1 //===--- HexagonGenInsert.cpp ---------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #define DEBUG_TYPE "hexinsert"
11
12 #include "llvm/ADT/BitVector.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/CodeGen/MachineDominators.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineFunctionPass.h"
18 #include "llvm/CodeGen/MachineInstrBuilder.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/Pass.h"
22 #include "llvm/PassRegistry.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/Timer.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Target/TargetRegisterInfo.h"
29
30 #include "Hexagon.h"
31 #include "HexagonRegisterInfo.h"
32 #include "HexagonTargetMachine.h"
33 #include "HexagonBitTracker.h"
34
35 #include <vector>
36
37 using namespace llvm;
38
39 static cl::opt<unsigned> VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U),
40 cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg# cutoff for insert generation."));
41 // The distance cutoff is selected based on the precheckin-perf results:
42 // cutoffs 20, 25, 35, and 40 are worse than 30.
43 static cl::opt<unsigned> VRegDistCutoff("insert-dist-cutoff", cl::init(30U),
44 cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg distance cutoff for insert "
45 "generation."));
46
47 static cl::opt<bool> OptTiming("insert-timing", cl::init(false), cl::Hidden,
48 cl::ZeroOrMore, cl::desc("Enable timing of insert generation"));
49 static cl::opt<bool> OptTimingDetail("insert-timing-detail", cl::init(false),
50 cl::Hidden, cl::ZeroOrMore, cl::desc("Enable detailed timing of insert "
51 "generation"));
52
53 static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden,
54 cl::ZeroOrMore);
55 static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden,
56 cl::ZeroOrMore);
57 // Whether to construct constant values via "insert". Could eliminate constant
58 // extenders, but often not practical.
59 static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden,
60 cl::ZeroOrMore);
61
62 namespace {
63 // The preprocessor gets confused when the DEBUG macro is passed larger
64 // chunks of code. Use this function to detect debugging.
isDebug()65 inline bool isDebug() {
66 #ifndef NDEBUG
67 return ::llvm::DebugFlag && ::llvm::isCurrentDebugType(DEBUG_TYPE);
68 #else
69 return false;
70 #endif
71 }
72 }
73
74
75 namespace {
76 // Set of virtual registers, based on BitVector.
77 struct RegisterSet : private BitVector {
78 RegisterSet() = default;
RegisterSet__anon55633e700211::RegisterSet79 explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
80
81 using BitVector::clear;
82
find_first__anon55633e700211::RegisterSet83 unsigned find_first() const {
84 int First = BitVector::find_first();
85 if (First < 0)
86 return 0;
87 return x2v(First);
88 }
89
find_next__anon55633e700211::RegisterSet90 unsigned find_next(unsigned Prev) const {
91 int Next = BitVector::find_next(v2x(Prev));
92 if (Next < 0)
93 return 0;
94 return x2v(Next);
95 }
96
insert__anon55633e700211::RegisterSet97 RegisterSet &insert(unsigned R) {
98 unsigned Idx = v2x(R);
99 ensure(Idx);
100 return static_cast<RegisterSet&>(BitVector::set(Idx));
101 }
remove__anon55633e700211::RegisterSet102 RegisterSet &remove(unsigned R) {
103 unsigned Idx = v2x(R);
104 if (Idx >= size())
105 return *this;
106 return static_cast<RegisterSet&>(BitVector::reset(Idx));
107 }
108
insert__anon55633e700211::RegisterSet109 RegisterSet &insert(const RegisterSet &Rs) {
110 return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
111 }
remove__anon55633e700211::RegisterSet112 RegisterSet &remove(const RegisterSet &Rs) {
113 return static_cast<RegisterSet&>(BitVector::reset(Rs));
114 }
115
operator []__anon55633e700211::RegisterSet116 reference operator[](unsigned R) {
117 unsigned Idx = v2x(R);
118 ensure(Idx);
119 return BitVector::operator[](Idx);
120 }
operator []__anon55633e700211::RegisterSet121 bool operator[](unsigned R) const {
122 unsigned Idx = v2x(R);
123 assert(Idx < size());
124 return BitVector::operator[](Idx);
125 }
has__anon55633e700211::RegisterSet126 bool has(unsigned R) const {
127 unsigned Idx = v2x(R);
128 if (Idx >= size())
129 return false;
130 return BitVector::test(Idx);
131 }
132
empty__anon55633e700211::RegisterSet133 bool empty() const {
134 return !BitVector::any();
135 }
includes__anon55633e700211::RegisterSet136 bool includes(const RegisterSet &Rs) const {
137 // A.BitVector::test(B) <=> A-B != {}
138 return !Rs.BitVector::test(*this);
139 }
intersects__anon55633e700211::RegisterSet140 bool intersects(const RegisterSet &Rs) const {
141 return BitVector::anyCommon(Rs);
142 }
143
144 private:
ensure__anon55633e700211::RegisterSet145 void ensure(unsigned Idx) {
146 if (size() <= Idx)
147 resize(std::max(Idx+1, 32U));
148 }
v2x__anon55633e700211::RegisterSet149 static inline unsigned v2x(unsigned v) {
150 return TargetRegisterInfo::virtReg2Index(v);
151 }
x2v__anon55633e700211::RegisterSet152 static inline unsigned x2v(unsigned x) {
153 return TargetRegisterInfo::index2VirtReg(x);
154 }
155 };
156
157
158 struct PrintRegSet {
PrintRegSet__anon55633e700211::PrintRegSet159 PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
160 : RS(S), TRI(RI) {}
161 friend raw_ostream &operator<< (raw_ostream &OS,
162 const PrintRegSet &P);
163 private:
164 const RegisterSet &RS;
165 const TargetRegisterInfo *TRI;
166 };
167
operator <<(raw_ostream & OS,const PrintRegSet & P)168 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
169 OS << '{';
170 for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
171 OS << ' ' << PrintReg(R, P.TRI);
172 OS << " }";
173 return OS;
174 }
175 }
176
177
178 namespace {
179 // A convenience class to associate unsigned numbers (such as virtual
180 // registers) with unsigned numbers.
181 struct UnsignedMap : public DenseMap<unsigned,unsigned> {
UnsignedMap__anon55633e700311::UnsignedMap182 UnsignedMap() : BaseType() {}
183 private:
184 typedef DenseMap<unsigned,unsigned> BaseType;
185 };
186
187 // A utility to establish an ordering between virtual registers:
188 // VRegA < VRegB <=> RegisterOrdering[VRegA] < RegisterOrdering[VRegB]
189 // This is meant as a cache for the ordering of virtual registers defined
190 // by a potentially expensive comparison function, or obtained by a proce-
191 // dure that should not be repeated each time two registers are compared.
192 struct RegisterOrdering : public UnsignedMap {
RegisterOrdering__anon55633e700311::RegisterOrdering193 RegisterOrdering() : UnsignedMap() {}
operator []__anon55633e700311::RegisterOrdering194 unsigned operator[](unsigned VR) const {
195 const_iterator F = find(VR);
196 assert(F != end());
197 return F->second;
198 }
199 // Add operator(), so that objects of this class can be used as
200 // comparators in std::sort et al.
operator ()__anon55633e700311::RegisterOrdering201 bool operator() (unsigned VR1, unsigned VR2) const {
202 return operator[](VR1) < operator[](VR2);
203 }
204 };
205 }
206
207
208 namespace {
209 // Ordering of bit values. This class does not have operator[], but
210 // is supplies a comparison operator() for use in std:: algorithms.
211 // The order is as follows:
212 // - 0 < 1 < ref
213 // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg),
214 // or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos.
215 struct BitValueOrdering {
BitValueOrdering__anon55633e700411::BitValueOrdering216 BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {}
217 bool operator() (const BitTracker::BitValue &V1,
218 const BitTracker::BitValue &V2) const;
219 const RegisterOrdering &BaseOrd;
220 };
221 }
222
223
operator ()(const BitTracker::BitValue & V1,const BitTracker::BitValue & V2) const224 bool BitValueOrdering::operator() (const BitTracker::BitValue &V1,
225 const BitTracker::BitValue &V2) const {
226 if (V1 == V2)
227 return false;
228 // V1==0 => true, V2==0 => false
229 if (V1.is(0) || V2.is(0))
230 return V1.is(0);
231 // Neither of V1,V2 is 0, and V1!=V2.
232 // V2==1 => false, V1==1 => true
233 if (V2.is(1) || V1.is(1))
234 return !V2.is(1);
235 // Both V1,V2 are refs.
236 unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg];
237 if (Ind1 != Ind2)
238 return Ind1 < Ind2;
239 // If V1.Pos==V2.Pos
240 assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different");
241 return V1.RefI.Pos < V2.RefI.Pos;
242 }
243
244
245 namespace {
246 // Cache for the BitTracker's cell map. Map lookup has a logarithmic
247 // complexity, this class will memoize the lookup results to reduce
248 // the access time for repeated lookups of the same cell.
249 struct CellMapShadow {
CellMapShadow__anon55633e700511::CellMapShadow250 CellMapShadow(const BitTracker &T) : BT(T) {}
lookup__anon55633e700511::CellMapShadow251 const BitTracker::RegisterCell &lookup(unsigned VR) {
252 unsigned RInd = TargetRegisterInfo::virtReg2Index(VR);
253 // Grow the vector to at least 32 elements.
254 if (RInd >= CVect.size())
255 CVect.resize(std::max(RInd+16, 32U), 0);
256 const BitTracker::RegisterCell *CP = CVect[RInd];
257 if (CP == 0)
258 CP = CVect[RInd] = &BT.lookup(VR);
259 return *CP;
260 }
261
262 const BitTracker &BT;
263
264 private:
265 typedef std::vector<const BitTracker::RegisterCell*> CellVectType;
266 CellVectType CVect;
267 };
268 }
269
270
271 namespace {
272 // Comparator class for lexicographic ordering of virtual registers
273 // according to the corresponding BitTracker::RegisterCell objects.
274 struct RegisterCellLexCompare {
RegisterCellLexCompare__anon55633e700611::RegisterCellLexCompare275 RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M)
276 : BitOrd(BO), CM(M) {}
277 bool operator() (unsigned VR1, unsigned VR2) const;
278 private:
279 const BitValueOrdering &BitOrd;
280 CellMapShadow &CM;
281 };
282
283 // Comparator class for lexicographic ordering of virtual registers
284 // according to the specified bits of the corresponding BitTracker::
285 // RegisterCell objects.
286 // Specifically, this class will be used to compare bit B of a register
287 // cell for a selected virtual register R with bit N of any register
288 // other than R.
289 struct RegisterCellBitCompareSel {
RegisterCellBitCompareSel__anon55633e700611::RegisterCellBitCompareSel290 RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N,
291 const BitValueOrdering &BO, CellMapShadow &M)
292 : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {}
293 bool operator() (unsigned VR1, unsigned VR2) const;
294 private:
295 const unsigned SelR, SelB;
296 const unsigned BitN;
297 const BitValueOrdering &BitOrd;
298 CellMapShadow &CM;
299 };
300 }
301
302
operator ()(unsigned VR1,unsigned VR2) const303 bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const {
304 // Ordering of registers, made up from two given orderings:
305 // - the ordering of the register numbers, and
306 // - the ordering of register cells.
307 // Def. R1 < R2 if:
308 // - cell(R1) < cell(R2), or
309 // - cell(R1) == cell(R2), and index(R1) < index(R2).
310 //
311 // For register cells, the ordering is lexicographic, with index 0 being
312 // the most significant.
313 if (VR1 == VR2)
314 return false;
315
316 const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2);
317 uint16_t W1 = RC1.width(), W2 = RC2.width();
318 for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) {
319 const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i];
320 if (V1 != V2)
321 return BitOrd(V1, V2);
322 }
323 // Cells are equal up until the common length.
324 if (W1 != W2)
325 return W1 < W2;
326
327 return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2];
328 }
329
330
operator ()(unsigned VR1,unsigned VR2) const331 bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const {
332 if (VR1 == VR2)
333 return false;
334 const BitTracker::RegisterCell &RC1 = CM.lookup(VR1);
335 const BitTracker::RegisterCell &RC2 = CM.lookup(VR2);
336 uint16_t W1 = RC1.width(), W2 = RC2.width();
337 uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN;
338 uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN;
339 // If Bit1 exceeds the width of VR1, then:
340 // - return false, if at the same time Bit2 exceeds VR2, or
341 // - return true, otherwise.
342 // (I.e. "a bit value that does not exist is less than any bit value
343 // that does exist".)
344 if (W1 <= Bit1)
345 return Bit2 < W2;
346 // If Bit1 is within VR1, but Bit2 is not within VR2, return false.
347 if (W2 <= Bit2)
348 return false;
349
350 const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2];
351 if (V1 != V2)
352 return BitOrd(V1, V2);
353 return false;
354 }
355
356
357 namespace {
358 class OrderedRegisterList {
359 typedef std::vector<unsigned> ListType;
360 public:
OrderedRegisterList(const RegisterOrdering & RO)361 OrderedRegisterList(const RegisterOrdering &RO) : Ord(RO) {}
362 void insert(unsigned VR);
363 void remove(unsigned VR);
operator [](unsigned Idx) const364 unsigned operator[](unsigned Idx) const {
365 assert(Idx < Seq.size());
366 return Seq[Idx];
367 }
size() const368 unsigned size() const {
369 return Seq.size();
370 }
371
372 typedef ListType::iterator iterator;
373 typedef ListType::const_iterator const_iterator;
begin()374 iterator begin() { return Seq.begin(); }
end()375 iterator end() { return Seq.end(); }
begin() const376 const_iterator begin() const { return Seq.begin(); }
end() const377 const_iterator end() const { return Seq.end(); }
378
379 // Convenience function to convert an iterator to the corresponding index.
idx(iterator It) const380 unsigned idx(iterator It) const { return It-begin(); }
381 private:
382 ListType Seq;
383 const RegisterOrdering &Ord;
384 };
385
386
387 struct PrintORL {
PrintORL__anon55633e700711::PrintORL388 PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI)
389 : RL(L), TRI(RI) {}
390 friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P);
391 private:
392 const OrderedRegisterList &RL;
393 const TargetRegisterInfo *TRI;
394 };
395
operator <<(raw_ostream & OS,const PrintORL & P)396 raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) {
397 OS << '(';
398 OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end();
399 for (OrderedRegisterList::const_iterator I = B; I != E; ++I) {
400 if (I != B)
401 OS << ", ";
402 OS << PrintReg(*I, P.TRI);
403 }
404 OS << ')';
405 return OS;
406 }
407 }
408
409
insert(unsigned VR)410 void OrderedRegisterList::insert(unsigned VR) {
411 iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
412 if (L == Seq.end())
413 Seq.push_back(VR);
414 else
415 Seq.insert(L, VR);
416 }
417
418
remove(unsigned VR)419 void OrderedRegisterList::remove(unsigned VR) {
420 iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
421 assert(L != Seq.end());
422 Seq.erase(L);
423 }
424
425
426 namespace {
427 // A record of the insert form. The fields correspond to the operands
428 // of the "insert" instruction:
429 // ... = insert(SrcR, InsR, #Wdh, #Off)
430 struct IFRecord {
IFRecord__anon55633e700811::IFRecord431 IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0)
432 : SrcR(SR), InsR(IR), Wdh(W), Off(O) {}
433 unsigned SrcR, InsR;
434 uint16_t Wdh, Off;
435 };
436
437 struct PrintIFR {
PrintIFR__anon55633e700811::PrintIFR438 PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI)
439 : IFR(R), TRI(RI) {}
440 private:
441 const IFRecord &IFR;
442 const TargetRegisterInfo *TRI;
443 friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P);
444 };
445
operator <<(raw_ostream & OS,const PrintIFR & P)446 raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) {
447 unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR;
448 OS << '(' << PrintReg(SrcR, P.TRI) << ',' << PrintReg(InsR, P.TRI)
449 << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')';
450 return OS;
451 }
452
453 typedef std::pair<IFRecord,RegisterSet> IFRecordWithRegSet;
454 }
455
456
457 namespace llvm {
458 void initializeHexagonGenInsertPass(PassRegistry&);
459 FunctionPass *createHexagonGenInsert();
460 }
461
462
463 namespace {
464 class HexagonGenInsert : public MachineFunctionPass {
465 public:
466 static char ID;
HexagonGenInsert()467 HexagonGenInsert() : MachineFunctionPass(ID), HII(0), HRI(0) {
468 initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry());
469 }
getPassName() const470 virtual const char *getPassName() const {
471 return "Hexagon generate \"insert\" instructions";
472 }
getAnalysisUsage(AnalysisUsage & AU) const473 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
474 AU.addRequired<MachineDominatorTree>();
475 AU.addPreserved<MachineDominatorTree>();
476 MachineFunctionPass::getAnalysisUsage(AU);
477 }
478 virtual bool runOnMachineFunction(MachineFunction &MF);
479
480 private:
481 typedef DenseMap<std::pair<unsigned,unsigned>,unsigned> PairMapType;
482
483 void buildOrderingMF(RegisterOrdering &RO) const;
484 void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const;
485 bool isIntClass(const TargetRegisterClass *RC) const;
486 bool isConstant(unsigned VR) const;
487 bool isSmallConstant(unsigned VR) const;
488 bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR,
489 uint16_t L, uint16_t S) const;
490 bool findSelfReference(unsigned VR) const;
491 bool findNonSelfReference(unsigned VR) const;
492 void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const;
493 void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const;
494 unsigned distance(const MachineBasicBlock *FromB,
495 const MachineBasicBlock *ToB, const UnsignedMap &RPO,
496 PairMapType &M) const;
497 unsigned distance(MachineBasicBlock::const_iterator FromI,
498 MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
499 PairMapType &M) const;
500 bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs);
501 void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs);
502 void findRemovableRegisters(unsigned VR, IFRecord IF,
503 RegisterSet &RMs) const;
504 void computeRemovableRegisters();
505
506 void pruneEmptyLists();
507 void pruneCoveredSets(unsigned VR);
508 void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M);
509 void pruneRegCopies(unsigned VR);
510 void pruneCandidates();
511 void selectCandidates();
512 bool generateInserts();
513
514 bool removeDeadCode(MachineDomTreeNode *N);
515
516 // IFRecord coupled with a set of potentially removable registers:
517 typedef std::vector<IFRecordWithRegSet> IFListType;
518 typedef DenseMap<unsigned,IFListType> IFMapType; // vreg -> IFListType
519
520 void dump_map() const;
521
522 const HexagonInstrInfo *HII;
523 const HexagonRegisterInfo *HRI;
524
525 MachineFunction *MFN;
526 MachineRegisterInfo *MRI;
527 MachineDominatorTree *MDT;
528 CellMapShadow *CMS;
529
530 RegisterOrdering BaseOrd;
531 RegisterOrdering CellOrd;
532 IFMapType IFMap;
533 };
534
535 char HexagonGenInsert::ID = 0;
536 }
537
538
dump_map() const539 void HexagonGenInsert::dump_map() const {
540 typedef IFMapType::const_iterator iterator;
541 for (iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
542 dbgs() << " " << PrintReg(I->first, HRI) << ":\n";
543 const IFListType &LL = I->second;
544 for (unsigned i = 0, n = LL.size(); i < n; ++i)
545 dbgs() << " " << PrintIFR(LL[i].first, HRI) << ", "
546 << PrintRegSet(LL[i].second, HRI) << '\n';
547 }
548 }
549
550
buildOrderingMF(RegisterOrdering & RO) const551 void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const {
552 unsigned Index = 0;
553 typedef MachineFunction::const_iterator mf_iterator;
554 for (mf_iterator A = MFN->begin(), Z = MFN->end(); A != Z; ++A) {
555 const MachineBasicBlock &B = *A;
556 if (!CMS->BT.reached(&B))
557 continue;
558 typedef MachineBasicBlock::const_iterator mb_iterator;
559 for (mb_iterator I = B.begin(), E = B.end(); I != E; ++I) {
560 const MachineInstr *MI = &*I;
561 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
562 const MachineOperand &MO = MI->getOperand(i);
563 if (MO.isReg() && MO.isDef()) {
564 unsigned R = MO.getReg();
565 assert(MO.getSubReg() == 0 && "Unexpected subregister in definition");
566 if (TargetRegisterInfo::isVirtualRegister(R))
567 RO.insert(std::make_pair(R, Index++));
568 }
569 }
570 }
571 }
572 // Since some virtual registers may have had their def and uses eliminated,
573 // they are no longer referenced in the code, and so they will not appear
574 // in the map.
575 }
576
577
buildOrderingBT(RegisterOrdering & RB,RegisterOrdering & RO) const578 void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB,
579 RegisterOrdering &RO) const {
580 // Create a vector of all virtual registers (collect them from the base
581 // ordering RB), and then sort it using the RegisterCell comparator.
582 BitValueOrdering BVO(RB);
583 RegisterCellLexCompare LexCmp(BVO, *CMS);
584 typedef std::vector<unsigned> SortableVectorType;
585 SortableVectorType VRs;
586 for (RegisterOrdering::iterator I = RB.begin(), E = RB.end(); I != E; ++I)
587 VRs.push_back(I->first);
588 std::sort(VRs.begin(), VRs.end(), LexCmp);
589 // Transfer the results to the outgoing register ordering.
590 for (unsigned i = 0, n = VRs.size(); i < n; ++i)
591 RO.insert(std::make_pair(VRs[i], i));
592 }
593
594
isIntClass(const TargetRegisterClass * RC) const595 inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const {
596 return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass;
597 }
598
599
isConstant(unsigned VR) const600 bool HexagonGenInsert::isConstant(unsigned VR) const {
601 const BitTracker::RegisterCell &RC = CMS->lookup(VR);
602 uint16_t W = RC.width();
603 for (uint16_t i = 0; i < W; ++i) {
604 const BitTracker::BitValue &BV = RC[i];
605 if (BV.is(0) || BV.is(1))
606 continue;
607 return false;
608 }
609 return true;
610 }
611
612
isSmallConstant(unsigned VR) const613 bool HexagonGenInsert::isSmallConstant(unsigned VR) const {
614 const BitTracker::RegisterCell &RC = CMS->lookup(VR);
615 uint16_t W = RC.width();
616 if (W > 64)
617 return false;
618 uint64_t V = 0, B = 1;
619 for (uint16_t i = 0; i < W; ++i) {
620 const BitTracker::BitValue &BV = RC[i];
621 if (BV.is(1))
622 V |= B;
623 else if (!BV.is(0))
624 return false;
625 B <<= 1;
626 }
627
628 // For 32-bit registers, consider: Rd = #s16.
629 if (W == 32)
630 return isInt<16>(V);
631
632 // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8)
633 return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V));
634 }
635
636
isValidInsertForm(unsigned DstR,unsigned SrcR,unsigned InsR,uint16_t L,uint16_t S) const637 bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR,
638 unsigned InsR, uint16_t L, uint16_t S) const {
639 const TargetRegisterClass *DstRC = MRI->getRegClass(DstR);
640 const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR);
641 const TargetRegisterClass *InsRC = MRI->getRegClass(InsR);
642 // Only integet (32-/64-bit) register classes.
643 if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC))
644 return false;
645 // The "source" register must be of the same class as DstR.
646 if (DstRC != SrcRC)
647 return false;
648 if (DstRC == InsRC)
649 return true;
650 // A 64-bit register can only be generated from other 64-bit registers.
651 if (DstRC == &Hexagon::DoubleRegsRegClass)
652 return false;
653 // Otherwise, the L and S cannot span 32-bit word boundary.
654 if (S < 32 && S+L > 32)
655 return false;
656 return true;
657 }
658
659
findSelfReference(unsigned VR) const660 bool HexagonGenInsert::findSelfReference(unsigned VR) const {
661 const BitTracker::RegisterCell &RC = CMS->lookup(VR);
662 for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
663 const BitTracker::BitValue &V = RC[i];
664 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR)
665 return true;
666 }
667 return false;
668 }
669
670
findNonSelfReference(unsigned VR) const671 bool HexagonGenInsert::findNonSelfReference(unsigned VR) const {
672 BitTracker::RegisterCell RC = CMS->lookup(VR);
673 for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
674 const BitTracker::BitValue &V = RC[i];
675 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR)
676 return true;
677 }
678 return false;
679 }
680
681
getInstrDefs(const MachineInstr * MI,RegisterSet & Defs) const682 void HexagonGenInsert::getInstrDefs(const MachineInstr *MI,
683 RegisterSet &Defs) const {
684 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
685 const MachineOperand &MO = MI->getOperand(i);
686 if (!MO.isReg() || !MO.isDef())
687 continue;
688 unsigned R = MO.getReg();
689 if (!TargetRegisterInfo::isVirtualRegister(R))
690 continue;
691 Defs.insert(R);
692 }
693 }
694
695
getInstrUses(const MachineInstr * MI,RegisterSet & Uses) const696 void HexagonGenInsert::getInstrUses(const MachineInstr *MI,
697 RegisterSet &Uses) const {
698 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
699 const MachineOperand &MO = MI->getOperand(i);
700 if (!MO.isReg() || !MO.isUse())
701 continue;
702 unsigned R = MO.getReg();
703 if (!TargetRegisterInfo::isVirtualRegister(R))
704 continue;
705 Uses.insert(R);
706 }
707 }
708
709
distance(const MachineBasicBlock * FromB,const MachineBasicBlock * ToB,const UnsignedMap & RPO,PairMapType & M) const710 unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB,
711 const MachineBasicBlock *ToB, const UnsignedMap &RPO,
712 PairMapType &M) const {
713 // Forward distance from the end of a block to the beginning of it does
714 // not make sense. This function should not be called with FromB == ToB.
715 assert(FromB != ToB);
716
717 unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber();
718 // If we have already computed it, return the cached result.
719 PairMapType::iterator F = M.find(std::make_pair(FromN, ToN));
720 if (F != M.end())
721 return F->second;
722 unsigned ToRPO = RPO.lookup(ToN);
723
724 unsigned MaxD = 0;
725 typedef MachineBasicBlock::const_pred_iterator pred_iterator;
726 for (pred_iterator I = ToB->pred_begin(), E = ToB->pred_end(); I != E; ++I) {
727 const MachineBasicBlock *PB = *I;
728 // Skip back edges. Also, if FromB is a predecessor of ToB, the distance
729 // along that path will be 0, and we don't need to do any calculations
730 // on it.
731 if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO)
732 continue;
733 unsigned D = PB->size() + distance(FromB, PB, RPO, M);
734 if (D > MaxD)
735 MaxD = D;
736 }
737
738 // Memoize the result for later lookup.
739 M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD));
740 return MaxD;
741 }
742
743
distance(MachineBasicBlock::const_iterator FromI,MachineBasicBlock::const_iterator ToI,const UnsignedMap & RPO,PairMapType & M) const744 unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI,
745 MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
746 PairMapType &M) const {
747 const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent();
748 if (FB == TB)
749 return std::distance(FromI, ToI);
750 unsigned D1 = std::distance(TB->begin(), ToI);
751 unsigned D2 = distance(FB, TB, RPO, M);
752 unsigned D3 = std::distance(FromI, FB->end());
753 return D1+D2+D3;
754 }
755
756
findRecordInsertForms(unsigned VR,OrderedRegisterList & AVs)757 bool HexagonGenInsert::findRecordInsertForms(unsigned VR,
758 OrderedRegisterList &AVs) {
759 if (isDebug()) {
760 dbgs() << LLVM_FUNCTION_NAME << ": " << PrintReg(VR, HRI)
761 << " AVs: " << PrintORL(AVs, HRI) << "\n";
762 }
763 if (AVs.size() == 0)
764 return false;
765
766 typedef OrderedRegisterList::iterator iterator;
767 BitValueOrdering BVO(BaseOrd);
768 const BitTracker::RegisterCell &RC = CMS->lookup(VR);
769 uint16_t W = RC.width();
770
771 typedef std::pair<unsigned,uint16_t> RSRecord; // (reg,shift)
772 typedef std::vector<RSRecord> RSListType;
773 // Have a map, with key being the matching prefix length, and the value
774 // being the list of pairs (R,S), where R's prefix matches VR at S.
775 // (DenseMap<uint16_t,RSListType> fails to instantiate.)
776 typedef DenseMap<unsigned,RSListType> LRSMapType;
777 LRSMapType LM;
778
779 // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S,
780 // and find matching prefixes from AVs with the rotated RC. Such a prefix
781 // would match a string of bits (of length L) in RC starting at S.
782 for (uint16_t S = 0; S < W; ++S) {
783 iterator B = AVs.begin(), E = AVs.end();
784 // The registers in AVs are ordered according to the lexical order of
785 // the corresponding register cells. This means that the range of regis-
786 // ters in AVs that match a prefix of length L+1 will be contained in
787 // the range that matches a prefix of length L. This means that we can
788 // keep narrowing the search space as the prefix length goes up. This
789 // helps reduce the overall complexity of the search.
790 uint16_t L;
791 for (L = 0; L < W-S; ++L) {
792 // Compare against VR's bits starting at S, which emulates rotation
793 // of VR by S.
794 RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS);
795 iterator NewB = std::lower_bound(B, E, VR, RCB);
796 iterator NewE = std::upper_bound(NewB, E, VR, RCB);
797 // For the registers that are eliminated from the next range, L is
798 // the longest prefix matching VR at position S (their prefixes
799 // differ from VR at S+L). If L>0, record this information for later
800 // use.
801 if (L > 0) {
802 for (iterator I = B; I != NewB; ++I)
803 LM[L].push_back(std::make_pair(*I, S));
804 for (iterator I = NewE; I != E; ++I)
805 LM[L].push_back(std::make_pair(*I, S));
806 }
807 B = NewB, E = NewE;
808 if (B == E)
809 break;
810 }
811 // Record the final register range. If this range is non-empty, then
812 // L=W-S.
813 assert(B == E || L == W-S);
814 if (B != E) {
815 for (iterator I = B; I != E; ++I)
816 LM[L].push_back(std::make_pair(*I, S));
817 // If B!=E, then we found a range of registers whose prefixes cover the
818 // rest of VR from position S. There is no need to further advance S.
819 break;
820 }
821 }
822
823 if (isDebug()) {
824 dbgs() << "Prefixes matching register " << PrintReg(VR, HRI) << "\n";
825 for (LRSMapType::iterator I = LM.begin(), E = LM.end(); I != E; ++I) {
826 dbgs() << " L=" << I->first << ':';
827 const RSListType &LL = I->second;
828 for (unsigned i = 0, n = LL.size(); i < n; ++i)
829 dbgs() << " (" << PrintReg(LL[i].first, HRI) << ",@"
830 << LL[i].second << ')';
831 dbgs() << '\n';
832 }
833 }
834
835
836 bool Recorded = false;
837
838 for (iterator I = AVs.begin(), E = AVs.end(); I != E; ++I) {
839 unsigned SrcR = *I;
840 int FDi = -1, LDi = -1; // First/last different bit.
841 const BitTracker::RegisterCell &AC = CMS->lookup(SrcR);
842 uint16_t AW = AC.width();
843 for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) {
844 if (RC[i] == AC[i])
845 continue;
846 if (FDi == -1)
847 FDi = i;
848 LDi = i;
849 }
850 if (FDi == -1)
851 continue; // TODO (future): Record identical registers.
852 // Look for a register whose prefix could patch the range [FD..LD]
853 // where VR and SrcR differ.
854 uint16_t FD = FDi, LD = LDi; // Switch to unsigned type.
855 uint16_t MinL = LD-FD+1;
856 for (uint16_t L = MinL; L < W; ++L) {
857 LRSMapType::iterator F = LM.find(L);
858 if (F == LM.end())
859 continue;
860 RSListType &LL = F->second;
861 for (unsigned i = 0, n = LL.size(); i < n; ++i) {
862 uint16_t S = LL[i].second;
863 // MinL is the minimum length of the prefix. Any length above MinL
864 // allows some flexibility as to where the prefix can start:
865 // given the extra length EL=L-MinL, the prefix must start between
866 // max(0,FD-EL) and FD.
867 if (S > FD) // Starts too late.
868 continue;
869 uint16_t EL = L-MinL;
870 uint16_t LowS = (EL < FD) ? FD-EL : 0;
871 if (S < LowS) // Starts too early.
872 continue;
873 unsigned InsR = LL[i].first;
874 if (!isValidInsertForm(VR, SrcR, InsR, L, S))
875 continue;
876 if (isDebug()) {
877 dbgs() << PrintReg(VR, HRI) << " = insert(" << PrintReg(SrcR, HRI)
878 << ',' << PrintReg(InsR, HRI) << ",#" << L << ",#"
879 << S << ")\n";
880 }
881 IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet());
882 IFMap[VR].push_back(RR);
883 Recorded = true;
884 }
885 }
886 }
887
888 return Recorded;
889 }
890
891
collectInBlock(MachineBasicBlock * B,OrderedRegisterList & AVs)892 void HexagonGenInsert::collectInBlock(MachineBasicBlock *B,
893 OrderedRegisterList &AVs) {
894 if (isDebug())
895 dbgs() << "visiting block BB#" << B->getNumber() << "\n";
896
897 // First, check if this block is reachable at all. If not, the bit tracker
898 // will not have any information about registers in it.
899 if (!CMS->BT.reached(B))
900 return;
901
902 bool DoConst = OptConst;
903 // Keep a separate set of registers defined in this block, so that we
904 // can remove them from the list of available registers once all DT
905 // successors have been processed.
906 RegisterSet BlockDefs, InsDefs;
907 for (MachineBasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
908 MachineInstr *MI = &*I;
909 InsDefs.clear();
910 getInstrDefs(MI, InsDefs);
911 // Leave those alone. They are more transparent than "insert".
912 bool Skip = MI->isCopy() || MI->isRegSequence();
913
914 if (!Skip) {
915 // Visit all defined registers, and attempt to find the corresponding
916 // "insert" representations.
917 for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) {
918 // Do not collect registers that are known to be compile-time cons-
919 // tants, unless requested.
920 if (!DoConst && isConstant(VR))
921 continue;
922 // If VR's cell contains a reference to VR, then VR cannot be defined
923 // via "insert". If VR is a constant that can be generated in a single
924 // instruction (without constant extenders), generating it via insert
925 // makes no sense.
926 if (findSelfReference(VR) || isSmallConstant(VR))
927 continue;
928
929 findRecordInsertForms(VR, AVs);
930 }
931 }
932
933 // Insert the defined registers into the list of available registers
934 // after they have been processed.
935 for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR))
936 AVs.insert(VR);
937 BlockDefs.insert(InsDefs);
938 }
939
940 MachineDomTreeNode *N = MDT->getNode(B);
941 typedef GraphTraits<MachineDomTreeNode*> GTN;
942 typedef GTN::ChildIteratorType ChildIter;
943 for (ChildIter I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) {
944 MachineBasicBlock *SB = (*I)->getBlock();
945 collectInBlock(SB, AVs);
946 }
947
948 for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR))
949 AVs.remove(VR);
950 }
951
952
findRemovableRegisters(unsigned VR,IFRecord IF,RegisterSet & RMs) const953 void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF,
954 RegisterSet &RMs) const {
955 // For a given register VR and a insert form, find the registers that are
956 // used by the current definition of VR, and which would no longer be
957 // needed for it after the definition of VR is replaced with the insert
958 // form. These are the registers that could potentially become dead.
959 RegisterSet Regs[2];
960
961 unsigned S = 0; // Register set selector.
962 Regs[S].insert(VR);
963
964 while (!Regs[S].empty()) {
965 // Breadth-first search.
966 unsigned OtherS = 1-S;
967 Regs[OtherS].clear();
968 for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) {
969 Regs[S].remove(R);
970 if (R == IF.SrcR || R == IF.InsR)
971 continue;
972 // Check if a given register has bits that are references to any other
973 // registers. This is to detect situations where the instruction that
974 // defines register R takes register Q as an operand, but R itself does
975 // not contain any bits from Q. Loads are examples of how this could
976 // happen:
977 // R = load Q
978 // In this case (assuming we do not have any knowledge about the loaded
979 // value), we must not treat R as a "conveyance" of the bits from Q.
980 // (The information in BT about R's bits would have them as constants,
981 // in case of zero-extending loads, or refs to R.)
982 if (!findNonSelfReference(R))
983 continue;
984 RMs.insert(R);
985 const MachineInstr *DefI = MRI->getVRegDef(R);
986 assert(DefI);
987 // Do not iterate past PHI nodes to avoid infinite loops. This can
988 // make the final set a bit less accurate, but the removable register
989 // sets are an approximation anyway.
990 if (DefI->isPHI())
991 continue;
992 getInstrUses(DefI, Regs[OtherS]);
993 }
994 S = OtherS;
995 }
996 // The register VR is added to the list as a side-effect of the algorithm,
997 // but it is not "potentially removable". A potentially removable register
998 // is one that may become unused (dead) after conversion to the insert form
999 // IF, and obviously VR (or its replacement) will not become dead by apply-
1000 // ing IF.
1001 RMs.remove(VR);
1002 }
1003
1004
computeRemovableRegisters()1005 void HexagonGenInsert::computeRemovableRegisters() {
1006 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1007 IFListType &LL = I->second;
1008 for (unsigned i = 0, n = LL.size(); i < n; ++i)
1009 findRemovableRegisters(I->first, LL[i].first, LL[i].second);
1010 }
1011 }
1012
1013
pruneEmptyLists()1014 void HexagonGenInsert::pruneEmptyLists() {
1015 // Remove all entries from the map, where the register has no insert forms
1016 // associated with it.
1017 typedef SmallVector<IFMapType::iterator,16> IterListType;
1018 IterListType Prune;
1019 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1020 if (I->second.size() == 0)
1021 Prune.push_back(I);
1022 }
1023 for (unsigned i = 0, n = Prune.size(); i < n; ++i)
1024 IFMap.erase(Prune[i]);
1025 }
1026
1027
pruneCoveredSets(unsigned VR)1028 void HexagonGenInsert::pruneCoveredSets(unsigned VR) {
1029 IFMapType::iterator F = IFMap.find(VR);
1030 assert(F != IFMap.end());
1031 IFListType &LL = F->second;
1032
1033 // First, examine the IF candidates for register VR whose removable-regis-
1034 // ter sets are empty. This means that a given candidate will not help eli-
1035 // minate any registers, but since "insert" is not a constant-extendable
1036 // instruction, using such a candidate may reduce code size if the defini-
1037 // tion of VR is constant-extended.
1038 // If there exists a candidate with a non-empty set, the ones with empty
1039 // sets will not be used and can be removed.
1040 MachineInstr *DefVR = MRI->getVRegDef(VR);
1041 bool DefEx = HII->isConstExtended(DefVR);
1042 bool HasNE = false;
1043 for (unsigned i = 0, n = LL.size(); i < n; ++i) {
1044 if (LL[i].second.empty())
1045 continue;
1046 HasNE = true;
1047 break;
1048 }
1049 if (!DefEx || HasNE) {
1050 // The definition of VR is not constant-extended, or there is a candidate
1051 // with a non-empty set. Remove all candidates with empty sets.
1052 auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool {
1053 return IR.second.empty();
1054 };
1055 auto End = std::remove_if(LL.begin(), LL.end(), IsEmpty);
1056 if (End != LL.end())
1057 LL.erase(End, LL.end());
1058 } else {
1059 // The definition of VR is constant-extended, and all candidates have
1060 // empty removable-register sets. Pick the maximum candidate, and remove
1061 // all others. The "maximum" does not have any special meaning here, it
1062 // is only so that the candidate that will remain on the list is selec-
1063 // ted deterministically.
1064 IFRecord MaxIF = LL[0].first;
1065 for (unsigned i = 1, n = LL.size(); i < n; ++i) {
1066 // If LL[MaxI] < LL[i], then MaxI = i.
1067 const IFRecord &IF = LL[i].first;
1068 unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR];
1069 unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR];
1070 if (M0 > R0)
1071 continue;
1072 if (M0 == R0) {
1073 if (M1 > R1)
1074 continue;
1075 if (M1 == R1) {
1076 if (MaxIF.Wdh > IF.Wdh)
1077 continue;
1078 if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off)
1079 continue;
1080 }
1081 }
1082 // MaxIF < IF.
1083 MaxIF = IF;
1084 }
1085 // Remove everything except the maximum candidate. All register sets
1086 // are empty, so no need to preserve anything.
1087 LL.clear();
1088 LL.push_back(std::make_pair(MaxIF, RegisterSet()));
1089 }
1090
1091 // Now, remove those whose sets of potentially removable registers are
1092 // contained in another IF candidate for VR. For example, given these
1093 // candidates for vreg45,
1094 // %vreg45:
1095 // (%vreg44,%vreg41,#9,#8), { %vreg42 }
1096 // (%vreg43,%vreg41,#9,#8), { %vreg42 %vreg44 }
1097 // remove the first one, since it is contained in the second one.
1098 for (unsigned i = 0, n = LL.size(); i < n; ) {
1099 const RegisterSet &RMi = LL[i].second;
1100 unsigned j = 0;
1101 while (j < n) {
1102 if (j != i && LL[j].second.includes(RMi))
1103 break;
1104 j++;
1105 }
1106 if (j == n) { // RMi not contained in anything else.
1107 i++;
1108 continue;
1109 }
1110 LL.erase(LL.begin()+i);
1111 n = LL.size();
1112 }
1113 }
1114
1115
pruneUsesTooFar(unsigned VR,const UnsignedMap & RPO,PairMapType & M)1116 void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO,
1117 PairMapType &M) {
1118 IFMapType::iterator F = IFMap.find(VR);
1119 assert(F != IFMap.end());
1120 IFListType &LL = F->second;
1121 unsigned Cutoff = VRegDistCutoff;
1122 const MachineInstr *DefV = MRI->getVRegDef(VR);
1123
1124 for (unsigned i = LL.size(); i > 0; --i) {
1125 unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR;
1126 const MachineInstr *DefS = MRI->getVRegDef(SR);
1127 const MachineInstr *DefI = MRI->getVRegDef(IR);
1128 unsigned DSV = distance(DefS, DefV, RPO, M);
1129 if (DSV < Cutoff) {
1130 unsigned DIV = distance(DefI, DefV, RPO, M);
1131 if (DIV < Cutoff)
1132 continue;
1133 }
1134 LL.erase(LL.begin()+(i-1));
1135 }
1136 }
1137
1138
pruneRegCopies(unsigned VR)1139 void HexagonGenInsert::pruneRegCopies(unsigned VR) {
1140 IFMapType::iterator F = IFMap.find(VR);
1141 assert(F != IFMap.end());
1142 IFListType &LL = F->second;
1143
1144 auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool {
1145 return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32);
1146 };
1147 auto End = std::remove_if(LL.begin(), LL.end(), IsCopy);
1148 if (End != LL.end())
1149 LL.erase(End, LL.end());
1150 }
1151
1152
pruneCandidates()1153 void HexagonGenInsert::pruneCandidates() {
1154 // Remove candidates that are not beneficial, regardless of the final
1155 // selection method.
1156 // First, remove candidates whose potentially removable set is a subset
1157 // of another candidate's set.
1158 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1159 pruneCoveredSets(I->first);
1160
1161 UnsignedMap RPO;
1162 typedef ReversePostOrderTraversal<const MachineFunction*> RPOTType;
1163 RPOTType RPOT(MFN);
1164 unsigned RPON = 0;
1165 for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
1166 RPO[(*I)->getNumber()] = RPON++;
1167
1168 PairMapType Memo; // Memoization map for distance calculation.
1169 // Remove candidates that would use registers defined too far away.
1170 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1171 pruneUsesTooFar(I->first, RPO, Memo);
1172
1173 pruneEmptyLists();
1174
1175 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
1176 pruneRegCopies(I->first);
1177 }
1178
1179
1180 namespace {
1181 // Class for comparing IF candidates for registers that have multiple of
1182 // them. The smaller the candidate, according to this ordering, the better.
1183 // First, compare the number of zeros in the associated potentially remova-
1184 // ble register sets. "Zero" indicates that the register is very likely to
1185 // become dead after this transformation.
1186 // Second, compare "averages", i.e. use-count per size. The lower wins.
1187 // After that, it does not really matter which one is smaller. Resolve
1188 // the tie in some deterministic way.
1189 struct IFOrdering {
IFOrdering__anon55633e700c11::IFOrdering1190 IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO)
1191 : UseC(UC), BaseOrd(BO) {}
1192 bool operator() (const IFRecordWithRegSet &A,
1193 const IFRecordWithRegSet &B) const;
1194 private:
1195 void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1196 unsigned &Sum) const;
1197 const UnsignedMap &UseC;
1198 const RegisterOrdering &BaseOrd;
1199 };
1200 }
1201
1202
operator ()(const IFRecordWithRegSet & A,const IFRecordWithRegSet & B) const1203 bool IFOrdering::operator() (const IFRecordWithRegSet &A,
1204 const IFRecordWithRegSet &B) const {
1205 unsigned SizeA = 0, ZeroA = 0, SumA = 0;
1206 unsigned SizeB = 0, ZeroB = 0, SumB = 0;
1207 stats(A.second, SizeA, ZeroA, SumA);
1208 stats(B.second, SizeB, ZeroB, SumB);
1209
1210 // We will pick the minimum element. The more zeros, the better.
1211 if (ZeroA != ZeroB)
1212 return ZeroA > ZeroB;
1213 // Compare SumA/SizeA with SumB/SizeB, lower is better.
1214 uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA;
1215 if (AvgA != AvgB)
1216 return AvgA < AvgB;
1217
1218 // The sets compare identical so far. Resort to comparing the IF records.
1219 // The actual values don't matter, this is only for determinism.
1220 unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR];
1221 if (OSA != OSB)
1222 return OSA < OSB;
1223 unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR];
1224 if (OIA != OIB)
1225 return OIA < OIB;
1226 if (A.first.Wdh != B.first.Wdh)
1227 return A.first.Wdh < B.first.Wdh;
1228 return A.first.Off < B.first.Off;
1229 }
1230
1231
stats(const RegisterSet & Rs,unsigned & Size,unsigned & Zero,unsigned & Sum) const1232 void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1233 unsigned &Sum) const {
1234 for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) {
1235 UnsignedMap::const_iterator F = UseC.find(R);
1236 assert(F != UseC.end());
1237 unsigned UC = F->second;
1238 if (UC == 0)
1239 Zero++;
1240 Sum += UC;
1241 Size++;
1242 }
1243 }
1244
1245
selectCandidates()1246 void HexagonGenInsert::selectCandidates() {
1247 // Some registers may have multiple valid candidates. Pick the best one
1248 // (or decide not to use any).
1249
1250 // Compute the "removability" measure of R:
1251 // For each potentially removable register R, record the number of regis-
1252 // ters with IF candidates, where R appears in at least one set.
1253 RegisterSet AllRMs;
1254 UnsignedMap UseC, RemC;
1255 IFMapType::iterator End = IFMap.end();
1256
1257 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1258 const IFListType &LL = I->second;
1259 RegisterSet TT;
1260 for (unsigned i = 0, n = LL.size(); i < n; ++i)
1261 TT.insert(LL[i].second);
1262 for (unsigned R = TT.find_first(); R; R = TT.find_next(R))
1263 RemC[R]++;
1264 AllRMs.insert(TT);
1265 }
1266
1267 for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) {
1268 typedef MachineRegisterInfo::use_nodbg_iterator use_iterator;
1269 typedef SmallSet<const MachineInstr*,16> InstrSet;
1270 InstrSet UIs;
1271 // Count as the number of instructions in which R is used, not the
1272 // number of operands.
1273 use_iterator E = MRI->use_nodbg_end();
1274 for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I)
1275 UIs.insert(I->getParent());
1276 unsigned C = UIs.size();
1277 // Calculate a measure, which is the number of instructions using R,
1278 // minus the "removability" count computed earlier.
1279 unsigned D = RemC[R];
1280 UseC[R] = (C > D) ? C-D : 0; // doz
1281 }
1282
1283
1284 bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0;
1285 if (!SelectAll0 && !SelectHas0)
1286 SelectAll0 = true;
1287
1288 // The smaller the number UseC for a given register R, the "less used"
1289 // R is aside from the opportunities for removal offered by generating
1290 // "insert" instructions.
1291 // Iterate over the IF map, and for those registers that have multiple
1292 // candidates, pick the minimum one according to IFOrdering.
1293 IFOrdering IFO(UseC, BaseOrd);
1294 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1295 IFListType &LL = I->second;
1296 if (LL.empty())
1297 continue;
1298 // Get the minimum element, remember it and clear the list. If the
1299 // element found is adequate, we will put it back on the list, other-
1300 // wise the list will remain empty, and the entry for this register
1301 // will be removed (i.e. this register will not be replaced by insert).
1302 IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO);
1303 assert(MinI != LL.end());
1304 IFRecordWithRegSet M = *MinI;
1305 LL.clear();
1306
1307 // We want to make sure that this replacement will have a chance to be
1308 // beneficial, and that means that we want to have indication that some
1309 // register will be removed. The most likely registers to be eliminated
1310 // are the use operands in the definition of I->first. Accept/reject a
1311 // candidate based on how many of its uses it can potentially eliminate.
1312
1313 RegisterSet Us;
1314 const MachineInstr *DefI = MRI->getVRegDef(I->first);
1315 getInstrUses(DefI, Us);
1316 bool Accept = false;
1317
1318 if (SelectAll0) {
1319 bool All0 = true;
1320 for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1321 if (UseC[R] == 0)
1322 continue;
1323 All0 = false;
1324 break;
1325 }
1326 Accept = All0;
1327 } else if (SelectHas0) {
1328 bool Has0 = false;
1329 for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1330 if (UseC[R] != 0)
1331 continue;
1332 Has0 = true;
1333 break;
1334 }
1335 Accept = Has0;
1336 }
1337 if (Accept)
1338 LL.push_back(M);
1339 }
1340
1341 // Remove candidates that add uses of removable registers, unless the
1342 // removable registers are among replacement candidates.
1343 // Recompute the removable registers, since some candidates may have
1344 // been eliminated.
1345 AllRMs.clear();
1346 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1347 const IFListType &LL = I->second;
1348 if (LL.size() > 0)
1349 AllRMs.insert(LL[0].second);
1350 }
1351 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1352 IFListType &LL = I->second;
1353 if (LL.size() == 0)
1354 continue;
1355 unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR;
1356 if (AllRMs[SR] || AllRMs[IR])
1357 LL.clear();
1358 }
1359
1360 pruneEmptyLists();
1361 }
1362
1363
generateInserts()1364 bool HexagonGenInsert::generateInserts() {
1365 // Create a new register for each one from IFMap, and store them in the
1366 // map.
1367 UnsignedMap RegMap;
1368 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1369 unsigned VR = I->first;
1370 const TargetRegisterClass *RC = MRI->getRegClass(VR);
1371 unsigned NewVR = MRI->createVirtualRegister(RC);
1372 RegMap[VR] = NewVR;
1373 }
1374
1375 // We can generate the "insert" instructions using potentially stale re-
1376 // gisters: SrcR and InsR for a given VR may be among other registers that
1377 // are also replaced. This is fine, we will do the mass "rauw" a bit later.
1378 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1379 MachineInstr *MI = MRI->getVRegDef(I->first);
1380 MachineBasicBlock &B = *MI->getParent();
1381 DebugLoc DL = MI->getDebugLoc();
1382 unsigned NewR = RegMap[I->first];
1383 bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass;
1384 const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert)
1385 : HII->get(Hexagon::S2_insertp);
1386 IFRecord IF = I->second[0].first;
1387 unsigned Wdh = IF.Wdh, Off = IF.Off;
1388 unsigned InsS = 0;
1389 if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) {
1390 InsS = Hexagon::subreg_loreg;
1391 if (Off >= 32) {
1392 InsS = Hexagon::subreg_hireg;
1393 Off -= 32;
1394 }
1395 }
1396 // Advance to the proper location for inserting instructions. This could
1397 // be B.end().
1398 MachineBasicBlock::iterator At = MI;
1399 if (MI->isPHI())
1400 At = B.getFirstNonPHI();
1401
1402 BuildMI(B, At, DL, D, NewR)
1403 .addReg(IF.SrcR)
1404 .addReg(IF.InsR, 0, InsS)
1405 .addImm(Wdh)
1406 .addImm(Off);
1407
1408 MRI->clearKillFlags(IF.SrcR);
1409 MRI->clearKillFlags(IF.InsR);
1410 }
1411
1412 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1413 MachineInstr *DefI = MRI->getVRegDef(I->first);
1414 MRI->replaceRegWith(I->first, RegMap[I->first]);
1415 DefI->eraseFromParent();
1416 }
1417
1418 return true;
1419 }
1420
1421
removeDeadCode(MachineDomTreeNode * N)1422 bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) {
1423 bool Changed = false;
1424 typedef GraphTraits<MachineDomTreeNode*> GTN;
1425 for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
1426 Changed |= removeDeadCode(*I);
1427
1428 MachineBasicBlock *B = N->getBlock();
1429 std::vector<MachineInstr*> Instrs;
1430 for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
1431 Instrs.push_back(&*I);
1432
1433 for (auto I = Instrs.begin(), E = Instrs.end(); I != E; ++I) {
1434 MachineInstr *MI = *I;
1435 unsigned Opc = MI->getOpcode();
1436 // Do not touch lifetime markers. This is why the target-independent DCE
1437 // cannot be used.
1438 if (Opc == TargetOpcode::LIFETIME_START ||
1439 Opc == TargetOpcode::LIFETIME_END)
1440 continue;
1441 bool Store = false;
1442 if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store))
1443 continue;
1444
1445 bool AllDead = true;
1446 SmallVector<unsigned,2> Regs;
1447 for (ConstMIOperands Op(*MI); Op.isValid(); ++Op) {
1448 if (!Op->isReg() || !Op->isDef())
1449 continue;
1450 unsigned R = Op->getReg();
1451 if (!TargetRegisterInfo::isVirtualRegister(R) ||
1452 !MRI->use_nodbg_empty(R)) {
1453 AllDead = false;
1454 break;
1455 }
1456 Regs.push_back(R);
1457 }
1458 if (!AllDead)
1459 continue;
1460
1461 B->erase(MI);
1462 for (unsigned I = 0, N = Regs.size(); I != N; ++I)
1463 MRI->markUsesInDebugValueAsUndef(Regs[I]);
1464 Changed = true;
1465 }
1466
1467 return Changed;
1468 }
1469
1470
runOnMachineFunction(MachineFunction & MF)1471 bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) {
1472 if (skipFunction(*MF.getFunction()))
1473 return false;
1474
1475 bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail;
1476 bool Changed = false;
1477 TimerGroup __G("hexinsert");
1478 NamedRegionTimer __T("hexinsert", Timing && !TimingDetail);
1479
1480 // Sanity check: one, but not both.
1481 assert(!OptSelectAll0 || !OptSelectHas0);
1482
1483 IFMap.clear();
1484 BaseOrd.clear();
1485 CellOrd.clear();
1486
1487 const auto &ST = MF.getSubtarget<HexagonSubtarget>();
1488 HII = ST.getInstrInfo();
1489 HRI = ST.getRegisterInfo();
1490 MFN = &MF;
1491 MRI = &MF.getRegInfo();
1492 MDT = &getAnalysis<MachineDominatorTree>();
1493
1494 // Clean up before any further processing, so that dead code does not
1495 // get used in a newly generated "insert" instruction. Have a custom
1496 // version of DCE that preserves lifetime markers. Without it, merging
1497 // of stack objects can fail to recognize and merge disjoint objects
1498 // leading to unnecessary stack growth.
1499 Changed = removeDeadCode(MDT->getRootNode());
1500
1501 const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
1502 BitTracker BTLoc(HE, MF);
1503 BTLoc.trace(isDebug());
1504 BTLoc.run();
1505 CellMapShadow MS(BTLoc);
1506 CMS = &MS;
1507
1508 buildOrderingMF(BaseOrd);
1509 buildOrderingBT(BaseOrd, CellOrd);
1510
1511 if (isDebug()) {
1512 dbgs() << "Cell ordering:\n";
1513 for (RegisterOrdering::iterator I = CellOrd.begin(), E = CellOrd.end();
1514 I != E; ++I) {
1515 unsigned VR = I->first, Pos = I->second;
1516 dbgs() << PrintReg(VR, HRI) << " -> " << Pos << "\n";
1517 }
1518 }
1519
1520 // Collect candidates for conversion into the insert forms.
1521 MachineBasicBlock *RootB = MDT->getRoot();
1522 OrderedRegisterList AvailR(CellOrd);
1523
1524 {
1525 NamedRegionTimer _T("collection", "hexinsert", TimingDetail);
1526 collectInBlock(RootB, AvailR);
1527 // Complete the information gathered in IFMap.
1528 computeRemovableRegisters();
1529 }
1530
1531 if (isDebug()) {
1532 dbgs() << "Candidates after collection:\n";
1533 dump_map();
1534 }
1535
1536 if (IFMap.empty())
1537 return Changed;
1538
1539 {
1540 NamedRegionTimer _T("pruning", "hexinsert", TimingDetail);
1541 pruneCandidates();
1542 }
1543
1544 if (isDebug()) {
1545 dbgs() << "Candidates after pruning:\n";
1546 dump_map();
1547 }
1548
1549 if (IFMap.empty())
1550 return Changed;
1551
1552 {
1553 NamedRegionTimer _T("selection", "hexinsert", TimingDetail);
1554 selectCandidates();
1555 }
1556
1557 if (isDebug()) {
1558 dbgs() << "Candidates after selection:\n";
1559 dump_map();
1560 }
1561
1562 // Filter out vregs beyond the cutoff.
1563 if (VRegIndexCutoff.getPosition()) {
1564 unsigned Cutoff = VRegIndexCutoff;
1565 typedef SmallVector<IFMapType::iterator,16> IterListType;
1566 IterListType Out;
1567 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1568 unsigned Idx = TargetRegisterInfo::virtReg2Index(I->first);
1569 if (Idx >= Cutoff)
1570 Out.push_back(I);
1571 }
1572 for (unsigned i = 0, n = Out.size(); i < n; ++i)
1573 IFMap.erase(Out[i]);
1574 }
1575 if (IFMap.empty())
1576 return Changed;
1577
1578 {
1579 NamedRegionTimer _T("generation", "hexinsert", TimingDetail);
1580 generateInserts();
1581 }
1582
1583 return true;
1584 }
1585
1586
createHexagonGenInsert()1587 FunctionPass *llvm::createHexagonGenInsert() {
1588 return new HexagonGenInsert();
1589 }
1590
1591
1592 //===----------------------------------------------------------------------===//
1593 // Public Constructor Functions
1594 //===----------------------------------------------------------------------===//
1595
1596 INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert",
1597 "Hexagon generate \"insert\" instructions", false, false)
1598 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1599 INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert",
1600 "Hexagon generate \"insert\" instructions", false, false)
1601