xref: /aosp_15_r20/external/llvm-libc/src/math/generic/tanpif16.cpp (revision 71db0c75aadcf003ffe3238005f61d7618a3fead)
1 //===-- Half-precision tanpif function ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "src/math/tanpif16.h"
10 #include "hdr/errno_macros.h"
11 #include "hdr/fenv_macros.h"
12 #include "sincosf16_utils.h"
13 #include "src/__support/FPUtil/FEnvImpl.h"
14 #include "src/__support/FPUtil/FPBits.h"
15 #include "src/__support/FPUtil/cast.h"
16 #include "src/__support/FPUtil/except_value_utils.h"
17 #include "src/__support/FPUtil/multiply_add.h"
18 #include "src/__support/macros/optimization.h"
19 
20 namespace LIBC_NAMESPACE_DECL {
21 
22 constexpr size_t N_EXCEPTS = 21;
23 
24 constexpr fputil::ExceptValues<float16, N_EXCEPTS> TANF16_EXCEPTS{{
25     // (input, RZ output, RU offset, RD offset, RN offset)
26     {0x07f2, 0x0e3d, 1, 0, 0}, {0x086a, 0x0eee, 1, 0, 1},
27     {0x08db, 0x0fa0, 1, 0, 0}, {0x094c, 0x1029, 1, 0, 0},
28     {0x0b10, 0x118c, 1, 0, 0}, {0x1ce0, 0x23a8, 1, 0, 1},
29     {0x1235, 0x18e0, 1, 0, 0}, {0x2579, 0x2c4e, 1, 0, 0},
30     {0x28b2, 0x2f68, 1, 0, 1}, {0x2a43, 0x30f4, 1, 0, 1},
31     {0x31b7, 0x3907, 1, 0, 0}, {0x329d, 0x3a12, 1, 0, 1},
32     {0x34f1, 0x3dd7, 1, 0, 0}, {0x3658, 0x41ee, 1, 0, 0},
33     {0x38d4, 0xc1ee, 0, 1, 0}, {0x3d96, 0x41ee, 1, 0, 0},
34     {0x3e6a, 0xc1ee, 0, 1, 0}, {0x40cb, 0x41ee, 1, 0, 0},
35     {0x4135, 0xc1ee, 0, 1, 0}, {0x42cb, 0x41ee, 1, 0, 0},
36     {0x4335, 0xc1ee, 0, 1, 0},
37 }};
38 
39 LLVM_LIBC_FUNCTION(float16, tanpif16, (float16 x)) {
40   using FPBits = typename fputil::FPBits<float16>;
41   FPBits xbits(x);
42 
43   uint16_t x_u = xbits.uintval();
44   uint16_t x_abs = x_u & 0x7fff;
45 
46   // Handle exceptional values
47   if (LIBC_UNLIKELY(x_abs <= 0x4335)) {
48     if (LIBC_UNLIKELY(x_abs == 0U))
49       return x;
50 
51     bool x_sign = x_u >> 15;
52     if (auto r = TANF16_EXCEPTS.lookup_odd(x_abs, x_sign);
53         LIBC_UNLIKELY(r.has_value()))
54       return r.value();
55   }
56 
57   // Numbers greater or equal to 2^10 are integers, or infinity, or NaN
58   if (LIBC_UNLIKELY(x_abs >= 0x6400)) {
59     // Check for NaN or infinity values
60     if (LIBC_UNLIKELY(x_abs >= 0x7c00)) {
61       if (x_abs == 0x7c00) {
62         fputil::set_errno_if_required(EDOM);
63         fputil::raise_except_if_required(FE_INVALID);
64       }
65 
66       return x + FPBits::quiet_nan().get_val();
67     }
68 
69     return FPBits::zero(xbits.sign()).get_val();
70   }
71   // Range reduction:
72   // For |x| > 1/32, we perform range reduction as follows:
73   // Find k and y such that:
74   //   x = (k + y) * 1/32
75   //   k is an integer
76   //   |y| < 0.5
77   //
78   // This is done by performing:
79   //   k = round(x * 32)
80   //   y = x * 32 - k
81   //
82   // Once k and y are computed, we then deduce the answer by tthe formula:
83   // tan(x) = sin(x) / cos(x)
84   //        = (sin_y * cos_k + cos_y * sin_k) / (cos_y * cos_k - sin_y * sin_k)
85   float xf = x;
86   float sin_k, cos_k, sin_y, cosm1_y;
87   sincospif16_eval(xf, sin_k, cos_k, sin_y, cosm1_y);
88 
89   if (LIBC_UNLIKELY(sin_y == 0 && cos_k == 0)) {
90     fputil::set_errno_if_required(EDOM);
91     fputil::raise_except_if_required(FE_DIVBYZERO);
92 
93     int16_t x_mp5_u = static_cast<int16_t>(x - 0.5);
94     return ((x_mp5_u & 0x1) ? -1 : 1) * FPBits::inf().get_val();
95   }
96 
97   using fputil::multiply_add;
98   return fputil::cast<float16>(
99       multiply_add(sin_y, cos_k, multiply_add(cosm1_y, sin_k, sin_k)) /
100       multiply_add(sin_y, -sin_k, multiply_add(cosm1_y, cos_k, cos_k)));
101 }
102 
103 } // namespace LIBC_NAMESPACE_DECL
104