will have similar rounding points as denormal
370   // outputs.
371   double upper = extra_factor + (mid_hi + lo_u);
372   double lower = extra_factor + (mid_hi + lo_l);
373 
374   if (LIBC_LIKELY(upper == lower)) {
375     return cpp::bit_cast<double>(cpp::bit_cast<uint64_t>(upper) - scale_down);
376   }
377 
378   return cpp::nullopt;
379 }
380 
381 } // namespace LIBC_NAMESPACE_DECL
382 
383 #endif // LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H
384