xref: /aosp_15_r20/external/mesa3d/src/compiler/nir/nir_from_ssa.c (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "nir.h"
25 #include "nir_builder.h"
26 #include "nir_builder_opcodes.h"
27 #include "nir_vla.h"
28 
29 /*
30  * This file implements an out-of-SSA pass as described in "Revisiting
31  * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by
32  * Boissinot et al.
33  */
34 
35 struct from_ssa_state {
36    nir_builder builder;
37    void *dead_ctx;
38    struct exec_list dead_instrs;
39    bool phi_webs_only;
40    struct hash_table *merge_node_table;
41    nir_instr *instr;
42    bool progress;
43 };
44 
45 /* Returns if def @a comes after def @b.
46  *
47  * The core observation that makes the Boissinot algorithm efficient
48  * is that, given two properly sorted sets, we can check for
49  * interference in these sets via a linear walk. This is accomplished
50  * by doing single combined walk over union of the two sets in DFS
51  * order. It doesn't matter what DFS we do so long as we're
52  * consistent. Fortunately, the dominance algorithm we ran prior to
53  * this pass did such a walk and recorded the pre- and post-indices in
54  * the blocks.
55  *
56  * We treat SSA undefs as always coming before other instruction types.
57  */
58 static bool
def_after(nir_def * a,nir_def * b)59 def_after(nir_def *a, nir_def *b)
60 {
61    if (a->parent_instr->type == nir_instr_type_undef)
62       return false;
63 
64    if (b->parent_instr->type == nir_instr_type_undef)
65       return true;
66 
67    /* If they're in the same block, we can rely on whichever instruction
68     * comes first in the block.
69     */
70    if (a->parent_instr->block == b->parent_instr->block)
71       return a->parent_instr->index > b->parent_instr->index;
72 
73    /* Otherwise, if blocks are distinct, we sort them in DFS pre-order */
74    return a->parent_instr->block->dom_pre_index >
75           b->parent_instr->block->dom_pre_index;
76 }
77 
78 /* Returns true if a dominates b */
79 static bool
ssa_def_dominates(nir_def * a,nir_def * b)80 ssa_def_dominates(nir_def *a, nir_def *b)
81 {
82    if (a->parent_instr->type == nir_instr_type_undef) {
83       /* SSA undefs always dominate */
84       return true;
85    }
86    if (def_after(a, b)) {
87       return false;
88    } else if (a->parent_instr->block == b->parent_instr->block) {
89       return def_after(b, a);
90    } else {
91       return nir_block_dominates(a->parent_instr->block,
92                                  b->parent_instr->block);
93    }
94 }
95 
96 /* The following data structure, which I have named merge_set is a way of
97  * representing a set registers of non-interfering registers.  This is
98  * based on the concept of a "dominance forest" presented in "Fast Copy
99  * Coalescing and Live-Range Identification" by Budimlic et al. but the
100  * implementation concept is taken from  "Revisiting Out-of-SSA Translation
101  * for Correctness, Code Quality, and Efficiency" by Boissinot et al.
102  *
103  * Each SSA definition is associated with a merge_node and the association
104  * is represented by a combination of a hash table and the "def" parameter
105  * in the merge_node structure.  The merge_set stores a linked list of
106  * merge_nodes, ordered by a pre-order DFS walk of the dominance tree.  (Since
107  * the liveness analysis pass indexes the SSA values in dominance order for
108  * us, this is an easy thing to keep up.)  It is assumed that no pair of the
109  * nodes in a given set interfere.  Merging two sets or checking for
110  * interference can be done in a single linear-time merge-sort walk of the
111  * two lists of nodes.
112  */
113 struct merge_set;
114 
115 typedef struct {
116    struct exec_node node;
117    struct merge_set *set;
118    nir_def *def;
119 } merge_node;
120 
121 typedef struct merge_set {
122    struct exec_list nodes;
123    unsigned size;
124    bool divergent;
125    nir_def *reg_decl;
126 } merge_set;
127 
128 #if 0
129 static void
130 merge_set_dump(merge_set *set, FILE *fp)
131 {
132    NIR_VLA(nir_def *, dom, set->size);
133    int dom_idx = -1;
134 
135    foreach_list_typed(merge_node, node, node, &set->nodes) {
136       while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def))
137          dom_idx--;
138 
139       for (int i = 0; i <= dom_idx; i++)
140          fprintf(fp, "  ");
141 
142       fprintf(fp, "ssa_%d\n", node->def->index);
143 
144       dom[++dom_idx] = node->def;
145    }
146 }
147 #endif
148 
149 static merge_node *
get_merge_node(nir_def * def,struct from_ssa_state * state)150 get_merge_node(nir_def *def, struct from_ssa_state *state)
151 {
152    struct hash_entry *entry =
153       _mesa_hash_table_search(state->merge_node_table, def);
154    if (entry)
155       return entry->data;
156 
157    merge_set *set = rzalloc(state->dead_ctx, merge_set);
158    exec_list_make_empty(&set->nodes);
159    set->size = 1;
160    set->divergent = def->divergent;
161 
162    merge_node *node = ralloc(state->dead_ctx, merge_node);
163    node->set = set;
164    node->def = def;
165    exec_list_push_head(&set->nodes, &node->node);
166 
167    _mesa_hash_table_insert(state->merge_node_table, def, node);
168 
169    return node;
170 }
171 
172 static bool
merge_nodes_interfere(merge_node * a,merge_node * b)173 merge_nodes_interfere(merge_node *a, merge_node *b)
174 {
175    /* There's no need to check for interference within the same set,
176     * because we assume, that sets themselves are already
177     * interference-free.
178     */
179    if (a->set == b->set)
180       return false;
181 
182    return nir_defs_interfere(a->def, b->def);
183 }
184 
185 /* Merges b into a
186  *
187  * This algorithm uses def_after to ensure that the sets always stay in the
188  * same order as the pre-order DFS done by the liveness algorithm.
189  */
190 static merge_set *
merge_merge_sets(merge_set * a,merge_set * b)191 merge_merge_sets(merge_set *a, merge_set *b)
192 {
193    struct exec_node *an = exec_list_get_head(&a->nodes);
194    struct exec_node *bn = exec_list_get_head(&b->nodes);
195    while (!exec_node_is_tail_sentinel(bn)) {
196       merge_node *a_node = exec_node_data(merge_node, an, node);
197       merge_node *b_node = exec_node_data(merge_node, bn, node);
198 
199       if (exec_node_is_tail_sentinel(an) ||
200           def_after(a_node->def, b_node->def)) {
201          struct exec_node *next = bn->next;
202          exec_node_remove(bn);
203          exec_node_insert_node_before(an, bn);
204          exec_node_data(merge_node, bn, node)->set = a;
205          bn = next;
206       } else {
207          an = an->next;
208       }
209    }
210 
211    a->size += b->size;
212    b->size = 0;
213    a->divergent |= b->divergent;
214 
215    return a;
216 }
217 
218 /* Checks for any interference between two merge sets
219  *
220  * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA
221  * Translation for Correctness, Code Quality, and Efficiency" by
222  * Boissinot et al.
223  */
224 static bool
merge_sets_interfere(merge_set * a,merge_set * b)225 merge_sets_interfere(merge_set *a, merge_set *b)
226 {
227    /* List of all the nodes which dominate the current node, in dominance
228     * order.
229     */
230    NIR_VLA(merge_node *, dom, a->size + b->size);
231    int dom_idx = -1;
232 
233    struct exec_node *an = exec_list_get_head(&a->nodes);
234    struct exec_node *bn = exec_list_get_head(&b->nodes);
235    while (!exec_node_is_tail_sentinel(an) ||
236           !exec_node_is_tail_sentinel(bn)) {
237 
238       /* We walk the union of the two sets in the same order as the pre-order
239        * DFS done by liveness analysis.
240        */
241       merge_node *current;
242       if (exec_node_is_tail_sentinel(an)) {
243          current = exec_node_data(merge_node, bn, node);
244          bn = bn->next;
245       } else if (exec_node_is_tail_sentinel(bn)) {
246          current = exec_node_data(merge_node, an, node);
247          an = an->next;
248       } else {
249          merge_node *a_node = exec_node_data(merge_node, an, node);
250          merge_node *b_node = exec_node_data(merge_node, bn, node);
251 
252          if (def_after(b_node->def, a_node->def)) {
253             current = a_node;
254             an = an->next;
255          } else {
256             current = b_node;
257             bn = bn->next;
258          }
259       }
260 
261       /* Because our walk is a pre-order DFS, we can maintain the list of
262        * dominating nodes as a simple stack, pushing every node onto the list
263        * after we visit it and popping any non-dominating nodes off before we
264        * visit the current node.
265        */
266       while (dom_idx >= 0 &&
267              !ssa_def_dominates(dom[dom_idx]->def, current->def))
268          dom_idx--;
269 
270       /* There are three invariants of this algorithm that are important here:
271        *
272        *  1. There is no interference within either set a or set b.
273        *  2. None of the nodes processed up until this point interfere.
274        *  3. All the dominators of `current` have been processed
275        *
276        * Because of these invariants, we only need to check the current node
277        * against its minimal dominator.  If any other node N in the union
278        * interferes with current, then N must dominate current because we are
279        * in SSA form.  If N dominates current then it must also dominate our
280        * minimal dominator dom[dom_idx].  Since N is live at current it must
281        * also be live at the minimal dominator which means N interferes with
282        * the minimal dominator dom[dom_idx] and, by invariants 2 and 3 above,
283        * the algorithm would have already terminated.  Therefore, if we got
284        * here, the only node that can possibly interfere with current is the
285        * minimal dominator dom[dom_idx].
286        *
287        * This is what allows us to do a interference check of the union of the
288        * two sets with a single linear-time walk.
289        */
290       if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx]))
291          return true;
292 
293       dom[++dom_idx] = current;
294    }
295 
296    return false;
297 }
298 
299 static bool
add_parallel_copy_to_end_of_block(nir_shader * shader,nir_block * block,void * dead_ctx)300 add_parallel_copy_to_end_of_block(nir_shader *shader, nir_block *block, void *dead_ctx)
301 {
302    bool need_end_copy = false;
303    if (block->successors[0]) {
304       nir_instr *instr = nir_block_first_instr(block->successors[0]);
305       if (instr && instr->type == nir_instr_type_phi)
306          need_end_copy = true;
307    }
308 
309    if (block->successors[1]) {
310       nir_instr *instr = nir_block_first_instr(block->successors[1]);
311       if (instr && instr->type == nir_instr_type_phi)
312          need_end_copy = true;
313    }
314 
315    if (need_end_copy) {
316       /* If one of our successors has at least one phi node, we need to
317        * create a parallel copy at the end of the block but before the jump
318        * (if there is one).
319        */
320       nir_parallel_copy_instr *pcopy =
321          nir_parallel_copy_instr_create(shader);
322 
323       nir_instr_insert(nir_after_block_before_jump(block), &pcopy->instr);
324    }
325 
326    return true;
327 }
328 
329 static nir_parallel_copy_instr *
get_parallel_copy_at_end_of_block(nir_block * block)330 get_parallel_copy_at_end_of_block(nir_block *block)
331 {
332    nir_instr *last_instr = nir_block_last_instr(block);
333    if (last_instr == NULL)
334       return NULL;
335 
336    /* The last instruction may be a jump in which case the parallel copy is
337     * right before it.
338     */
339    if (last_instr->type == nir_instr_type_jump)
340       last_instr = nir_instr_prev(last_instr);
341 
342    if (last_instr && last_instr->type == nir_instr_type_parallel_copy)
343       return nir_instr_as_parallel_copy(last_instr);
344    else
345       return NULL;
346 }
347 
348 /** Isolate phi nodes with parallel copies
349  *
350  * In order to solve the dependency problems with the sources and
351  * destinations of phi nodes, we first isolate them by adding parallel
352  * copies to the beginnings and ends of basic blocks.  For every block with
353  * phi nodes, we add a parallel copy immediately following the last phi
354  * node that copies the destinations of all of the phi nodes to new SSA
355  * values.  We also add a parallel copy to the end of every block that has
356  * a successor with phi nodes that, for each phi node in each successor,
357  * copies the corresponding sorce of the phi node and adjust the phi to
358  * used the destination of the parallel copy.
359  *
360  * In SSA form, each value has exactly one definition.  What this does is
361  * ensure that each value used in a phi also has exactly one use.  The
362  * destinations of phis are only used by the parallel copy immediately
363  * following the phi nodes and.  Thanks to the parallel copy at the end of
364  * the predecessor block, the sources of phi nodes are are the only use of
365  * that value.  This allows us to immediately assign all the sources and
366  * destinations of any given phi node to the same register without worrying
367  * about interference at all.  We do coalescing to get rid of the parallel
368  * copies where possible.
369  *
370  * Before this pass can be run, we have to iterate over the blocks with
371  * add_parallel_copy_to_end_of_block to ensure that the parallel copies at
372  * the ends of blocks exist.  We can create the ones at the beginnings as
373  * we go, but the ones at the ends of blocks need to be created ahead of
374  * time because of potential back-edges in the CFG.
375  */
376 static bool
isolate_phi_nodes_block(nir_shader * shader,nir_block * block,void * dead_ctx)377 isolate_phi_nodes_block(nir_shader *shader, nir_block *block, void *dead_ctx)
378 {
379    /* If we don't have any phis, then there's nothing for us to do. */
380    nir_phi_instr *last_phi = nir_block_last_phi_instr(block);
381    if (last_phi == NULL)
382       return true;
383 
384    /* If we have phi nodes, we need to create a parallel copy at the
385     * start of this block but after the phi nodes.
386     */
387    nir_parallel_copy_instr *block_pcopy =
388       nir_parallel_copy_instr_create(shader);
389    nir_instr_insert_after(&last_phi->instr, &block_pcopy->instr);
390 
391    nir_foreach_phi(phi, block) {
392       nir_foreach_phi_src(src, phi) {
393          if (nir_src_is_undef(src->src))
394             continue;
395 
396          nir_parallel_copy_instr *pcopy =
397             get_parallel_copy_at_end_of_block(src->pred);
398          assert(pcopy);
399 
400          nir_parallel_copy_entry *entry = rzalloc(dead_ctx,
401                                                   nir_parallel_copy_entry);
402 
403          entry->dest_is_reg = false;
404          nir_def_init(&pcopy->instr, &entry->dest.def,
405                       phi->def.num_components, phi->def.bit_size);
406          entry->dest.def.divergent = nir_src_is_divergent(src->src);
407 
408          /* We're adding a source to a live instruction so we need to use
409           * nir_instr_init_src()
410           */
411          entry->src_is_reg = false;
412          nir_instr_init_src(&pcopy->instr, &entry->src, src->src.ssa);
413 
414          exec_list_push_tail(&pcopy->entries, &entry->node);
415 
416          nir_src_rewrite(&src->src, &entry->dest.def);
417       }
418 
419       nir_parallel_copy_entry *entry = rzalloc(dead_ctx,
420                                                nir_parallel_copy_entry);
421 
422       entry->dest_is_reg = false;
423       nir_def_init(&block_pcopy->instr, &entry->dest.def,
424                    phi->def.num_components, phi->def.bit_size);
425       entry->dest.def.divergent = phi->def.divergent;
426 
427       nir_def_rewrite_uses(&phi->def, &entry->dest.def);
428 
429       /* We're adding a source to a live instruction so we need to use
430        * nir_instr_init_src().
431        *
432        * Note that we do this after we've rewritten all uses of the phi to
433        * entry->def, ensuring that entry->src will be the only remaining use
434        * of the phi.
435        */
436       entry->src_is_reg = false;
437       nir_instr_init_src(&block_pcopy->instr, &entry->src, &phi->def);
438 
439       exec_list_push_tail(&block_pcopy->entries, &entry->node);
440    }
441 
442    return true;
443 }
444 
445 static bool
coalesce_phi_nodes_block(nir_block * block,struct from_ssa_state * state)446 coalesce_phi_nodes_block(nir_block *block, struct from_ssa_state *state)
447 {
448    nir_foreach_phi(phi, block) {
449       merge_node *dest_node = get_merge_node(&phi->def, state);
450 
451       nir_foreach_phi_src(src, phi) {
452          if (nir_src_is_undef(src->src))
453             continue;
454 
455          merge_node *src_node = get_merge_node(src->src.ssa, state);
456          if (src_node->set != dest_node->set)
457             merge_merge_sets(dest_node->set, src_node->set);
458       }
459    }
460 
461    return true;
462 }
463 
464 static void
aggressive_coalesce_parallel_copy(nir_parallel_copy_instr * pcopy,struct from_ssa_state * state)465 aggressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy,
466                                   struct from_ssa_state *state)
467 {
468    nir_foreach_parallel_copy_entry(entry, pcopy) {
469       assert(!entry->src_is_reg);
470       assert(!entry->dest_is_reg);
471       assert(entry->dest.def.num_components ==
472              entry->src.ssa->num_components);
473 
474       /* Since load_const instructions are SSA only, we can't replace their
475        * destinations with registers and, therefore, can't coalesce them.
476        */
477       if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const)
478          continue;
479 
480       merge_node *src_node = get_merge_node(entry->src.ssa, state);
481       merge_node *dest_node = get_merge_node(&entry->dest.def, state);
482 
483       if (src_node->set == dest_node->set)
484          continue;
485 
486       /* TODO: We can probably do better here but for now we should be safe if
487        * we just don't coalesce things with different divergence.
488        */
489       if (dest_node->set->divergent != src_node->set->divergent)
490          continue;
491 
492       if (!merge_sets_interfere(src_node->set, dest_node->set))
493          merge_merge_sets(src_node->set, dest_node->set);
494    }
495 }
496 
497 static bool
aggressive_coalesce_block(nir_block * block,struct from_ssa_state * state)498 aggressive_coalesce_block(nir_block *block, struct from_ssa_state *state)
499 {
500    nir_parallel_copy_instr *start_pcopy = NULL;
501    nir_foreach_instr(instr, block) {
502       /* Phi nodes only ever come at the start of a block */
503       if (instr->type != nir_instr_type_phi) {
504          if (instr->type != nir_instr_type_parallel_copy)
505             break; /* The parallel copy must be right after the phis */
506 
507          start_pcopy = nir_instr_as_parallel_copy(instr);
508 
509          aggressive_coalesce_parallel_copy(start_pcopy, state);
510 
511          break;
512       }
513    }
514 
515    nir_parallel_copy_instr *end_pcopy =
516       get_parallel_copy_at_end_of_block(block);
517 
518    if (end_pcopy && end_pcopy != start_pcopy)
519       aggressive_coalesce_parallel_copy(end_pcopy, state);
520 
521    return true;
522 }
523 
524 static nir_def *
decl_reg_for_ssa_def(nir_builder * b,nir_def * def)525 decl_reg_for_ssa_def(nir_builder *b, nir_def *def)
526 {
527    return nir_decl_reg(b, def->num_components, def->bit_size, 0);
528 }
529 
530 static void
set_reg_divergent(nir_def * reg,bool divergent)531 set_reg_divergent(nir_def *reg, bool divergent)
532 {
533    nir_intrinsic_instr *decl = nir_reg_get_decl(reg);
534    nir_intrinsic_set_divergent(decl, divergent);
535 }
536 
537 void
nir_rewrite_uses_to_load_reg(nir_builder * b,nir_def * old,nir_def * reg)538 nir_rewrite_uses_to_load_reg(nir_builder *b, nir_def *old,
539                              nir_def *reg)
540 {
541    nir_foreach_use_including_if_safe(use, old) {
542       b->cursor = nir_before_src(use);
543 
544       /* If this is a parallel copy, it can just take the register directly */
545       if (!nir_src_is_if(use) &&
546           nir_src_parent_instr(use)->type == nir_instr_type_parallel_copy) {
547 
548          nir_parallel_copy_entry *copy_entry =
549             list_entry(use, nir_parallel_copy_entry, src);
550 
551          assert(!copy_entry->src_is_reg);
552          copy_entry->src_is_reg = true;
553          nir_src_rewrite(&copy_entry->src, reg);
554          continue;
555       }
556 
557       /* If the immediate preceding instruction is a load_reg from the same
558        * register, use it instead of creating a new load_reg. This helps when
559        * a register is referenced in multiple sources in the same instruction,
560        * which otherwise would turn into piles of unnecessary moves.
561        */
562       nir_def *load = NULL;
563       if (b->cursor.option == nir_cursor_before_instr) {
564          nir_instr *prev = nir_instr_prev(b->cursor.instr);
565 
566          if (prev != NULL && prev->type == nir_instr_type_intrinsic) {
567             nir_intrinsic_instr *intr = nir_instr_as_intrinsic(prev);
568             if (intr->intrinsic == nir_intrinsic_load_reg &&
569                 intr->src[0].ssa == reg &&
570                 nir_intrinsic_base(intr) == 0)
571                load = &intr->def;
572          }
573       }
574 
575       if (load == NULL)
576          load = nir_load_reg(b, reg);
577 
578       nir_src_rewrite(use, load);
579    }
580 }
581 
582 static bool
def_replace_with_reg(nir_def * def,nir_function_impl * impl)583 def_replace_with_reg(nir_def *def, nir_function_impl *impl)
584 {
585    /* These are handled elsewhere */
586    assert(def->parent_instr->type != nir_instr_type_undef &&
587           def->parent_instr->type != nir_instr_type_load_const);
588 
589    nir_builder b = nir_builder_create(impl);
590 
591    nir_def *reg = decl_reg_for_ssa_def(&b, def);
592    nir_rewrite_uses_to_load_reg(&b, def, reg);
593 
594    if (def->parent_instr->type == nir_instr_type_phi)
595       b.cursor = nir_before_block_after_phis(def->parent_instr->block);
596    else
597       b.cursor = nir_after_instr(def->parent_instr);
598 
599    nir_store_reg(&b, def, reg);
600    return true;
601 }
602 
603 static nir_def *
reg_for_ssa_def(nir_def * def,struct from_ssa_state * state)604 reg_for_ssa_def(nir_def *def, struct from_ssa_state *state)
605 {
606    struct hash_entry *entry =
607       _mesa_hash_table_search(state->merge_node_table, def);
608    if (entry) {
609       /* In this case, we're part of a phi web.  Use the web's register. */
610       merge_node *node = (merge_node *)entry->data;
611 
612       /* If it doesn't have a register yet, create one.  Note that all of
613        * the things in the merge set should be the same so it doesn't
614        * matter which node's definition we use.
615        */
616       if (node->set->reg_decl == NULL) {
617          node->set->reg_decl = decl_reg_for_ssa_def(&state->builder, def);
618          set_reg_divergent(node->set->reg_decl, node->set->divergent);
619       }
620 
621       return node->set->reg_decl;
622    } else {
623       assert(state->phi_webs_only);
624       return NULL;
625    }
626 }
627 
628 static void
remove_no_op_phi(nir_instr * instr,struct from_ssa_state * state)629 remove_no_op_phi(nir_instr *instr, struct from_ssa_state *state)
630 {
631 #ifndef NDEBUG
632    nir_phi_instr *phi = nir_instr_as_phi(instr);
633 
634    struct hash_entry *entry =
635       _mesa_hash_table_search(state->merge_node_table, &phi->def);
636    assert(entry != NULL);
637    merge_node *node = (merge_node *)entry->data;
638 
639    nir_foreach_phi_src(src, phi) {
640       if (nir_src_is_undef(src->src))
641          continue;
642 
643       entry = _mesa_hash_table_search(state->merge_node_table, src->src.ssa);
644       assert(entry != NULL);
645       merge_node *src_node = (merge_node *)entry->data;
646       assert(src_node->set == node->set);
647    }
648 #endif
649 
650    nir_instr_remove(instr);
651 }
652 
653 static bool
rewrite_ssa_def(nir_def * def,void * void_state)654 rewrite_ssa_def(nir_def *def, void *void_state)
655 {
656    struct from_ssa_state *state = void_state;
657 
658    nir_def *reg = reg_for_ssa_def(def, state);
659    if (reg == NULL)
660       return true;
661 
662    assert(nir_def_is_unused(def));
663 
664    /* At this point we know a priori that this SSA def is part of a
665     * nir_dest.  We can use exec_node_data to get the dest pointer.
666     */
667    assert(def->parent_instr->type != nir_instr_type_load_const);
668    nir_store_reg(&state->builder, def, reg);
669 
670    state->progress = true;
671    return true;
672 }
673 
674 static bool
rewrite_src(nir_src * src,void * void_state)675 rewrite_src(nir_src *src, void *void_state)
676 {
677    struct from_ssa_state *state = void_state;
678 
679    nir_def *reg = reg_for_ssa_def(src->ssa, state);
680    if (reg == NULL)
681       return true;
682 
683    nir_src_rewrite(src, nir_load_reg(&state->builder, reg));
684 
685    state->progress = true;
686    return true;
687 }
688 
689 /* Resolves ssa definitions to registers.  While we're at it, we also
690  * remove phi nodes.
691  */
692 static void
resolve_registers_impl(nir_function_impl * impl,struct from_ssa_state * state)693 resolve_registers_impl(nir_function_impl *impl, struct from_ssa_state *state)
694 {
695    nir_foreach_block_reverse(block, impl) {
696       /* Remove successor phis in case there's a back edge. */
697       for (unsigned i = 0; i < 2; i++) {
698          nir_block *succ = block->successors[i];
699          if (succ == NULL)
700             continue;
701 
702          nir_foreach_instr_safe(instr, succ) {
703             if (instr->type != nir_instr_type_phi)
704                break;
705 
706             remove_no_op_phi(instr, state);
707          }
708       }
709 
710       /* The following if is right after the block, handle its condition as the
711        * last source "in" the block.
712        */
713       nir_if *nif = nir_block_get_following_if(block);
714       if (nif) {
715          state->builder.cursor = nir_before_src(&nif->condition);
716          rewrite_src(&nif->condition, state);
717       }
718 
719       nir_foreach_instr_reverse_safe(instr, block) {
720          switch (instr->type) {
721          case nir_instr_type_phi:
722             remove_no_op_phi(instr, state);
723             break;
724 
725          case nir_instr_type_parallel_copy: {
726             nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(instr);
727 
728             nir_foreach_parallel_copy_entry(entry, pcopy) {
729                assert(!entry->dest_is_reg);
730 
731                /* Parallel copy destinations will always be registers */
732                nir_def *reg = reg_for_ssa_def(&entry->dest.def, state);
733                assert(reg != NULL);
734 
735                /* We're switching from the nir_def to the nir_src in the dest
736                 * union so we need to use nir_instr_init_src() here.
737                 */
738                assert(nir_def_is_unused(&entry->dest.def));
739                entry->dest_is_reg = true;
740                nir_instr_init_src(&pcopy->instr, &entry->dest.reg, reg);
741             }
742 
743             nir_foreach_parallel_copy_entry(entry, pcopy) {
744                assert(!entry->src_is_reg);
745                nir_def *reg = reg_for_ssa_def(entry->src.ssa, state);
746                if (reg == NULL)
747                   continue;
748 
749                entry->src_is_reg = true;
750                nir_src_rewrite(&entry->src, reg);
751             }
752             break;
753          }
754 
755          default:
756             state->builder.cursor = nir_after_instr(instr);
757             nir_foreach_def(instr, rewrite_ssa_def, state);
758             state->builder.cursor = nir_before_instr(instr);
759             nir_foreach_src(instr, rewrite_src, state);
760          }
761       }
762    }
763 }
764 
765 /* Resolves a single parallel copy operation into a sequence of movs
766  *
767  * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for
768  * Correctness, Code Quality, and Efficiency" by Boissinot et al.
769  * However, I never got the algorithm to work as written, so this version
770  * is slightly modified.
771  *
772  * The algorithm works by playing this little shell game with the values.
773  * We start by recording where every source value is and which source value
774  * each destination value should receive.  We then grab any copy whose
775  * destination is "empty", i.e. not used as a source, and do the following:
776  *  - Find where its source value currently lives
777  *  - Emit the move instruction
778  *  - Set the location of the source value to the destination
779  *  - Mark the location containing the source value
780  *  - Mark the destination as no longer needing to be copied
781  *
782  * When we run out of "empty" destinations, we have a cycle and so we
783  * create a temporary register, copy to that register, and mark the value
784  * we copied as living in that temporary.  Now, the cycle is broken, so we
785  * can continue with the above steps.
786  */
787 struct copy_value {
788    bool is_reg;
789    nir_def *ssa;
790 };
791 
792 static bool
copy_values_equal(struct copy_value a,struct copy_value b)793 copy_values_equal(struct copy_value a, struct copy_value b)
794 {
795    return a.is_reg == b.is_reg && a.ssa == b.ssa;
796 }
797 
798 static bool
copy_value_is_divergent(struct copy_value v)799 copy_value_is_divergent(struct copy_value v)
800 {
801    if (!v.is_reg)
802       return v.ssa->divergent;
803 
804    nir_intrinsic_instr *decl = nir_reg_get_decl(v.ssa);
805    return nir_intrinsic_divergent(decl);
806 }
807 
808 static void
copy_values(nir_builder * b,struct copy_value dest,struct copy_value src)809 copy_values(nir_builder *b, struct copy_value dest, struct copy_value src)
810 {
811    nir_def *val = src.is_reg ? nir_load_reg(b, src.ssa) : src.ssa;
812 
813    assert(!copy_value_is_divergent(src) || copy_value_is_divergent(dest));
814 
815    assert(dest.is_reg);
816    nir_store_reg(b, val, dest.ssa);
817 }
818 
819 static void
resolve_parallel_copy(nir_parallel_copy_instr * pcopy,struct from_ssa_state * state)820 resolve_parallel_copy(nir_parallel_copy_instr *pcopy,
821                       struct from_ssa_state *state)
822 {
823    unsigned num_copies = 0;
824    nir_foreach_parallel_copy_entry(entry, pcopy) {
825       /* Sources may be SSA but destinations are always registers */
826       assert(entry->dest_is_reg);
827       if (entry->src_is_reg && entry->src.ssa == entry->dest.reg.ssa)
828          continue;
829 
830       num_copies++;
831    }
832 
833    if (num_copies == 0) {
834       /* Hooray, we don't need any copies! */
835       nir_instr_remove(&pcopy->instr);
836       exec_list_push_tail(&state->dead_instrs, &pcopy->instr.node);
837       return;
838    }
839 
840    /* The register/source corresponding to the given index */
841    NIR_VLA_ZERO(struct copy_value, values, num_copies * 2);
842 
843    /* The current location of a given piece of data.  We will use -1 for "null" */
844    NIR_VLA_FILL(int, loc, num_copies * 2, -1);
845 
846    /* The piece of data that the given piece of data is to be copied from.  We will use -1 for "null" */
847    NIR_VLA_FILL(int, pred, num_copies * 2, -1);
848 
849    /* The destinations we have yet to properly fill */
850    NIR_VLA(int, to_do, num_copies * 2);
851    int to_do_idx = -1;
852 
853    state->builder.cursor = nir_before_instr(&pcopy->instr);
854 
855    /* Now we set everything up:
856     *  - All values get assigned a temporary index
857     *  - Current locations are set from sources
858     *  - Predecessors are recorded from sources and destinations
859     */
860    int num_vals = 0;
861    nir_foreach_parallel_copy_entry(entry, pcopy) {
862       /* Sources may be SSA but destinations are always registers */
863       if (entry->src_is_reg && entry->src.ssa == entry->dest.reg.ssa)
864          continue;
865 
866       struct copy_value src_value = {
867          .is_reg = entry->src_is_reg,
868          .ssa = entry->src.ssa,
869       };
870 
871       int src_idx = -1;
872       for (int i = 0; i < num_vals; ++i) {
873          if (copy_values_equal(values[i], src_value))
874             src_idx = i;
875       }
876       if (src_idx < 0) {
877          src_idx = num_vals++;
878          values[src_idx] = src_value;
879       }
880 
881       assert(entry->dest_is_reg);
882       struct copy_value dest_value = {
883          .is_reg = true,
884          .ssa = entry->dest.reg.ssa,
885       };
886 
887       int dest_idx = -1;
888       for (int i = 0; i < num_vals; ++i) {
889          if (copy_values_equal(values[i], dest_value)) {
890             /* Each destination of a parallel copy instruction should be
891              * unique.  A destination may get used as a source, so we still
892              * have to walk the list.  However, the predecessor should not,
893              * at this point, be set yet, so we should have -1 here.
894              */
895             assert(pred[i] == -1);
896             dest_idx = i;
897          }
898       }
899       if (dest_idx < 0) {
900          dest_idx = num_vals++;
901          values[dest_idx] = dest_value;
902       }
903 
904       loc[src_idx] = src_idx;
905       pred[dest_idx] = src_idx;
906 
907       to_do[++to_do_idx] = dest_idx;
908    }
909 
910    /* Currently empty destinations we can go ahead and fill */
911    NIR_VLA(int, ready, num_copies * 2);
912    int ready_idx = -1;
913 
914    /* Mark the ones that are ready for copying.  We know an index is a
915     * destination if it has a predecessor and it's ready for copying if
916     * it's not marked as containing data.
917     */
918    for (int i = 0; i < num_vals; i++) {
919       if (pred[i] != -1 && loc[i] == -1)
920          ready[++ready_idx] = i;
921    }
922 
923    while (1) {
924       while (ready_idx >= 0) {
925          int b = ready[ready_idx--];
926          int a = pred[b];
927          copy_values(&state->builder, values[b], values[loc[a]]);
928 
929          /* b has been filled, mark it as not needing to be copied */
930          pred[b] = -1;
931 
932          /* The next bit only applies if the source and destination have the
933           * same divergence.  If they differ (it must be convergent ->
934           * divergent), then we can't guarantee we won't need the convergent
935           * version of it again.
936           */
937          if (copy_value_is_divergent(values[a]) ==
938              copy_value_is_divergent(values[b])) {
939             /* If a needs to be filled... */
940             if (pred[a] != -1) {
941                /* If any other copies want a they can find it at b */
942                loc[a] = b;
943 
944                /* It's ready for copying now */
945                ready[++ready_idx] = a;
946             }
947          }
948       }
949 
950       assert(ready_idx < 0);
951       if (to_do_idx < 0)
952          break;
953 
954       int b = to_do[to_do_idx--];
955       if (pred[b] == -1)
956          continue;
957 
958       /* If we got here, then we don't have any more trivial copies that we
959        * can do.  We have to break a cycle, so we create a new temporary
960        * register for that purpose.  Normally, if going out of SSA after
961        * register allocation, you would want to avoid creating temporary
962        * registers.  However, we are going out of SSA before register
963        * allocation, so we would rather not create extra register
964        * dependencies for the backend to deal with.  If it wants, the
965        * backend can coalesce the (possibly multiple) temporaries.
966        *
967        * We can also get here in the case where there is no cycle but our
968        * source value is convergent, is also used as a destination by another
969        * element of the parallel copy, and all the destinations of the
970        * parallel copy which copy from it are divergent. In this case, the
971        * above loop cannot detect that the value has moved due to all the
972        * divergent destinations and we'll end up emitting a copy to a
973        * temporary which never gets used. We can avoid this with additional
974        * tracking or we can just trust the back-end to dead-code the unused
975        * temporary (which is trivial).
976        */
977       assert(num_vals < num_copies * 2);
978       nir_def *reg;
979       if (values[b].is_reg) {
980          nir_intrinsic_instr *decl = nir_reg_get_decl(values[b].ssa);
981          uint8_t num_components = nir_intrinsic_num_components(decl);
982          uint8_t bit_size = nir_intrinsic_bit_size(decl);
983          reg = nir_decl_reg(&state->builder, num_components, bit_size, 0);
984       } else {
985          reg = decl_reg_for_ssa_def(&state->builder, values[b].ssa);
986       }
987       set_reg_divergent(reg, copy_value_is_divergent(values[b]));
988 
989       values[num_vals] = (struct copy_value){
990          .is_reg = true,
991          .ssa = reg,
992       };
993       copy_values(&state->builder, values[num_vals], values[b]);
994       loc[b] = num_vals;
995       ready[++ready_idx] = b;
996       num_vals++;
997    }
998 
999    nir_instr_remove(&pcopy->instr);
1000    exec_list_push_tail(&state->dead_instrs, &pcopy->instr.node);
1001 }
1002 
1003 /* Resolves the parallel copies in a block.  Each block can have at most
1004  * two:  One at the beginning, right after all the phi noces, and one at
1005  * the end (or right before the final jump if it exists).
1006  */
1007 static bool
resolve_parallel_copies_block(nir_block * block,struct from_ssa_state * state)1008 resolve_parallel_copies_block(nir_block *block, struct from_ssa_state *state)
1009 {
1010    /* At this point, we have removed all of the phi nodes.  If a parallel
1011     * copy existed right after the phi nodes in this block, it is now the
1012     * first instruction.
1013     */
1014    nir_instr *first_instr = nir_block_first_instr(block);
1015    if (first_instr == NULL)
1016       return true; /* Empty, nothing to do. */
1017 
1018    /* There can be load_reg in the way of the copies... don't be clever. */
1019    nir_foreach_instr_safe(instr, block) {
1020       if (instr->type == nir_instr_type_parallel_copy) {
1021          nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(instr);
1022 
1023          resolve_parallel_copy(pcopy, state);
1024       }
1025    }
1026 
1027    return true;
1028 }
1029 
1030 static bool
nir_convert_from_ssa_impl(nir_function_impl * impl,bool phi_webs_only)1031 nir_convert_from_ssa_impl(nir_function_impl *impl,
1032                           bool phi_webs_only)
1033 {
1034    nir_shader *shader = impl->function->shader;
1035 
1036    struct from_ssa_state state;
1037 
1038    state.builder = nir_builder_create(impl);
1039    state.dead_ctx = ralloc_context(NULL);
1040    state.phi_webs_only = phi_webs_only;
1041    state.merge_node_table = _mesa_pointer_hash_table_create(NULL);
1042    state.progress = false;
1043    exec_list_make_empty(&state.dead_instrs);
1044 
1045    nir_foreach_block(block, impl) {
1046       add_parallel_copy_to_end_of_block(shader, block, state.dead_ctx);
1047    }
1048 
1049    nir_foreach_block(block, impl) {
1050       isolate_phi_nodes_block(shader, block, state.dead_ctx);
1051    }
1052 
1053    /* Mark metadata as dirty before we ask for liveness analysis */
1054    nir_metadata_preserve(impl, nir_metadata_control_flow);
1055 
1056    nir_metadata_require(impl, nir_metadata_instr_index |
1057                                  nir_metadata_live_defs |
1058                                  nir_metadata_dominance);
1059 
1060    nir_foreach_block(block, impl) {
1061       coalesce_phi_nodes_block(block, &state);
1062    }
1063 
1064    nir_foreach_block(block, impl) {
1065       aggressive_coalesce_block(block, &state);
1066    }
1067 
1068    resolve_registers_impl(impl, &state);
1069 
1070    nir_foreach_block(block, impl) {
1071       resolve_parallel_copies_block(block, &state);
1072    }
1073 
1074    nir_metadata_preserve(impl, nir_metadata_control_flow);
1075 
1076    /* Clean up dead instructions and the hash tables */
1077    nir_instr_free_list(&state.dead_instrs);
1078    _mesa_hash_table_destroy(state.merge_node_table, NULL);
1079    ralloc_free(state.dead_ctx);
1080    return state.progress;
1081 }
1082 
1083 bool
nir_convert_from_ssa(nir_shader * shader,bool phi_webs_only)1084 nir_convert_from_ssa(nir_shader *shader,
1085                      bool phi_webs_only)
1086 {
1087    bool progress = false;
1088 
1089    nir_foreach_function_impl(impl, shader) {
1090       progress |= nir_convert_from_ssa_impl(impl, phi_webs_only);
1091    }
1092 
1093    return progress;
1094 }
1095 
1096 static void
place_phi_read(nir_builder * b,nir_def * reg,nir_def * def,nir_block * block,struct set * visited_blocks)1097 place_phi_read(nir_builder *b, nir_def *reg,
1098                nir_def *def, nir_block *block, struct set *visited_blocks)
1099 {
1100    /* Search already visited blocks to avoid back edges in tree */
1101    if (_mesa_set_search(visited_blocks, block) == NULL) {
1102       /* Try to go up the single-successor tree */
1103       bool all_single_successors = true;
1104       set_foreach(block->predecessors, entry) {
1105          nir_block *pred = (nir_block *)entry->key;
1106          if (pred->successors[0] && pred->successors[1]) {
1107             all_single_successors = false;
1108             break;
1109          }
1110       }
1111 
1112       if (all_single_successors) {
1113          /* All predecessors of this block have exactly one successor and it
1114           * is this block so they must eventually lead here without
1115           * intersecting each other.  Place the reads in the predecessors
1116           * instead of this block.
1117           */
1118          _mesa_set_add(visited_blocks, block);
1119 
1120          set_foreach(block->predecessors, entry) {
1121             place_phi_read(b, reg, def, (nir_block *)entry->key, visited_blocks);
1122          }
1123          return;
1124       }
1125    }
1126 
1127    b->cursor = nir_after_block_before_jump(block);
1128    nir_store_reg(b, def, reg);
1129 }
1130 
1131 /** Lower all of the phi nodes in a block to movs to and from a register
1132  *
1133  * This provides a very quick-and-dirty out-of-SSA pass that you can run on a
1134  * single block to convert all of its phis to a register and some movs.
1135  * The code that is generated, while not optimal for actual codegen in a
1136  * back-end, is easy to generate, correct, and will turn into the same set of
1137  * phis after you call regs_to_ssa and do some copy propagation.  For each phi
1138  * node we do the following:
1139  *
1140  *  1. For each phi instruction in the block, create a new nir_register
1141  *
1142  *  2. Insert movs at the top of the destination block for each phi and
1143  *     rewrite all uses of the phi to use the mov.
1144  *
1145  *  3. For each phi source, insert movs in the predecessor block from the phi
1146  *     source to the register associated with the phi.
1147  *
1148  * Correctness is guaranteed by the fact that we create a new register for
1149  * each phi and emit movs on both sides of the control-flow edge.  Because all
1150  * the phis have SSA destinations (we assert this) and there is a separate
1151  * temporary for each phi, all movs inserted in any particular block have
1152  * unique destinations so the order of operations does not matter.
1153  *
1154  * The one intelligent thing this pass does is that it places the moves from
1155  * the phi sources as high up the predecessor tree as possible instead of in
1156  * the exact predecessor.  This means that, in particular, it will crawl into
1157  * the deepest nesting of any if-ladders.  In order to ensure that doing so is
1158  * safe, it stops as soon as one of the predecessors has multiple successors.
1159  */
1160 bool
nir_lower_phis_to_regs_block(nir_block * block)1161 nir_lower_phis_to_regs_block(nir_block *block)
1162 {
1163    nir_builder b = nir_builder_create(nir_cf_node_get_function(&block->cf_node));
1164    struct set *visited_blocks = _mesa_set_create(NULL, _mesa_hash_pointer,
1165                                                  _mesa_key_pointer_equal);
1166 
1167    bool progress = false;
1168    nir_foreach_phi_safe(phi, block) {
1169       nir_def *reg = decl_reg_for_ssa_def(&b, &phi->def);
1170       set_reg_divergent(reg, phi->def.divergent);
1171 
1172       b.cursor = nir_after_instr(&phi->instr);
1173       nir_def_rewrite_uses(&phi->def, nir_load_reg(&b, reg));
1174 
1175       nir_foreach_phi_src(src, phi) {
1176 
1177          _mesa_set_add(visited_blocks, src->src.ssa->parent_instr->block);
1178          place_phi_read(&b, reg, src->src.ssa, src->pred, visited_blocks);
1179          _mesa_set_clear(visited_blocks, NULL);
1180       }
1181 
1182       nir_instr_remove(&phi->instr);
1183 
1184       progress = true;
1185    }
1186 
1187    _mesa_set_destroy(visited_blocks, NULL);
1188 
1189    return progress;
1190 }
1191 
1192 struct ssa_def_to_reg_state {
1193    nir_function_impl *impl;
1194    bool progress;
1195 };
1196 
1197 static bool
def_replace_with_reg_state(nir_def * def,void * void_state)1198 def_replace_with_reg_state(nir_def *def, void *void_state)
1199 {
1200    struct ssa_def_to_reg_state *state = void_state;
1201    state->progress |= def_replace_with_reg(def, state->impl);
1202    return true;
1203 }
1204 
1205 static bool
ssa_def_is_local_to_block(nir_def * def,UNUSED void * state)1206 ssa_def_is_local_to_block(nir_def *def, UNUSED void *state)
1207 {
1208    nir_block *block = def->parent_instr->block;
1209    nir_foreach_use_including_if(use_src, def) {
1210       if (nir_src_is_if(use_src) ||
1211           nir_src_parent_instr(use_src)->block != block ||
1212           nir_src_parent_instr(use_src)->type == nir_instr_type_phi) {
1213          return false;
1214       }
1215    }
1216 
1217    return true;
1218 }
1219 
1220 static bool
instr_is_load_new_reg(nir_instr * instr,unsigned old_num_ssa)1221 instr_is_load_new_reg(nir_instr *instr, unsigned old_num_ssa)
1222 {
1223    if (instr->type != nir_instr_type_intrinsic)
1224       return false;
1225 
1226    nir_intrinsic_instr *load = nir_instr_as_intrinsic(instr);
1227    if (load->intrinsic != nir_intrinsic_load_reg)
1228       return false;
1229 
1230    nir_def *reg = load->src[0].ssa;
1231 
1232    return reg->index >= old_num_ssa;
1233 }
1234 
1235 /** Lower all of the SSA defs in a block to registers
1236  *
1237  * This performs the very simple operation of blindly replacing all of the SSA
1238  * defs in the given block with registers.  If not used carefully, this may
1239  * result in phi nodes with register sources which is technically invalid.
1240  * Fortunately, the register-based into-SSA pass handles them anyway.
1241  */
1242 bool
nir_lower_ssa_defs_to_regs_block(nir_block * block)1243 nir_lower_ssa_defs_to_regs_block(nir_block *block)
1244 {
1245    nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node);
1246    nir_builder b = nir_builder_create(impl);
1247 
1248    struct ssa_def_to_reg_state state = {
1249       .impl = impl,
1250       .progress = false,
1251    };
1252 
1253    /* Save off the current number of SSA defs so we can detect which regs
1254     * we've added vs. regs that were already there.
1255     */
1256    const unsigned num_ssa = impl->ssa_alloc;
1257 
1258    nir_foreach_instr_safe(instr, block) {
1259       if (instr->type == nir_instr_type_undef) {
1260          /* Undefs are just a read of something never written. */
1261          nir_undef_instr *undef = nir_instr_as_undef(instr);
1262          nir_def *reg = decl_reg_for_ssa_def(&b, &undef->def);
1263          nir_rewrite_uses_to_load_reg(&b, &undef->def, reg);
1264       } else if (instr->type == nir_instr_type_load_const) {
1265          nir_load_const_instr *load = nir_instr_as_load_const(instr);
1266          nir_def *reg = decl_reg_for_ssa_def(&b, &load->def);
1267          nir_rewrite_uses_to_load_reg(&b, &load->def, reg);
1268 
1269          b.cursor = nir_after_instr(instr);
1270          nir_store_reg(&b, &load->def, reg);
1271       } else if (instr_is_load_new_reg(instr, num_ssa)) {
1272          /* Calls to nir_rewrite_uses_to_load_reg() may place new load_reg
1273           * intrinsics in this block with new SSA destinations.  To avoid
1274           * infinite recursion, we don't want to lower any newly placed
1275           * load_reg instructions to yet anoter load/store_reg.
1276           */
1277       } else if (nir_foreach_def(instr, ssa_def_is_local_to_block, NULL)) {
1278          /* If the SSA def produced by this instruction is only in the block
1279           * in which it is defined and is not used by ifs or phis, then we
1280           * don't have a reason to convert it to a register.
1281           */
1282       } else {
1283          nir_foreach_def(instr, def_replace_with_reg_state, &state);
1284       }
1285    }
1286 
1287    return state.progress;
1288 }
1289