1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements a simple loop unroller. It works best when loops have
11 // been canonicalized by the -indvars pass, allowing it to determine the trip
12 // counts of loops easily.
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/Analysis/AssumptionCache.h"
17 #include "llvm/Analysis/CodeMetrics.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopPass.h"
21 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
22 #include "llvm/Analysis/ScalarEvolution.h"
23 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DiagnosticInfo.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/InstVisitor.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Transforms/Scalar.h"
35 #include "llvm/Transforms/Utils/LoopUtils.h"
36 #include "llvm/Transforms/Utils/UnrollLoop.h"
37 #include <climits>
38 #include <utility>
39
40 using namespace llvm;
41
42 #define DEBUG_TYPE "loop-unroll"
43
44 static cl::opt<unsigned>
45 UnrollThreshold("unroll-threshold", cl::Hidden,
46 cl::desc("The baseline cost threshold for loop unrolling"));
47
48 static cl::opt<unsigned> UnrollPercentDynamicCostSavedThreshold(
49 "unroll-percent-dynamic-cost-saved-threshold", cl::init(50), cl::Hidden,
50 cl::desc("The percentage of estimated dynamic cost which must be saved by "
51 "unrolling to allow unrolling up to the max threshold."));
52
53 static cl::opt<unsigned> UnrollDynamicCostSavingsDiscount(
54 "unroll-dynamic-cost-savings-discount", cl::init(100), cl::Hidden,
55 cl::desc("This is the amount discounted from the total unroll cost when "
56 "the unrolled form has a high dynamic cost savings (triggered by "
57 "the '-unroll-perecent-dynamic-cost-saved-threshold' flag)."));
58
59 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
60 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
61 cl::desc("Don't allow loop unrolling to simulate more than this number of"
62 "iterations when checking full unroll profitability"));
63
64 static cl::opt<unsigned> UnrollCount(
65 "unroll-count", cl::Hidden,
66 cl::desc("Use this unroll count for all loops including those with "
67 "unroll_count pragma values, for testing purposes"));
68
69 static cl::opt<unsigned> UnrollMaxCount(
70 "unroll-max-count", cl::Hidden,
71 cl::desc("Set the max unroll count for partial and runtime unrolling, for"
72 "testing purposes"));
73
74 static cl::opt<unsigned> UnrollFullMaxCount(
75 "unroll-full-max-count", cl::Hidden,
76 cl::desc(
77 "Set the max unroll count for full unrolling, for testing purposes"));
78
79 static cl::opt<bool>
80 UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
81 cl::desc("Allows loops to be partially unrolled until "
82 "-unroll-threshold loop size is reached."));
83
84 static cl::opt<bool> UnrollAllowRemainder(
85 "unroll-allow-remainder", cl::Hidden,
86 cl::desc("Allow generation of a loop remainder (extra iterations) "
87 "when unrolling a loop."));
88
89 static cl::opt<bool>
90 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
91 cl::desc("Unroll loops with run-time trip counts"));
92
93 static cl::opt<unsigned> PragmaUnrollThreshold(
94 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
95 cl::desc("Unrolled size limit for loops with an unroll(full) or "
96 "unroll_count pragma."));
97
98 /// A magic value for use with the Threshold parameter to indicate
99 /// that the loop unroll should be performed regardless of how much
100 /// code expansion would result.
101 static const unsigned NoThreshold = UINT_MAX;
102
103 /// Default unroll count for loops with run-time trip count if
104 /// -unroll-count is not set
105 static const unsigned DefaultUnrollRuntimeCount = 8;
106
107 /// Gather the various unrolling parameters based on the defaults, compiler
108 /// flags, TTI overrides and user specified parameters.
gatherUnrollingPreferences(Loop * L,const TargetTransformInfo & TTI,Optional<unsigned> UserThreshold,Optional<unsigned> UserCount,Optional<bool> UserAllowPartial,Optional<bool> UserRuntime)109 static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences(
110 Loop *L, const TargetTransformInfo &TTI, Optional<unsigned> UserThreshold,
111 Optional<unsigned> UserCount, Optional<bool> UserAllowPartial,
112 Optional<bool> UserRuntime) {
113 TargetTransformInfo::UnrollingPreferences UP;
114
115 // Set up the defaults
116 UP.Threshold = 150;
117 UP.PercentDynamicCostSavedThreshold = 50;
118 UP.DynamicCostSavingsDiscount = 100;
119 UP.OptSizeThreshold = 0;
120 UP.PartialThreshold = UP.Threshold;
121 UP.PartialOptSizeThreshold = 0;
122 UP.Count = 0;
123 UP.MaxCount = UINT_MAX;
124 UP.FullUnrollMaxCount = UINT_MAX;
125 UP.Partial = false;
126 UP.Runtime = false;
127 UP.AllowRemainder = true;
128 UP.AllowExpensiveTripCount = false;
129 UP.Force = false;
130
131 // Override with any target specific settings
132 TTI.getUnrollingPreferences(L, UP);
133
134 // Apply size attributes
135 if (L->getHeader()->getParent()->optForSize()) {
136 UP.Threshold = UP.OptSizeThreshold;
137 UP.PartialThreshold = UP.PartialOptSizeThreshold;
138 }
139
140 // Apply any user values specified by cl::opt
141 if (UnrollThreshold.getNumOccurrences() > 0) {
142 UP.Threshold = UnrollThreshold;
143 UP.PartialThreshold = UnrollThreshold;
144 }
145 if (UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0)
146 UP.PercentDynamicCostSavedThreshold =
147 UnrollPercentDynamicCostSavedThreshold;
148 if (UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0)
149 UP.DynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount;
150 if (UnrollMaxCount.getNumOccurrences() > 0)
151 UP.MaxCount = UnrollMaxCount;
152 if (UnrollFullMaxCount.getNumOccurrences() > 0)
153 UP.FullUnrollMaxCount = UnrollFullMaxCount;
154 if (UnrollAllowPartial.getNumOccurrences() > 0)
155 UP.Partial = UnrollAllowPartial;
156 if (UnrollAllowRemainder.getNumOccurrences() > 0)
157 UP.AllowRemainder = UnrollAllowRemainder;
158 if (UnrollRuntime.getNumOccurrences() > 0)
159 UP.Runtime = UnrollRuntime;
160
161 // Apply user values provided by argument
162 if (UserThreshold.hasValue()) {
163 UP.Threshold = *UserThreshold;
164 UP.PartialThreshold = *UserThreshold;
165 }
166 if (UserCount.hasValue())
167 UP.Count = *UserCount;
168 if (UserAllowPartial.hasValue())
169 UP.Partial = *UserAllowPartial;
170 if (UserRuntime.hasValue())
171 UP.Runtime = *UserRuntime;
172
173 return UP;
174 }
175
176 namespace {
177 /// A struct to densely store the state of an instruction after unrolling at
178 /// each iteration.
179 ///
180 /// This is designed to work like a tuple of <Instruction *, int> for the
181 /// purposes of hashing and lookup, but to be able to associate two boolean
182 /// states with each key.
183 struct UnrolledInstState {
184 Instruction *I;
185 int Iteration : 30;
186 unsigned IsFree : 1;
187 unsigned IsCounted : 1;
188 };
189
190 /// Hashing and equality testing for a set of the instruction states.
191 struct UnrolledInstStateKeyInfo {
192 typedef DenseMapInfo<Instruction *> PtrInfo;
193 typedef DenseMapInfo<std::pair<Instruction *, int>> PairInfo;
getEmptyKey__anon565193f80111::UnrolledInstStateKeyInfo194 static inline UnrolledInstState getEmptyKey() {
195 return {PtrInfo::getEmptyKey(), 0, 0, 0};
196 }
getTombstoneKey__anon565193f80111::UnrolledInstStateKeyInfo197 static inline UnrolledInstState getTombstoneKey() {
198 return {PtrInfo::getTombstoneKey(), 0, 0, 0};
199 }
getHashValue__anon565193f80111::UnrolledInstStateKeyInfo200 static inline unsigned getHashValue(const UnrolledInstState &S) {
201 return PairInfo::getHashValue({S.I, S.Iteration});
202 }
isEqual__anon565193f80111::UnrolledInstStateKeyInfo203 static inline bool isEqual(const UnrolledInstState &LHS,
204 const UnrolledInstState &RHS) {
205 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
206 }
207 };
208 }
209
210 namespace {
211 struct EstimatedUnrollCost {
212 /// \brief The estimated cost after unrolling.
213 int UnrolledCost;
214
215 /// \brief The estimated dynamic cost of executing the instructions in the
216 /// rolled form.
217 int RolledDynamicCost;
218 };
219 }
220
221 /// \brief Figure out if the loop is worth full unrolling.
222 ///
223 /// Complete loop unrolling can make some loads constant, and we need to know
224 /// if that would expose any further optimization opportunities. This routine
225 /// estimates this optimization. It computes cost of unrolled loop
226 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
227 /// dynamic cost we mean that we won't count costs of blocks that are known not
228 /// to be executed (i.e. if we have a branch in the loop and we know that at the
229 /// given iteration its condition would be resolved to true, we won't add up the
230 /// cost of the 'false'-block).
231 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
232 /// the analysis failed (no benefits expected from the unrolling, or the loop is
233 /// too big to analyze), the returned value is None.
234 static Optional<EstimatedUnrollCost>
analyzeLoopUnrollCost(const Loop * L,unsigned TripCount,DominatorTree & DT,ScalarEvolution & SE,const TargetTransformInfo & TTI,int MaxUnrolledLoopSize)235 analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT,
236 ScalarEvolution &SE, const TargetTransformInfo &TTI,
237 int MaxUnrolledLoopSize) {
238 // We want to be able to scale offsets by the trip count and add more offsets
239 // to them without checking for overflows, and we already don't want to
240 // analyze *massive* trip counts, so we force the max to be reasonably small.
241 assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) &&
242 "The unroll iterations max is too large!");
243
244 // Only analyze inner loops. We can't properly estimate cost of nested loops
245 // and we won't visit inner loops again anyway.
246 if (!L->empty())
247 return None;
248
249 // Don't simulate loops with a big or unknown tripcount
250 if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
251 TripCount > UnrollMaxIterationsCountToAnalyze)
252 return None;
253
254 SmallSetVector<BasicBlock *, 16> BBWorklist;
255 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
256 DenseMap<Value *, Constant *> SimplifiedValues;
257 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
258
259 // The estimated cost of the unrolled form of the loop. We try to estimate
260 // this by simplifying as much as we can while computing the estimate.
261 int UnrolledCost = 0;
262
263 // We also track the estimated dynamic (that is, actually executed) cost in
264 // the rolled form. This helps identify cases when the savings from unrolling
265 // aren't just exposing dead control flows, but actual reduced dynamic
266 // instructions due to the simplifications which we expect to occur after
267 // unrolling.
268 int RolledDynamicCost = 0;
269
270 // We track the simplification of each instruction in each iteration. We use
271 // this to recursively merge costs into the unrolled cost on-demand so that
272 // we don't count the cost of any dead code. This is essentially a map from
273 // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
274 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
275
276 // A small worklist used to accumulate cost of instructions from each
277 // observable and reached root in the loop.
278 SmallVector<Instruction *, 16> CostWorklist;
279
280 // PHI-used worklist used between iterations while accumulating cost.
281 SmallVector<Instruction *, 4> PHIUsedList;
282
283 // Helper function to accumulate cost for instructions in the loop.
284 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
285 assert(Iteration >= 0 && "Cannot have a negative iteration!");
286 assert(CostWorklist.empty() && "Must start with an empty cost list");
287 assert(PHIUsedList.empty() && "Must start with an empty phi used list");
288 CostWorklist.push_back(&RootI);
289 for (;; --Iteration) {
290 do {
291 Instruction *I = CostWorklist.pop_back_val();
292
293 // InstCostMap only uses I and Iteration as a key, the other two values
294 // don't matter here.
295 auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
296 if (CostIter == InstCostMap.end())
297 // If an input to a PHI node comes from a dead path through the loop
298 // we may have no cost data for it here. What that actually means is
299 // that it is free.
300 continue;
301 auto &Cost = *CostIter;
302 if (Cost.IsCounted)
303 // Already counted this instruction.
304 continue;
305
306 // Mark that we are counting the cost of this instruction now.
307 Cost.IsCounted = true;
308
309 // If this is a PHI node in the loop header, just add it to the PHI set.
310 if (auto *PhiI = dyn_cast<PHINode>(I))
311 if (PhiI->getParent() == L->getHeader()) {
312 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
313 "inherently simplify during unrolling.");
314 if (Iteration == 0)
315 continue;
316
317 // Push the incoming value from the backedge into the PHI used list
318 // if it is an in-loop instruction. We'll use this to populate the
319 // cost worklist for the next iteration (as we count backwards).
320 if (auto *OpI = dyn_cast<Instruction>(
321 PhiI->getIncomingValueForBlock(L->getLoopLatch())))
322 if (L->contains(OpI))
323 PHIUsedList.push_back(OpI);
324 continue;
325 }
326
327 // First accumulate the cost of this instruction.
328 if (!Cost.IsFree) {
329 UnrolledCost += TTI.getUserCost(I);
330 DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration
331 << "): ");
332 DEBUG(I->dump());
333 }
334
335 // We must count the cost of every operand which is not free,
336 // recursively. If we reach a loop PHI node, simply add it to the set
337 // to be considered on the next iteration (backwards!).
338 for (Value *Op : I->operands()) {
339 // Check whether this operand is free due to being a constant or
340 // outside the loop.
341 auto *OpI = dyn_cast<Instruction>(Op);
342 if (!OpI || !L->contains(OpI))
343 continue;
344
345 // Otherwise accumulate its cost.
346 CostWorklist.push_back(OpI);
347 }
348 } while (!CostWorklist.empty());
349
350 if (PHIUsedList.empty())
351 // We've exhausted the search.
352 break;
353
354 assert(Iteration > 0 &&
355 "Cannot track PHI-used values past the first iteration!");
356 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
357 PHIUsedList.clear();
358 }
359 };
360
361 // Ensure that we don't violate the loop structure invariants relied on by
362 // this analysis.
363 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
364 assert(L->isLCSSAForm(DT) &&
365 "Must have loops in LCSSA form to track live-out values.");
366
367 DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
368
369 // Simulate execution of each iteration of the loop counting instructions,
370 // which would be simplified.
371 // Since the same load will take different values on different iterations,
372 // we literally have to go through all loop's iterations.
373 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
374 DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
375
376 // Prepare for the iteration by collecting any simplified entry or backedge
377 // inputs.
378 for (Instruction &I : *L->getHeader()) {
379 auto *PHI = dyn_cast<PHINode>(&I);
380 if (!PHI)
381 break;
382
383 // The loop header PHI nodes must have exactly two input: one from the
384 // loop preheader and one from the loop latch.
385 assert(
386 PHI->getNumIncomingValues() == 2 &&
387 "Must have an incoming value only for the preheader and the latch.");
388
389 Value *V = PHI->getIncomingValueForBlock(
390 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
391 Constant *C = dyn_cast<Constant>(V);
392 if (Iteration != 0 && !C)
393 C = SimplifiedValues.lookup(V);
394 if (C)
395 SimplifiedInputValues.push_back({PHI, C});
396 }
397
398 // Now clear and re-populate the map for the next iteration.
399 SimplifiedValues.clear();
400 while (!SimplifiedInputValues.empty())
401 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
402
403 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
404
405 BBWorklist.clear();
406 BBWorklist.insert(L->getHeader());
407 // Note that we *must not* cache the size, this loop grows the worklist.
408 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
409 BasicBlock *BB = BBWorklist[Idx];
410
411 // Visit all instructions in the given basic block and try to simplify
412 // it. We don't change the actual IR, just count optimization
413 // opportunities.
414 for (Instruction &I : *BB) {
415 // Track this instruction's expected baseline cost when executing the
416 // rolled loop form.
417 RolledDynamicCost += TTI.getUserCost(&I);
418
419 // Visit the instruction to analyze its loop cost after unrolling,
420 // and if the visitor returns true, mark the instruction as free after
421 // unrolling and continue.
422 bool IsFree = Analyzer.visit(I);
423 bool Inserted = InstCostMap.insert({&I, (int)Iteration,
424 (unsigned)IsFree,
425 /*IsCounted*/ false}).second;
426 (void)Inserted;
427 assert(Inserted && "Cannot have a state for an unvisited instruction!");
428
429 if (IsFree)
430 continue;
431
432 // If the instruction might have a side-effect recursively account for
433 // the cost of it and all the instructions leading up to it.
434 if (I.mayHaveSideEffects())
435 AddCostRecursively(I, Iteration);
436
437 // Can't properly model a cost of a call.
438 // FIXME: With a proper cost model we should be able to do it.
439 if(isa<CallInst>(&I))
440 return None;
441
442 // If unrolled body turns out to be too big, bail out.
443 if (UnrolledCost > MaxUnrolledLoopSize) {
444 DEBUG(dbgs() << " Exceeded threshold.. exiting.\n"
445 << " UnrolledCost: " << UnrolledCost
446 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
447 << "\n");
448 return None;
449 }
450 }
451
452 TerminatorInst *TI = BB->getTerminator();
453
454 // Add in the live successors by first checking whether we have terminator
455 // that may be simplified based on the values simplified by this call.
456 BasicBlock *KnownSucc = nullptr;
457 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
458 if (BI->isConditional()) {
459 if (Constant *SimpleCond =
460 SimplifiedValues.lookup(BI->getCondition())) {
461 // Just take the first successor if condition is undef
462 if (isa<UndefValue>(SimpleCond))
463 KnownSucc = BI->getSuccessor(0);
464 else if (ConstantInt *SimpleCondVal =
465 dyn_cast<ConstantInt>(SimpleCond))
466 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
467 }
468 }
469 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
470 if (Constant *SimpleCond =
471 SimplifiedValues.lookup(SI->getCondition())) {
472 // Just take the first successor if condition is undef
473 if (isa<UndefValue>(SimpleCond))
474 KnownSucc = SI->getSuccessor(0);
475 else if (ConstantInt *SimpleCondVal =
476 dyn_cast<ConstantInt>(SimpleCond))
477 KnownSucc = SI->findCaseValue(SimpleCondVal).getCaseSuccessor();
478 }
479 }
480 if (KnownSucc) {
481 if (L->contains(KnownSucc))
482 BBWorklist.insert(KnownSucc);
483 else
484 ExitWorklist.insert({BB, KnownSucc});
485 continue;
486 }
487
488 // Add BB's successors to the worklist.
489 for (BasicBlock *Succ : successors(BB))
490 if (L->contains(Succ))
491 BBWorklist.insert(Succ);
492 else
493 ExitWorklist.insert({BB, Succ});
494 AddCostRecursively(*TI, Iteration);
495 }
496
497 // If we found no optimization opportunities on the first iteration, we
498 // won't find them on later ones too.
499 if (UnrolledCost == RolledDynamicCost) {
500 DEBUG(dbgs() << " No opportunities found.. exiting.\n"
501 << " UnrolledCost: " << UnrolledCost << "\n");
502 return None;
503 }
504 }
505
506 while (!ExitWorklist.empty()) {
507 BasicBlock *ExitingBB, *ExitBB;
508 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
509
510 for (Instruction &I : *ExitBB) {
511 auto *PN = dyn_cast<PHINode>(&I);
512 if (!PN)
513 break;
514
515 Value *Op = PN->getIncomingValueForBlock(ExitingBB);
516 if (auto *OpI = dyn_cast<Instruction>(Op))
517 if (L->contains(OpI))
518 AddCostRecursively(*OpI, TripCount - 1);
519 }
520 }
521
522 DEBUG(dbgs() << "Analysis finished:\n"
523 << "UnrolledCost: " << UnrolledCost << ", "
524 << "RolledDynamicCost: " << RolledDynamicCost << "\n");
525 return {{UnrolledCost, RolledDynamicCost}};
526 }
527
528 /// ApproximateLoopSize - Approximate the size of the loop.
ApproximateLoopSize(const Loop * L,unsigned & NumCalls,bool & NotDuplicatable,bool & Convergent,const TargetTransformInfo & TTI,AssumptionCache * AC)529 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
530 bool &NotDuplicatable, bool &Convergent,
531 const TargetTransformInfo &TTI,
532 AssumptionCache *AC) {
533 SmallPtrSet<const Value *, 32> EphValues;
534 CodeMetrics::collectEphemeralValues(L, AC, EphValues);
535
536 CodeMetrics Metrics;
537 for (BasicBlock *BB : L->blocks())
538 Metrics.analyzeBasicBlock(BB, TTI, EphValues);
539 NumCalls = Metrics.NumInlineCandidates;
540 NotDuplicatable = Metrics.notDuplicatable;
541 Convergent = Metrics.convergent;
542
543 unsigned LoopSize = Metrics.NumInsts;
544
545 // Don't allow an estimate of size zero. This would allows unrolling of loops
546 // with huge iteration counts, which is a compile time problem even if it's
547 // not a problem for code quality. Also, the code using this size may assume
548 // that each loop has at least three instructions (likely a conditional
549 // branch, a comparison feeding that branch, and some kind of loop increment
550 // feeding that comparison instruction).
551 LoopSize = std::max(LoopSize, 3u);
552
553 return LoopSize;
554 }
555
556 // Returns the loop hint metadata node with the given name (for example,
557 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
558 // returned.
GetUnrollMetadataForLoop(const Loop * L,StringRef Name)559 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
560 if (MDNode *LoopID = L->getLoopID())
561 return GetUnrollMetadata(LoopID, Name);
562 return nullptr;
563 }
564
565 // Returns true if the loop has an unroll(full) pragma.
HasUnrollFullPragma(const Loop * L)566 static bool HasUnrollFullPragma(const Loop *L) {
567 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
568 }
569
570 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
571 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
HasUnrollEnablePragma(const Loop * L)572 static bool HasUnrollEnablePragma(const Loop *L) {
573 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
574 }
575
576 // Returns true if the loop has an unroll(disable) pragma.
HasUnrollDisablePragma(const Loop * L)577 static bool HasUnrollDisablePragma(const Loop *L) {
578 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
579 }
580
581 // Returns true if the loop has an runtime unroll(disable) pragma.
HasRuntimeUnrollDisablePragma(const Loop * L)582 static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
583 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
584 }
585
586 // If loop has an unroll_count pragma return the (necessarily
587 // positive) value from the pragma. Otherwise return 0.
UnrollCountPragmaValue(const Loop * L)588 static unsigned UnrollCountPragmaValue(const Loop *L) {
589 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
590 if (MD) {
591 assert(MD->getNumOperands() == 2 &&
592 "Unroll count hint metadata should have two operands.");
593 unsigned Count =
594 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
595 assert(Count >= 1 && "Unroll count must be positive.");
596 return Count;
597 }
598 return 0;
599 }
600
601 // Remove existing unroll metadata and add unroll disable metadata to
602 // indicate the loop has already been unrolled. This prevents a loop
603 // from being unrolled more than is directed by a pragma if the loop
604 // unrolling pass is run more than once (which it generally is).
SetLoopAlreadyUnrolled(Loop * L)605 static void SetLoopAlreadyUnrolled(Loop *L) {
606 MDNode *LoopID = L->getLoopID();
607 // First remove any existing loop unrolling metadata.
608 SmallVector<Metadata *, 4> MDs;
609 // Reserve first location for self reference to the LoopID metadata node.
610 MDs.push_back(nullptr);
611
612 if (LoopID) {
613 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
614 bool IsUnrollMetadata = false;
615 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
616 if (MD) {
617 const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
618 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
619 }
620 if (!IsUnrollMetadata)
621 MDs.push_back(LoopID->getOperand(i));
622 }
623 }
624
625 // Add unroll(disable) metadata to disable future unrolling.
626 LLVMContext &Context = L->getHeader()->getContext();
627 SmallVector<Metadata *, 1> DisableOperands;
628 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
629 MDNode *DisableNode = MDNode::get(Context, DisableOperands);
630 MDs.push_back(DisableNode);
631
632 MDNode *NewLoopID = MDNode::get(Context, MDs);
633 // Set operand 0 to refer to the loop id itself.
634 NewLoopID->replaceOperandWith(0, NewLoopID);
635 L->setLoopID(NewLoopID);
636 }
637
canUnrollCompletely(Loop * L,unsigned Threshold,unsigned PercentDynamicCostSavedThreshold,unsigned DynamicCostSavingsDiscount,uint64_t UnrolledCost,uint64_t RolledDynamicCost)638 static bool canUnrollCompletely(Loop *L, unsigned Threshold,
639 unsigned PercentDynamicCostSavedThreshold,
640 unsigned DynamicCostSavingsDiscount,
641 uint64_t UnrolledCost,
642 uint64_t RolledDynamicCost) {
643 if (Threshold == NoThreshold) {
644 DEBUG(dbgs() << " Can fully unroll, because no threshold is set.\n");
645 return true;
646 }
647
648 if (UnrolledCost <= Threshold) {
649 DEBUG(dbgs() << " Can fully unroll, because unrolled cost: "
650 << UnrolledCost << "<" << Threshold << "\n");
651 return true;
652 }
653
654 assert(UnrolledCost && "UnrolledCost can't be 0 at this point.");
655 assert(RolledDynamicCost >= UnrolledCost &&
656 "Cannot have a higher unrolled cost than a rolled cost!");
657
658 // Compute the percentage of the dynamic cost in the rolled form that is
659 // saved when unrolled. If unrolling dramatically reduces the estimated
660 // dynamic cost of the loop, we use a higher threshold to allow more
661 // unrolling.
662 unsigned PercentDynamicCostSaved =
663 (uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost;
664
665 if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold &&
666 (int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <=
667 (int64_t)Threshold) {
668 DEBUG(dbgs() << " Can fully unroll, because unrolling will reduce the "
669 "expected dynamic cost by "
670 << PercentDynamicCostSaved << "% (threshold: "
671 << PercentDynamicCostSavedThreshold << "%)\n"
672 << " and the unrolled cost (" << UnrolledCost
673 << ") is less than the max threshold ("
674 << DynamicCostSavingsDiscount << ").\n");
675 return true;
676 }
677
678 DEBUG(dbgs() << " Too large to fully unroll:\n");
679 DEBUG(dbgs() << " Threshold: " << Threshold << "\n");
680 DEBUG(dbgs() << " Max threshold: " << DynamicCostSavingsDiscount << "\n");
681 DEBUG(dbgs() << " Percent cost saved threshold: "
682 << PercentDynamicCostSavedThreshold << "%\n");
683 DEBUG(dbgs() << " Unrolled cost: " << UnrolledCost << "\n");
684 DEBUG(dbgs() << " Rolled dynamic cost: " << RolledDynamicCost << "\n");
685 DEBUG(dbgs() << " Percent cost saved: " << PercentDynamicCostSaved
686 << "\n");
687 return false;
688 }
689
690 // Returns true if unroll count was set explicitly.
691 // Calculates unroll count and writes it to UP.Count.
computeUnrollCount(Loop * L,const TargetTransformInfo & TTI,DominatorTree & DT,LoopInfo * LI,ScalarEvolution * SE,unsigned TripCount,unsigned TripMultiple,unsigned LoopSize,TargetTransformInfo::UnrollingPreferences & UP)692 static bool computeUnrollCount(Loop *L, const TargetTransformInfo &TTI,
693 DominatorTree &DT, LoopInfo *LI,
694 ScalarEvolution *SE, unsigned TripCount,
695 unsigned TripMultiple, unsigned LoopSize,
696 TargetTransformInfo::UnrollingPreferences &UP) {
697 // BEInsns represents number of instructions optimized when "back edge"
698 // becomes "fall through" in unrolled loop.
699 // For now we count a conditional branch on a backedge and a comparison
700 // feeding it.
701 unsigned BEInsns = 2;
702 // Check for explicit Count.
703 // 1st priority is unroll count set by "unroll-count" option.
704 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
705 if (UserUnrollCount) {
706 UP.Count = UnrollCount;
707 UP.AllowExpensiveTripCount = true;
708 UP.Force = true;
709 if (UP.AllowRemainder &&
710 (LoopSize - BEInsns) * UP.Count + BEInsns < UP.Threshold)
711 return true;
712 }
713
714 // 2nd priority is unroll count set by pragma.
715 unsigned PragmaCount = UnrollCountPragmaValue(L);
716 if (PragmaCount > 0) {
717 UP.Count = PragmaCount;
718 UP.Runtime = true;
719 UP.AllowExpensiveTripCount = true;
720 UP.Force = true;
721 if (UP.AllowRemainder &&
722 (LoopSize - BEInsns) * UP.Count + BEInsns < PragmaUnrollThreshold)
723 return true;
724 }
725 bool PragmaFullUnroll = HasUnrollFullPragma(L);
726 if (PragmaFullUnroll && TripCount != 0) {
727 UP.Count = TripCount;
728 if ((LoopSize - BEInsns) * UP.Count + BEInsns < PragmaUnrollThreshold)
729 return false;
730 }
731
732 bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
733 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
734 PragmaEnableUnroll || UserUnrollCount;
735
736 uint64_t UnrolledSize;
737 DebugLoc LoopLoc = L->getStartLoc();
738 Function *F = L->getHeader()->getParent();
739 LLVMContext &Ctx = F->getContext();
740
741 if (ExplicitUnroll && TripCount != 0) {
742 // If the loop has an unrolling pragma, we want to be more aggressive with
743 // unrolling limits. Set thresholds to at least the PragmaThreshold value
744 // which is larger than the default limits.
745 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
746 UP.PartialThreshold =
747 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
748 }
749
750 // 3rd priority is full unroll count.
751 // Full unroll make sense only when TripCount could be staticaly calculated.
752 // Also we need to check if we exceed FullUnrollMaxCount.
753 if (TripCount && TripCount <= UP.FullUnrollMaxCount) {
754 // When computing the unrolled size, note that BEInsns are not replicated
755 // like the rest of the loop body.
756 UnrolledSize = (uint64_t)(LoopSize - BEInsns) * TripCount + BEInsns;
757 if (canUnrollCompletely(L, UP.Threshold, 100, UP.DynamicCostSavingsDiscount,
758 UnrolledSize, UnrolledSize)) {
759 UP.Count = TripCount;
760 return ExplicitUnroll;
761 } else {
762 // The loop isn't that small, but we still can fully unroll it if that
763 // helps to remove a significant number of instructions.
764 // To check that, run additional analysis on the loop.
765 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
766 L, TripCount, DT, *SE, TTI,
767 UP.Threshold + UP.DynamicCostSavingsDiscount))
768 if (canUnrollCompletely(L, UP.Threshold,
769 UP.PercentDynamicCostSavedThreshold,
770 UP.DynamicCostSavingsDiscount,
771 Cost->UnrolledCost, Cost->RolledDynamicCost)) {
772 UP.Count = TripCount;
773 return ExplicitUnroll;
774 }
775 }
776 }
777
778 // 4rd priority is partial unrolling.
779 // Try partial unroll only when TripCount could be staticaly calculated.
780 if (TripCount) {
781 if (UP.Count == 0)
782 UP.Count = TripCount;
783 UP.Partial |= ExplicitUnroll;
784 if (!UP.Partial) {
785 DEBUG(dbgs() << " will not try to unroll partially because "
786 << "-unroll-allow-partial not given\n");
787 UP.Count = 0;
788 return false;
789 }
790 if (UP.PartialThreshold != NoThreshold) {
791 // Reduce unroll count to be modulo of TripCount for partial unrolling.
792 UnrolledSize = (uint64_t)(LoopSize - BEInsns) * UP.Count + BEInsns;
793 if (UnrolledSize > UP.PartialThreshold)
794 UP.Count = (std::max(UP.PartialThreshold, 3u) - BEInsns) /
795 (LoopSize - BEInsns);
796 if (UP.Count > UP.MaxCount)
797 UP.Count = UP.MaxCount;
798 while (UP.Count != 0 && TripCount % UP.Count != 0)
799 UP.Count--;
800 if (UP.AllowRemainder && UP.Count <= 1) {
801 // If there is no Count that is modulo of TripCount, set Count to
802 // largest power-of-two factor that satisfies the threshold limit.
803 // As we'll create fixup loop, do the type of unrolling only if
804 // remainder loop is allowed.
805 UP.Count = DefaultUnrollRuntimeCount;
806 UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns;
807 while (UP.Count != 0 && UnrolledSize > UP.PartialThreshold) {
808 UP.Count >>= 1;
809 UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns;
810 }
811 }
812 if (UP.Count < 2) {
813 if (PragmaEnableUnroll)
814 emitOptimizationRemarkMissed(
815 Ctx, DEBUG_TYPE, *F, LoopLoc,
816 "Unable to unroll loop as directed by unroll(enable) pragma "
817 "because unrolled size is too large.");
818 UP.Count = 0;
819 }
820 } else {
821 UP.Count = TripCount;
822 }
823 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
824 UP.Count != TripCount)
825 emitOptimizationRemarkMissed(
826 Ctx, DEBUG_TYPE, *F, LoopLoc,
827 "Unable to fully unroll loop as directed by unroll pragma because "
828 "unrolled size is too large.");
829 return ExplicitUnroll;
830 }
831 assert(TripCount == 0 &&
832 "All cases when TripCount is constant should be covered here.");
833 if (PragmaFullUnroll)
834 emitOptimizationRemarkMissed(
835 Ctx, DEBUG_TYPE, *F, LoopLoc,
836 "Unable to fully unroll loop as directed by unroll(full) pragma "
837 "because loop has a runtime trip count.");
838
839 // 5th priority is runtime unrolling.
840 // Don't unroll a runtime trip count loop when it is disabled.
841 if (HasRuntimeUnrollDisablePragma(L)) {
842 UP.Count = 0;
843 return false;
844 }
845 // Reduce count based on the type of unrolling and the threshold values.
846 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
847 if (!UP.Runtime) {
848 DEBUG(dbgs() << " will not try to unroll loop with runtime trip count "
849 << "-unroll-runtime not given\n");
850 UP.Count = 0;
851 return false;
852 }
853 if (UP.Count == 0)
854 UP.Count = DefaultUnrollRuntimeCount;
855 UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns;
856
857 // Reduce unroll count to be the largest power-of-two factor of
858 // the original count which satisfies the threshold limit.
859 while (UP.Count != 0 && UnrolledSize > UP.PartialThreshold) {
860 UP.Count >>= 1;
861 UnrolledSize = (LoopSize - BEInsns) * UP.Count + BEInsns;
862 }
863
864 #ifndef NDEBUG
865 unsigned OrigCount = UP.Count;
866 #endif
867
868 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
869 while (UP.Count != 0 && TripMultiple % UP.Count != 0)
870 UP.Count >>= 1;
871 DEBUG(dbgs() << "Remainder loop is restricted (that could architecture "
872 "specific or because the loop contains a convergent "
873 "instruction), so unroll count must divide the trip "
874 "multiple, "
875 << TripMultiple << ". Reducing unroll count from "
876 << OrigCount << " to " << UP.Count << ".\n");
877 if (PragmaCount > 0 && !UP.AllowRemainder)
878 emitOptimizationRemarkMissed(
879 Ctx, DEBUG_TYPE, *F, LoopLoc,
880 Twine("Unable to unroll loop the number of times directed by "
881 "unroll_count pragma because remainder loop is restricted "
882 "(that could architecture specific or because the loop "
883 "contains a convergent instruction) and so must have an unroll "
884 "count that divides the loop trip multiple of ") +
885 Twine(TripMultiple) + ". Unrolling instead " + Twine(UP.Count) +
886 " time(s).");
887 }
888
889 if (UP.Count > UP.MaxCount)
890 UP.Count = UP.MaxCount;
891 DEBUG(dbgs() << " partially unrolling with count: " << UP.Count << "\n");
892 if (UP.Count < 2)
893 UP.Count = 0;
894 return ExplicitUnroll;
895 }
896
tryToUnrollLoop(Loop * L,DominatorTree & DT,LoopInfo * LI,ScalarEvolution * SE,const TargetTransformInfo & TTI,AssumptionCache & AC,bool PreserveLCSSA,Optional<unsigned> ProvidedCount,Optional<unsigned> ProvidedThreshold,Optional<bool> ProvidedAllowPartial,Optional<bool> ProvidedRuntime)897 static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI,
898 ScalarEvolution *SE, const TargetTransformInfo &TTI,
899 AssumptionCache &AC, bool PreserveLCSSA,
900 Optional<unsigned> ProvidedCount,
901 Optional<unsigned> ProvidedThreshold,
902 Optional<bool> ProvidedAllowPartial,
903 Optional<bool> ProvidedRuntime) {
904 DEBUG(dbgs() << "Loop Unroll: F[" << L->getHeader()->getParent()->getName()
905 << "] Loop %" << L->getHeader()->getName() << "\n");
906 if (HasUnrollDisablePragma(L)) {
907 return false;
908 }
909
910 unsigned NumInlineCandidates;
911 bool NotDuplicatable;
912 bool Convergent;
913 unsigned LoopSize = ApproximateLoopSize(
914 L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC);
915 DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
916 if (NotDuplicatable) {
917 DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable"
918 << " instructions.\n");
919 return false;
920 }
921 if (NumInlineCandidates != 0) {
922 DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
923 return false;
924 }
925 if (!L->isLoopSimplifyForm()) {
926 DEBUG(
927 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n");
928 return false;
929 }
930
931 // Find trip count and trip multiple if count is not available
932 unsigned TripCount = 0;
933 unsigned TripMultiple = 1;
934 // If there are multiple exiting blocks but one of them is the latch, use the
935 // latch for the trip count estimation. Otherwise insist on a single exiting
936 // block for the trip count estimation.
937 BasicBlock *ExitingBlock = L->getLoopLatch();
938 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
939 ExitingBlock = L->getExitingBlock();
940 if (ExitingBlock) {
941 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
942 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
943 }
944
945 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
946 L, TTI, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial,
947 ProvidedRuntime);
948
949 // If the loop contains a convergent operation, the prelude we'd add
950 // to do the first few instructions before we hit the unrolled loop
951 // is unsafe -- it adds a control-flow dependency to the convergent
952 // operation. Therefore restrict remainder loop (try unrollig without).
953 //
954 // TODO: This is quite conservative. In practice, convergent_op()
955 // is likely to be called unconditionally in the loop. In this
956 // case, the program would be ill-formed (on most architectures)
957 // unless n were the same on all threads in a thread group.
958 // Assuming n is the same on all threads, any kind of unrolling is
959 // safe. But currently llvm's notion of convergence isn't powerful
960 // enough to express this.
961 if (Convergent)
962 UP.AllowRemainder = false;
963
964 bool IsCountSetExplicitly = computeUnrollCount(L, TTI, DT, LI, SE, TripCount,
965 TripMultiple, LoopSize, UP);
966 if (!UP.Count)
967 return false;
968 // Unroll factor (Count) must be less or equal to TripCount.
969 if (TripCount && UP.Count > TripCount)
970 UP.Count = TripCount;
971
972 // Unroll the loop.
973 if (!UnrollLoop(L, UP.Count, TripCount, UP.Force, UP.Runtime,
974 UP.AllowExpensiveTripCount, TripMultiple, LI, SE, &DT, &AC,
975 PreserveLCSSA))
976 return false;
977
978 // If loop has an unroll count pragma or unrolled by explicitly set count
979 // mark loop as unrolled to prevent unrolling beyond that requested.
980 if (IsCountSetExplicitly)
981 SetLoopAlreadyUnrolled(L);
982 return true;
983 }
984
985 namespace {
986 class LoopUnroll : public LoopPass {
987 public:
988 static char ID; // Pass ID, replacement for typeid
LoopUnroll(Optional<unsigned> Threshold=None,Optional<unsigned> Count=None,Optional<bool> AllowPartial=None,Optional<bool> Runtime=None)989 LoopUnroll(Optional<unsigned> Threshold = None,
990 Optional<unsigned> Count = None,
991 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None)
992 : LoopPass(ID), ProvidedCount(std::move(Count)),
993 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
994 ProvidedRuntime(Runtime) {
995 initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
996 }
997
998 Optional<unsigned> ProvidedCount;
999 Optional<unsigned> ProvidedThreshold;
1000 Optional<bool> ProvidedAllowPartial;
1001 Optional<bool> ProvidedRuntime;
1002
runOnLoop(Loop * L,LPPassManager &)1003 bool runOnLoop(Loop *L, LPPassManager &) override {
1004 if (skipLoop(L))
1005 return false;
1006
1007 Function &F = *L->getHeader()->getParent();
1008
1009 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1010 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1011 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1012 const TargetTransformInfo &TTI =
1013 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1014 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1015 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1016
1017 return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, PreserveLCSSA, ProvidedCount,
1018 ProvidedThreshold, ProvidedAllowPartial,
1019 ProvidedRuntime);
1020 }
1021
1022 /// This transformation requires natural loop information & requires that
1023 /// loop preheaders be inserted into the CFG...
1024 ///
getAnalysisUsage(AnalysisUsage & AU) const1025 void getAnalysisUsage(AnalysisUsage &AU) const override {
1026 AU.addRequired<AssumptionCacheTracker>();
1027 AU.addRequired<TargetTransformInfoWrapperPass>();
1028 // FIXME: Loop passes are required to preserve domtree, and for now we just
1029 // recreate dom info if anything gets unrolled.
1030 getLoopAnalysisUsage(AU);
1031 }
1032 };
1033 }
1034
1035 char LoopUnroll::ID = 0;
1036 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1037 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1038 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1039 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1040 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1041
1042 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial,
1043 int Runtime) {
1044 // TODO: It would make more sense for this function to take the optionals
1045 // directly, but that's dangerous since it would silently break out of tree
1046 // callers.
1047 return new LoopUnroll(Threshold == -1 ? None : Optional<unsigned>(Threshold),
1048 Count == -1 ? None : Optional<unsigned>(Count),
1049 AllowPartial == -1 ? None
1050 : Optional<bool>(AllowPartial),
1051 Runtime == -1 ? None : Optional<bool>(Runtime));
1052 }
1053
createSimpleLoopUnrollPass()1054 Pass *llvm::createSimpleLoopUnrollPass() {
1055 return llvm::createLoopUnrollPass(-1, -1, 0, 0);
1056 }
1057