1 /*
2 * Copyright © 2018 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23 #include <math.h>
24 #include "util/u_vector.h"
25 #include "nir.h"
26 #include "nir_builder.h"
27
28 /**
29 * Lower flrp instructions.
30 *
31 * Unlike the lowerings that are possible in nir_opt_algrbraic, this pass can
32 * examine more global information to determine a possibly more efficient
33 * lowering for each flrp.
34 */
35
36 static void
append_flrp_to_dead_list(struct u_vector * dead_flrp,struct nir_alu_instr * alu)37 append_flrp_to_dead_list(struct u_vector *dead_flrp, struct nir_alu_instr *alu)
38 {
39 struct nir_alu_instr **tail = u_vector_add(dead_flrp);
40 *tail = alu;
41 }
42
43 /**
44 * Replace flrp(a, b, c) with ffma(b, c, ffma(-a, c, a)).
45 */
46 static void
replace_with_strict_ffma(struct nir_builder * bld,struct u_vector * dead_flrp,struct nir_alu_instr * alu)47 replace_with_strict_ffma(struct nir_builder *bld, struct u_vector *dead_flrp,
48 struct nir_alu_instr *alu)
49 {
50 nir_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
51 nir_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
52 nir_def *const c = nir_ssa_for_alu_src(bld, alu, 2);
53
54 nir_def *const neg_a = nir_fneg(bld, a);
55 nir_instr_as_alu(neg_a->parent_instr)->exact = alu->exact;
56 nir_instr_as_alu(neg_a->parent_instr)->fp_fast_math = alu->fp_fast_math;
57
58 nir_def *const inner_ffma = nir_ffma(bld, neg_a, c, a);
59 nir_instr_as_alu(inner_ffma->parent_instr)->exact = alu->exact;
60 nir_instr_as_alu(inner_ffma->parent_instr)->fp_fast_math = alu->fp_fast_math;
61
62 nir_def *const outer_ffma = nir_ffma(bld, b, c, inner_ffma);
63 nir_instr_as_alu(outer_ffma->parent_instr)->exact = alu->exact;
64 nir_instr_as_alu(outer_ffma->parent_instr)->fp_fast_math = alu->fp_fast_math;
65
66 nir_def_rewrite_uses(&alu->def, outer_ffma);
67
68 /* DO NOT REMOVE the original flrp yet. Many of the lowering choices are
69 * based on other uses of the sources. Removing the flrp may cause the
70 * last flrp in a sequence to make a different, incorrect choice.
71 */
72 append_flrp_to_dead_list(dead_flrp, alu);
73 }
74
75 /**
76 * Replace flrp(a, b, c) with ffma(a, (1 - c), bc)
77 */
78 static void
replace_with_single_ffma(struct nir_builder * bld,struct u_vector * dead_flrp,struct nir_alu_instr * alu)79 replace_with_single_ffma(struct nir_builder *bld, struct u_vector *dead_flrp,
80 struct nir_alu_instr *alu)
81 {
82 nir_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
83 nir_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
84 nir_def *const c = nir_ssa_for_alu_src(bld, alu, 2);
85
86 nir_def *const neg_c = nir_fneg(bld, c);
87 nir_instr_as_alu(neg_c->parent_instr)->exact = alu->exact;
88 nir_instr_as_alu(neg_c->parent_instr)->fp_fast_math = alu->fp_fast_math;
89
90 nir_def *const one_minus_c =
91 nir_fadd(bld, nir_imm_floatN_t(bld, 1.0f, c->bit_size), neg_c);
92 nir_instr_as_alu(one_minus_c->parent_instr)->exact = alu->exact;
93 nir_instr_as_alu(one_minus_c->parent_instr)->fp_fast_math = alu->fp_fast_math;
94
95 nir_def *const b_times_c = nir_fmul(bld, b, c);
96 nir_instr_as_alu(b_times_c->parent_instr)->exact = alu->exact;
97 nir_instr_as_alu(b_times_c->parent_instr)->fp_fast_math = alu->fp_fast_math;
98
99 nir_def *const final_ffma = nir_ffma(bld, a, one_minus_c, b_times_c);
100 nir_instr_as_alu(final_ffma->parent_instr)->exact = alu->exact;
101 nir_instr_as_alu(final_ffma->parent_instr)->fp_fast_math = alu->fp_fast_math;
102
103 nir_def_rewrite_uses(&alu->def, final_ffma);
104
105 /* DO NOT REMOVE the original flrp yet. Many of the lowering choices are
106 * based on other uses of the sources. Removing the flrp may cause the
107 * last flrp in a sequence to make a different, incorrect choice.
108 */
109 append_flrp_to_dead_list(dead_flrp, alu);
110 }
111
112 /**
113 * Replace flrp(a, b, c) with a(1-c) + bc.
114 */
115 static void
replace_with_strict(struct nir_builder * bld,struct u_vector * dead_flrp,struct nir_alu_instr * alu)116 replace_with_strict(struct nir_builder *bld, struct u_vector *dead_flrp,
117 struct nir_alu_instr *alu)
118 {
119 nir_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
120 nir_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
121 nir_def *const c = nir_ssa_for_alu_src(bld, alu, 2);
122
123 nir_def *const neg_c = nir_fneg(bld, c);
124 nir_instr_as_alu(neg_c->parent_instr)->exact = alu->exact;
125 nir_instr_as_alu(neg_c->parent_instr)->fp_fast_math = alu->fp_fast_math;
126
127 nir_def *const one_minus_c =
128 nir_fadd(bld, nir_imm_floatN_t(bld, 1.0f, c->bit_size), neg_c);
129 nir_instr_as_alu(one_minus_c->parent_instr)->exact = alu->exact;
130 nir_instr_as_alu(one_minus_c->parent_instr)->fp_fast_math = alu->fp_fast_math;
131
132 nir_def *const first_product = nir_fmul(bld, a, one_minus_c);
133 nir_instr_as_alu(first_product->parent_instr)->exact = alu->exact;
134 nir_instr_as_alu(first_product->parent_instr)->fp_fast_math = alu->fp_fast_math;
135
136 nir_def *const second_product = nir_fmul(bld, b, c);
137 nir_instr_as_alu(second_product->parent_instr)->exact = alu->exact;
138 nir_instr_as_alu(second_product->parent_instr)->fp_fast_math = alu->fp_fast_math;
139
140 nir_def *const sum = nir_fadd(bld, first_product, second_product);
141 nir_instr_as_alu(sum->parent_instr)->exact = alu->exact;
142 nir_instr_as_alu(sum->parent_instr)->fp_fast_math = alu->fp_fast_math;
143
144 nir_def_rewrite_uses(&alu->def, sum);
145
146 /* DO NOT REMOVE the original flrp yet. Many of the lowering choices are
147 * based on other uses of the sources. Removing the flrp may cause the
148 * last flrp in a sequence to make a different, incorrect choice.
149 */
150 append_flrp_to_dead_list(dead_flrp, alu);
151 }
152
153 /**
154 * Replace flrp(a, b, c) with a + c(b-a).
155 */
156 static void
replace_with_fast(struct nir_builder * bld,struct u_vector * dead_flrp,struct nir_alu_instr * alu)157 replace_with_fast(struct nir_builder *bld, struct u_vector *dead_flrp,
158 struct nir_alu_instr *alu)
159 {
160 nir_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
161 nir_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
162 nir_def *const c = nir_ssa_for_alu_src(bld, alu, 2);
163
164 nir_def *const neg_a = nir_fneg(bld, a);
165 nir_instr_as_alu(neg_a->parent_instr)->exact = alu->exact;
166 nir_instr_as_alu(neg_a->parent_instr)->fp_fast_math = alu->fp_fast_math;
167
168 nir_def *const b_minus_a = nir_fadd(bld, b, neg_a);
169 nir_instr_as_alu(b_minus_a->parent_instr)->exact = alu->exact;
170 nir_instr_as_alu(b_minus_a->parent_instr)->fp_fast_math = alu->fp_fast_math;
171
172 nir_def *const product = nir_fmul(bld, c, b_minus_a);
173 nir_instr_as_alu(product->parent_instr)->exact = alu->exact;
174 nir_instr_as_alu(product->parent_instr)->fp_fast_math = alu->fp_fast_math;
175
176 nir_def *const sum = nir_fadd(bld, a, product);
177 nir_instr_as_alu(sum->parent_instr)->exact = alu->exact;
178 nir_instr_as_alu(sum->parent_instr)->fp_fast_math = alu->fp_fast_math;
179
180 nir_def_rewrite_uses(&alu->def, sum);
181
182 /* DO NOT REMOVE the original flrp yet. Many of the lowering choices are
183 * based on other uses of the sources. Removing the flrp may cause the
184 * last flrp in a sequence to make a different, incorrect choice.
185 */
186 append_flrp_to_dead_list(dead_flrp, alu);
187 }
188
189 /**
190 * Replace flrp(a, b, c) with (b*c ± c) + a => b*c + (a ± c)
191 *
192 * \note: This only works if a = ±1.
193 */
194 static void
replace_with_expanded_ffma_and_add(struct nir_builder * bld,struct u_vector * dead_flrp,struct nir_alu_instr * alu,bool subtract_c)195 replace_with_expanded_ffma_and_add(struct nir_builder *bld,
196 struct u_vector *dead_flrp,
197 struct nir_alu_instr *alu, bool subtract_c)
198 {
199 nir_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
200 nir_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
201 nir_def *const c = nir_ssa_for_alu_src(bld, alu, 2);
202
203 nir_def *const b_times_c = nir_fmul(bld, b, c);
204 nir_instr_as_alu(b_times_c->parent_instr)->exact = alu->exact;
205 nir_instr_as_alu(b_times_c->parent_instr)->fp_fast_math = alu->fp_fast_math;
206
207 nir_def *inner_sum;
208
209 if (subtract_c) {
210 nir_def *const neg_c = nir_fneg(bld, c);
211 nir_instr_as_alu(neg_c->parent_instr)->exact = alu->exact;
212 nir_instr_as_alu(neg_c->parent_instr)->fp_fast_math = alu->fp_fast_math;
213
214 inner_sum = nir_fadd(bld, a, neg_c);
215 } else {
216 inner_sum = nir_fadd(bld, a, c);
217 }
218
219 nir_instr_as_alu(inner_sum->parent_instr)->exact = alu->exact;
220 nir_instr_as_alu(inner_sum->parent_instr)->fp_fast_math = alu->fp_fast_math;
221
222 nir_def *const outer_sum = nir_fadd(bld, inner_sum, b_times_c);
223 nir_instr_as_alu(outer_sum->parent_instr)->exact = alu->exact;
224 nir_instr_as_alu(outer_sum->parent_instr)->fp_fast_math = alu->fp_fast_math;
225
226 nir_def_rewrite_uses(&alu->def, outer_sum);
227
228 /* DO NOT REMOVE the original flrp yet. Many of the lowering choices are
229 * based on other uses of the sources. Removing the flrp may cause the
230 * last flrp in a sequence to make a different, incorrect choice.
231 */
232 append_flrp_to_dead_list(dead_flrp, alu);
233 }
234
235 /**
236 * Determines whether a swizzled source is constant w/ all components the same.
237 *
238 * The value of the constant is stored in \c result.
239 *
240 * \return
241 * True if all components of the swizzled source are the same constant.
242 * Otherwise false is returned.
243 */
244 static bool
all_same_constant(const nir_alu_instr * instr,unsigned src,double * result)245 all_same_constant(const nir_alu_instr *instr, unsigned src, double *result)
246 {
247 nir_const_value *val = nir_src_as_const_value(instr->src[src].src);
248
249 if (!val)
250 return false;
251
252 const uint8_t *const swizzle = instr->src[src].swizzle;
253 const unsigned num_components = instr->def.num_components;
254
255 if (instr->def.bit_size == 32) {
256 const float first = val[swizzle[0]].f32;
257
258 for (unsigned i = 1; i < num_components; i++) {
259 if (val[swizzle[i]].f32 != first)
260 return false;
261 }
262
263 *result = first;
264 } else {
265 const double first = val[swizzle[0]].f64;
266
267 for (unsigned i = 1; i < num_components; i++) {
268 if (val[swizzle[i]].f64 != first)
269 return false;
270 }
271
272 *result = first;
273 }
274
275 return true;
276 }
277
278 static bool
sources_are_constants_with_similar_magnitudes(const nir_alu_instr * instr)279 sources_are_constants_with_similar_magnitudes(const nir_alu_instr *instr)
280 {
281 nir_const_value *val0 = nir_src_as_const_value(instr->src[0].src);
282 nir_const_value *val1 = nir_src_as_const_value(instr->src[1].src);
283
284 if (val0 == NULL || val1 == NULL)
285 return false;
286
287 const uint8_t *const swizzle0 = instr->src[0].swizzle;
288 const uint8_t *const swizzle1 = instr->src[1].swizzle;
289 const unsigned num_components = instr->def.num_components;
290
291 if (instr->def.bit_size == 32) {
292 for (unsigned i = 0; i < num_components; i++) {
293 int exp0;
294 int exp1;
295
296 frexpf(val0[swizzle0[i]].f32, &exp0);
297 frexpf(val1[swizzle1[i]].f32, &exp1);
298
299 /* If the difference between exponents is >= 24, then A+B will always
300 * have the value whichever between A and B has the largest absolute
301 * value. So, [0, 23] is the valid range. The smaller the limit
302 * value, the more precision will be maintained at a potential
303 * performance cost. Somewhat arbitrarilly split the range in half.
304 */
305 if (abs(exp0 - exp1) > (23 / 2))
306 return false;
307 }
308 } else {
309 for (unsigned i = 0; i < num_components; i++) {
310 int exp0;
311 int exp1;
312
313 frexp(val0[swizzle0[i]].f64, &exp0);
314 frexp(val1[swizzle1[i]].f64, &exp1);
315
316 /* If the difference between exponents is >= 53, then A+B will always
317 * have the value whichever between A and B has the largest absolute
318 * value. So, [0, 52] is the valid range. The smaller the limit
319 * value, the more precision will be maintained at a potential
320 * performance cost. Somewhat arbitrarilly split the range in half.
321 */
322 if (abs(exp0 - exp1) > (52 / 2))
323 return false;
324 }
325 }
326
327 return true;
328 }
329
330 /**
331 * Counts of similar types of nir_op_flrp instructions
332 *
333 * If a similar instruction fits into more than one category, it will only be
334 * counted once. The assumption is that no other instruction will have all
335 * sources the same, or CSE would have removed one of the instructions.
336 */
337 struct similar_flrp_stats {
338 unsigned src2;
339 unsigned src0_and_src2;
340 unsigned src1_and_src2;
341 };
342
343 /**
344 * Collection counts of similar FLRP instructions.
345 *
346 * This function only cares about similar instructions that have src2 in
347 * common.
348 */
349 static void
get_similar_flrp_stats(nir_alu_instr * alu,struct similar_flrp_stats * st)350 get_similar_flrp_stats(nir_alu_instr *alu, struct similar_flrp_stats *st)
351 {
352 memset(st, 0, sizeof(*st));
353
354 nir_foreach_use(other_use, alu->src[2].src.ssa) {
355 /* Is the use also a flrp? */
356 nir_instr *const other_instr = nir_src_parent_instr(other_use);
357 if (other_instr->type != nir_instr_type_alu)
358 continue;
359
360 /* Eh-hem... don't match the instruction with itself. */
361 if (other_instr == &alu->instr)
362 continue;
363
364 nir_alu_instr *const other_alu = nir_instr_as_alu(other_instr);
365 if (other_alu->op != nir_op_flrp)
366 continue;
367
368 /* Does the other flrp use source 2 from the first flrp as its source 2
369 * as well?
370 */
371 if (!nir_alu_srcs_equal(alu, other_alu, 2, 2))
372 continue;
373
374 if (nir_alu_srcs_equal(alu, other_alu, 0, 0))
375 st->src0_and_src2++;
376 else if (nir_alu_srcs_equal(alu, other_alu, 1, 1))
377 st->src1_and_src2++;
378 else
379 st->src2++;
380 }
381 }
382
383 static void
convert_flrp_instruction(nir_builder * bld,struct u_vector * dead_flrp,nir_alu_instr * alu,bool always_precise)384 convert_flrp_instruction(nir_builder *bld,
385 struct u_vector *dead_flrp,
386 nir_alu_instr *alu,
387 bool always_precise)
388 {
389 bool have_ffma = false;
390 unsigned bit_size = alu->def.bit_size;
391
392 if (bit_size == 16)
393 have_ffma = !bld->shader->options->lower_ffma16;
394 else if (bit_size == 32)
395 have_ffma = !bld->shader->options->lower_ffma32;
396 else if (bit_size == 64)
397 have_ffma = !bld->shader->options->lower_ffma64;
398 else
399 unreachable("invalid bit_size");
400
401 bld->cursor = nir_before_instr(&alu->instr);
402
403 /* There are two methods to implement flrp(x, y, t). The strictly correct
404 * implementation according to the GLSL spec is:
405 *
406 * x(1 - t) + yt
407 *
408 * This can also be implemented using two chained FMAs
409 *
410 * fma(y, t, fma(-x, t, x))
411 *
412 * This method, using either formulation, has better precision when the
413 * difference between x and y is very large. It guarantess that flrp(x, y,
414 * 1) = y. For example, flrp(1e38, 1.0, 1.0) is 1.0. This is correct.
415 *
416 * The other possible implementation is:
417 *
418 * x + t(y - x)
419 *
420 * This can also be formuated as an FMA:
421 *
422 * fma(y - x, t, x)
423 *
424 * For this implementation, flrp(1e38, 1.0, 1.0) is 0.0. Since 1.0 was
425 * expected, that's a pretty significant error.
426 *
427 * The choice made for lowering depends on a number of factors.
428 *
429 * - If the flrp is marked precise and FMA is supported:
430 *
431 * fma(y, t, fma(-x, t, x))
432 *
433 * This is strictly correct (maybe?), and the cost is two FMA
434 * instructions. It at least maintains the flrp(x, y, 1.0) == y
435 * condition.
436 *
437 * - If the flrp is marked precise and FMA is not supported:
438 *
439 * x(1 - t) + yt
440 *
441 * This is strictly correct, and the cost is 4 instructions. If FMA is
442 * supported, this may or may not be reduced to 3 instructions (a
443 * subtract, a multiply, and an FMA)... but in that case the other
444 * formulation should have been used.
445 */
446 if (alu->exact) {
447 if (have_ffma)
448 replace_with_strict_ffma(bld, dead_flrp, alu);
449 else
450 replace_with_strict(bld, dead_flrp, alu);
451
452 return;
453 }
454
455 /*
456 * - If x and y are both immediates and the relative magnitude of the
457 * values is similar (such that x-y does not lose too much precision):
458 *
459 * x + t(x - y)
460 *
461 * We rely on constant folding to eliminate x-y, and we rely on
462 * nir_opt_algebraic to possibly generate an FMA. The cost is either one
463 * FMA or two instructions.
464 */
465 if (sources_are_constants_with_similar_magnitudes(alu)) {
466 replace_with_fast(bld, dead_flrp, alu);
467 return;
468 }
469
470 /*
471 * - If x = 1:
472 *
473 * (yt + -t) + 1
474 *
475 * - If x = -1:
476 *
477 * (yt + t) - 1
478 *
479 * In both cases, x is used in place of ±1 for simplicity. Both forms
480 * lend to ffma generation on platforms that support ffma.
481 */
482 double src0_as_constant;
483 if (all_same_constant(alu, 0, &src0_as_constant)) {
484 if (src0_as_constant == 1.0) {
485 replace_with_expanded_ffma_and_add(bld, dead_flrp, alu,
486 true /* subtract t */);
487 return;
488 } else if (src0_as_constant == -1.0) {
489 replace_with_expanded_ffma_and_add(bld, dead_flrp, alu,
490 false /* add t */);
491 return;
492 }
493 }
494
495 /*
496 * - If y = ±1:
497 *
498 * x(1 - t) + yt
499 *
500 * In this case either the multiply in yt will be eliminated by
501 * nir_opt_algebraic. If FMA is supported, this results in fma(x, (1 -
502 * t), ±t) for two instructions. If FMA is not supported, then the cost
503 * is 3 instructions. We rely on nir_opt_algebraic to generate the FMA
504 * instructions as well.
505 *
506 * Another possible replacement is
507 *
508 * -xt + x ± t
509 *
510 * Some groupings of this may be better on some platforms in some
511 * circumstances, bit it is probably dependent on scheduling. Futher
512 * investigation may be required.
513 */
514 double src1_as_constant;
515 if ((all_same_constant(alu, 1, &src1_as_constant) &&
516 (src1_as_constant == -1.0 || src1_as_constant == 1.0))) {
517 replace_with_strict(bld, dead_flrp, alu);
518 return;
519 }
520
521 if (have_ffma) {
522 if (always_precise) {
523 replace_with_strict_ffma(bld, dead_flrp, alu);
524 return;
525 }
526
527 /*
528 * - If FMA is supported and other flrp(x, _, t) exists:
529 *
530 * fma(y, t, fma(-x, t, x))
531 *
532 * The hope is that the inner FMA calculation will be shared with the
533 * other lowered flrp. This results in two FMA instructions for the
534 * first flrp and one FMA instruction for each additional flrp. It
535 * also means that the live range for x might be complete after the
536 * inner ffma instead of after the last flrp.
537 */
538 struct similar_flrp_stats st;
539
540 get_similar_flrp_stats(alu, &st);
541 if (st.src0_and_src2 > 0) {
542 replace_with_strict_ffma(bld, dead_flrp, alu);
543 return;
544 }
545
546 /*
547 * - If FMA is supported and another flrp(_, y, t) exists:
548 *
549 * fma(x, (1 - t), yt)
550 *
551 * The hope is that the (1 - t) and the yt will be shared with the
552 * other lowered flrp. This results in 3 insructions for the first
553 * flrp and 1 for each additional flrp.
554 */
555 if (st.src1_and_src2 > 0) {
556 replace_with_single_ffma(bld, dead_flrp, alu);
557 return;
558 }
559 } else {
560 if (always_precise) {
561 replace_with_strict(bld, dead_flrp, alu);
562 return;
563 }
564
565 /*
566 * - If FMA is not supported and another flrp(x, _, t) exists:
567 *
568 * x(1 - t) + yt
569 *
570 * The hope is that the x(1 - t) will be shared with the other lowered
571 * flrp. This results in 4 insructions for the first flrp and 2 for
572 * each additional flrp.
573 *
574 * - If FMA is not supported and another flrp(_, y, t) exists:
575 *
576 * x(1 - t) + yt
577 *
578 * The hope is that the (1 - t) and the yt will be shared with the
579 * other lowered flrp. This results in 4 insructions for the first
580 * flrp and 2 for each additional flrp.
581 */
582 struct similar_flrp_stats st;
583
584 get_similar_flrp_stats(alu, &st);
585 if (st.src0_and_src2 > 0 || st.src1_and_src2 > 0) {
586 replace_with_strict(bld, dead_flrp, alu);
587 return;
588 }
589 }
590
591 /*
592 * - If t is constant:
593 *
594 * x(1 - t) + yt
595 *
596 * The cost is three instructions without FMA or two instructions with
597 * FMA. This is the same cost as the imprecise lowering, but it gives
598 * the instruction scheduler a little more freedom.
599 *
600 * There is no need to handle t = 0.5 specially. nir_opt_algebraic
601 * already has optimizations to convert 0.5x + 0.5y to 0.5(x + y).
602 */
603 if (alu->src[2].src.ssa->parent_instr->type == nir_instr_type_load_const) {
604 replace_with_strict(bld, dead_flrp, alu);
605 return;
606 }
607
608 /*
609 * - Otherwise
610 *
611 * x + t(x - y)
612 */
613 replace_with_fast(bld, dead_flrp, alu);
614 }
615
616 static void
lower_flrp_impl(nir_function_impl * impl,struct u_vector * dead_flrp,unsigned lowering_mask,bool always_precise)617 lower_flrp_impl(nir_function_impl *impl,
618 struct u_vector *dead_flrp,
619 unsigned lowering_mask,
620 bool always_precise)
621 {
622 nir_builder b = nir_builder_create(impl);
623
624 nir_foreach_block(block, impl) {
625 nir_foreach_instr_safe(instr, block) {
626 if (instr->type == nir_instr_type_alu) {
627 nir_alu_instr *const alu = nir_instr_as_alu(instr);
628
629 if (alu->op == nir_op_flrp &&
630 (alu->def.bit_size & lowering_mask)) {
631 convert_flrp_instruction(&b, dead_flrp, alu, always_precise);
632 }
633 }
634 }
635 }
636
637 nir_metadata_preserve(impl, nir_metadata_control_flow);
638 }
639
640 /**
641 * \param lowering_mask - Bitwise-or of the bit sizes that need to be lowered
642 * (e.g., 16 | 64 if only 16-bit and 64-bit flrp need
643 * lowering).
644 * \param always_precise - Always require precise lowering for flrp. This
645 * will always lower flrp to (a * (1 - c)) + (b * c).
646 * \param have_ffma - Set to true if the GPU has an FFMA instruction that
647 * should be used.
648 */
649 bool
nir_lower_flrp(nir_shader * shader,unsigned lowering_mask,bool always_precise)650 nir_lower_flrp(nir_shader *shader,
651 unsigned lowering_mask,
652 bool always_precise)
653 {
654 struct u_vector dead_flrp;
655
656 if (!u_vector_init_pow2(&dead_flrp, 8, sizeof(struct nir_alu_instr *)))
657 return false;
658
659 nir_foreach_function_impl(impl, shader) {
660 lower_flrp_impl(impl, &dead_flrp, lowering_mask, always_precise);
661 }
662
663 /* Progress was made if the dead list is not empty. Remove all the
664 * instructions from the dead list.
665 */
666 const bool progress = u_vector_length(&dead_flrp) != 0;
667
668 struct nir_alu_instr **instr;
669 u_vector_foreach(instr, &dead_flrp)
670 nir_instr_remove(&(*instr)->instr);
671
672 u_vector_finish(&dead_flrp);
673
674 return progress;
675 }
676