1 //===--- HexagonCommonGEP.cpp ---------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #define DEBUG_TYPE "commgep"
11
12 #include "llvm/Pass.h"
13 #include "llvm/ADT/FoldingSet.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/Analysis/LoopInfo.h"
16 #include "llvm/Analysis/PostDominators.h"
17 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/Verifier.h"
23 #include "llvm/Support/Allocator.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Transforms/Scalar.h"
28 #include "llvm/Transforms/Utils/Local.h"
29
30 #include <map>
31 #include <set>
32 #include <vector>
33
34 #include "HexagonTargetMachine.h"
35
36 using namespace llvm;
37
38 static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true),
39 cl::Hidden, cl::ZeroOrMore);
40
41 static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden,
42 cl::ZeroOrMore);
43
44 static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true),
45 cl::Hidden, cl::ZeroOrMore);
46
47 namespace llvm {
48 void initializeHexagonCommonGEPPass(PassRegistry&);
49 }
50
51 namespace {
52 struct GepNode;
53 typedef std::set<GepNode*> NodeSet;
54 typedef std::map<GepNode*,Value*> NodeToValueMap;
55 typedef std::vector<GepNode*> NodeVect;
56 typedef std::map<GepNode*,NodeVect> NodeChildrenMap;
57 typedef std::set<Use*> UseSet;
58 typedef std::map<GepNode*,UseSet> NodeToUsesMap;
59
60 // Numbering map for gep nodes. Used to keep track of ordering for
61 // gep nodes.
62 struct NodeOrdering {
NodeOrdering__anon73e505260111::NodeOrdering63 NodeOrdering() : LastNum(0) {}
64
insert__anon73e505260111::NodeOrdering65 void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); }
clear__anon73e505260111::NodeOrdering66 void clear() { Map.clear(); }
67
operator ()__anon73e505260111::NodeOrdering68 bool operator()(const GepNode *N1, const GepNode *N2) const {
69 auto F1 = Map.find(N1), F2 = Map.find(N2);
70 assert(F1 != Map.end() && F2 != Map.end());
71 return F1->second < F2->second;
72 }
73
74 private:
75 std::map<const GepNode *, unsigned> Map;
76 unsigned LastNum;
77 };
78
79 class HexagonCommonGEP : public FunctionPass {
80 public:
81 static char ID;
HexagonCommonGEP()82 HexagonCommonGEP() : FunctionPass(ID) {
83 initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry());
84 }
85 virtual bool runOnFunction(Function &F);
getPassName() const86 virtual const char *getPassName() const {
87 return "Hexagon Common GEP";
88 }
89
getAnalysisUsage(AnalysisUsage & AU) const90 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
91 AU.addRequired<DominatorTreeWrapperPass>();
92 AU.addPreserved<DominatorTreeWrapperPass>();
93 AU.addRequired<PostDominatorTreeWrapperPass>();
94 AU.addPreserved<PostDominatorTreeWrapperPass>();
95 AU.addRequired<LoopInfoWrapperPass>();
96 AU.addPreserved<LoopInfoWrapperPass>();
97 FunctionPass::getAnalysisUsage(AU);
98 }
99
100 private:
101 typedef std::map<Value*,GepNode*> ValueToNodeMap;
102 typedef std::vector<Value*> ValueVect;
103 typedef std::map<GepNode*,ValueVect> NodeToValuesMap;
104
105 void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order);
106 bool isHandledGepForm(GetElementPtrInst *GepI);
107 void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM);
108 void collect();
109 void common();
110
111 BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM,
112 NodeToValueMap &Loc);
113 BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM,
114 NodeToValueMap &Loc);
115 bool isInvariantIn(Value *Val, Loop *L);
116 bool isInvariantIn(GepNode *Node, Loop *L);
117 bool isInMainPath(BasicBlock *B, Loop *L);
118 BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM,
119 NodeToValueMap &Loc);
120 void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc);
121 void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM,
122 NodeToValueMap &Loc);
123 void computeNodePlacement(NodeToValueMap &Loc);
124
125 Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
126 BasicBlock *LocB);
127 void getAllUsersForNode(GepNode *Node, ValueVect &Values,
128 NodeChildrenMap &NCM);
129 void materialize(NodeToValueMap &Loc);
130
131 void removeDeadCode();
132
133 NodeVect Nodes;
134 NodeToUsesMap Uses;
135 NodeOrdering NodeOrder; // Node ordering, for deterministic behavior.
136 SpecificBumpPtrAllocator<GepNode> *Mem;
137 LLVMContext *Ctx;
138 LoopInfo *LI;
139 DominatorTree *DT;
140 PostDominatorTree *PDT;
141 Function *Fn;
142 };
143 }
144
145
146 char HexagonCommonGEP::ID = 0;
147 INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
148 false, false)
149 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
150 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
151 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
152 INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
153 false, false)
154
155 namespace {
156 struct GepNode {
157 enum {
158 None = 0,
159 Root = 0x01,
160 Internal = 0x02,
161 Used = 0x04
162 };
163
164 uint32_t Flags;
165 union {
166 GepNode *Parent;
167 Value *BaseVal;
168 };
169 Value *Idx;
170 Type *PTy; // Type of the pointer operand.
171
GepNode__anon73e505260211::GepNode172 GepNode() : Flags(0), Parent(0), Idx(0), PTy(0) {}
GepNode__anon73e505260211::GepNode173 GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) {
174 if (Flags & Root)
175 BaseVal = N->BaseVal;
176 else
177 Parent = N->Parent;
178 }
179 friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN);
180 };
181
182
next_type(Type * Ty,Value * Idx)183 Type *next_type(Type *Ty, Value *Idx) {
184 // Advance the type.
185 if (!Ty->isStructTy()) {
186 Type *NexTy = cast<SequentialType>(Ty)->getElementType();
187 return NexTy;
188 }
189 // Otherwise it is a struct type.
190 ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
191 assert(CI && "Struct type with non-constant index");
192 int64_t i = CI->getValue().getSExtValue();
193 Type *NextTy = cast<StructType>(Ty)->getElementType(i);
194 return NextTy;
195 }
196
197
operator <<(raw_ostream & OS,const GepNode & GN)198 raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) {
199 OS << "{ {";
200 bool Comma = false;
201 if (GN.Flags & GepNode::Root) {
202 OS << "root";
203 Comma = true;
204 }
205 if (GN.Flags & GepNode::Internal) {
206 if (Comma)
207 OS << ',';
208 OS << "internal";
209 Comma = true;
210 }
211 if (GN.Flags & GepNode::Used) {
212 if (Comma)
213 OS << ',';
214 OS << "used";
215 }
216 OS << "} ";
217 if (GN.Flags & GepNode::Root)
218 OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')';
219 else
220 OS << "Parent:" << GN.Parent;
221
222 OS << " Idx:";
223 if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx))
224 OS << CI->getValue().getSExtValue();
225 else if (GN.Idx->hasName())
226 OS << GN.Idx->getName();
227 else
228 OS << "<anon> =" << *GN.Idx;
229
230 OS << " PTy:";
231 if (GN.PTy->isStructTy()) {
232 StructType *STy = cast<StructType>(GN.PTy);
233 if (!STy->isLiteral())
234 OS << GN.PTy->getStructName();
235 else
236 OS << "<anon-struct>:" << *STy;
237 }
238 else
239 OS << *GN.PTy;
240 OS << " }";
241 return OS;
242 }
243
244
245 template <typename NodeContainer>
dump_node_container(raw_ostream & OS,const NodeContainer & S)246 void dump_node_container(raw_ostream &OS, const NodeContainer &S) {
247 typedef typename NodeContainer::const_iterator const_iterator;
248 for (const_iterator I = S.begin(), E = S.end(); I != E; ++I)
249 OS << *I << ' ' << **I << '\n';
250 }
251
252 raw_ostream &operator<< (raw_ostream &OS,
253 const NodeVect &S) LLVM_ATTRIBUTE_UNUSED;
operator <<(raw_ostream & OS,const NodeVect & S)254 raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) {
255 dump_node_container(OS, S);
256 return OS;
257 }
258
259
260 raw_ostream &operator<< (raw_ostream &OS,
261 const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED;
operator <<(raw_ostream & OS,const NodeToUsesMap & M)262 raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){
263 typedef NodeToUsesMap::const_iterator const_iterator;
264 for (const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
265 const UseSet &Us = I->second;
266 OS << I->first << " -> #" << Us.size() << '{';
267 for (UseSet::const_iterator J = Us.begin(), F = Us.end(); J != F; ++J) {
268 User *R = (*J)->getUser();
269 if (R->hasName())
270 OS << ' ' << R->getName();
271 else
272 OS << " <?>(" << *R << ')';
273 }
274 OS << " }\n";
275 }
276 return OS;
277 }
278
279
280 struct in_set {
in_set__anon73e505260211::in_set281 in_set(const NodeSet &S) : NS(S) {}
operator ()__anon73e505260211::in_set282 bool operator() (GepNode *N) const {
283 return NS.find(N) != NS.end();
284 }
285 private:
286 const NodeSet &NS;
287 };
288 }
289
290
operator new(size_t,SpecificBumpPtrAllocator<GepNode> & A)291 inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) {
292 return A.Allocate();
293 }
294
295
getBlockTraversalOrder(BasicBlock * Root,ValueVect & Order)296 void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root,
297 ValueVect &Order) {
298 // Compute block ordering for a typical DT-based traversal of the flow
299 // graph: "before visiting a block, all of its dominators must have been
300 // visited".
301
302 Order.push_back(Root);
303 DomTreeNode *DTN = DT->getNode(Root);
304 typedef GraphTraits<DomTreeNode*> GTN;
305 typedef GTN::ChildIteratorType Iter;
306 for (Iter I = GTN::child_begin(DTN), E = GTN::child_end(DTN); I != E; ++I)
307 getBlockTraversalOrder((*I)->getBlock(), Order);
308 }
309
310
isHandledGepForm(GetElementPtrInst * GepI)311 bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) {
312 // No vector GEPs.
313 if (!GepI->getType()->isPointerTy())
314 return false;
315 // No GEPs without any indices. (Is this possible?)
316 if (GepI->idx_begin() == GepI->idx_end())
317 return false;
318 return true;
319 }
320
321
processGepInst(GetElementPtrInst * GepI,ValueToNodeMap & NM)322 void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI,
323 ValueToNodeMap &NM) {
324 DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n');
325 GepNode *N = new (*Mem) GepNode;
326 Value *PtrOp = GepI->getPointerOperand();
327 ValueToNodeMap::iterator F = NM.find(PtrOp);
328 if (F == NM.end()) {
329 N->BaseVal = PtrOp;
330 N->Flags |= GepNode::Root;
331 } else {
332 // If PtrOp was a GEP instruction, it must have already been processed.
333 // The ValueToNodeMap entry for it is the last gep node in the generated
334 // chain. Link to it here.
335 N->Parent = F->second;
336 }
337 N->PTy = PtrOp->getType();
338 N->Idx = *GepI->idx_begin();
339
340 // Collect the list of users of this GEP instruction. Will add it to the
341 // last node created for it.
342 UseSet Us;
343 for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end();
344 UI != UE; ++UI) {
345 // Check if this gep is used by anything other than other geps that
346 // we will process.
347 if (isa<GetElementPtrInst>(*UI)) {
348 GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI);
349 if (isHandledGepForm(UserG))
350 continue;
351 }
352 Us.insert(&UI.getUse());
353 }
354 Nodes.push_back(N);
355 NodeOrder.insert(N);
356
357 // Skip the first index operand, since we only handle 0. This dereferences
358 // the pointer operand.
359 GepNode *PN = N;
360 Type *PtrTy = cast<PointerType>(PtrOp->getType())->getElementType();
361 for (User::op_iterator OI = GepI->idx_begin()+1, OE = GepI->idx_end();
362 OI != OE; ++OI) {
363 Value *Op = *OI;
364 GepNode *Nx = new (*Mem) GepNode;
365 Nx->Parent = PN; // Link Nx to the previous node.
366 Nx->Flags |= GepNode::Internal;
367 Nx->PTy = PtrTy;
368 Nx->Idx = Op;
369 Nodes.push_back(Nx);
370 NodeOrder.insert(Nx);
371 PN = Nx;
372
373 PtrTy = next_type(PtrTy, Op);
374 }
375
376 // After last node has been created, update the use information.
377 if (!Us.empty()) {
378 PN->Flags |= GepNode::Used;
379 Uses[PN].insert(Us.begin(), Us.end());
380 }
381
382 // Link the last node with the originating GEP instruction. This is to
383 // help with linking chained GEP instructions.
384 NM.insert(std::make_pair(GepI, PN));
385 }
386
387
collect()388 void HexagonCommonGEP::collect() {
389 // Establish depth-first traversal order of the dominator tree.
390 ValueVect BO;
391 getBlockTraversalOrder(&Fn->front(), BO);
392
393 // The creation of gep nodes requires DT-traversal. When processing a GEP
394 // instruction that uses another GEP instruction as the base pointer, the
395 // gep node for the base pointer should already exist.
396 ValueToNodeMap NM;
397 for (ValueVect::iterator I = BO.begin(), E = BO.end(); I != E; ++I) {
398 BasicBlock *B = cast<BasicBlock>(*I);
399 for (BasicBlock::iterator J = B->begin(), F = B->end(); J != F; ++J) {
400 if (!isa<GetElementPtrInst>(J))
401 continue;
402 GetElementPtrInst *GepI = cast<GetElementPtrInst>(J);
403 if (isHandledGepForm(GepI))
404 processGepInst(GepI, NM);
405 }
406 }
407
408 DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes);
409 }
410
411
412 namespace {
invert_find_roots(const NodeVect & Nodes,NodeChildrenMap & NCM,NodeVect & Roots)413 void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM,
414 NodeVect &Roots) {
415 typedef NodeVect::const_iterator const_iterator;
416 for (const_iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
417 GepNode *N = *I;
418 if (N->Flags & GepNode::Root) {
419 Roots.push_back(N);
420 continue;
421 }
422 GepNode *PN = N->Parent;
423 NCM[PN].push_back(N);
424 }
425 }
426
nodes_for_root(GepNode * Root,NodeChildrenMap & NCM,NodeSet & Nodes)427 void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM, NodeSet &Nodes) {
428 NodeVect Work;
429 Work.push_back(Root);
430 Nodes.insert(Root);
431
432 while (!Work.empty()) {
433 NodeVect::iterator First = Work.begin();
434 GepNode *N = *First;
435 Work.erase(First);
436 NodeChildrenMap::iterator CF = NCM.find(N);
437 if (CF != NCM.end()) {
438 Work.insert(Work.end(), CF->second.begin(), CF->second.end());
439 Nodes.insert(CF->second.begin(), CF->second.end());
440 }
441 }
442 }
443 }
444
445
446 namespace {
447 typedef std::set<NodeSet> NodeSymRel;
448 typedef std::pair<GepNode*,GepNode*> NodePair;
449 typedef std::set<NodePair> NodePairSet;
450
node_class(GepNode * N,NodeSymRel & Rel)451 const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) {
452 for (NodeSymRel::iterator I = Rel.begin(), E = Rel.end(); I != E; ++I)
453 if (I->count(N))
454 return &*I;
455 return 0;
456 }
457
458 // Create an ordered pair of GepNode pointers. The pair will be used in
459 // determining equality. The only purpose of the ordering is to eliminate
460 // duplication due to the commutativity of equality/non-equality.
node_pair(GepNode * N1,GepNode * N2)461 NodePair node_pair(GepNode *N1, GepNode *N2) {
462 uintptr_t P1 = uintptr_t(N1), P2 = uintptr_t(N2);
463 if (P1 <= P2)
464 return std::make_pair(N1, N2);
465 return std::make_pair(N2, N1);
466 }
467
node_hash(GepNode * N)468 unsigned node_hash(GepNode *N) {
469 // Include everything except flags and parent.
470 FoldingSetNodeID ID;
471 ID.AddPointer(N->Idx);
472 ID.AddPointer(N->PTy);
473 return ID.ComputeHash();
474 }
475
node_eq(GepNode * N1,GepNode * N2,NodePairSet & Eq,NodePairSet & Ne)476 bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq, NodePairSet &Ne) {
477 // Don't cache the result for nodes with different hashes. The hash
478 // comparison is fast enough.
479 if (node_hash(N1) != node_hash(N2))
480 return false;
481
482 NodePair NP = node_pair(N1, N2);
483 NodePairSet::iterator FEq = Eq.find(NP);
484 if (FEq != Eq.end())
485 return true;
486 NodePairSet::iterator FNe = Ne.find(NP);
487 if (FNe != Ne.end())
488 return false;
489 // Not previously compared.
490 bool Root1 = N1->Flags & GepNode::Root;
491 bool Root2 = N2->Flags & GepNode::Root;
492 NodePair P = node_pair(N1, N2);
493 // If the Root flag has different values, the nodes are different.
494 // If both nodes are root nodes, but their base pointers differ,
495 // they are different.
496 if (Root1 != Root2 || (Root1 && N1->BaseVal != N2->BaseVal)) {
497 Ne.insert(P);
498 return false;
499 }
500 // Here the root flags are identical, and for root nodes the
501 // base pointers are equal, so the root nodes are equal.
502 // For non-root nodes, compare their parent nodes.
503 if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) {
504 Eq.insert(P);
505 return true;
506 }
507 return false;
508 }
509 }
510
511
common()512 void HexagonCommonGEP::common() {
513 // The essence of this commoning is finding gep nodes that are equal.
514 // To do this we need to compare all pairs of nodes. To save time,
515 // first, partition the set of all nodes into sets of potentially equal
516 // nodes, and then compare pairs from within each partition.
517 typedef std::map<unsigned,NodeSet> NodeSetMap;
518 NodeSetMap MaybeEq;
519
520 for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
521 GepNode *N = *I;
522 unsigned H = node_hash(N);
523 MaybeEq[H].insert(N);
524 }
525
526 // Compute the equivalence relation for the gep nodes. Use two caches,
527 // one for equality and the other for non-equality.
528 NodeSymRel EqRel; // Equality relation (as set of equivalence classes).
529 NodePairSet Eq, Ne; // Caches.
530 for (NodeSetMap::iterator I = MaybeEq.begin(), E = MaybeEq.end();
531 I != E; ++I) {
532 NodeSet &S = I->second;
533 for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) {
534 GepNode *N = *NI;
535 // If node already has a class, then the class must have been created
536 // in a prior iteration of this loop. Since equality is transitive,
537 // nothing more will be added to that class, so skip it.
538 if (node_class(N, EqRel))
539 continue;
540
541 // Create a new class candidate now.
542 NodeSet C;
543 for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ)
544 if (node_eq(N, *NJ, Eq, Ne))
545 C.insert(*NJ);
546 // If Tmp is empty, N would be the only element in it. Don't bother
547 // creating a class for it then.
548 if (!C.empty()) {
549 C.insert(N); // Finalize the set before adding it to the relation.
550 std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C);
551 (void)Ins;
552 assert(Ins.second && "Cannot add a class");
553 }
554 }
555 }
556
557 DEBUG({
558 dbgs() << "Gep node equality:\n";
559 for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I)
560 dbgs() << "{ " << I->first << ", " << I->second << " }\n";
561
562 dbgs() << "Gep equivalence classes:\n";
563 for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) {
564 dbgs() << '{';
565 const NodeSet &S = *I;
566 for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) {
567 if (J != S.begin())
568 dbgs() << ',';
569 dbgs() << ' ' << *J;
570 }
571 dbgs() << " }\n";
572 }
573 });
574
575
576 // Create a projection from a NodeSet to the minimal element in it.
577 typedef std::map<const NodeSet*,GepNode*> ProjMap;
578 ProjMap PM;
579 for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) {
580 const NodeSet &S = *I;
581 GepNode *Min = *std::min_element(S.begin(), S.end(), NodeOrder);
582 std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min));
583 (void)Ins;
584 assert(Ins.second && "Cannot add minimal element");
585
586 // Update the min element's flags, and user list.
587 uint32_t Flags = 0;
588 UseSet &MinUs = Uses[Min];
589 for (NodeSet::iterator J = S.begin(), F = S.end(); J != F; ++J) {
590 GepNode *N = *J;
591 uint32_t NF = N->Flags;
592 // If N is used, append all original values of N to the list of
593 // original values of Min.
594 if (NF & GepNode::Used)
595 MinUs.insert(Uses[N].begin(), Uses[N].end());
596 Flags |= NF;
597 }
598 if (MinUs.empty())
599 Uses.erase(Min);
600
601 // The collected flags should include all the flags from the min element.
602 assert((Min->Flags & Flags) == Min->Flags);
603 Min->Flags = Flags;
604 }
605
606 // Commoning: for each non-root gep node, replace "Parent" with the
607 // selected (minimum) node from the corresponding equivalence class.
608 // If a given parent does not have an equivalence class, leave it
609 // unchanged (it means that it's the only element in its class).
610 for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
611 GepNode *N = *I;
612 if (N->Flags & GepNode::Root)
613 continue;
614 const NodeSet *PC = node_class(N->Parent, EqRel);
615 if (!PC)
616 continue;
617 ProjMap::iterator F = PM.find(PC);
618 if (F == PM.end())
619 continue;
620 // Found a replacement, use it.
621 GepNode *Rep = F->second;
622 N->Parent = Rep;
623 }
624
625 DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes);
626
627 // Finally, erase the nodes that are no longer used.
628 NodeSet Erase;
629 for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
630 GepNode *N = *I;
631 const NodeSet *PC = node_class(N, EqRel);
632 if (!PC)
633 continue;
634 ProjMap::iterator F = PM.find(PC);
635 if (F == PM.end())
636 continue;
637 if (N == F->second)
638 continue;
639 // Node for removal.
640 Erase.insert(*I);
641 }
642 NodeVect::iterator NewE = std::remove_if(Nodes.begin(), Nodes.end(),
643 in_set(Erase));
644 Nodes.resize(std::distance(Nodes.begin(), NewE));
645
646 DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes);
647 }
648
649
650 namespace {
651 template <typename T>
nearest_common_dominator(DominatorTree * DT,T & Blocks)652 BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) {
653 DEBUG({
654 dbgs() << "NCD of {";
655 for (typename T::iterator I = Blocks.begin(), E = Blocks.end();
656 I != E; ++I) {
657 if (!*I)
658 continue;
659 BasicBlock *B = cast<BasicBlock>(*I);
660 dbgs() << ' ' << B->getName();
661 }
662 dbgs() << " }\n";
663 });
664
665 // Allow null basic blocks in Blocks. In such cases, return 0.
666 typename T::iterator I = Blocks.begin(), E = Blocks.end();
667 if (I == E || !*I)
668 return 0;
669 BasicBlock *Dom = cast<BasicBlock>(*I);
670 while (++I != E) {
671 BasicBlock *B = cast_or_null<BasicBlock>(*I);
672 Dom = B ? DT->findNearestCommonDominator(Dom, B) : 0;
673 if (!Dom)
674 return 0;
675 }
676 DEBUG(dbgs() << "computed:" << Dom->getName() << '\n');
677 return Dom;
678 }
679
680 template <typename T>
nearest_common_dominatee(DominatorTree * DT,T & Blocks)681 BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) {
682 // If two blocks, A and B, dominate a block C, then A dominates B,
683 // or B dominates A.
684 typename T::iterator I = Blocks.begin(), E = Blocks.end();
685 // Find the first non-null block.
686 while (I != E && !*I)
687 ++I;
688 if (I == E)
689 return DT->getRoot();
690 BasicBlock *DomB = cast<BasicBlock>(*I);
691 while (++I != E) {
692 if (!*I)
693 continue;
694 BasicBlock *B = cast<BasicBlock>(*I);
695 if (DT->dominates(B, DomB))
696 continue;
697 if (!DT->dominates(DomB, B))
698 return 0;
699 DomB = B;
700 }
701 return DomB;
702 }
703
704 // Find the first use in B of any value from Values. If no such use,
705 // return B->end().
706 template <typename T>
first_use_of_in_block(T & Values,BasicBlock * B)707 BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) {
708 BasicBlock::iterator FirstUse = B->end(), BEnd = B->end();
709 typedef typename T::iterator iterator;
710 for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) {
711 Value *V = *I;
712 // If V is used in a PHI node, the use belongs to the incoming block,
713 // not the block with the PHI node. In the incoming block, the use
714 // would be considered as being at the end of it, so it cannot
715 // influence the position of the first use (which is assumed to be
716 // at the end to start with).
717 if (isa<PHINode>(V))
718 continue;
719 if (!isa<Instruction>(V))
720 continue;
721 Instruction *In = cast<Instruction>(V);
722 if (In->getParent() != B)
723 continue;
724 BasicBlock::iterator It = In->getIterator();
725 if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd))
726 FirstUse = It;
727 }
728 return FirstUse;
729 }
730
is_empty(const BasicBlock * B)731 bool is_empty(const BasicBlock *B) {
732 return B->empty() || (&*B->begin() == B->getTerminator());
733 }
734 }
735
736
recalculatePlacement(GepNode * Node,NodeChildrenMap & NCM,NodeToValueMap & Loc)737 BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node,
738 NodeChildrenMap &NCM, NodeToValueMap &Loc) {
739 DEBUG(dbgs() << "Loc for node:" << Node << '\n');
740 // Recalculate the placement for Node, assuming that the locations of
741 // its children in Loc are valid.
742 // Return 0 if there is no valid placement for Node (for example, it
743 // uses an index value that is not available at the location required
744 // to dominate all children, etc.).
745
746 // Find the nearest common dominator for:
747 // - all users, if the node is used, and
748 // - all children.
749 ValueVect Bs;
750 if (Node->Flags & GepNode::Used) {
751 // Append all blocks with uses of the original values to the
752 // block vector Bs.
753 NodeToUsesMap::iterator UF = Uses.find(Node);
754 assert(UF != Uses.end() && "Used node with no use information");
755 UseSet &Us = UF->second;
756 for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) {
757 Use *U = *I;
758 User *R = U->getUser();
759 if (!isa<Instruction>(R))
760 continue;
761 BasicBlock *PB = isa<PHINode>(R)
762 ? cast<PHINode>(R)->getIncomingBlock(*U)
763 : cast<Instruction>(R)->getParent();
764 Bs.push_back(PB);
765 }
766 }
767 // Append the location of each child.
768 NodeChildrenMap::iterator CF = NCM.find(Node);
769 if (CF != NCM.end()) {
770 NodeVect &Cs = CF->second;
771 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
772 GepNode *CN = *I;
773 NodeToValueMap::iterator LF = Loc.find(CN);
774 // If the child is only used in GEP instructions (i.e. is not used in
775 // non-GEP instructions), the nearest dominator computed for it may
776 // have been null. In such case it won't have a location available.
777 if (LF == Loc.end())
778 continue;
779 Bs.push_back(LF->second);
780 }
781 }
782
783 BasicBlock *DomB = nearest_common_dominator(DT, Bs);
784 if (!DomB)
785 return 0;
786 // Check if the index used by Node dominates the computed dominator.
787 Instruction *IdxI = dyn_cast<Instruction>(Node->Idx);
788 if (IdxI && !DT->dominates(IdxI->getParent(), DomB))
789 return 0;
790
791 // Avoid putting nodes into empty blocks.
792 while (is_empty(DomB)) {
793 DomTreeNode *N = (*DT)[DomB]->getIDom();
794 if (!N)
795 break;
796 DomB = N->getBlock();
797 }
798
799 // Otherwise, DomB is fine. Update the location map.
800 Loc[Node] = DomB;
801 return DomB;
802 }
803
804
recalculatePlacementRec(GepNode * Node,NodeChildrenMap & NCM,NodeToValueMap & Loc)805 BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node,
806 NodeChildrenMap &NCM, NodeToValueMap &Loc) {
807 DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n');
808 // Recalculate the placement of Node, after recursively recalculating the
809 // placements of all its children.
810 NodeChildrenMap::iterator CF = NCM.find(Node);
811 if (CF != NCM.end()) {
812 NodeVect &Cs = CF->second;
813 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
814 recalculatePlacementRec(*I, NCM, Loc);
815 }
816 BasicBlock *LB = recalculatePlacement(Node, NCM, Loc);
817 DEBUG(dbgs() << "LocRec end for node:" << Node << '\n');
818 return LB;
819 }
820
821
isInvariantIn(Value * Val,Loop * L)822 bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) {
823 if (isa<Constant>(Val) || isa<Argument>(Val))
824 return true;
825 Instruction *In = dyn_cast<Instruction>(Val);
826 if (!In)
827 return false;
828 BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent();
829 return DT->properlyDominates(DefB, HdrB);
830 }
831
832
isInvariantIn(GepNode * Node,Loop * L)833 bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) {
834 if (Node->Flags & GepNode::Root)
835 if (!isInvariantIn(Node->BaseVal, L))
836 return false;
837 return isInvariantIn(Node->Idx, L);
838 }
839
840
isInMainPath(BasicBlock * B,Loop * L)841 bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) {
842 BasicBlock *HB = L->getHeader();
843 BasicBlock *LB = L->getLoopLatch();
844 // B must post-dominate the loop header or dominate the loop latch.
845 if (PDT->dominates(B, HB))
846 return true;
847 if (LB && DT->dominates(B, LB))
848 return true;
849 return false;
850 }
851
852
853 namespace {
preheader(DominatorTree * DT,Loop * L)854 BasicBlock *preheader(DominatorTree *DT, Loop *L) {
855 if (BasicBlock *PH = L->getLoopPreheader())
856 return PH;
857 if (!OptSpeculate)
858 return 0;
859 DomTreeNode *DN = DT->getNode(L->getHeader());
860 if (!DN)
861 return 0;
862 return DN->getIDom()->getBlock();
863 }
864 }
865
866
adjustForInvariance(GepNode * Node,NodeChildrenMap & NCM,NodeToValueMap & Loc)867 BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node,
868 NodeChildrenMap &NCM, NodeToValueMap &Loc) {
869 // Find the "topmost" location for Node: it must be dominated by both,
870 // its parent (or the BaseVal, if it's a root node), and by the index
871 // value.
872 ValueVect Bs;
873 if (Node->Flags & GepNode::Root) {
874 if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal))
875 Bs.push_back(PIn->getParent());
876 } else {
877 Bs.push_back(Loc[Node->Parent]);
878 }
879 if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx))
880 Bs.push_back(IIn->getParent());
881 BasicBlock *TopB = nearest_common_dominatee(DT, Bs);
882
883 // Traverse the loop nest upwards until we find a loop in which Node
884 // is no longer invariant, or until we get to the upper limit of Node's
885 // placement. The traversal will also stop when a suitable "preheader"
886 // cannot be found for a given loop. The "preheader" may actually be
887 // a regular block outside of the loop (i.e. not guarded), in which case
888 // the Node will be speculated.
889 // For nodes that are not in the main path of the containing loop (i.e.
890 // are not executed in each iteration), do not move them out of the loop.
891 BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]);
892 if (LocB) {
893 Loop *Lp = LI->getLoopFor(LocB);
894 while (Lp) {
895 if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp))
896 break;
897 BasicBlock *NewLoc = preheader(DT, Lp);
898 if (!NewLoc || !DT->dominates(TopB, NewLoc))
899 break;
900 Lp = Lp->getParentLoop();
901 LocB = NewLoc;
902 }
903 }
904 Loc[Node] = LocB;
905
906 // Recursively compute the locations of all children nodes.
907 NodeChildrenMap::iterator CF = NCM.find(Node);
908 if (CF != NCM.end()) {
909 NodeVect &Cs = CF->second;
910 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
911 adjustForInvariance(*I, NCM, Loc);
912 }
913 return LocB;
914 }
915
916
917 namespace {
918 struct LocationAsBlock {
LocationAsBlock__anon73e505260911::LocationAsBlock919 LocationAsBlock(const NodeToValueMap &L) : Map(L) {}
920 const NodeToValueMap ⤅
921 };
922
923 raw_ostream &operator<< (raw_ostream &OS,
924 const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ;
operator <<(raw_ostream & OS,const LocationAsBlock & Loc)925 raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) {
926 for (NodeToValueMap::const_iterator I = Loc.Map.begin(), E = Loc.Map.end();
927 I != E; ++I) {
928 OS << I->first << " -> ";
929 BasicBlock *B = cast<BasicBlock>(I->second);
930 OS << B->getName() << '(' << B << ')';
931 OS << '\n';
932 }
933 return OS;
934 }
935
is_constant(GepNode * N)936 inline bool is_constant(GepNode *N) {
937 return isa<ConstantInt>(N->Idx);
938 }
939 }
940
941
separateChainForNode(GepNode * Node,Use * U,NodeToValueMap & Loc)942 void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U,
943 NodeToValueMap &Loc) {
944 User *R = U->getUser();
945 DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: "
946 << *R << '\n');
947 BasicBlock *PB = cast<Instruction>(R)->getParent();
948
949 GepNode *N = Node;
950 GepNode *C = 0, *NewNode = 0;
951 while (is_constant(N) && !(N->Flags & GepNode::Root)) {
952 // XXX if (single-use) dont-replicate;
953 GepNode *NewN = new (*Mem) GepNode(N);
954 Nodes.push_back(NewN);
955 Loc[NewN] = PB;
956
957 if (N == Node)
958 NewNode = NewN;
959 NewN->Flags &= ~GepNode::Used;
960 if (C)
961 C->Parent = NewN;
962 C = NewN;
963 N = N->Parent;
964 }
965 if (!NewNode)
966 return;
967
968 // Move over all uses that share the same user as U from Node to NewNode.
969 NodeToUsesMap::iterator UF = Uses.find(Node);
970 assert(UF != Uses.end());
971 UseSet &Us = UF->second;
972 UseSet NewUs;
973 for (UseSet::iterator I = Us.begin(); I != Us.end(); ) {
974 User *S = (*I)->getUser();
975 UseSet::iterator Nx = std::next(I);
976 if (S == R) {
977 NewUs.insert(*I);
978 Us.erase(I);
979 }
980 I = Nx;
981 }
982 if (Us.empty()) {
983 Node->Flags &= ~GepNode::Used;
984 Uses.erase(UF);
985 }
986
987 // Should at least have U in NewUs.
988 NewNode->Flags |= GepNode::Used;
989 DEBUG(dbgs() << "new node: " << NewNode << " " << *NewNode << '\n');
990 assert(!NewUs.empty());
991 Uses[NewNode] = NewUs;
992 }
993
994
separateConstantChains(GepNode * Node,NodeChildrenMap & NCM,NodeToValueMap & Loc)995 void HexagonCommonGEP::separateConstantChains(GepNode *Node,
996 NodeChildrenMap &NCM, NodeToValueMap &Loc) {
997 // First approximation: extract all chains.
998 NodeSet Ns;
999 nodes_for_root(Node, NCM, Ns);
1000
1001 DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n');
1002 // Collect all used nodes together with the uses from loads and stores,
1003 // where the GEP node could be folded into the load/store instruction.
1004 NodeToUsesMap FNs; // Foldable nodes.
1005 for (NodeSet::iterator I = Ns.begin(), E = Ns.end(); I != E; ++I) {
1006 GepNode *N = *I;
1007 if (!(N->Flags & GepNode::Used))
1008 continue;
1009 NodeToUsesMap::iterator UF = Uses.find(N);
1010 assert(UF != Uses.end());
1011 UseSet &Us = UF->second;
1012 // Loads/stores that use the node N.
1013 UseSet LSs;
1014 for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) {
1015 Use *U = *J;
1016 User *R = U->getUser();
1017 // We're interested in uses that provide the address. It can happen
1018 // that the value may also be provided via GEP, but we won't handle
1019 // those cases here for now.
1020 if (LoadInst *Ld = dyn_cast<LoadInst>(R)) {
1021 unsigned PtrX = LoadInst::getPointerOperandIndex();
1022 if (&Ld->getOperandUse(PtrX) == U)
1023 LSs.insert(U);
1024 } else if (StoreInst *St = dyn_cast<StoreInst>(R)) {
1025 unsigned PtrX = StoreInst::getPointerOperandIndex();
1026 if (&St->getOperandUse(PtrX) == U)
1027 LSs.insert(U);
1028 }
1029 }
1030 // Even if the total use count is 1, separating the chain may still be
1031 // beneficial, since the constant chain may be longer than the GEP alone
1032 // would be (e.g. if the parent node has a constant index and also has
1033 // other children).
1034 if (!LSs.empty())
1035 FNs.insert(std::make_pair(N, LSs));
1036 }
1037
1038 DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs);
1039
1040 for (NodeToUsesMap::iterator I = FNs.begin(), E = FNs.end(); I != E; ++I) {
1041 GepNode *N = I->first;
1042 UseSet &Us = I->second;
1043 for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J)
1044 separateChainForNode(N, *J, Loc);
1045 }
1046 }
1047
1048
computeNodePlacement(NodeToValueMap & Loc)1049 void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) {
1050 // Compute the inverse of the Node.Parent links. Also, collect the set
1051 // of root nodes.
1052 NodeChildrenMap NCM;
1053 NodeVect Roots;
1054 invert_find_roots(Nodes, NCM, Roots);
1055
1056 // Compute the initial placement determined by the users' locations, and
1057 // the locations of the child nodes.
1058 for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
1059 recalculatePlacementRec(*I, NCM, Loc);
1060
1061 DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc));
1062
1063 if (OptEnableInv) {
1064 for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
1065 adjustForInvariance(*I, NCM, Loc);
1066
1067 DEBUG(dbgs() << "Node placement after adjustment for invariance:\n"
1068 << LocationAsBlock(Loc));
1069 }
1070 if (OptEnableConst) {
1071 for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
1072 separateConstantChains(*I, NCM, Loc);
1073 }
1074 DEBUG(dbgs() << "Node use information:\n" << Uses);
1075
1076 // At the moment, there is no further refinement of the initial placement.
1077 // Such a refinement could include splitting the nodes if they are placed
1078 // too far from some of its users.
1079
1080 DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc));
1081 }
1082
1083
fabricateGEP(NodeVect & NA,BasicBlock::iterator At,BasicBlock * LocB)1084 Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
1085 BasicBlock *LocB) {
1086 DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName()
1087 << " for nodes:\n" << NA);
1088 unsigned Num = NA.size();
1089 GepNode *RN = NA[0];
1090 assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root");
1091
1092 Value *NewInst = 0;
1093 Value *Input = RN->BaseVal;
1094 Value **IdxList = new Value*[Num+1];
1095 unsigned nax = 0;
1096 do {
1097 unsigned IdxC = 0;
1098 // If the type of the input of the first node is not a pointer,
1099 // we need to add an artificial i32 0 to the indices (because the
1100 // actual input in the IR will be a pointer).
1101 if (!NA[nax]->PTy->isPointerTy()) {
1102 Type *Int32Ty = Type::getInt32Ty(*Ctx);
1103 IdxList[IdxC++] = ConstantInt::get(Int32Ty, 0);
1104 }
1105
1106 // Keep adding indices from NA until we have to stop and generate
1107 // an "intermediate" GEP.
1108 while (++nax <= Num) {
1109 GepNode *N = NA[nax-1];
1110 IdxList[IdxC++] = N->Idx;
1111 if (nax < Num) {
1112 // We have to stop, if the expected type of the output of this node
1113 // is not the same as the input type of the next node.
1114 Type *NextTy = next_type(N->PTy, N->Idx);
1115 if (NextTy != NA[nax]->PTy)
1116 break;
1117 }
1118 }
1119 ArrayRef<Value*> A(IdxList, IdxC);
1120 Type *InpTy = Input->getType();
1121 Type *ElTy = cast<PointerType>(InpTy->getScalarType())->getElementType();
1122 NewInst = GetElementPtrInst::Create(ElTy, Input, A, "cgep", &*At);
1123 DEBUG(dbgs() << "new GEP: " << *NewInst << '\n');
1124 Input = NewInst;
1125 } while (nax <= Num);
1126
1127 delete[] IdxList;
1128 return NewInst;
1129 }
1130
1131
getAllUsersForNode(GepNode * Node,ValueVect & Values,NodeChildrenMap & NCM)1132 void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values,
1133 NodeChildrenMap &NCM) {
1134 NodeVect Work;
1135 Work.push_back(Node);
1136
1137 while (!Work.empty()) {
1138 NodeVect::iterator First = Work.begin();
1139 GepNode *N = *First;
1140 Work.erase(First);
1141 if (N->Flags & GepNode::Used) {
1142 NodeToUsesMap::iterator UF = Uses.find(N);
1143 assert(UF != Uses.end() && "No use information for used node");
1144 UseSet &Us = UF->second;
1145 for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I)
1146 Values.push_back((*I)->getUser());
1147 }
1148 NodeChildrenMap::iterator CF = NCM.find(N);
1149 if (CF != NCM.end()) {
1150 NodeVect &Cs = CF->second;
1151 Work.insert(Work.end(), Cs.begin(), Cs.end());
1152 }
1153 }
1154 }
1155
1156
materialize(NodeToValueMap & Loc)1157 void HexagonCommonGEP::materialize(NodeToValueMap &Loc) {
1158 DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n');
1159 NodeChildrenMap NCM;
1160 NodeVect Roots;
1161 // Compute the inversion again, since computing placement could alter
1162 // "parent" relation between nodes.
1163 invert_find_roots(Nodes, NCM, Roots);
1164
1165 while (!Roots.empty()) {
1166 NodeVect::iterator First = Roots.begin();
1167 GepNode *Root = *First, *Last = *First;
1168 Roots.erase(First);
1169
1170 NodeVect NA; // Nodes to assemble.
1171 // Append to NA all child nodes up to (and including) the first child
1172 // that:
1173 // (1) has more than 1 child, or
1174 // (2) is used, or
1175 // (3) has a child located in a different block.
1176 bool LastUsed = false;
1177 unsigned LastCN = 0;
1178 // The location may be null if the computation failed (it can legitimately
1179 // happen for nodes created from dead GEPs).
1180 Value *LocV = Loc[Last];
1181 if (!LocV)
1182 continue;
1183 BasicBlock *LastB = cast<BasicBlock>(LocV);
1184 do {
1185 NA.push_back(Last);
1186 LastUsed = (Last->Flags & GepNode::Used);
1187 if (LastUsed)
1188 break;
1189 NodeChildrenMap::iterator CF = NCM.find(Last);
1190 LastCN = (CF != NCM.end()) ? CF->second.size() : 0;
1191 if (LastCN != 1)
1192 break;
1193 GepNode *Child = CF->second.front();
1194 BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]);
1195 if (ChildB != 0 && LastB != ChildB)
1196 break;
1197 Last = Child;
1198 } while (true);
1199
1200 BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator();
1201 if (LastUsed || LastCN > 0) {
1202 ValueVect Urs;
1203 getAllUsersForNode(Root, Urs, NCM);
1204 BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB);
1205 if (FirstUse != LastB->end())
1206 InsertAt = FirstUse;
1207 }
1208
1209 // Generate a new instruction for NA.
1210 Value *NewInst = fabricateGEP(NA, InsertAt, LastB);
1211
1212 // Convert all the children of Last node into roots, and append them
1213 // to the Roots list.
1214 if (LastCN > 0) {
1215 NodeVect &Cs = NCM[Last];
1216 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
1217 GepNode *CN = *I;
1218 CN->Flags &= ~GepNode::Internal;
1219 CN->Flags |= GepNode::Root;
1220 CN->BaseVal = NewInst;
1221 Roots.push_back(CN);
1222 }
1223 }
1224
1225 // Lastly, if the Last node was used, replace all uses with the new GEP.
1226 // The uses reference the original GEP values.
1227 if (LastUsed) {
1228 NodeToUsesMap::iterator UF = Uses.find(Last);
1229 assert(UF != Uses.end() && "No use information found");
1230 UseSet &Us = UF->second;
1231 for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) {
1232 Use *U = *I;
1233 U->set(NewInst);
1234 }
1235 }
1236 }
1237 }
1238
1239
removeDeadCode()1240 void HexagonCommonGEP::removeDeadCode() {
1241 ValueVect BO;
1242 BO.push_back(&Fn->front());
1243
1244 for (unsigned i = 0; i < BO.size(); ++i) {
1245 BasicBlock *B = cast<BasicBlock>(BO[i]);
1246 DomTreeNode *N = DT->getNode(B);
1247 typedef GraphTraits<DomTreeNode*> GTN;
1248 typedef GTN::ChildIteratorType Iter;
1249 for (Iter I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
1250 BO.push_back((*I)->getBlock());
1251 }
1252
1253 for (unsigned i = BO.size(); i > 0; --i) {
1254 BasicBlock *B = cast<BasicBlock>(BO[i-1]);
1255 BasicBlock::InstListType &IL = B->getInstList();
1256 typedef BasicBlock::InstListType::reverse_iterator reverse_iterator;
1257 ValueVect Ins;
1258 for (reverse_iterator I = IL.rbegin(), E = IL.rend(); I != E; ++I)
1259 Ins.push_back(&*I);
1260 for (ValueVect::iterator I = Ins.begin(), E = Ins.end(); I != E; ++I) {
1261 Instruction *In = cast<Instruction>(*I);
1262 if (isInstructionTriviallyDead(In))
1263 In->eraseFromParent();
1264 }
1265 }
1266 }
1267
1268
runOnFunction(Function & F)1269 bool HexagonCommonGEP::runOnFunction(Function &F) {
1270 if (skipFunction(F))
1271 return false;
1272
1273 // For now bail out on C++ exception handling.
1274 for (Function::iterator A = F.begin(), Z = F.end(); A != Z; ++A)
1275 for (BasicBlock::iterator I = A->begin(), E = A->end(); I != E; ++I)
1276 if (isa<InvokeInst>(I) || isa<LandingPadInst>(I))
1277 return false;
1278
1279 Fn = &F;
1280 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1281 PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1282 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1283 Ctx = &F.getContext();
1284
1285 Nodes.clear();
1286 Uses.clear();
1287 NodeOrder.clear();
1288
1289 SpecificBumpPtrAllocator<GepNode> Allocator;
1290 Mem = &Allocator;
1291
1292 collect();
1293 common();
1294
1295 NodeToValueMap Loc;
1296 computeNodePlacement(Loc);
1297 materialize(Loc);
1298 removeDeadCode();
1299
1300 #ifdef EXPENSIVE_CHECKS
1301 // Run this only when expensive checks are enabled.
1302 verifyFunction(F);
1303 #endif
1304 return true;
1305 }
1306
1307
1308 namespace llvm {
createHexagonCommonGEP()1309 FunctionPass *createHexagonCommonGEP() {
1310 return new HexagonCommonGEP();
1311 }
1312 }
1313