1 //===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass deletes dead arguments from internal functions. Dead argument
11 // elimination removes arguments which are directly dead, as well as arguments
12 // only passed into function calls as dead arguments of other functions. This
13 // pass also deletes dead return values in a similar way.
14 //
15 // This pass is often useful as a cleanup pass to run after aggressive
16 // interprocedural passes, which add possibly-dead arguments or return values.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "llvm/Transforms/IPO/DeadArgumentElimination.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/DIBuilder.h"
28 #include "llvm/IR/DebugInfo.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/IPO.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include <set>
40 #include <tuple>
41 using namespace llvm;
42
43 #define DEBUG_TYPE "deadargelim"
44
45 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
46 STATISTIC(NumRetValsEliminated , "Number of unused return values removed");
47 STATISTIC(NumArgumentsReplacedWithUndef,
48 "Number of unread args replaced with undef");
49 namespace {
50 /// DAE - The dead argument elimination pass.
51 ///
52 class DAE : public ModulePass {
53 protected:
54 // DAH uses this to specify a different ID.
DAE(char & ID)55 explicit DAE(char &ID) : ModulePass(ID) {}
56
57 public:
58 static char ID; // Pass identification, replacement for typeid
DAE()59 DAE() : ModulePass(ID) {
60 initializeDAEPass(*PassRegistry::getPassRegistry());
61 }
62
runOnModule(Module & M)63 bool runOnModule(Module &M) override {
64 if (skipModule(M))
65 return false;
66 DeadArgumentEliminationPass DAEP(ShouldHackArguments());
67 ModuleAnalysisManager DummyMAM;
68 PreservedAnalyses PA = DAEP.run(M, DummyMAM);
69 return !PA.areAllPreserved();
70 }
71
ShouldHackArguments() const72 virtual bool ShouldHackArguments() const { return false; }
73 };
74 }
75
76
77 char DAE::ID = 0;
78 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
79
80 namespace {
81 /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
82 /// deletes arguments to functions which are external. This is only for use
83 /// by bugpoint.
84 struct DAH : public DAE {
85 static char ID;
DAH__anonae6e3c070211::DAH86 DAH() : DAE(ID) {}
87
ShouldHackArguments__anonae6e3c070211::DAH88 bool ShouldHackArguments() const override { return true; }
89 };
90 }
91
92 char DAH::ID = 0;
93 INITIALIZE_PASS(DAH, "deadarghaX0r",
94 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
95 false, false)
96
97 /// createDeadArgEliminationPass - This pass removes arguments from functions
98 /// which are not used by the body of the function.
99 ///
createDeadArgEliminationPass()100 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
createDeadArgHackingPass()101 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
102
103 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
104 /// llvm.vastart is never called, the varargs list is dead for the function.
DeleteDeadVarargs(Function & Fn)105 bool DeadArgumentEliminationPass::DeleteDeadVarargs(Function &Fn) {
106 assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
107 if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
108
109 // Ensure that the function is only directly called.
110 if (Fn.hasAddressTaken())
111 return false;
112
113 // Don't touch naked functions. The assembly might be using an argument, or
114 // otherwise rely on the frame layout in a way that this analysis will not
115 // see.
116 if (Fn.hasFnAttribute(Attribute::Naked)) {
117 return false;
118 }
119
120 // Okay, we know we can transform this function if safe. Scan its body
121 // looking for calls marked musttail or calls to llvm.vastart.
122 for (BasicBlock &BB : Fn) {
123 for (Instruction &I : BB) {
124 CallInst *CI = dyn_cast<CallInst>(&I);
125 if (!CI)
126 continue;
127 if (CI->isMustTailCall())
128 return false;
129 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
130 if (II->getIntrinsicID() == Intrinsic::vastart)
131 return false;
132 }
133 }
134 }
135
136 // If we get here, there are no calls to llvm.vastart in the function body,
137 // remove the "..." and adjust all the calls.
138
139 // Start by computing a new prototype for the function, which is the same as
140 // the old function, but doesn't have isVarArg set.
141 FunctionType *FTy = Fn.getFunctionType();
142
143 std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
144 FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
145 Params, false);
146 unsigned NumArgs = Params.size();
147
148 // Create the new function body and insert it into the module...
149 Function *NF = Function::Create(NFTy, Fn.getLinkage());
150 NF->copyAttributesFrom(&Fn);
151 NF->setComdat(Fn.getComdat());
152 Fn.getParent()->getFunctionList().insert(Fn.getIterator(), NF);
153 NF->takeName(&Fn);
154
155 // Loop over all of the callers of the function, transforming the call sites
156 // to pass in a smaller number of arguments into the new function.
157 //
158 std::vector<Value*> Args;
159 for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) {
160 CallSite CS(*I++);
161 if (!CS)
162 continue;
163 Instruction *Call = CS.getInstruction();
164
165 // Pass all the same arguments.
166 Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
167
168 // Drop any attributes that were on the vararg arguments.
169 AttributeSet PAL = CS.getAttributes();
170 if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) {
171 SmallVector<AttributeSet, 8> AttributesVec;
172 for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i)
173 AttributesVec.push_back(PAL.getSlotAttributes(i));
174 if (PAL.hasAttributes(AttributeSet::FunctionIndex))
175 AttributesVec.push_back(AttributeSet::get(Fn.getContext(),
176 PAL.getFnAttributes()));
177 PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
178 }
179
180 SmallVector<OperandBundleDef, 1> OpBundles;
181 CS.getOperandBundlesAsDefs(OpBundles);
182
183 Instruction *New;
184 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
185 New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
186 Args, OpBundles, "", Call);
187 cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
188 cast<InvokeInst>(New)->setAttributes(PAL);
189 } else {
190 New = CallInst::Create(NF, Args, OpBundles, "", Call);
191 cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
192 cast<CallInst>(New)->setAttributes(PAL);
193 if (cast<CallInst>(Call)->isTailCall())
194 cast<CallInst>(New)->setTailCall();
195 }
196 New->setDebugLoc(Call->getDebugLoc());
197
198 Args.clear();
199
200 if (!Call->use_empty())
201 Call->replaceAllUsesWith(New);
202
203 New->takeName(Call);
204
205 // Finally, remove the old call from the program, reducing the use-count of
206 // F.
207 Call->eraseFromParent();
208 }
209
210 // Since we have now created the new function, splice the body of the old
211 // function right into the new function, leaving the old rotting hulk of the
212 // function empty.
213 NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
214
215 // Loop over the argument list, transferring uses of the old arguments over to
216 // the new arguments, also transferring over the names as well. While we're at
217 // it, remove the dead arguments from the DeadArguments list.
218 //
219 for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
220 I2 = NF->arg_begin(); I != E; ++I, ++I2) {
221 // Move the name and users over to the new version.
222 I->replaceAllUsesWith(&*I2);
223 I2->takeName(&*I);
224 }
225
226 // Patch the pointer to LLVM function in debug info descriptor.
227 NF->setSubprogram(Fn.getSubprogram());
228
229 // Fix up any BlockAddresses that refer to the function.
230 Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
231 // Delete the bitcast that we just created, so that NF does not
232 // appear to be address-taken.
233 NF->removeDeadConstantUsers();
234 // Finally, nuke the old function.
235 Fn.eraseFromParent();
236 return true;
237 }
238
239 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any
240 /// arguments that are unused, and changes the caller parameters to be undefined
241 /// instead.
RemoveDeadArgumentsFromCallers(Function & Fn)242 bool DeadArgumentEliminationPass::RemoveDeadArgumentsFromCallers(Function &Fn) {
243 // We cannot change the arguments if this TU does not define the function or
244 // if the linker may choose a function body from another TU, even if the
245 // nominal linkage indicates that other copies of the function have the same
246 // semantics. In the below example, the dead load from %p may not have been
247 // eliminated from the linker-chosen copy of f, so replacing %p with undef
248 // in callers may introduce undefined behavior.
249 //
250 // define linkonce_odr void @f(i32* %p) {
251 // %v = load i32 %p
252 // ret void
253 // }
254 if (!Fn.hasExactDefinition())
255 return false;
256
257 // Functions with local linkage should already have been handled, except the
258 // fragile (variadic) ones which we can improve here.
259 if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
260 return false;
261
262 // Don't touch naked functions. The assembly might be using an argument, or
263 // otherwise rely on the frame layout in a way that this analysis will not
264 // see.
265 if (Fn.hasFnAttribute(Attribute::Naked))
266 return false;
267
268 if (Fn.use_empty())
269 return false;
270
271 SmallVector<unsigned, 8> UnusedArgs;
272 for (Argument &Arg : Fn.args()) {
273 if (Arg.use_empty() && !Arg.hasByValOrInAllocaAttr())
274 UnusedArgs.push_back(Arg.getArgNo());
275 }
276
277 if (UnusedArgs.empty())
278 return false;
279
280 bool Changed = false;
281
282 for (Use &U : Fn.uses()) {
283 CallSite CS(U.getUser());
284 if (!CS || !CS.isCallee(&U))
285 continue;
286
287 // Now go through all unused args and replace them with "undef".
288 for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
289 unsigned ArgNo = UnusedArgs[I];
290
291 Value *Arg = CS.getArgument(ArgNo);
292 CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
293 ++NumArgumentsReplacedWithUndef;
294 Changed = true;
295 }
296 }
297
298 return Changed;
299 }
300
301 /// Convenience function that returns the number of return values. It returns 0
302 /// for void functions and 1 for functions not returning a struct. It returns
303 /// the number of struct elements for functions returning a struct.
NumRetVals(const Function * F)304 static unsigned NumRetVals(const Function *F) {
305 Type *RetTy = F->getReturnType();
306 if (RetTy->isVoidTy())
307 return 0;
308 else if (StructType *STy = dyn_cast<StructType>(RetTy))
309 return STy->getNumElements();
310 else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
311 return ATy->getNumElements();
312 else
313 return 1;
314 }
315
316 /// Returns the sub-type a function will return at a given Idx. Should
317 /// correspond to the result type of an ExtractValue instruction executed with
318 /// just that one Idx (i.e. only top-level structure is considered).
getRetComponentType(const Function * F,unsigned Idx)319 static Type *getRetComponentType(const Function *F, unsigned Idx) {
320 Type *RetTy = F->getReturnType();
321 assert(!RetTy->isVoidTy() && "void type has no subtype");
322
323 if (StructType *STy = dyn_cast<StructType>(RetTy))
324 return STy->getElementType(Idx);
325 else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
326 return ATy->getElementType();
327 else
328 return RetTy;
329 }
330
331 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
332 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
333 /// liveness of Use.
334 DeadArgumentEliminationPass::Liveness
MarkIfNotLive(RetOrArg Use,UseVector & MaybeLiveUses)335 DeadArgumentEliminationPass::MarkIfNotLive(RetOrArg Use,
336 UseVector &MaybeLiveUses) {
337 // We're live if our use or its Function is already marked as live.
338 if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
339 return Live;
340
341 // We're maybe live otherwise, but remember that we must become live if
342 // Use becomes live.
343 MaybeLiveUses.push_back(Use);
344 return MaybeLive;
345 }
346
347
348 /// SurveyUse - This looks at a single use of an argument or return value
349 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
350 /// if it causes the used value to become MaybeLive.
351 ///
352 /// RetValNum is the return value number to use when this use is used in a
353 /// return instruction. This is used in the recursion, you should always leave
354 /// it at 0.
355 DeadArgumentEliminationPass::Liveness
SurveyUse(const Use * U,UseVector & MaybeLiveUses,unsigned RetValNum)356 DeadArgumentEliminationPass::SurveyUse(const Use *U, UseVector &MaybeLiveUses,
357 unsigned RetValNum) {
358 const User *V = U->getUser();
359 if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
360 // The value is returned from a function. It's only live when the
361 // function's return value is live. We use RetValNum here, for the case
362 // that U is really a use of an insertvalue instruction that uses the
363 // original Use.
364 const Function *F = RI->getParent()->getParent();
365 if (RetValNum != -1U) {
366 RetOrArg Use = CreateRet(F, RetValNum);
367 // We might be live, depending on the liveness of Use.
368 return MarkIfNotLive(Use, MaybeLiveUses);
369 } else {
370 DeadArgumentEliminationPass::Liveness Result = MaybeLive;
371 for (unsigned i = 0; i < NumRetVals(F); ++i) {
372 RetOrArg Use = CreateRet(F, i);
373 // We might be live, depending on the liveness of Use. If any
374 // sub-value is live, then the entire value is considered live. This
375 // is a conservative choice, and better tracking is possible.
376 DeadArgumentEliminationPass::Liveness SubResult =
377 MarkIfNotLive(Use, MaybeLiveUses);
378 if (Result != Live)
379 Result = SubResult;
380 }
381 return Result;
382 }
383 }
384 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
385 if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
386 && IV->hasIndices())
387 // The use we are examining is inserted into an aggregate. Our liveness
388 // depends on all uses of that aggregate, but if it is used as a return
389 // value, only index at which we were inserted counts.
390 RetValNum = *IV->idx_begin();
391
392 // Note that if we are used as the aggregate operand to the insertvalue,
393 // we don't change RetValNum, but do survey all our uses.
394
395 Liveness Result = MaybeLive;
396 for (const Use &UU : IV->uses()) {
397 Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
398 if (Result == Live)
399 break;
400 }
401 return Result;
402 }
403
404 if (auto CS = ImmutableCallSite(V)) {
405 const Function *F = CS.getCalledFunction();
406 if (F) {
407 // Used in a direct call.
408
409 // The function argument is live if it is used as a bundle operand.
410 if (CS.isBundleOperand(U))
411 return Live;
412
413 // Find the argument number. We know for sure that this use is an
414 // argument, since if it was the function argument this would be an
415 // indirect call and the we know can't be looking at a value of the
416 // label type (for the invoke instruction).
417 unsigned ArgNo = CS.getArgumentNo(U);
418
419 if (ArgNo >= F->getFunctionType()->getNumParams())
420 // The value is passed in through a vararg! Must be live.
421 return Live;
422
423 assert(CS.getArgument(ArgNo)
424 == CS->getOperand(U->getOperandNo())
425 && "Argument is not where we expected it");
426
427 // Value passed to a normal call. It's only live when the corresponding
428 // argument to the called function turns out live.
429 RetOrArg Use = CreateArg(F, ArgNo);
430 return MarkIfNotLive(Use, MaybeLiveUses);
431 }
432 }
433 // Used in any other way? Value must be live.
434 return Live;
435 }
436
437 /// SurveyUses - This looks at all the uses of the given value
438 /// Returns the Liveness deduced from the uses of this value.
439 ///
440 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
441 /// the result is Live, MaybeLiveUses might be modified but its content should
442 /// be ignored (since it might not be complete).
443 DeadArgumentEliminationPass::Liveness
SurveyUses(const Value * V,UseVector & MaybeLiveUses)444 DeadArgumentEliminationPass::SurveyUses(const Value *V,
445 UseVector &MaybeLiveUses) {
446 // Assume it's dead (which will only hold if there are no uses at all..).
447 Liveness Result = MaybeLive;
448 // Check each use.
449 for (const Use &U : V->uses()) {
450 Result = SurveyUse(&U, MaybeLiveUses);
451 if (Result == Live)
452 break;
453 }
454 return Result;
455 }
456
457 // SurveyFunction - This performs the initial survey of the specified function,
458 // checking out whether or not it uses any of its incoming arguments or whether
459 // any callers use the return value. This fills in the LiveValues set and Uses
460 // map.
461 //
462 // We consider arguments of non-internal functions to be intrinsically alive as
463 // well as arguments to functions which have their "address taken".
464 //
SurveyFunction(const Function & F)465 void DeadArgumentEliminationPass::SurveyFunction(const Function &F) {
466 // Functions with inalloca parameters are expecting args in a particular
467 // register and memory layout.
468 if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca)) {
469 MarkLive(F);
470 return;
471 }
472
473 // Don't touch naked functions. The assembly might be using an argument, or
474 // otherwise rely on the frame layout in a way that this analysis will not
475 // see.
476 if (F.hasFnAttribute(Attribute::Naked)) {
477 MarkLive(F);
478 return;
479 }
480
481 unsigned RetCount = NumRetVals(&F);
482 // Assume all return values are dead
483 typedef SmallVector<Liveness, 5> RetVals;
484 RetVals RetValLiveness(RetCount, MaybeLive);
485
486 typedef SmallVector<UseVector, 5> RetUses;
487 // These vectors map each return value to the uses that make it MaybeLive, so
488 // we can add those to the Uses map if the return value really turns out to be
489 // MaybeLive. Initialized to a list of RetCount empty lists.
490 RetUses MaybeLiveRetUses(RetCount);
491
492 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
493 if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
494 if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
495 != F.getFunctionType()->getReturnType()) {
496 // We don't support old style multiple return values.
497 MarkLive(F);
498 return;
499 }
500
501 if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) {
502 MarkLive(F);
503 return;
504 }
505
506 DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: "
507 << F.getName() << "\n");
508 // Keep track of the number of live retvals, so we can skip checks once all
509 // of them turn out to be live.
510 unsigned NumLiveRetVals = 0;
511 // Loop all uses of the function.
512 for (const Use &U : F.uses()) {
513 // If the function is PASSED IN as an argument, its address has been
514 // taken.
515 ImmutableCallSite CS(U.getUser());
516 if (!CS || !CS.isCallee(&U)) {
517 MarkLive(F);
518 return;
519 }
520
521 // If this use is anything other than a call site, the function is alive.
522 const Instruction *TheCall = CS.getInstruction();
523 if (!TheCall) { // Not a direct call site?
524 MarkLive(F);
525 return;
526 }
527
528 // If we end up here, we are looking at a direct call to our function.
529
530 // Now, check how our return value(s) is/are used in this caller. Don't
531 // bother checking return values if all of them are live already.
532 if (NumLiveRetVals == RetCount)
533 continue;
534
535 // Check all uses of the return value.
536 for (const Use &U : TheCall->uses()) {
537 if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) {
538 // This use uses a part of our return value, survey the uses of
539 // that part and store the results for this index only.
540 unsigned Idx = *Ext->idx_begin();
541 if (RetValLiveness[Idx] != Live) {
542 RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
543 if (RetValLiveness[Idx] == Live)
544 NumLiveRetVals++;
545 }
546 } else {
547 // Used by something else than extractvalue. Survey, but assume that the
548 // result applies to all sub-values.
549 UseVector MaybeLiveAggregateUses;
550 if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) {
551 NumLiveRetVals = RetCount;
552 RetValLiveness.assign(RetCount, Live);
553 break;
554 } else {
555 for (unsigned i = 0; i != RetCount; ++i) {
556 if (RetValLiveness[i] != Live)
557 MaybeLiveRetUses[i].append(MaybeLiveAggregateUses.begin(),
558 MaybeLiveAggregateUses.end());
559 }
560 }
561 }
562 }
563 }
564
565 // Now we've inspected all callers, record the liveness of our return values.
566 for (unsigned i = 0; i != RetCount; ++i)
567 MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
568
569 DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: "
570 << F.getName() << "\n");
571
572 // Now, check all of our arguments.
573 unsigned i = 0;
574 UseVector MaybeLiveArgUses;
575 for (Function::const_arg_iterator AI = F.arg_begin(),
576 E = F.arg_end(); AI != E; ++AI, ++i) {
577 Liveness Result;
578 if (F.getFunctionType()->isVarArg()) {
579 // Variadic functions will already have a va_arg function expanded inside
580 // them, making them potentially very sensitive to ABI changes resulting
581 // from removing arguments entirely, so don't. For example AArch64 handles
582 // register and stack HFAs very differently, and this is reflected in the
583 // IR which has already been generated.
584 Result = Live;
585 } else {
586 // See what the effect of this use is (recording any uses that cause
587 // MaybeLive in MaybeLiveArgUses).
588 Result = SurveyUses(&*AI, MaybeLiveArgUses);
589 }
590
591 // Mark the result.
592 MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
593 // Clear the vector again for the next iteration.
594 MaybeLiveArgUses.clear();
595 }
596 }
597
598 /// MarkValue - This function marks the liveness of RA depending on L. If L is
599 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
600 /// such that RA will be marked live if any use in MaybeLiveUses gets marked
601 /// live later on.
MarkValue(const RetOrArg & RA,Liveness L,const UseVector & MaybeLiveUses)602 void DeadArgumentEliminationPass::MarkValue(const RetOrArg &RA, Liveness L,
603 const UseVector &MaybeLiveUses) {
604 switch (L) {
605 case Live: MarkLive(RA); break;
606 case MaybeLive:
607 {
608 // Note any uses of this value, so this return value can be
609 // marked live whenever one of the uses becomes live.
610 for (const auto &MaybeLiveUse : MaybeLiveUses)
611 Uses.insert(std::make_pair(MaybeLiveUse, RA));
612 break;
613 }
614 }
615 }
616
617 /// MarkLive - Mark the given Function as alive, meaning that it cannot be
618 /// changed in any way. Additionally,
619 /// mark any values that are used as this function's parameters or by its return
620 /// values (according to Uses) live as well.
MarkLive(const Function & F)621 void DeadArgumentEliminationPass::MarkLive(const Function &F) {
622 DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: "
623 << F.getName() << "\n");
624 // Mark the function as live.
625 LiveFunctions.insert(&F);
626 // Mark all arguments as live.
627 for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
628 PropagateLiveness(CreateArg(&F, i));
629 // Mark all return values as live.
630 for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
631 PropagateLiveness(CreateRet(&F, i));
632 }
633
634 /// MarkLive - Mark the given return value or argument as live. Additionally,
635 /// mark any values that are used by this value (according to Uses) live as
636 /// well.
MarkLive(const RetOrArg & RA)637 void DeadArgumentEliminationPass::MarkLive(const RetOrArg &RA) {
638 if (LiveFunctions.count(RA.F))
639 return; // Function was already marked Live.
640
641 if (!LiveValues.insert(RA).second)
642 return; // We were already marked Live.
643
644 DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking "
645 << RA.getDescription() << " live\n");
646 PropagateLiveness(RA);
647 }
648
649 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
650 /// to any other values it uses (according to Uses).
PropagateLiveness(const RetOrArg & RA)651 void DeadArgumentEliminationPass::PropagateLiveness(const RetOrArg &RA) {
652 // We don't use upper_bound (or equal_range) here, because our recursive call
653 // to ourselves is likely to cause the upper_bound (which is the first value
654 // not belonging to RA) to become erased and the iterator invalidated.
655 UseMap::iterator Begin = Uses.lower_bound(RA);
656 UseMap::iterator E = Uses.end();
657 UseMap::iterator I;
658 for (I = Begin; I != E && I->first == RA; ++I)
659 MarkLive(I->second);
660
661 // Erase RA from the Uses map (from the lower bound to wherever we ended up
662 // after the loop).
663 Uses.erase(Begin, I);
664 }
665
666 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
667 // that are not in LiveValues. Transform the function and all of the callees of
668 // the function to not have these arguments and return values.
669 //
RemoveDeadStuffFromFunction(Function * F)670 bool DeadArgumentEliminationPass::RemoveDeadStuffFromFunction(Function *F) {
671 // Don't modify fully live functions
672 if (LiveFunctions.count(F))
673 return false;
674
675 // Start by computing a new prototype for the function, which is the same as
676 // the old function, but has fewer arguments and a different return type.
677 FunctionType *FTy = F->getFunctionType();
678 std::vector<Type*> Params;
679
680 // Keep track of if we have a live 'returned' argument
681 bool HasLiveReturnedArg = false;
682
683 // Set up to build a new list of parameter attributes.
684 SmallVector<AttributeSet, 8> AttributesVec;
685 const AttributeSet &PAL = F->getAttributes();
686
687 // Remember which arguments are still alive.
688 SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
689 // Construct the new parameter list from non-dead arguments. Also construct
690 // a new set of parameter attributes to correspond. Skip the first parameter
691 // attribute, since that belongs to the return value.
692 unsigned i = 0;
693 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
694 I != E; ++I, ++i) {
695 RetOrArg Arg = CreateArg(F, i);
696 if (LiveValues.erase(Arg)) {
697 Params.push_back(I->getType());
698 ArgAlive[i] = true;
699
700 // Get the original parameter attributes (skipping the first one, that is
701 // for the return value.
702 if (PAL.hasAttributes(i + 1)) {
703 AttrBuilder B(PAL, i + 1);
704 if (B.contains(Attribute::Returned))
705 HasLiveReturnedArg = true;
706 AttributesVec.
707 push_back(AttributeSet::get(F->getContext(), Params.size(), B));
708 }
709 } else {
710 ++NumArgumentsEliminated;
711 DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument " << i
712 << " (" << I->getName() << ") from " << F->getName()
713 << "\n");
714 }
715 }
716
717 // Find out the new return value.
718 Type *RetTy = FTy->getReturnType();
719 Type *NRetTy = nullptr;
720 unsigned RetCount = NumRetVals(F);
721
722 // -1 means unused, other numbers are the new index
723 SmallVector<int, 5> NewRetIdxs(RetCount, -1);
724 std::vector<Type*> RetTypes;
725
726 // If there is a function with a live 'returned' argument but a dead return
727 // value, then there are two possible actions:
728 // 1) Eliminate the return value and take off the 'returned' attribute on the
729 // argument.
730 // 2) Retain the 'returned' attribute and treat the return value (but not the
731 // entire function) as live so that it is not eliminated.
732 //
733 // It's not clear in the general case which option is more profitable because,
734 // even in the absence of explicit uses of the return value, code generation
735 // is free to use the 'returned' attribute to do things like eliding
736 // save/restores of registers across calls. Whether or not this happens is
737 // target and ABI-specific as well as depending on the amount of register
738 // pressure, so there's no good way for an IR-level pass to figure this out.
739 //
740 // Fortunately, the only places where 'returned' is currently generated by
741 // the FE are places where 'returned' is basically free and almost always a
742 // performance win, so the second option can just be used always for now.
743 //
744 // This should be revisited if 'returned' is ever applied more liberally.
745 if (RetTy->isVoidTy() || HasLiveReturnedArg) {
746 NRetTy = RetTy;
747 } else {
748 // Look at each of the original return values individually.
749 for (unsigned i = 0; i != RetCount; ++i) {
750 RetOrArg Ret = CreateRet(F, i);
751 if (LiveValues.erase(Ret)) {
752 RetTypes.push_back(getRetComponentType(F, i));
753 NewRetIdxs[i] = RetTypes.size() - 1;
754 } else {
755 ++NumRetValsEliminated;
756 DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing return value "
757 << i << " from " << F->getName() << "\n");
758 }
759 }
760 if (RetTypes.size() > 1) {
761 // More than one return type? Reduce it down to size.
762 if (StructType *STy = dyn_cast<StructType>(RetTy)) {
763 // Make the new struct packed if we used to return a packed struct
764 // already.
765 NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
766 } else {
767 assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
768 NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
769 }
770 } else if (RetTypes.size() == 1)
771 // One return type? Just a simple value then, but only if we didn't use to
772 // return a struct with that simple value before.
773 NRetTy = RetTypes.front();
774 else if (RetTypes.size() == 0)
775 // No return types? Make it void, but only if we didn't use to return {}.
776 NRetTy = Type::getVoidTy(F->getContext());
777 }
778
779 assert(NRetTy && "No new return type found?");
780
781 // The existing function return attributes.
782 AttributeSet RAttrs = PAL.getRetAttributes();
783
784 // Remove any incompatible attributes, but only if we removed all return
785 // values. Otherwise, ensure that we don't have any conflicting attributes
786 // here. Currently, this should not be possible, but special handling might be
787 // required when new return value attributes are added.
788 if (NRetTy->isVoidTy())
789 RAttrs = RAttrs.removeAttributes(NRetTy->getContext(),
790 AttributeSet::ReturnIndex,
791 AttributeFuncs::typeIncompatible(NRetTy));
792 else
793 assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
794 overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
795 "Return attributes no longer compatible?");
796
797 if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
798 AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs));
799
800 if (PAL.hasAttributes(AttributeSet::FunctionIndex))
801 AttributesVec.push_back(AttributeSet::get(F->getContext(),
802 PAL.getFnAttributes()));
803
804 // Reconstruct the AttributesList based on the vector we constructed.
805 AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);
806
807 // Create the new function type based on the recomputed parameters.
808 FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
809
810 // No change?
811 if (NFTy == FTy)
812 return false;
813
814 // Create the new function body and insert it into the module...
815 Function *NF = Function::Create(NFTy, F->getLinkage());
816 NF->copyAttributesFrom(F);
817 NF->setComdat(F->getComdat());
818 NF->setAttributes(NewPAL);
819 // Insert the new function before the old function, so we won't be processing
820 // it again.
821 F->getParent()->getFunctionList().insert(F->getIterator(), NF);
822 NF->takeName(F);
823
824 // Loop over all of the callers of the function, transforming the call sites
825 // to pass in a smaller number of arguments into the new function.
826 //
827 std::vector<Value*> Args;
828 while (!F->use_empty()) {
829 CallSite CS(F->user_back());
830 Instruction *Call = CS.getInstruction();
831
832 AttributesVec.clear();
833 const AttributeSet &CallPAL = CS.getAttributes();
834
835 // The call return attributes.
836 AttributeSet RAttrs = CallPAL.getRetAttributes();
837
838 // Adjust in case the function was changed to return void.
839 RAttrs = RAttrs.removeAttributes(NRetTy->getContext(),
840 AttributeSet::ReturnIndex,
841 AttributeFuncs::typeIncompatible(NF->getReturnType()));
842 if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
843 AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs));
844
845 // Declare these outside of the loops, so we can reuse them for the second
846 // loop, which loops the varargs.
847 CallSite::arg_iterator I = CS.arg_begin();
848 unsigned i = 0;
849 // Loop over those operands, corresponding to the normal arguments to the
850 // original function, and add those that are still alive.
851 for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
852 if (ArgAlive[i]) {
853 Args.push_back(*I);
854 // Get original parameter attributes, but skip return attributes.
855 if (CallPAL.hasAttributes(i + 1)) {
856 AttrBuilder B(CallPAL, i + 1);
857 // If the return type has changed, then get rid of 'returned' on the
858 // call site. The alternative is to make all 'returned' attributes on
859 // call sites keep the return value alive just like 'returned'
860 // attributes on function declaration but it's less clearly a win
861 // and this is not an expected case anyway
862 if (NRetTy != RetTy && B.contains(Attribute::Returned))
863 B.removeAttribute(Attribute::Returned);
864 AttributesVec.
865 push_back(AttributeSet::get(F->getContext(), Args.size(), B));
866 }
867 }
868
869 // Push any varargs arguments on the list. Don't forget their attributes.
870 for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
871 Args.push_back(*I);
872 if (CallPAL.hasAttributes(i + 1)) {
873 AttrBuilder B(CallPAL, i + 1);
874 AttributesVec.
875 push_back(AttributeSet::get(F->getContext(), Args.size(), B));
876 }
877 }
878
879 if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
880 AttributesVec.push_back(AttributeSet::get(Call->getContext(),
881 CallPAL.getFnAttributes()));
882
883 // Reconstruct the AttributesList based on the vector we constructed.
884 AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);
885
886 SmallVector<OperandBundleDef, 1> OpBundles;
887 CS.getOperandBundlesAsDefs(OpBundles);
888
889 Instruction *New;
890 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
891 New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
892 Args, OpBundles, "", Call->getParent());
893 cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
894 cast<InvokeInst>(New)->setAttributes(NewCallPAL);
895 } else {
896 New = CallInst::Create(NF, Args, OpBundles, "", Call);
897 cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
898 cast<CallInst>(New)->setAttributes(NewCallPAL);
899 if (cast<CallInst>(Call)->isTailCall())
900 cast<CallInst>(New)->setTailCall();
901 }
902 New->setDebugLoc(Call->getDebugLoc());
903
904 Args.clear();
905
906 if (!Call->use_empty()) {
907 if (New->getType() == Call->getType()) {
908 // Return type not changed? Just replace users then.
909 Call->replaceAllUsesWith(New);
910 New->takeName(Call);
911 } else if (New->getType()->isVoidTy()) {
912 // Our return value has uses, but they will get removed later on.
913 // Replace by null for now.
914 if (!Call->getType()->isX86_MMXTy())
915 Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
916 } else {
917 assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
918 "Return type changed, but not into a void. The old return type"
919 " must have been a struct or an array!");
920 Instruction *InsertPt = Call;
921 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
922 BasicBlock *NewEdge = SplitEdge(New->getParent(), II->getNormalDest());
923 InsertPt = &*NewEdge->getFirstInsertionPt();
924 }
925
926 // We used to return a struct or array. Instead of doing smart stuff
927 // with all the uses, we will just rebuild it using extract/insertvalue
928 // chaining and let instcombine clean that up.
929 //
930 // Start out building up our return value from undef
931 Value *RetVal = UndefValue::get(RetTy);
932 for (unsigned i = 0; i != RetCount; ++i)
933 if (NewRetIdxs[i] != -1) {
934 Value *V;
935 if (RetTypes.size() > 1)
936 // We are still returning a struct, so extract the value from our
937 // return value
938 V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
939 InsertPt);
940 else
941 // We are now returning a single element, so just insert that
942 V = New;
943 // Insert the value at the old position
944 RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
945 }
946 // Now, replace all uses of the old call instruction with the return
947 // struct we built
948 Call->replaceAllUsesWith(RetVal);
949 New->takeName(Call);
950 }
951 }
952
953 // Finally, remove the old call from the program, reducing the use-count of
954 // F.
955 Call->eraseFromParent();
956 }
957
958 // Since we have now created the new function, splice the body of the old
959 // function right into the new function, leaving the old rotting hulk of the
960 // function empty.
961 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
962
963 // Loop over the argument list, transferring uses of the old arguments over to
964 // the new arguments, also transferring over the names as well.
965 i = 0;
966 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
967 I2 = NF->arg_begin(); I != E; ++I, ++i)
968 if (ArgAlive[i]) {
969 // If this is a live argument, move the name and users over to the new
970 // version.
971 I->replaceAllUsesWith(&*I2);
972 I2->takeName(&*I);
973 ++I2;
974 } else {
975 // If this argument is dead, replace any uses of it with null constants
976 // (these are guaranteed to become unused later on).
977 if (!I->getType()->isX86_MMXTy())
978 I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
979 }
980
981 // If we change the return value of the function we must rewrite any return
982 // instructions. Check this now.
983 if (F->getReturnType() != NF->getReturnType())
984 for (BasicBlock &BB : *NF)
985 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
986 Value *RetVal;
987
988 if (NFTy->getReturnType()->isVoidTy()) {
989 RetVal = nullptr;
990 } else {
991 assert(RetTy->isStructTy() || RetTy->isArrayTy());
992 // The original return value was a struct or array, insert
993 // extractvalue/insertvalue chains to extract only the values we need
994 // to return and insert them into our new result.
995 // This does generate messy code, but we'll let it to instcombine to
996 // clean that up.
997 Value *OldRet = RI->getOperand(0);
998 // Start out building up our return value from undef
999 RetVal = UndefValue::get(NRetTy);
1000 for (unsigned i = 0; i != RetCount; ++i)
1001 if (NewRetIdxs[i] != -1) {
1002 ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
1003 "oldret", RI);
1004 if (RetTypes.size() > 1) {
1005 // We're still returning a struct, so reinsert the value into
1006 // our new return value at the new index
1007
1008 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
1009 "newret", RI);
1010 } else {
1011 // We are now only returning a simple value, so just return the
1012 // extracted value.
1013 RetVal = EV;
1014 }
1015 }
1016 }
1017 // Replace the return instruction with one returning the new return
1018 // value (possibly 0 if we became void).
1019 ReturnInst::Create(F->getContext(), RetVal, RI);
1020 BB.getInstList().erase(RI);
1021 }
1022
1023 // Patch the pointer to LLVM function in debug info descriptor.
1024 NF->setSubprogram(F->getSubprogram());
1025
1026 // Now that the old function is dead, delete it.
1027 F->eraseFromParent();
1028
1029 return true;
1030 }
1031
run(Module & M,ModuleAnalysisManager &)1032 PreservedAnalyses DeadArgumentEliminationPass::run(Module &M,
1033 ModuleAnalysisManager &) {
1034 bool Changed = false;
1035
1036 // First pass: Do a simple check to see if any functions can have their "..."
1037 // removed. We can do this if they never call va_start. This loop cannot be
1038 // fused with the next loop, because deleting a function invalidates
1039 // information computed while surveying other functions.
1040 DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n");
1041 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1042 Function &F = *I++;
1043 if (F.getFunctionType()->isVarArg())
1044 Changed |= DeleteDeadVarargs(F);
1045 }
1046
1047 // Second phase:loop through the module, determining which arguments are live.
1048 // We assume all arguments are dead unless proven otherwise (allowing us to
1049 // determine that dead arguments passed into recursive functions are dead).
1050 //
1051 DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n");
1052 for (auto &F : M)
1053 SurveyFunction(F);
1054
1055 // Now, remove all dead arguments and return values from each function in
1056 // turn.
1057 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1058 // Increment now, because the function will probably get removed (ie.
1059 // replaced by a new one).
1060 Function *F = &*I++;
1061 Changed |= RemoveDeadStuffFromFunction(F);
1062 }
1063
1064 // Finally, look for any unused parameters in functions with non-local
1065 // linkage and replace the passed in parameters with undef.
1066 for (auto &F : M)
1067 Changed |= RemoveDeadArgumentsFromCallers(F);
1068
1069 if (!Changed)
1070 return PreservedAnalyses::all();
1071 return PreservedAnalyses::none();
1072 }
1073