xref: /aosp_15_r20/external/mesa3d/src/amd/vulkan/radv_printf.c (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /*
2  * Copyright © 2024 Valve Corporation
3  *
4  * SPDX-License-Identifier: MIT
5  */
6 
7 #include "radv_printf.h"
8 #include "radv_device.h"
9 #include "radv_physical_device.h"
10 
11 #include "util/hash_table.h"
12 #include "util/strndup.h"
13 #include "util/u_printf.h"
14 
15 #include "nir.h"
16 #include "nir_builder.h"
17 
18 static struct hash_table *device_ht = NULL;
19 
20 VkResult
radv_printf_data_init(struct radv_device * device)21 radv_printf_data_init(struct radv_device *device)
22 {
23    const struct radv_physical_device *pdev = radv_device_physical(device);
24 
25    util_dynarray_init(&device->printf.formats, NULL);
26 
27    device->printf.buffer_size = debug_get_num_option("RADV_PRINTF_BUFFER_SIZE", 0);
28    if (device->printf.buffer_size < sizeof(struct radv_printf_buffer_header))
29       return VK_SUCCESS;
30 
31    VkBufferCreateInfo buffer_create_info = {
32       .sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
33       .pNext =
34          &(VkBufferUsageFlags2CreateInfoKHR){
35             .sType = VK_STRUCTURE_TYPE_BUFFER_USAGE_FLAGS_2_CREATE_INFO_KHR,
36             .usage = VK_BUFFER_USAGE_2_TRANSFER_SRC_BIT_KHR | VK_BUFFER_USAGE_2_SHADER_DEVICE_ADDRESS_BIT_KHR,
37          },
38       .size = device->printf.buffer_size,
39    };
40 
41    VkDevice _device = radv_device_to_handle(device);
42    VkResult result = device->vk.dispatch_table.CreateBuffer(_device, &buffer_create_info, NULL, &device->printf.buffer);
43    if (result != VK_SUCCESS)
44       return result;
45 
46    VkMemoryRequirements requirements;
47    device->vk.dispatch_table.GetBufferMemoryRequirements(_device, device->printf.buffer, &requirements);
48 
49    VkMemoryAllocateInfo alloc_info = {
50       .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
51       .allocationSize = requirements.size,
52       .memoryTypeIndex =
53          radv_find_memory_index(pdev, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
54                                          VK_MEMORY_PROPERTY_HOST_COHERENT_BIT),
55    };
56 
57    result = device->vk.dispatch_table.AllocateMemory(_device, &alloc_info, NULL, &device->printf.memory);
58    if (result != VK_SUCCESS)
59       return result;
60 
61    result = device->vk.dispatch_table.MapMemory(_device, device->printf.memory, 0, VK_WHOLE_SIZE, 0,
62                                                 (void **)&device->printf.data);
63    if (result != VK_SUCCESS)
64       return result;
65 
66    result = device->vk.dispatch_table.BindBufferMemory(_device, device->printf.buffer, device->printf.memory, 0);
67    if (result != VK_SUCCESS)
68       return result;
69 
70    struct radv_printf_buffer_header *header = device->printf.data;
71    header->offset = sizeof(struct radv_printf_buffer_header);
72    header->size = device->printf.buffer_size;
73 
74    VkBufferDeviceAddressInfo addr_info = {
75       .sType = VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO,
76       .buffer = device->printf.buffer,
77    };
78    device->printf.buffer_addr = device->vk.dispatch_table.GetBufferDeviceAddress(_device, &addr_info);
79 
80    return VK_SUCCESS;
81 }
82 
83 void
radv_printf_data_finish(struct radv_device * device)84 radv_printf_data_finish(struct radv_device *device)
85 {
86    VkDevice _device = radv_device_to_handle(device);
87 
88    device->vk.dispatch_table.DestroyBuffer(_device, device->printf.buffer, NULL);
89    if (device->printf.memory)
90       device->vk.dispatch_table.UnmapMemory(_device, device->printf.memory);
91    device->vk.dispatch_table.FreeMemory(_device, device->printf.memory, NULL);
92 
93    util_dynarray_foreach (&device->printf.formats, struct radv_printf_format, format)
94       free(format->string);
95 
96    util_dynarray_fini(&device->printf.formats);
97 }
98 
99 void
radv_build_printf(nir_builder * b,nir_def * cond,const char * format_string,...)100 radv_build_printf(nir_builder *b, nir_def *cond, const char *format_string, ...)
101 {
102    if (!device_ht)
103       return;
104 
105    struct radv_device *device = _mesa_hash_table_search(device_ht, b->shader)->data;
106    if (!device->printf.buffer_addr)
107       return;
108 
109    struct radv_printf_format format = {0};
110    format.string = strdup(format_string);
111    if (!format.string)
112       return;
113 
114    uint32_t format_index = util_dynarray_num_elements(&device->printf.formats, struct radv_printf_format);
115 
116    if (cond)
117       nir_push_if(b, cond);
118 
119    nir_def *size = nir_imm_int(b, 4);
120 
121    va_list arg_list;
122    va_start(arg_list, format_string);
123 
124    uint32_t num_args = 0;
125    for (uint32_t i = 0; i < strlen(format_string); i++)
126       if (format_string[i] == '%')
127          num_args++;
128 
129    nir_def **args = malloc(num_args * sizeof(nir_def *));
130    nir_def **strides = malloc(num_args * sizeof(nir_def *));
131 
132    nir_def *ballot = nir_ballot(b, 1, 64, nir_imm_true(b));
133    nir_def *active_invocation_count = nir_bit_count(b, ballot);
134 
135    for (uint32_t i = 0; i < num_args; i++) {
136       nir_def *arg = va_arg(arg_list, nir_def *);
137 
138       if (arg->bit_size == 1)
139          arg = nir_b2i32(b, arg);
140 
141       args[i] = arg;
142 
143       uint32_t arg_size = arg->bit_size == 1 ? 32 : arg->bit_size / 8;
144       format.element_sizes[i] = arg_size;
145 
146       nir_update_instr_divergence(b->shader, arg->parent_instr);
147 
148       if (arg->divergent) {
149          strides[i] = nir_imul_imm(b, active_invocation_count, arg_size);
150          format.divergence_mask |= BITFIELD_BIT(i);
151       } else {
152          strides[i] = nir_imm_int(b, arg_size);
153       }
154 
155       size = nir_iadd(b, size, strides[i]);
156    }
157 
158    va_end(arg_list);
159 
160    nir_def *offset;
161    nir_def *undef;
162 
163    nir_push_if(b, nir_elect(b, 1));
164    {
165       offset = nir_global_atomic(
166          b, 32, nir_imm_int64(b, device->printf.buffer_addr + offsetof(struct radv_printf_buffer_header, offset)), size,
167          .atomic_op = nir_atomic_op_iadd);
168    }
169    nir_push_else(b, NULL);
170    {
171       undef = nir_undef(b, 1, 32);
172    }
173    nir_pop_if(b, NULL);
174 
175    offset = nir_read_first_invocation(b, nir_if_phi(b, offset, undef));
176 
177    nir_def *buffer_size = nir_load_global(
178       b, nir_imm_int64(b, device->printf.buffer_addr + offsetof(struct radv_printf_buffer_header, size)), 4, 1, 32);
179 
180    nir_push_if(b, nir_ige(b, buffer_size, nir_iadd(b, offset, size)));
181    {
182       nir_def *addr = nir_iadd_imm(b, nir_u2u64(b, offset), device->printf.buffer_addr);
183 
184       /* header */
185       nir_store_global(b, addr, 4, nir_ior_imm(b, active_invocation_count, format_index << 16), 1);
186       addr = nir_iadd_imm(b, addr, 4);
187 
188       for (uint32_t i = 0; i < num_args; i++) {
189          nir_def *arg = args[i];
190 
191          if (arg->divergent) {
192             nir_def *invocation_index = nir_mbcnt_amd(b, ballot, nir_imm_int(b, 0));
193             nir_store_global(
194                b, nir_iadd(b, addr, nir_u2u64(b, nir_imul_imm(b, invocation_index, format.element_sizes[i]))), 4, arg,
195                1);
196          } else {
197             nir_store_global(b, addr, 4, arg, 1);
198          }
199 
200          addr = nir_iadd(b, addr, nir_u2u64(b, strides[i]));
201       }
202    }
203    nir_pop_if(b, NULL);
204 
205    if (cond)
206       nir_pop_if(b, NULL);
207 
208    free(args);
209    free(strides);
210 
211    util_dynarray_append(&device->printf.formats, struct radv_printf_format, format);
212 }
213 
214 void
radv_dump_printf_data(struct radv_device * device,FILE * out)215 radv_dump_printf_data(struct radv_device *device, FILE *out)
216 {
217    if (!device->printf.data)
218       return;
219 
220    device->vk.dispatch_table.DeviceWaitIdle(radv_device_to_handle(device));
221 
222    struct radv_printf_buffer_header *header = device->printf.data;
223    uint8_t *data = device->printf.data;
224 
225    for (uint32_t offset = sizeof(struct radv_printf_buffer_header); offset < header->offset;) {
226       uint32_t printf_header = *(uint32_t *)&data[offset];
227       offset += sizeof(uint32_t);
228 
229       uint32_t format_index = printf_header >> 16;
230       struct radv_printf_format *printf_format =
231          util_dynarray_element(&device->printf.formats, struct radv_printf_format, format_index);
232 
233       uint32_t invocation_count = printf_header & 0xFFFF;
234 
235       uint32_t num_args = 0;
236       for (uint32_t i = 0; i < strlen(printf_format->string); i++)
237          if (printf_format->string[i] == '%')
238             num_args++;
239 
240       char *format = printf_format->string;
241 
242       for (uint32_t i = 0; i <= num_args; i++) {
243          size_t spec_pos = util_printf_next_spec_pos(format, 0);
244 
245          if (spec_pos == -1) {
246             fprintf(out, "%s", format);
247             continue;
248          }
249 
250          const char *token = util_printf_prev_tok(&format[spec_pos]);
251          char *next_format = &format[spec_pos + 1];
252 
253          /* print the part before the format token */
254          if (token != format)
255             fwrite(format, token - format, 1, out);
256 
257          char *print_str = strndup(token, next_format - token);
258          /* rebase spec_pos so we can use it with print_str */
259          spec_pos += format - token;
260 
261          size_t element_size = printf_format->element_sizes[i];
262          bool is_float = strpbrk(print_str, "fFeEgGaA") != NULL;
263 
264          uint32_t lane_count = (printf_format->divergence_mask & BITFIELD_BIT(i)) ? invocation_count : 1;
265          for (uint32_t lane = 0; lane < lane_count; lane++) {
266             switch (element_size) {
267             case 1: {
268                uint8_t v;
269                memcpy(&v, &data[offset], element_size);
270                fprintf(out, print_str, v);
271                break;
272             }
273             case 2: {
274                uint16_t v;
275                memcpy(&v, &data[offset], element_size);
276                fprintf(out, print_str, v);
277                break;
278             }
279             case 4: {
280                if (is_float) {
281                   float v;
282                   memcpy(&v, &data[offset], element_size);
283                   fprintf(out, print_str, v);
284                } else {
285                   uint32_t v;
286                   memcpy(&v, &data[offset], element_size);
287                   fprintf(out, print_str, v);
288                }
289                break;
290             }
291             case 8: {
292                if (is_float) {
293                   double v;
294                   memcpy(&v, &data[offset], element_size);
295                   fprintf(out, print_str, v);
296                } else {
297                   uint64_t v;
298                   memcpy(&v, &data[offset], element_size);
299                   fprintf(out, print_str, v);
300                }
301                break;
302             }
303             default:
304                unreachable("Unsupported data type");
305             }
306 
307             if (lane != lane_count - 1)
308                fprintf(out, " ");
309 
310             offset += element_size;
311          }
312 
313          /* rebase format */
314          format = next_format;
315          free(print_str);
316       }
317    }
318 
319    fflush(out);
320 
321    header->offset = sizeof(struct radv_printf_buffer_header);
322 }
323 
324 void
radv_device_associate_nir(struct radv_device * device,nir_shader * nir)325 radv_device_associate_nir(struct radv_device *device, nir_shader *nir)
326 {
327    if (!device->printf.buffer_addr)
328       return;
329 
330    if (!device_ht)
331       device_ht = _mesa_pointer_hash_table_create(NULL);
332 
333    _mesa_hash_table_insert(device_ht, nir, device);
334 }
335