1 /*
2 * Copyright © 2018 Red Hat Inc.
3 * Copyright © 2015 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 */
24
25 #include <math.h>
26
27 #include "nir.h"
28 #include "nir_builder.h"
29 #include "nir_builtin_builder.h"
30
31 nir_def *
nir_cross3(nir_builder * b,nir_def * x,nir_def * y)32 nir_cross3(nir_builder *b, nir_def *x, nir_def *y)
33 {
34 unsigned yzx[3] = { 1, 2, 0 };
35 unsigned zxy[3] = { 2, 0, 1 };
36
37 return nir_ffma(b, nir_swizzle(b, x, yzx, 3),
38 nir_swizzle(b, y, zxy, 3),
39 nir_fneg(b, nir_fmul(b, nir_swizzle(b, x, zxy, 3),
40 nir_swizzle(b, y, yzx, 3))));
41 }
42
43 nir_def *
nir_cross4(nir_builder * b,nir_def * x,nir_def * y)44 nir_cross4(nir_builder *b, nir_def *x, nir_def *y)
45 {
46 nir_def *cross = nir_cross3(b, x, y);
47
48 return nir_vec4(b,
49 nir_channel(b, cross, 0),
50 nir_channel(b, cross, 1),
51 nir_channel(b, cross, 2),
52 nir_imm_intN_t(b, 0, cross->bit_size));
53 }
54
55 nir_def *
nir_fast_length(nir_builder * b,nir_def * vec)56 nir_fast_length(nir_builder *b, nir_def *vec)
57 {
58 return nir_fsqrt(b, nir_fdot(b, vec, vec));
59 }
60
61 nir_def *
nir_nextafter(nir_builder * b,nir_def * x,nir_def * y)62 nir_nextafter(nir_builder *b, nir_def *x, nir_def *y)
63 {
64 nir_def *zero = nir_imm_intN_t(b, 0, x->bit_size);
65 nir_def *one = nir_imm_intN_t(b, 1, x->bit_size);
66
67 nir_def *condeq = nir_feq(b, x, y);
68 nir_def *conddir = nir_flt(b, x, y);
69 nir_def *condzero = nir_feq(b, x, zero);
70
71 uint64_t sign_mask = 1ull << (x->bit_size - 1);
72 uint64_t min_abs = 1;
73
74 if (nir_is_denorm_flush_to_zero(b->shader->info.float_controls_execution_mode, x->bit_size)) {
75 switch (x->bit_size) {
76 case 16:
77 min_abs = 1 << 10;
78 break;
79 case 32:
80 min_abs = 1 << 23;
81 break;
82 case 64:
83 min_abs = 1ULL << 52;
84 break;
85 }
86
87 /* Flush denorm to zero to avoid returning a denorm when condeq is true. */
88 x = nir_fmul_imm(b, x, 1.0);
89 }
90
91 /* beware of: +/-0.0 - 1 == NaN */
92 nir_def *xn =
93 nir_bcsel(b,
94 condzero,
95 nir_imm_intN_t(b, sign_mask | min_abs, x->bit_size),
96 nir_isub(b, x, one));
97
98 /* beware of -0.0 + 1 == -0x1p-149 */
99 nir_def *xp = nir_bcsel(b, condzero,
100 nir_imm_intN_t(b, min_abs, x->bit_size),
101 nir_iadd(b, x, one));
102
103 /* nextafter can be implemented by just +/- 1 on the int value */
104 nir_def *res =
105 nir_bcsel(b, nir_ixor(b, conddir, nir_flt(b, x, zero)), xp, xn);
106
107 return nir_nan_check2(b, x, y, nir_bcsel(b, condeq, x, res));
108 }
109
110 nir_def *
nir_normalize(nir_builder * b,nir_def * vec)111 nir_normalize(nir_builder *b, nir_def *vec)
112 {
113 if (vec->num_components == 1)
114 return nir_fsign(b, vec);
115
116 nir_def *f0 = nir_imm_floatN_t(b, 0.0, vec->bit_size);
117 nir_def *f1 = nir_imm_floatN_t(b, 1.0, vec->bit_size);
118 nir_def *finf = nir_imm_floatN_t(b, INFINITY, vec->bit_size);
119
120 /* scale the input to increase precision */
121 nir_def *maxc = nir_fmax_abs_vec_comp(b, vec);
122 nir_def *svec = nir_fdiv(b, vec, maxc);
123 /* for inf */
124 nir_def *finfvec = nir_copysign(b, nir_bcsel(b, nir_feq(b, vec, finf), f1, f0), f1);
125
126 nir_def *temp = nir_bcsel(b, nir_feq(b, maxc, finf), finfvec, svec);
127 nir_def *res = nir_fmul(b, temp, nir_frsq(b, nir_fdot(b, temp, temp)));
128
129 return nir_bcsel(b, nir_feq(b, maxc, f0), vec, res);
130 }
131
132 nir_def *
nir_smoothstep(nir_builder * b,nir_def * edge0,nir_def * edge1,nir_def * x)133 nir_smoothstep(nir_builder *b, nir_def *edge0, nir_def *edge1, nir_def *x)
134 {
135 nir_def *f2 = nir_imm_floatN_t(b, 2.0, x->bit_size);
136 nir_def *f3 = nir_imm_floatN_t(b, 3.0, x->bit_size);
137
138 /* t = clamp((x - edge0) / (edge1 - edge0), 0, 1) */
139 nir_def *t =
140 nir_fsat(b, nir_fdiv(b, nir_fsub(b, x, edge0),
141 nir_fsub(b, edge1, edge0)));
142
143 /* result = t * t * (3 - 2 * t) */
144 return nir_fmul(b, t, nir_fmul(b, t, nir_a_minus_bc(b, f3, f2, t)));
145 }
146
147 nir_def *
nir_upsample(nir_builder * b,nir_def * hi,nir_def * lo)148 nir_upsample(nir_builder *b, nir_def *hi, nir_def *lo)
149 {
150 assert(lo->num_components == hi->num_components);
151 assert(lo->bit_size == hi->bit_size);
152
153 nir_def *res[NIR_MAX_VEC_COMPONENTS];
154 for (unsigned i = 0; i < lo->num_components; ++i) {
155 nir_def *vec = nir_vec2(b, nir_channel(b, lo, i), nir_channel(b, hi, i));
156 res[i] = nir_pack_bits(b, vec, vec->bit_size * 2);
157 }
158
159 return nir_vec(b, res, lo->num_components);
160 }
161
162 nir_def *
nir_atan(nir_builder * b,nir_def * y_over_x)163 nir_atan(nir_builder *b, nir_def *y_over_x)
164 {
165 const uint32_t bit_size = y_over_x->bit_size;
166
167 nir_def *abs_y_over_x = nir_fabs(b, y_over_x);
168
169 /*
170 * range-reduction, first step:
171 *
172 * / y_over_x if |y_over_x| <= 1.0;
173 * u = <
174 * \ 1.0 / y_over_x otherwise
175 *
176 * x = |u| for the corrected sign.
177 */
178 nir_def *le_1 = nir_fle_imm(b, abs_y_over_x, 1.0);
179 nir_def *u = nir_bcsel(b, le_1, y_over_x, nir_frcp(b, y_over_x));
180
181 /*
182 * approximate atan by evaluating polynomial using Horner's method:
183 *
184 * x * 0.9999793128310355 - x^3 * 0.3326756418091246 +
185 * x^5 * 0.1938924977115610 - x^7 * 0.1173503194786851 +
186 * x^9 * 0.0536813784310406 - x^11 * 0.0121323213173444
187 */
188 float coeffs[] = {
189 -0.0121323213173444f, 0.0536813784310406f,
190 -0.1173503194786851f, 0.1938924977115610f,
191 -0.3326756418091246f, 0.9999793128310355f
192 };
193
194 nir_def *x_2 = nir_fmul(b, u, u);
195 nir_def *res = nir_imm_floatN_t(b, coeffs[0], bit_size);
196
197 for (unsigned i = 1; i < ARRAY_SIZE(coeffs); ++i) {
198 res = nir_ffma_imm2(b, res, x_2, coeffs[i]);
199 }
200
201 /* range-reduction fixup value */
202 nir_def *bias = nir_bcsel(b, le_1, nir_imm_floatN_t(b, 0, bit_size),
203 nir_imm_floatN_t(b, -M_PI_2, bit_size));
204
205 /* multiply through by x while fixing up the range reduction */
206 nir_def *tmp = nir_ffma(b, nir_fabs(b, u), res, bias);
207
208 /* sign fixup */
209 return nir_copysign(b, tmp, y_over_x);
210 }
211
212 nir_def *
nir_atan2(nir_builder * b,nir_def * y,nir_def * x)213 nir_atan2(nir_builder *b, nir_def *y, nir_def *x)
214 {
215 assert(y->bit_size == x->bit_size);
216 const uint32_t bit_size = x->bit_size;
217
218 nir_def *zero = nir_imm_floatN_t(b, 0, bit_size);
219 nir_def *one = nir_imm_floatN_t(b, 1, bit_size);
220
221 /* If we're on the left half-plane rotate the coordinates π/2 clock-wise
222 * for the y=0 discontinuity to end up aligned with the vertical
223 * discontinuity of atan(s/t) along t=0. This also makes sure that we
224 * don't attempt to divide by zero along the vertical line, which may give
225 * unspecified results on non-GLSL 4.1-capable hardware.
226 */
227 nir_def *flip = nir_fge(b, zero, x);
228 nir_def *s = nir_bcsel(b, flip, nir_fabs(b, x), y);
229 nir_def *t = nir_bcsel(b, flip, y, nir_fabs(b, x));
230
231 /* If the magnitude of the denominator exceeds some huge value, scale down
232 * the arguments in order to prevent the reciprocal operation from flushing
233 * its result to zero, which would cause precision problems, and for s
234 * infinite would cause us to return a NaN instead of the correct finite
235 * value.
236 *
237 * If fmin and fmax are respectively the smallest and largest positive
238 * normalized floating point values representable by the implementation,
239 * the constants below should be in agreement with:
240 *
241 * huge <= 1 / fmin
242 * scale <= 1 / fmin / fmax (for |t| >= huge)
243 *
244 * In addition scale should be a negative power of two in order to avoid
245 * loss of precision. The values chosen below should work for most usual
246 * floating point representations with at least the dynamic range of ATI's
247 * 24-bit representation.
248 */
249 const double huge_val = bit_size >= 32 ? 1e18 : 16384;
250 nir_def *scale = nir_bcsel(b, nir_fge_imm(b, nir_fabs(b, t), huge_val),
251 nir_imm_floatN_t(b, 0.25, bit_size), one);
252 nir_def *rcp_scaled_t = nir_frcp(b, nir_fmul(b, t, scale));
253 nir_def *abs_s_over_t = nir_fmul(b, nir_fabs(b, nir_fmul(b, s, scale)),
254 nir_fabs(b, rcp_scaled_t));
255
256 /* For |x| = |y| assume tan = 1 even if infinite (i.e. pretend momentarily
257 * that ∞/∞ = 1) in order to comply with the rather artificial rules
258 * inherited from IEEE 754-2008, namely:
259 *
260 * "atan2(±∞, −∞) is ±3π/4
261 * atan2(±∞, +∞) is ±π/4"
262 *
263 * Note that this is inconsistent with the rules for the neighborhood of
264 * zero that are based on iterated limits:
265 *
266 * "atan2(±0, −0) is ±π
267 * atan2(±0, +0) is ±0"
268 *
269 * but GLSL specifically allows implementations to deviate from IEEE rules
270 * at (0,0), so we take that license (i.e. pretend that 0/0 = 1 here as
271 * well).
272 */
273 nir_def *tan = nir_bcsel(b, nir_feq(b, nir_fabs(b, x), nir_fabs(b, y)),
274 one, abs_s_over_t);
275
276 /* Calculate the arctangent and fix up the result if we had flipped the
277 * coordinate system.
278 */
279 nir_def *arc =
280 nir_ffma_imm1(b, nir_b2fN(b, flip, bit_size), M_PI_2, nir_atan(b, tan));
281
282 /* Rather convoluted calculation of the sign of the result. When x < 0 we
283 * cannot use fsign because we need to be able to distinguish between
284 * negative and positive zero. We don't use bitwise arithmetic tricks for
285 * consistency with the GLSL front-end. When x >= 0 rcp_scaled_t will
286 * always be non-negative so this won't be able to distinguish between
287 * negative and positive zero, but we don't care because atan2 is
288 * continuous along the whole positive y = 0 half-line, so it won't affect
289 * the result significantly.
290 */
291 return nir_bcsel(b, nir_flt(b, nir_fmin(b, y, rcp_scaled_t), zero),
292 nir_fneg(b, arc), arc);
293 }
294
295 nir_def *
nir_build_texture_query(nir_builder * b,nir_tex_instr * tex,nir_texop texop,unsigned components,nir_alu_type dest_type,bool include_coord,bool include_lod)296 nir_build_texture_query(nir_builder *b, nir_tex_instr *tex, nir_texop texop,
297 unsigned components, nir_alu_type dest_type,
298 bool include_coord, bool include_lod)
299 {
300 nir_tex_instr *query;
301
302 unsigned num_srcs = include_lod ? 1 : 0;
303 for (unsigned i = 0; i < tex->num_srcs; i++) {
304 if ((tex->src[i].src_type == nir_tex_src_coord && include_coord) ||
305 tex->src[i].src_type == nir_tex_src_texture_deref ||
306 tex->src[i].src_type == nir_tex_src_sampler_deref ||
307 tex->src[i].src_type == nir_tex_src_texture_offset ||
308 tex->src[i].src_type == nir_tex_src_sampler_offset ||
309 tex->src[i].src_type == nir_tex_src_texture_handle ||
310 tex->src[i].src_type == nir_tex_src_sampler_handle)
311 num_srcs++;
312 }
313
314 query = nir_tex_instr_create(b->shader, num_srcs);
315 query->op = texop;
316 query->sampler_dim = tex->sampler_dim;
317 query->is_array = tex->is_array;
318 query->is_shadow = tex->is_shadow;
319 query->is_new_style_shadow = tex->is_new_style_shadow;
320 query->texture_index = tex->texture_index;
321 query->sampler_index = tex->sampler_index;
322 query->dest_type = dest_type;
323
324 if (include_coord) {
325 query->coord_components = tex->coord_components;
326 }
327
328 unsigned idx = 0;
329 for (unsigned i = 0; i < tex->num_srcs; i++) {
330 if ((tex->src[i].src_type == nir_tex_src_coord && include_coord) ||
331 tex->src[i].src_type == nir_tex_src_texture_deref ||
332 tex->src[i].src_type == nir_tex_src_sampler_deref ||
333 tex->src[i].src_type == nir_tex_src_texture_offset ||
334 tex->src[i].src_type == nir_tex_src_sampler_offset ||
335 tex->src[i].src_type == nir_tex_src_texture_handle ||
336 tex->src[i].src_type == nir_tex_src_sampler_handle) {
337 query->src[idx].src = nir_src_for_ssa(tex->src[i].src.ssa);
338 query->src[idx].src_type = tex->src[i].src_type;
339 idx++;
340 }
341 }
342
343 /* Add in an LOD because some back-ends require it */
344 if (include_lod) {
345 query->src[idx] = nir_tex_src_for_ssa(nir_tex_src_lod, nir_imm_int(b, 0));
346 }
347
348 nir_def_init(&query->instr, &query->def, nir_tex_instr_dest_size(query),
349 nir_alu_type_get_type_size(dest_type));
350
351 nir_builder_instr_insert(b, &query->instr);
352 return &query->def;
353 }
354
355 nir_def *
nir_get_texture_size(nir_builder * b,nir_tex_instr * tex)356 nir_get_texture_size(nir_builder *b, nir_tex_instr *tex)
357 {
358 b->cursor = nir_before_instr(&tex->instr);
359
360 return nir_build_texture_query(b, tex, nir_texop_txs,
361 nir_tex_instr_dest_size(tex),
362 nir_type_int32, false, true);
363 }
364
365 nir_def *
nir_get_texture_lod(nir_builder * b,nir_tex_instr * tex)366 nir_get_texture_lod(nir_builder *b, nir_tex_instr *tex)
367 {
368 b->cursor = nir_before_instr(&tex->instr);
369
370 nir_def *tql = nir_build_texture_query(b, tex, nir_texop_lod, 2,
371 nir_type_float32, true, false);
372
373 /* The LOD is the y component of the result */
374 return nir_channel(b, tql, 1);
375 }
376