xref: /aosp_15_r20/external/mesa3d/src/asahi/compiler/agx_liveness.c (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /*
2  * Copyright 2021 Alyssa Rosenzweig
3  * Copyright 2019-2020 Collabora, Ltd.
4  * SPDX-License-Identifier: MIT
5  */
6 
7 #include "util/list.h"
8 #include "util/set.h"
9 #include "util/u_memory.h"
10 #include "agx_compiler.h"
11 
12 /* Liveness analysis is a backwards-may dataflow analysis pass. Within a block,
13  * we compute live_out from live_in. The intrablock pass is linear-time. It
14  * returns whether progress was made. */
15 
16 /* live_in[s] = GEN[s] + (live_out[s] - KILL[s]) */
17 
18 void
agx_liveness_ins_update(BITSET_WORD * live,agx_instr * I)19 agx_liveness_ins_update(BITSET_WORD *live, agx_instr *I)
20 {
21    agx_foreach_ssa_dest(I, d)
22       BITSET_CLEAR(live, I->dest[d].value);
23 
24    agx_foreach_ssa_src(I, s) {
25       /* If the source is not live after this instruction, but becomes live
26        * at this instruction, this is the use that kills the source
27        */
28       I->src[s].kill = !BITSET_TEST(live, I->src[s].value);
29       BITSET_SET(live, I->src[s].value);
30    }
31 }
32 
33 /* Globally, liveness analysis uses a fixed-point algorithm based on a
34  * worklist. We initialize a work list with the exit block. We iterate the work
35  * list to compute live_in from live_out for each block on the work list,
36  * adding the predecessors of the block to the work list if we made progress.
37  */
38 
39 void
agx_compute_liveness(agx_context * ctx)40 agx_compute_liveness(agx_context *ctx)
41 {
42    u_worklist worklist;
43    u_worklist_init(&worklist, ctx->num_blocks, NULL);
44 
45    /* Free any previous liveness, and allocate */
46    unsigned words = BITSET_WORDS(ctx->alloc);
47 
48    agx_foreach_block(ctx, block) {
49       if (block->live_in)
50          ralloc_free(block->live_in);
51 
52       if (block->live_out)
53          ralloc_free(block->live_out);
54 
55       block->live_in = rzalloc_array(block, BITSET_WORD, words);
56       block->live_out = rzalloc_array(block, BITSET_WORD, words);
57 
58       agx_worklist_push_head(&worklist, block);
59    }
60 
61    /* Iterate the work list */
62    while (!u_worklist_is_empty(&worklist)) {
63       /* Pop in reverse order since liveness is a backwards pass */
64       agx_block *blk = agx_worklist_pop_head(&worklist);
65 
66       /* Update its liveness information */
67       memcpy(blk->live_in, blk->live_out, words * sizeof(BITSET_WORD));
68 
69       agx_foreach_instr_in_block_rev(blk, I) {
70          if (I->op != AGX_OPCODE_PHI)
71             agx_liveness_ins_update(blk->live_in, I);
72       }
73 
74       /* Propagate the live in of the successor (blk) to the live out of
75        * predecessors.
76        *
77        * Phi nodes are logically on the control flow edge and act in parallel.
78        * To handle when propagating, we kill writes from phis and make live the
79        * corresponding sources.
80        */
81       agx_foreach_predecessor(blk, pred) {
82          BITSET_WORD *live = ralloc_array(blk, BITSET_WORD, words);
83          memcpy(live, blk->live_in, words * sizeof(BITSET_WORD));
84 
85          /* Kill write */
86          agx_foreach_phi_in_block(blk, phi) {
87             assert(phi->dest[0].type == AGX_INDEX_NORMAL);
88             BITSET_CLEAR(live, phi->dest[0].value);
89          }
90 
91          /* Make live the corresponding source */
92          agx_foreach_phi_in_block(blk, phi) {
93             agx_index operand = phi->src[agx_predecessor_index(blk, *pred)];
94             if (operand.type == AGX_INDEX_NORMAL)
95                BITSET_SET(live, operand.value);
96          }
97 
98          bool progress = false;
99 
100          for (unsigned i = 0; i < words; ++i) {
101             progress |= live[i] & ~((*pred)->live_out[i]);
102             (*pred)->live_out[i] |= live[i];
103          }
104 
105          if (progress)
106             agx_worklist_push_tail(&worklist, *pred);
107       }
108    }
109 
110    u_worklist_fini(&worklist);
111 }
112