1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
5 * Copyright (C) 2009 VMware, Inc. All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
21 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
22 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
23 * OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #ifndef SHADER_ENUMS_H
27 #define SHADER_ENUMS_H
28
29 #ifndef __OPENCL_VERSION__
30 #include <stdbool.h>
31 #include "util/macros.h"
32 #include "util/u_debug.h"
33 #else
34 #define ENUM_PACKED
35 #define BITFIELD_BIT(b) (1u << (b))
36 #define debug_printf(x, ...)
37 #endif
38
39 /* Project-wide (GL and Vulkan) maximum. */
40 #define MAX_DRAW_BUFFERS 8
41
42 #ifdef __cplusplus
43 extern "C" {
44 #endif
45
46 /**
47 * Shader stages.
48 *
49 * The order must match how shaders are ordered in the pipeline.
50 * The GLSL linker assumes that if i<j, then the j-th shader is
51 * executed later than the i-th shader.
52 */
53 typedef enum pipe_shader_type
54 {
55 MESA_SHADER_NONE = -1,
56 MESA_SHADER_VERTEX = 0,
57 PIPE_SHADER_VERTEX = MESA_SHADER_VERTEX,
58 MESA_SHADER_TESS_CTRL = 1,
59 PIPE_SHADER_TESS_CTRL = MESA_SHADER_TESS_CTRL,
60 MESA_SHADER_TESS_EVAL = 2,
61 PIPE_SHADER_TESS_EVAL = MESA_SHADER_TESS_EVAL,
62 MESA_SHADER_GEOMETRY = 3,
63 PIPE_SHADER_GEOMETRY = MESA_SHADER_GEOMETRY,
64 MESA_SHADER_FRAGMENT = 4,
65 PIPE_SHADER_FRAGMENT = MESA_SHADER_FRAGMENT,
66 MESA_SHADER_COMPUTE = 5,
67 PIPE_SHADER_COMPUTE = MESA_SHADER_COMPUTE,
68
69 PIPE_SHADER_TYPES = (PIPE_SHADER_COMPUTE + 1),
70 /* Vulkan-only stages. */
71 MESA_SHADER_TASK = 6,
72 PIPE_SHADER_TASK = MESA_SHADER_TASK,
73 MESA_SHADER_MESH = 7,
74 PIPE_SHADER_MESH = MESA_SHADER_MESH,
75 PIPE_SHADER_MESH_TYPES = (PIPE_SHADER_MESH + 1),
76
77 MESA_SHADER_RAYGEN = 8,
78 MESA_SHADER_ANY_HIT = 9,
79 MESA_SHADER_CLOSEST_HIT = 10,
80 MESA_SHADER_MISS = 11,
81 MESA_SHADER_INTERSECTION = 12,
82 MESA_SHADER_CALLABLE = 13,
83
84 /* must be last so it doesn't affect the GL pipeline */
85 MESA_SHADER_KERNEL = 14,
86 } gl_shader_stage;
87
88 static inline bool
gl_shader_stage_is_compute(gl_shader_stage stage)89 gl_shader_stage_is_compute(gl_shader_stage stage)
90 {
91 return stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL;
92 }
93
94 static inline bool
gl_shader_stage_is_mesh(gl_shader_stage stage)95 gl_shader_stage_is_mesh(gl_shader_stage stage)
96 {
97 return stage == MESA_SHADER_TASK ||
98 stage == MESA_SHADER_MESH;
99 }
100
101 static inline bool
gl_shader_stage_uses_workgroup(gl_shader_stage stage)102 gl_shader_stage_uses_workgroup(gl_shader_stage stage)
103 {
104 return stage == MESA_SHADER_COMPUTE ||
105 stage == MESA_SHADER_KERNEL ||
106 stage == MESA_SHADER_TASK ||
107 stage == MESA_SHADER_MESH;
108 }
109
110 static inline bool
gl_shader_stage_is_callable(gl_shader_stage stage)111 gl_shader_stage_is_callable(gl_shader_stage stage)
112 {
113 return stage == MESA_SHADER_ANY_HIT ||
114 stage == MESA_SHADER_CLOSEST_HIT ||
115 stage == MESA_SHADER_MISS ||
116 stage == MESA_SHADER_INTERSECTION ||
117 stage == MESA_SHADER_CALLABLE;
118 }
119
120 static inline bool
gl_shader_stage_is_rt(gl_shader_stage stage)121 gl_shader_stage_is_rt(gl_shader_stage stage)
122 {
123 return stage == MESA_SHADER_RAYGEN || gl_shader_stage_is_callable(stage);
124 }
125
126 static inline bool
gl_shader_stage_can_set_fragment_shading_rate(gl_shader_stage stage)127 gl_shader_stage_can_set_fragment_shading_rate(gl_shader_stage stage)
128 {
129 /* According to EXT_fragment_shading_rate :
130 *
131 * "This extension adds support for setting the fragment shading rate
132 * for a primitive in vertex, geometry, and mesh shading stages"
133 */
134 return stage == MESA_SHADER_VERTEX ||
135 stage == MESA_SHADER_GEOMETRY ||
136 stage == MESA_SHADER_MESH;
137 }
138
139 /**
140 * Number of STATE_* values we need to address any GL state.
141 * Used to dimension arrays.
142 */
143 #define STATE_LENGTH 4
144
145 typedef short gl_state_index16; /* see enum gl_state_index */
146
147 const char *gl_shader_stage_name(gl_shader_stage stage);
148
149 /**
150 * Translate a gl_shader_stage to a short shader stage name for debug
151 * printouts and error messages.
152 */
153 const char *_mesa_shader_stage_to_string(unsigned stage);
154
155 /**
156 * Translate a gl_shader_stage to a shader stage abbreviation (VS, GS, FS)
157 * for debug printouts and error messages.
158 */
159 const char *_mesa_shader_stage_to_abbrev(unsigned stage);
160
161 /**
162 * GL related stages (not including CL)
163 */
164 #define MESA_SHADER_STAGES (MESA_SHADER_COMPUTE + 1)
165
166 /**
167 * Vulkan stages (not including CL)
168 */
169 #define MESA_VULKAN_SHADER_STAGES (MESA_SHADER_CALLABLE + 1)
170
171 /**
172 * All stages
173 */
174 #define MESA_ALL_SHADER_STAGES (MESA_SHADER_KERNEL + 1)
175
176
177 /**
178 * Indexes for vertex program attributes.
179 * GL_NV_vertex_program aliases generic attributes over the conventional
180 * attributes. In GL_ARB_vertex_program shader the aliasing is optional.
181 * In GL_ARB_vertex_shader / OpenGL 2.0 the aliasing is disallowed (the
182 * generic attributes are distinct/separate).
183 */
184 typedef enum
185 {
186 VERT_ATTRIB_POS,
187 VERT_ATTRIB_NORMAL,
188 VERT_ATTRIB_COLOR0,
189 VERT_ATTRIB_COLOR1,
190 VERT_ATTRIB_FOG,
191 VERT_ATTRIB_COLOR_INDEX,
192 VERT_ATTRIB_TEX0,
193 VERT_ATTRIB_TEX1,
194 VERT_ATTRIB_TEX2,
195 VERT_ATTRIB_TEX3,
196 VERT_ATTRIB_TEX4,
197 VERT_ATTRIB_TEX5,
198 VERT_ATTRIB_TEX6,
199 VERT_ATTRIB_TEX7,
200 VERT_ATTRIB_POINT_SIZE,
201 VERT_ATTRIB_GENERIC0,
202 VERT_ATTRIB_GENERIC1,
203 VERT_ATTRIB_GENERIC2,
204 VERT_ATTRIB_GENERIC3,
205 VERT_ATTRIB_GENERIC4,
206 VERT_ATTRIB_GENERIC5,
207 VERT_ATTRIB_GENERIC6,
208 VERT_ATTRIB_GENERIC7,
209 VERT_ATTRIB_GENERIC8,
210 VERT_ATTRIB_GENERIC9,
211 VERT_ATTRIB_GENERIC10,
212 VERT_ATTRIB_GENERIC11,
213 VERT_ATTRIB_GENERIC12,
214 VERT_ATTRIB_GENERIC13,
215 VERT_ATTRIB_GENERIC14,
216 VERT_ATTRIB_GENERIC15,
217 /* This must be last to keep VS inputs and vertex attributes in the same
218 * order in st/mesa, and st/mesa always adds edgeflags as the last input.
219 */
220 VERT_ATTRIB_EDGEFLAG,
221 VERT_ATTRIB_MAX
222 } gl_vert_attrib;
223
224 const char *gl_vert_attrib_name(gl_vert_attrib attrib);
225
226 /**
227 * Max number of texture coordinate units. This mainly just applies to
228 * the fixed-function vertex code. This will be difficult to raise above
229 * eight because of various vertex attribute bitvectors.
230 */
231 #define MAX_TEXTURE_COORD_UNITS 8
232 #define MAX_VERTEX_GENERIC_ATTRIBS 16
233
234 /**
235 * Symbolic constats to help iterating over
236 * specific blocks of vertex attributes.
237 *
238 * VERT_ATTRIB_TEX
239 * include the classic texture coordinate attributes.
240 * VERT_ATTRIB_GENERIC
241 * include the OpenGL 2.0+ GLSL generic shader attributes.
242 * These alias the generic GL_ARB_vertex_shader attributes.
243 * VERT_ATTRIB_MAT
244 * include the generic shader attributes used to alias
245 * varying material values for the TNL shader programs.
246 * They are located at the end of the generic attribute
247 * block not to overlap with the generic 0 attribute.
248 */
249 #define VERT_ATTRIB_TEX(i) (VERT_ATTRIB_TEX0 + (i))
250 #define VERT_ATTRIB_TEX_MAX MAX_TEXTURE_COORD_UNITS
251
252 #define VERT_ATTRIB_GENERIC(i) (VERT_ATTRIB_GENERIC0 + (i))
253 #define VERT_ATTRIB_GENERIC_MAX MAX_VERTEX_GENERIC_ATTRIBS
254
255 #define VERT_ATTRIB_MAT0 \
256 (VERT_ATTRIB_GENERIC_MAX - VERT_ATTRIB_MAT_MAX)
257 #define VERT_ATTRIB_MAT(i) \
258 VERT_ATTRIB_GENERIC((i) + VERT_ATTRIB_MAT0)
259 #define VERT_ATTRIB_MAT_MAX MAT_ATTRIB_MAX
260
261 /**
262 * Bitflags for vertex attributes.
263 * These are used in bitfields in many places.
264 */
265 /*@{*/
266 #define VERT_BIT_POS BITFIELD_BIT(VERT_ATTRIB_POS)
267 #define VERT_BIT_NORMAL BITFIELD_BIT(VERT_ATTRIB_NORMAL)
268 #define VERT_BIT_COLOR0 BITFIELD_BIT(VERT_ATTRIB_COLOR0)
269 #define VERT_BIT_COLOR1 BITFIELD_BIT(VERT_ATTRIB_COLOR1)
270 #define VERT_BIT_FOG BITFIELD_BIT(VERT_ATTRIB_FOG)
271 #define VERT_BIT_COLOR_INDEX BITFIELD_BIT(VERT_ATTRIB_COLOR_INDEX)
272 #define VERT_BIT_TEX0 BITFIELD_BIT(VERT_ATTRIB_TEX0)
273 #define VERT_BIT_TEX1 BITFIELD_BIT(VERT_ATTRIB_TEX1)
274 #define VERT_BIT_TEX2 BITFIELD_BIT(VERT_ATTRIB_TEX2)
275 #define VERT_BIT_TEX3 BITFIELD_BIT(VERT_ATTRIB_TEX3)
276 #define VERT_BIT_TEX4 BITFIELD_BIT(VERT_ATTRIB_TEX4)
277 #define VERT_BIT_TEX5 BITFIELD_BIT(VERT_ATTRIB_TEX5)
278 #define VERT_BIT_TEX6 BITFIELD_BIT(VERT_ATTRIB_TEX6)
279 #define VERT_BIT_TEX7 BITFIELD_BIT(VERT_ATTRIB_TEX7)
280 #define VERT_BIT_POINT_SIZE BITFIELD_BIT(VERT_ATTRIB_POINT_SIZE)
281 #define VERT_BIT_GENERIC0 BITFIELD_BIT(VERT_ATTRIB_GENERIC0)
282 #define VERT_BIT_EDGEFLAG BITFIELD_BIT(VERT_ATTRIB_EDGEFLAG)
283
284 #define VERT_BIT(i) BITFIELD_BIT(i)
285 #define VERT_BIT_ALL BITFIELD_RANGE(0, VERT_ATTRIB_MAX)
286
287 #define VERT_BIT_FF_ALL (BITFIELD_RANGE(0, VERT_ATTRIB_GENERIC0) | \
288 VERT_BIT_EDGEFLAG)
289 #define VERT_BIT_TEX(i) VERT_BIT(VERT_ATTRIB_TEX(i))
290 #define VERT_BIT_TEX_ALL \
291 BITFIELD_RANGE(VERT_ATTRIB_TEX(0), VERT_ATTRIB_TEX_MAX)
292
293 #define VERT_BIT_GENERIC(i) VERT_BIT(VERT_ATTRIB_GENERIC(i))
294 #define VERT_BIT_GENERIC_ALL \
295 BITFIELD_RANGE(VERT_ATTRIB_GENERIC(0), VERT_ATTRIB_GENERIC_MAX)
296
297 #define VERT_BIT_MAT(i) VERT_BIT(VERT_ATTRIB_MAT(i))
298 #define VERT_BIT_MAT_ALL \
299 BITFIELD_RANGE(VERT_ATTRIB_MAT(0), VERT_ATTRIB_MAT_MAX)
300
301 #define VERT_ATTRIB_SELECT_RESULT_OFFSET VERT_ATTRIB_GENERIC(3)
302 #define VERT_BIT_SELECT_RESULT_OFFSET VERT_BIT_GENERIC(3)
303 /*@}*/
304
305 #define MAX_VARYING 32 /**< number of float[4] vectors */
306
307 /**
308 * Indexes for vertex shader outputs, geometry shader inputs/outputs, and
309 * fragment shader inputs.
310 *
311 * Note that some of these values are not available to all pipeline stages.
312 *
313 * When this enum is updated, the following code must be updated too:
314 * - vertResults (in prog_print.c's arb_output_attrib_string())
315 * - fragAttribs (in prog_print.c's arb_input_attrib_string())
316 * - _mesa_varying_slot_in_fs()
317 * - gl_varying_slot_name_for_stage()
318 */
319 typedef enum
320 {
321 VARYING_SLOT_POS,
322 VARYING_SLOT_COL0, /* COL0 and COL1 must be contiguous */
323 VARYING_SLOT_COL1,
324 VARYING_SLOT_FOGC,
325 VARYING_SLOT_TEX0, /* TEX0-TEX7 must be contiguous */
326 VARYING_SLOT_TEX1,
327 VARYING_SLOT_TEX2,
328 VARYING_SLOT_TEX3,
329 VARYING_SLOT_TEX4,
330 VARYING_SLOT_TEX5,
331 VARYING_SLOT_TEX6,
332 VARYING_SLOT_TEX7,
333 VARYING_SLOT_PSIZ, /* Does not appear in FS */
334 VARYING_SLOT_BFC0, /* Does not appear in FS */
335 VARYING_SLOT_BFC1, /* Does not appear in FS */
336 VARYING_SLOT_EDGE, /* Does not appear in FS */
337 VARYING_SLOT_CLIP_VERTEX, /* Does not appear in FS */
338 VARYING_SLOT_CLIP_DIST0,
339 VARYING_SLOT_CLIP_DIST1,
340 VARYING_SLOT_CULL_DIST0,
341 VARYING_SLOT_CULL_DIST1,
342 VARYING_SLOT_PRIMITIVE_ID, /* Does not appear in VS */
343 VARYING_SLOT_LAYER, /* Appears as VS or GS output */
344 VARYING_SLOT_VIEWPORT, /* Appears as VS or GS output */
345 VARYING_SLOT_FACE, /* FS only */
346 VARYING_SLOT_PNTC, /* FS only */
347 VARYING_SLOT_TESS_LEVEL_OUTER, /* Only appears as TCS output. */
348 VARYING_SLOT_TESS_LEVEL_INNER, /* Only appears as TCS output. */
349 VARYING_SLOT_BOUNDING_BOX0, /* Only appears as TCS output. */
350 VARYING_SLOT_BOUNDING_BOX1, /* Only appears as TCS output. */
351 VARYING_SLOT_VIEW_INDEX,
352 VARYING_SLOT_VIEWPORT_MASK, /* Does not appear in FS */
353 VARYING_SLOT_PRIMITIVE_SHADING_RATE = VARYING_SLOT_FACE, /* Does not appear in FS. */
354
355 VARYING_SLOT_PRIMITIVE_COUNT = VARYING_SLOT_TESS_LEVEL_OUTER, /* Only appears in MESH. */
356 VARYING_SLOT_PRIMITIVE_INDICES = VARYING_SLOT_TESS_LEVEL_INNER, /* Only appears in MESH. */
357 VARYING_SLOT_TASK_COUNT = VARYING_SLOT_BOUNDING_BOX0, /* Only appears in TASK. */
358 VARYING_SLOT_CULL_PRIMITIVE = VARYING_SLOT_BOUNDING_BOX0, /* Only appears in MESH. */
359
360 VARYING_SLOT_VAR0 = 32, /* First generic varying slot */
361 /* the remaining are simply for the benefit of gl_varying_slot_name()
362 * and not to be construed as an upper bound:
363 */
364 VARYING_SLOT_VAR1,
365 VARYING_SLOT_VAR2,
366 VARYING_SLOT_VAR3,
367 VARYING_SLOT_VAR4,
368 VARYING_SLOT_VAR5,
369 VARYING_SLOT_VAR6,
370 VARYING_SLOT_VAR7,
371 VARYING_SLOT_VAR8,
372 VARYING_SLOT_VAR9,
373 VARYING_SLOT_VAR10,
374 VARYING_SLOT_VAR11,
375 VARYING_SLOT_VAR12,
376 VARYING_SLOT_VAR13,
377 VARYING_SLOT_VAR14,
378 VARYING_SLOT_VAR15,
379 VARYING_SLOT_VAR16,
380 VARYING_SLOT_VAR17,
381 VARYING_SLOT_VAR18,
382 VARYING_SLOT_VAR19,
383 VARYING_SLOT_VAR20,
384 VARYING_SLOT_VAR21,
385 VARYING_SLOT_VAR22,
386 VARYING_SLOT_VAR23,
387 VARYING_SLOT_VAR24,
388 VARYING_SLOT_VAR25,
389 VARYING_SLOT_VAR26,
390 VARYING_SLOT_VAR27,
391 VARYING_SLOT_VAR28,
392 VARYING_SLOT_VAR29,
393 VARYING_SLOT_VAR30,
394 VARYING_SLOT_VAR31,
395 /* Per-patch varyings for tessellation. */
396 VARYING_SLOT_PATCH0,
397 VARYING_SLOT_PATCH1,
398 VARYING_SLOT_PATCH2,
399 VARYING_SLOT_PATCH3,
400 VARYING_SLOT_PATCH4,
401 VARYING_SLOT_PATCH5,
402 VARYING_SLOT_PATCH6,
403 VARYING_SLOT_PATCH7,
404 VARYING_SLOT_PATCH8,
405 VARYING_SLOT_PATCH9,
406 VARYING_SLOT_PATCH10,
407 VARYING_SLOT_PATCH11,
408 VARYING_SLOT_PATCH12,
409 VARYING_SLOT_PATCH13,
410 VARYING_SLOT_PATCH14,
411 VARYING_SLOT_PATCH15,
412 VARYING_SLOT_PATCH16,
413 VARYING_SLOT_PATCH17,
414 VARYING_SLOT_PATCH18,
415 VARYING_SLOT_PATCH19,
416 VARYING_SLOT_PATCH20,
417 VARYING_SLOT_PATCH21,
418 VARYING_SLOT_PATCH22,
419 VARYING_SLOT_PATCH23,
420 VARYING_SLOT_PATCH24,
421 VARYING_SLOT_PATCH25,
422 VARYING_SLOT_PATCH26,
423 VARYING_SLOT_PATCH27,
424 VARYING_SLOT_PATCH28,
425 VARYING_SLOT_PATCH29,
426 VARYING_SLOT_PATCH30,
427 VARYING_SLOT_PATCH31,
428 /* 32 16-bit vec4 slots packed in 16 32-bit vec4 slots for GLES/mediump.
429 * They are really just additional generic slots used for 16-bit data to
430 * prevent conflicts between neighboring mediump and non-mediump varyings
431 * that can't be packed without breaking one or the other, which is
432 * a limitation of separate shaders. This allows linking shaders in 32 bits
433 * and then get an optimally packed 16-bit varyings by remapping the IO
434 * locations to these slots. The remapping can also be undone trivially.
435 *
436 * nir_io_semantics::high_16bit determines which half of the slot is
437 * accessed. The low and high halves share the same IO "base" number.
438 * Drivers can treat these as 32-bit slots everywhere except for FP16
439 * interpolation.
440 */
441 VARYING_SLOT_VAR0_16BIT,
442 VARYING_SLOT_VAR1_16BIT,
443 VARYING_SLOT_VAR2_16BIT,
444 VARYING_SLOT_VAR3_16BIT,
445 VARYING_SLOT_VAR4_16BIT,
446 VARYING_SLOT_VAR5_16BIT,
447 VARYING_SLOT_VAR6_16BIT,
448 VARYING_SLOT_VAR7_16BIT,
449 VARYING_SLOT_VAR8_16BIT,
450 VARYING_SLOT_VAR9_16BIT,
451 VARYING_SLOT_VAR10_16BIT,
452 VARYING_SLOT_VAR11_16BIT,
453 VARYING_SLOT_VAR12_16BIT,
454 VARYING_SLOT_VAR13_16BIT,
455 VARYING_SLOT_VAR14_16BIT,
456 VARYING_SLOT_VAR15_16BIT,
457
458 NUM_TOTAL_VARYING_SLOTS,
459 } gl_varying_slot;
460
461
462 #define VARYING_SLOT_MAX (VARYING_SLOT_VAR0 + MAX_VARYING)
463 #define VARYING_SLOT_TESS_MAX (VARYING_SLOT_PATCH0 + MAX_VARYING)
464 #define MAX_VARYINGS_INCL_PATCH (VARYING_SLOT_TESS_MAX - VARYING_SLOT_VAR0)
465
466 const char *gl_varying_slot_name_for_stage(gl_varying_slot slot,
467 gl_shader_stage stage);
468
469 /**
470 * Determine if the given gl_varying_slot appears in the fragment shader.
471 */
472 static inline bool
_mesa_varying_slot_in_fs(gl_varying_slot slot)473 _mesa_varying_slot_in_fs(gl_varying_slot slot)
474 {
475 switch (slot) {
476 case VARYING_SLOT_PSIZ:
477 case VARYING_SLOT_BFC0:
478 case VARYING_SLOT_BFC1:
479 case VARYING_SLOT_EDGE:
480 case VARYING_SLOT_CLIP_VERTEX:
481 case VARYING_SLOT_LAYER:
482 case VARYING_SLOT_TESS_LEVEL_OUTER:
483 case VARYING_SLOT_TESS_LEVEL_INNER:
484 case VARYING_SLOT_BOUNDING_BOX0:
485 case VARYING_SLOT_BOUNDING_BOX1:
486 case VARYING_SLOT_VIEWPORT_MASK:
487 return false;
488 default:
489 return true;
490 }
491 }
492
493 /**
494 * Bitflags for varying slots.
495 */
496 /*@{*/
497 #define VARYING_BIT_POS BITFIELD64_BIT(VARYING_SLOT_POS)
498 #define VARYING_BIT_COL0 BITFIELD64_BIT(VARYING_SLOT_COL0)
499 #define VARYING_BIT_COL1 BITFIELD64_BIT(VARYING_SLOT_COL1)
500 #define VARYING_BIT_FOGC BITFIELD64_BIT(VARYING_SLOT_FOGC)
501 #define VARYING_BIT_TEX0 BITFIELD64_BIT(VARYING_SLOT_TEX0)
502 #define VARYING_BIT_TEX1 BITFIELD64_BIT(VARYING_SLOT_TEX1)
503 #define VARYING_BIT_TEX2 BITFIELD64_BIT(VARYING_SLOT_TEX2)
504 #define VARYING_BIT_TEX3 BITFIELD64_BIT(VARYING_SLOT_TEX3)
505 #define VARYING_BIT_TEX4 BITFIELD64_BIT(VARYING_SLOT_TEX4)
506 #define VARYING_BIT_TEX5 BITFIELD64_BIT(VARYING_SLOT_TEX5)
507 #define VARYING_BIT_TEX6 BITFIELD64_BIT(VARYING_SLOT_TEX6)
508 #define VARYING_BIT_TEX7 BITFIELD64_BIT(VARYING_SLOT_TEX7)
509 #define VARYING_BIT_TEX(U) BITFIELD64_BIT(VARYING_SLOT_TEX0 + (U))
510 #define VARYING_BITS_TEX_ANY BITFIELD64_RANGE(VARYING_SLOT_TEX0, \
511 MAX_TEXTURE_COORD_UNITS)
512 #define VARYING_BIT_PSIZ BITFIELD64_BIT(VARYING_SLOT_PSIZ)
513 #define VARYING_BIT_BFC0 BITFIELD64_BIT(VARYING_SLOT_BFC0)
514 #define VARYING_BIT_BFC1 BITFIELD64_BIT(VARYING_SLOT_BFC1)
515 #define VARYING_BITS_COLOR (VARYING_BIT_COL0 | \
516 VARYING_BIT_COL1 | \
517 VARYING_BIT_BFC0 | \
518 VARYING_BIT_BFC1)
519 #define VARYING_BIT_EDGE BITFIELD64_BIT(VARYING_SLOT_EDGE)
520 #define VARYING_BIT_CLIP_VERTEX BITFIELD64_BIT(VARYING_SLOT_CLIP_VERTEX)
521 #define VARYING_BIT_CLIP_DIST0 BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0)
522 #define VARYING_BIT_CLIP_DIST1 BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1)
523 #define VARYING_BIT_CULL_DIST0 BITFIELD64_BIT(VARYING_SLOT_CULL_DIST0)
524 #define VARYING_BIT_CULL_DIST1 BITFIELD64_BIT(VARYING_SLOT_CULL_DIST1)
525 #define VARYING_BIT_PRIMITIVE_ID BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_ID)
526 #define VARYING_BIT_LAYER BITFIELD64_BIT(VARYING_SLOT_LAYER)
527 #define VARYING_BIT_VIEWPORT BITFIELD64_BIT(VARYING_SLOT_VIEWPORT)
528 #define VARYING_BIT_FACE BITFIELD64_BIT(VARYING_SLOT_FACE)
529 #define VARYING_BIT_PRIMITIVE_SHADING_RATE BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_SHADING_RATE)
530 #define VARYING_BIT_PNTC BITFIELD64_BIT(VARYING_SLOT_PNTC)
531 #define VARYING_BIT_TESS_LEVEL_OUTER BITFIELD64_BIT(VARYING_SLOT_TESS_LEVEL_OUTER)
532 #define VARYING_BIT_TESS_LEVEL_INNER BITFIELD64_BIT(VARYING_SLOT_TESS_LEVEL_INNER)
533 #define VARYING_BIT_BOUNDING_BOX0 BITFIELD64_BIT(VARYING_SLOT_BOUNDING_BOX0)
534 #define VARYING_BIT_BOUNDING_BOX1 BITFIELD64_BIT(VARYING_SLOT_BOUNDING_BOX1)
535 #define VARYING_BIT_VIEWPORT_MASK BITFIELD64_BIT(VARYING_SLOT_VIEWPORT_MASK)
536 #define VARYING_BIT_VAR(V) BITFIELD64_BIT(VARYING_SLOT_VAR0 + (V))
537 /*@}*/
538
539 /**
540 * Writemask values, 1 bit per component.
541 */
542 /*@{*/
543 #define WRITEMASK_X 0x1
544 #define WRITEMASK_Y 0x2
545 #define WRITEMASK_XY 0x3
546 #define WRITEMASK_Z 0x4
547 #define WRITEMASK_XZ 0x5
548 #define WRITEMASK_YZ 0x6
549 #define WRITEMASK_XYZ 0x7
550 #define WRITEMASK_W 0x8
551 #define WRITEMASK_XW 0x9
552 #define WRITEMASK_YW 0xa
553 #define WRITEMASK_XYW 0xb
554 #define WRITEMASK_ZW 0xc
555 #define WRITEMASK_XZW 0xd
556 #define WRITEMASK_YZW 0xe
557 #define WRITEMASK_XYZW 0xf
558 /*@}*/
559
560 /**
561 * If the gl_register_file is PROGRAM_SYSTEM_VALUE, the register index will be
562 * one of these values. If a NIR variable's mode is nir_var_system_value, it
563 * will be one of these values.
564 */
565 typedef enum
566 {
567 /**
568 * \name System values applicable to all shaders
569 */
570 /*@{*/
571
572 /**
573 * Builtin variables added by GL_ARB_shader_ballot.
574 */
575 /*@{*/
576
577 /**
578 * From the GL_ARB_shader-ballot spec:
579 *
580 * "A sub-group is a collection of invocations which execute in lockstep.
581 * The variable <gl_SubGroupSizeARB> is the maximum number of
582 * invocations in a sub-group. The maximum <gl_SubGroupSizeARB>
583 * supported in this extension is 64."
584 *
585 * The spec defines this as a uniform. However, it's highly unlikely that
586 * implementations actually treat it as a uniform (which is loaded from a
587 * constant buffer). Most likely, this is an implementation-wide constant,
588 * or perhaps something that depends on the shader stage.
589 */
590 SYSTEM_VALUE_SUBGROUP_SIZE,
591
592 /**
593 * From the GL_ARB_shader_ballot spec:
594 *
595 * "The variable <gl_SubGroupInvocationARB> holds the index of the
596 * invocation within sub-group. This variable is in the range 0 to
597 * <gl_SubGroupSizeARB>-1, where <gl_SubGroupSizeARB> is the total
598 * number of invocations in a sub-group."
599 */
600 SYSTEM_VALUE_SUBGROUP_INVOCATION,
601
602 /**
603 * From the GL_ARB_shader_ballot spec:
604 *
605 * "The <gl_SubGroup??MaskARB> variables provide a bitmask for all
606 * invocations, with one bit per invocation starting with the least
607 * significant bit, according to the following table,
608 *
609 * variable equation for bit values
610 * -------------------- ------------------------------------
611 * gl_SubGroupEqMaskARB bit index == gl_SubGroupInvocationARB
612 * gl_SubGroupGeMaskARB bit index >= gl_SubGroupInvocationARB
613 * gl_SubGroupGtMaskARB bit index > gl_SubGroupInvocationARB
614 * gl_SubGroupLeMaskARB bit index <= gl_SubGroupInvocationARB
615 * gl_SubGroupLtMaskARB bit index < gl_SubGroupInvocationARB
616 */
617 SYSTEM_VALUE_SUBGROUP_EQ_MASK,
618 SYSTEM_VALUE_SUBGROUP_GE_MASK,
619 SYSTEM_VALUE_SUBGROUP_GT_MASK,
620 SYSTEM_VALUE_SUBGROUP_LE_MASK,
621 SYSTEM_VALUE_SUBGROUP_LT_MASK,
622 /*@}*/
623
624 /**
625 * Builtin variables added by VK_KHR_subgroups
626 */
627 /*@{*/
628 SYSTEM_VALUE_NUM_SUBGROUPS,
629 SYSTEM_VALUE_SUBGROUP_ID,
630 /*@}*/
631
632 /*@}*/
633
634 /**
635 * \name Vertex shader system values
636 */
637 /*@{*/
638 /**
639 * OpenGL-style vertex ID.
640 *
641 * Section 2.11.7 (Shader Execution), subsection Shader Inputs, of the
642 * OpenGL 3.3 core profile spec says:
643 *
644 * "gl_VertexID holds the integer index i implicitly passed by
645 * DrawArrays or one of the other drawing commands defined in section
646 * 2.8.3."
647 *
648 * Section 2.8.3 (Drawing Commands) of the same spec says:
649 *
650 * "The commands....are equivalent to the commands with the same base
651 * name (without the BaseVertex suffix), except that the ith element
652 * transferred by the corresponding draw call will be taken from
653 * element indices[i] + basevertex of each enabled array."
654 *
655 * Additionally, the overview in the GL_ARB_shader_draw_parameters spec
656 * says:
657 *
658 * "In unextended GL, vertex shaders have inputs named gl_VertexID and
659 * gl_InstanceID, which contain, respectively the index of the vertex
660 * and instance. The value of gl_VertexID is the implicitly passed
661 * index of the vertex being processed, which includes the value of
662 * baseVertex, for those commands that accept it."
663 *
664 * gl_VertexID gets basevertex added in. This differs from DirectX where
665 * SV_VertexID does \b not get basevertex added in.
666 *
667 * \note
668 * If all system values are available, \c SYSTEM_VALUE_VERTEX_ID will be
669 * equal to \c SYSTEM_VALUE_VERTEX_ID_ZERO_BASE plus
670 * \c SYSTEM_VALUE_BASE_VERTEX.
671 *
672 * \sa SYSTEM_VALUE_VERTEX_ID_ZERO_BASE, SYSTEM_VALUE_BASE_VERTEX
673 */
674 SYSTEM_VALUE_VERTEX_ID,
675
676 /**
677 * Instanced ID as supplied to gl_InstanceID
678 *
679 * Values assigned to gl_InstanceID always begin with zero, regardless of
680 * the value of baseinstance.
681 *
682 * Section 11.1.3.9 (Shader Inputs) of the OpenGL 4.4 core profile spec
683 * says:
684 *
685 * "gl_InstanceID holds the integer instance number of the current
686 * primitive in an instanced draw call (see section 10.5)."
687 *
688 * Through a big chain of pseudocode, section 10.5 describes that
689 * baseinstance is not counted by gl_InstanceID. In that section, notice
690 *
691 * "If an enabled vertex attribute array is instanced (it has a
692 * non-zero divisor as specified by VertexAttribDivisor), the element
693 * index that is transferred to the GL, for all vertices, is given by
694 *
695 * floor(instance/divisor) + baseinstance
696 *
697 * If an array corresponding to an attribute required by a vertex
698 * shader is not enabled, then the corresponding element is taken from
699 * the current attribute state (see section 10.2)."
700 *
701 * Note that baseinstance is \b not included in the value of instance.
702 */
703 SYSTEM_VALUE_INSTANCE_ID,
704
705 /**
706 * Vulkan InstanceIndex.
707 *
708 * InstanceIndex = gl_InstanceID + gl_BaseInstance
709 */
710 SYSTEM_VALUE_INSTANCE_INDEX,
711
712 /**
713 * DirectX-style vertex ID.
714 *
715 * Unlike \c SYSTEM_VALUE_VERTEX_ID, this system value does \b not include
716 * the value of basevertex.
717 *
718 * \sa SYSTEM_VALUE_VERTEX_ID, SYSTEM_VALUE_BASE_VERTEX
719 */
720 SYSTEM_VALUE_VERTEX_ID_ZERO_BASE,
721
722 /**
723 * Value of \c basevertex passed to \c glDrawElementsBaseVertex and similar
724 * functions.
725 *
726 * \sa SYSTEM_VALUE_VERTEX_ID, SYSTEM_VALUE_VERTEX_ID_ZERO_BASE
727 */
728 SYSTEM_VALUE_BASE_VERTEX,
729
730 /**
731 * Depending on the type of the draw call (indexed or non-indexed),
732 * is the value of \c basevertex passed to \c glDrawElementsBaseVertex and
733 * similar, or is the value of \c first passed to \c glDrawArrays and
734 * similar.
735 *
736 * \note
737 * It can be used to calculate the \c SYSTEM_VALUE_VERTEX_ID as
738 * \c SYSTEM_VALUE_VERTEX_ID_ZERO_BASE plus \c SYSTEM_VALUE_FIRST_VERTEX.
739 *
740 * \sa SYSTEM_VALUE_VERTEX_ID_ZERO_BASE, SYSTEM_VALUE_VERTEX_ID
741 */
742 SYSTEM_VALUE_FIRST_VERTEX,
743
744 /**
745 * If the Draw command used to start the rendering was an indexed draw
746 * or not (~0/0). Useful to calculate \c SYSTEM_VALUE_BASE_VERTEX as
747 * \c SYSTEM_VALUE_IS_INDEXED_DRAW & \c SYSTEM_VALUE_FIRST_VERTEX.
748 */
749 SYSTEM_VALUE_IS_INDEXED_DRAW,
750
751 /**
752 * Value of \c baseinstance passed to instanced draw entry points
753 *
754 * \sa SYSTEM_VALUE_INSTANCE_ID
755 */
756 SYSTEM_VALUE_BASE_INSTANCE,
757
758 /**
759 * From _ARB_shader_draw_parameters:
760 *
761 * "Additionally, this extension adds a further built-in variable,
762 * gl_DrawID to the shading language. This variable contains the index
763 * of the draw currently being processed by a Multi* variant of a
764 * drawing command (such as MultiDrawElements or
765 * MultiDrawArraysIndirect)."
766 *
767 * If GL_ARB_multi_draw_indirect is not supported, this is always 0.
768 */
769 SYSTEM_VALUE_DRAW_ID,
770 /*@}*/
771
772 /**
773 * \name Geometry shader system values
774 */
775 /*@{*/
776 SYSTEM_VALUE_INVOCATION_ID, /**< (Also in Tessellation Control shader) */
777 /*@}*/
778
779 /**
780 * \name Fragment shader system values
781 */
782 /*@{*/
783 SYSTEM_VALUE_FRAG_COORD,
784 SYSTEM_VALUE_POINT_COORD,
785 SYSTEM_VALUE_LINE_COORD, /**< Coord along axis perpendicular to line */
786 SYSTEM_VALUE_FRONT_FACE,
787 SYSTEM_VALUE_SAMPLE_ID,
788 SYSTEM_VALUE_SAMPLE_POS,
789 SYSTEM_VALUE_SAMPLE_POS_OR_CENTER,
790 SYSTEM_VALUE_SAMPLE_MASK_IN,
791 SYSTEM_VALUE_LAYER_ID,
792 SYSTEM_VALUE_HELPER_INVOCATION,
793 SYSTEM_VALUE_COLOR0,
794 SYSTEM_VALUE_COLOR1,
795 /*@}*/
796
797 /**
798 * \name Tessellation Evaluation shader system values
799 */
800 /*@{*/
801 SYSTEM_VALUE_TESS_COORD,
802 SYSTEM_VALUE_VERTICES_IN, /**< Tessellation vertices in input patch */
803 SYSTEM_VALUE_PRIMITIVE_ID,
804 SYSTEM_VALUE_TESS_LEVEL_OUTER, /**< TES input */
805 SYSTEM_VALUE_TESS_LEVEL_INNER, /**< TES input */
806 SYSTEM_VALUE_TESS_LEVEL_OUTER_DEFAULT, /**< TCS input for passthru TCS */
807 SYSTEM_VALUE_TESS_LEVEL_INNER_DEFAULT, /**< TCS input for passthru TCS */
808 /*@}*/
809
810 /**
811 * \name Compute shader system values
812 */
813 /*@{*/
814 SYSTEM_VALUE_LOCAL_INVOCATION_ID,
815 SYSTEM_VALUE_LOCAL_INVOCATION_INDEX,
816 SYSTEM_VALUE_GLOBAL_INVOCATION_ID,
817 SYSTEM_VALUE_BASE_GLOBAL_INVOCATION_ID,
818 SYSTEM_VALUE_GLOBAL_INVOCATION_INDEX,
819 SYSTEM_VALUE_WORKGROUP_ID,
820 SYSTEM_VALUE_BASE_WORKGROUP_ID,
821 SYSTEM_VALUE_WORKGROUP_INDEX,
822 SYSTEM_VALUE_NUM_WORKGROUPS,
823 SYSTEM_VALUE_WORKGROUP_SIZE,
824 SYSTEM_VALUE_GLOBAL_GROUP_SIZE,
825 SYSTEM_VALUE_WORK_DIM,
826 SYSTEM_VALUE_USER_DATA_AMD,
827 /*@}*/
828
829 /** Required for VK_KHR_device_group */
830 SYSTEM_VALUE_DEVICE_INDEX,
831
832 /** Required for VK_KHX_multiview */
833 SYSTEM_VALUE_VIEW_INDEX,
834
835 /**
836 * Driver internal vertex-count, used (for example) for drivers to
837 * calculate stride for stream-out outputs. Not externally visible.
838 */
839 SYSTEM_VALUE_VERTEX_CNT,
840
841 /**
842 * Required for AMD_shader_explicit_vertex_parameter and also used for
843 * varying-fetch instructions.
844 *
845 * The _SIZE value is "primitive size", used to scale i/j in primitive
846 * space to pixel space.
847 */
848 SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL,
849 SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE,
850 SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID,
851 SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTER_RHW,
852 SYSTEM_VALUE_BARYCENTRIC_LINEAR_PIXEL,
853 SYSTEM_VALUE_BARYCENTRIC_LINEAR_CENTROID,
854 SYSTEM_VALUE_BARYCENTRIC_LINEAR_SAMPLE,
855 SYSTEM_VALUE_BARYCENTRIC_PULL_MODEL,
856
857 /**
858 * \name VK_KHR_fragment_shader_barycentric
859 */
860 /*@{*/
861 SYSTEM_VALUE_BARYCENTRIC_PERSP_COORD,
862 SYSTEM_VALUE_BARYCENTRIC_LINEAR_COORD,
863 /*@}*/
864
865 /**
866 * \name Ray tracing shader system values
867 */
868 /*@{*/
869 SYSTEM_VALUE_RAY_LAUNCH_ID,
870 SYSTEM_VALUE_RAY_LAUNCH_SIZE,
871 SYSTEM_VALUE_RAY_WORLD_ORIGIN,
872 SYSTEM_VALUE_RAY_WORLD_DIRECTION,
873 SYSTEM_VALUE_RAY_OBJECT_ORIGIN,
874 SYSTEM_VALUE_RAY_OBJECT_DIRECTION,
875 SYSTEM_VALUE_RAY_T_MIN,
876 SYSTEM_VALUE_RAY_T_MAX,
877 SYSTEM_VALUE_RAY_OBJECT_TO_WORLD,
878 SYSTEM_VALUE_RAY_WORLD_TO_OBJECT,
879 SYSTEM_VALUE_RAY_HIT_KIND,
880 SYSTEM_VALUE_RAY_FLAGS,
881 SYSTEM_VALUE_RAY_GEOMETRY_INDEX,
882 SYSTEM_VALUE_RAY_INSTANCE_CUSTOM_INDEX,
883 SYSTEM_VALUE_CULL_MASK,
884 SYSTEM_VALUE_RAY_TRIANGLE_VERTEX_POSITIONS,
885 /*@}*/
886
887 /**
888 * \name Task/Mesh shader system values
889 */
890 /*@{*/
891 SYSTEM_VALUE_MESH_VIEW_COUNT,
892 SYSTEM_VALUE_MESH_VIEW_INDICES,
893 /*@}*/
894
895 /**
896 * IR3 specific geometry shader and tesselation control shader system
897 * values that packs invocation id, thread id and vertex id. Having this
898 * as a nir level system value lets us do the unpacking in nir.
899 */
900 SYSTEM_VALUE_GS_HEADER_IR3,
901 SYSTEM_VALUE_TCS_HEADER_IR3,
902
903 /* IR3 specific system value that contains the patch id for the current
904 * subdraw.
905 */
906 SYSTEM_VALUE_REL_PATCH_ID_IR3,
907
908 /**
909 * Fragment shading rate used for KHR_fragment_shading_rate (Vulkan).
910 */
911 SYSTEM_VALUE_FRAG_SHADING_RATE,
912
913 /*
914 * Rasterized fragment is fully covered by the generating primitive
915 * (SPV_EXT_fragment_fully_covered).
916 */
917 SYSTEM_VALUE_FULLY_COVERED,
918
919 /*
920 * Fragment size and invocation count used for
921 * EXT_fragment_invocation_density (Vulkan).
922 */
923 SYSTEM_VALUE_FRAG_SIZE,
924 SYSTEM_VALUE_FRAG_INVOCATION_COUNT,
925
926 /* SPV_AMDX_shader_enqueue */
927 SYSTEM_VALUE_SHADER_INDEX,
928 SYSTEM_VALUE_COALESCED_INPUT_COUNT,
929
930 /* SPV_NV_shader_sm_builtins */
931 SYSTEM_VALUE_WARPS_PER_SM_NV,
932 SYSTEM_VALUE_SM_COUNT_NV,
933 SYSTEM_VALUE_WARP_ID_NV,
934 SYSTEM_VALUE_SM_ID_NV,
935
936 SYSTEM_VALUE_MAX /**< Number of values */
937 } gl_system_value;
938
939 const char *gl_system_value_name(gl_system_value sysval);
940
941 /**
942 * The possible interpolation qualifiers that can be applied to a fragment
943 * shader input in GLSL.
944 *
945 * Note: INTERP_MODE_NONE must be 0 so that memsetting the
946 * ir_variable data structure to 0 causes the default behavior.
947 */
948 enum glsl_interp_mode
949 {
950 INTERP_MODE_NONE = 0,
951 INTERP_MODE_SMOOTH,
952 INTERP_MODE_FLAT,
953 INTERP_MODE_NOPERSPECTIVE,
954 INTERP_MODE_EXPLICIT,
955 INTERP_MODE_COUNT /**< Number of interpolation qualifiers */
956 };
957
958 enum glsl_interface_packing {
959 GLSL_INTERFACE_PACKING_STD140,
960 GLSL_INTERFACE_PACKING_SHARED,
961 GLSL_INTERFACE_PACKING_PACKED,
962 GLSL_INTERFACE_PACKING_STD430
963 };
964
965 const char *glsl_interp_mode_name(enum glsl_interp_mode qual);
966
967 /**
968 * Fragment program results
969 */
970 typedef enum
971 {
972 FRAG_RESULT_DEPTH = 0,
973 FRAG_RESULT_STENCIL = 1,
974 /* If a single color should be written to all render targets, this
975 * register is written. No FRAG_RESULT_DATAn will be written.
976 */
977 FRAG_RESULT_COLOR = 2,
978 FRAG_RESULT_SAMPLE_MASK = 3,
979
980 /* FRAG_RESULT_DATAn are the per-render-target (GLSL gl_FragData[n]
981 * or ARB_fragment_program fragment.color[n]) color results. If
982 * any are written, FRAG_RESULT_COLOR will not be written.
983 * FRAG_RESULT_DATA1 and up are simply for the benefit of
984 * gl_frag_result_name() and not to be construed as an upper bound
985 */
986 FRAG_RESULT_DATA0 = 4,
987 FRAG_RESULT_DATA1,
988 FRAG_RESULT_DATA2,
989 FRAG_RESULT_DATA3,
990 FRAG_RESULT_DATA4,
991 FRAG_RESULT_DATA5,
992 FRAG_RESULT_DATA6,
993 FRAG_RESULT_DATA7,
994 } gl_frag_result;
995
996 const char *gl_frag_result_name(gl_frag_result result);
997
998 #define FRAG_RESULT_MAX (FRAG_RESULT_DATA0 + MAX_DRAW_BUFFERS)
999
1000 /**
1001 * \brief Layout qualifiers for gl_FragDepth.
1002 *
1003 * Extension AMD_conservative_depth allows gl_FragDepth to be redeclared with
1004 * a layout qualifier.
1005 *
1006 * \see enum ir_depth_layout
1007 */
1008 enum gl_frag_depth_layout
1009 {
1010 FRAG_DEPTH_LAYOUT_NONE, /**< No layout is specified. */
1011 FRAG_DEPTH_LAYOUT_ANY,
1012 FRAG_DEPTH_LAYOUT_GREATER,
1013 FRAG_DEPTH_LAYOUT_LESS,
1014 FRAG_DEPTH_LAYOUT_UNCHANGED
1015 };
1016
1017 /**
1018 * \brief Layout qualifiers for AMD_shader_early_and_late_fragment_tests.
1019 */
1020 enum gl_frag_stencil_layout
1021 {
1022 FRAG_STENCIL_LAYOUT_NONE, /**< No layout is specified. */
1023 FRAG_STENCIL_LAYOUT_ANY,
1024 FRAG_STENCIL_LAYOUT_GREATER,
1025 FRAG_STENCIL_LAYOUT_LESS,
1026 FRAG_STENCIL_LAYOUT_UNCHANGED
1027 };
1028
1029 /**
1030 * \brief Memory access qualifiers
1031 */
1032 enum gl_access_qualifier
1033 {
1034 /**
1035 * This means that the memory scope is the current device. It indicates
1036 * that reads and writes are coherent with reads and writes from other
1037 * shader invocations and other workgroups.
1038 */
1039 ACCESS_COHERENT = (1 << 0),
1040
1041 /**
1042 * This means non-aliased. It indicates that the accessed address is not
1043 * accessible through any other memory resource in the shader.
1044 */
1045 ACCESS_RESTRICT = (1 << 1),
1046
1047 /**
1048 * The access cannot be eliminated, duplicated, or combined with other
1049 * accesses.
1050 */
1051 ACCESS_VOLATILE = (1 << 2),
1052
1053 /* The memory used by the access/variable is not read. */
1054 ACCESS_NON_READABLE = (1 << 3),
1055
1056 /* The memory used by the access/variable is not written. */
1057 ACCESS_NON_WRITEABLE = (1 << 4),
1058
1059 /**
1060 * The access may use a non-uniform buffer or image index.
1061 *
1062 * This is not allowed in either OpenGL or OpenGL ES, or Vulkan unless
1063 * VK_EXT_descriptor_indexing is supported and the appropriate capability is
1064 * enabled.
1065 *
1066 * Some GL spec archaeology justifying this:
1067 *
1068 * Up through at least GLSL ES 3.20 and GLSL 4.50, "Opaque Types" says "When
1069 * aggregated into arrays within a shader, opaque types can only be indexed
1070 * with a dynamically uniform integral expression (see section 3.9.3) unless
1071 * otherwise noted; otherwise, results are undefined."
1072 *
1073 * The original GL_AB_shader_image_load_store specification for desktop GL
1074 * didn't have this restriction ("Images may be aggregated into arrays within
1075 * a shader (using square brackets [ ]) and can be indexed with general
1076 * integer expressions.") At the same time,
1077 * GL_ARB_shader_storage_buffer_objects *did* have the uniform restriction
1078 * ("A uniform or shader storage block array can only be indexed with a
1079 * dynamically uniform integral expression, otherwise results are
1080 * undefined"), just like ARB_gpu_shader5 did when it first introduced a
1081 * non-constant indexing of an opaque type with samplers. So, we assume that
1082 * this was an oversight in the original image_load_store spec, and was
1083 * considered a correction in the merge to core.
1084 */
1085 ACCESS_NON_UNIFORM = (1 << 5),
1086
1087 /* This has the same semantics as NIR_INTRINSIC_CAN_REORDER, only to be
1088 * used with loads. In other words, it means that the load can be
1089 * arbitrarily reordered, or combined with other loads to the same address.
1090 * It is implied by ACCESS_NON_WRITEABLE and a lack of ACCESS_VOLATILE.
1091 */
1092 ACCESS_CAN_REORDER = (1 << 6),
1093
1094 /**
1095 * Hints that the accessed address is not likely to be accessed again
1096 * in the near future. This reduces data retention in caches.
1097 */
1098 ACCESS_NON_TEMPORAL = (1 << 7),
1099
1100 /** Execute instruction also in helpers. */
1101 ACCESS_INCLUDE_HELPERS = (1 << 8),
1102
1103 /**
1104 * Whether the address bits are swizzled by the hw. This practically means
1105 * that loads can't be vectorized and must be exactly 32 bits on some chips.
1106 * The swizzle amount is determined by the descriptor.
1107 */
1108 ACCESS_IS_SWIZZLED_AMD = (1 << 9),
1109
1110 /**
1111 * Whether an AMD-specific buffer intrinsic uses a format conversion.
1112 *
1113 * If unset, the intrinsic will access raw memory without any conversion.
1114 *
1115 * If set, the memory opcode performs a format conversion according to
1116 * the format determined by the descriptor (in a manner identical to image
1117 * buffers and sampler buffers).
1118 */
1119 ACCESS_USES_FORMAT_AMD = (1 << 10),
1120
1121 /**
1122 * Whether a multi sample image load intrinsic uses sample index extracted
1123 * from fragment mask buffer.
1124 */
1125 ACCESS_FMASK_LOWERED_AMD = (1 << 11),
1126
1127 /**
1128 * Whether it is safe to speculatively execute this load. This allows
1129 * hoisting loads out of conditional control flow (including out of software
1130 * bounds checks). Setting this optimally depends on knowledge of the
1131 * hardware. Speculation is safe if out-of-bounds access does not trigger
1132 * undefined behaviour (even though the returned value of the speculated load
1133 * is bogus). This is the case if there is hardware-level bounds checking, or
1134 * if MMU faults are suppressed for the load.
1135 */
1136 ACCESS_CAN_SPECULATE = (1 << 12),
1137
1138 /**
1139 * Whether coherency with CP (command processor) or GE (geometry engine)
1140 * is required.
1141 */
1142 ACCESS_CP_GE_COHERENT_AMD = (1 << 13),
1143
1144 /* Guarantee that an image_load is in bounds so we can skip robustness code
1145 * on AGX, used for some internal shaders.
1146 */
1147 ACCESS_IN_BOUNDS_AGX = (1 << 14),
1148
1149 /**
1150 * Disallow vectorization.
1151 *
1152 * On some hw (AMD), sparse buffer loads return 0 for all components if
1153 * a sparse load starts on a non-resident page, crosses the page boundary,
1154 * and ends on a resident page. Sometimes we want it to return 0 only for
1155 * the portion of the load that's non-resident, and load values for
1156 * the portion that's resident. The workaround is to scalarize such loads
1157 * and disallow vectorization. This is used by an internal copy_buffer
1158 * shader where the API wants to copy all bytes that are resident.
1159 */
1160 ACCESS_KEEP_SCALAR = (1 << 15),
1161 };
1162
1163 /**
1164 * \brief Blend support qualifiers
1165 */
1166 enum gl_advanced_blend_mode
1167 {
1168 BLEND_NONE = 0,
1169 BLEND_MULTIPLY,
1170 BLEND_SCREEN,
1171 BLEND_OVERLAY,
1172 BLEND_DARKEN,
1173 BLEND_LIGHTEN,
1174 BLEND_COLORDODGE,
1175 BLEND_COLORBURN,
1176 BLEND_HARDLIGHT,
1177 BLEND_SOFTLIGHT,
1178 BLEND_DIFFERENCE,
1179 BLEND_EXCLUSION,
1180 BLEND_HSL_HUE,
1181 BLEND_HSL_SATURATION,
1182 BLEND_HSL_COLOR,
1183 BLEND_HSL_LUMINOSITY,
1184 };
1185
1186 enum gl_tess_spacing
1187 {
1188 TESS_SPACING_UNSPECIFIED,
1189 TESS_SPACING_EQUAL,
1190 TESS_SPACING_FRACTIONAL_ODD,
1191 TESS_SPACING_FRACTIONAL_EVEN,
1192 };
1193
1194 enum tess_primitive_mode
1195 {
1196 TESS_PRIMITIVE_UNSPECIFIED,
1197 TESS_PRIMITIVE_TRIANGLES,
1198 TESS_PRIMITIVE_QUADS,
1199 TESS_PRIMITIVE_ISOLINES,
1200 };
1201
1202 static inline void
mesa_count_tess_level_components(const enum tess_primitive_mode mode,unsigned * outer,unsigned * inner)1203 mesa_count_tess_level_components(const enum tess_primitive_mode mode,
1204 unsigned *outer, unsigned *inner)
1205 {
1206 switch (mode) {
1207 case TESS_PRIMITIVE_ISOLINES:
1208 *outer = 2;
1209 *inner = 0;
1210 break;
1211 case TESS_PRIMITIVE_TRIANGLES:
1212 *outer = 3;
1213 *inner = 1;
1214 break;
1215 case TESS_PRIMITIVE_QUADS:
1216 default:
1217 *outer = 4;
1218 *inner = 2;
1219 break;
1220 }
1221 }
1222
1223 /**
1224 * Mesa primitive types for both GL and Vulkan:
1225 */
1226 enum ENUM_PACKED mesa_prim
1227 {
1228 MESA_PRIM_POINTS,
1229 MESA_PRIM_LINES,
1230 MESA_PRIM_LINE_LOOP,
1231 MESA_PRIM_LINE_STRIP,
1232 MESA_PRIM_TRIANGLES,
1233 MESA_PRIM_TRIANGLE_STRIP,
1234 MESA_PRIM_TRIANGLE_FAN,
1235 MESA_PRIM_QUADS,
1236 MESA_PRIM_QUAD_STRIP,
1237 MESA_PRIM_POLYGON,
1238 MESA_PRIM_LINES_ADJACENCY,
1239 MESA_PRIM_LINE_STRIP_ADJACENCY,
1240 MESA_PRIM_TRIANGLES_ADJACENCY,
1241 MESA_PRIM_TRIANGLE_STRIP_ADJACENCY,
1242 MESA_PRIM_PATCHES,
1243 MESA_PRIM_MAX = MESA_PRIM_PATCHES,
1244 MESA_PRIM_COUNT = MESA_PRIM_MAX +1,
1245 MESA_PRIM_UNKNOWN = (MESA_PRIM_MAX * 2),
1246 };
1247
1248 /**
1249 * Number of vertices per primitive as seen by a geometry or mesh shader.
1250 */
1251 static inline unsigned
mesa_vertices_per_prim(enum mesa_prim prim)1252 mesa_vertices_per_prim(enum mesa_prim prim)
1253 {
1254 switch(prim) {
1255 case MESA_PRIM_POINTS:
1256 return 1;
1257 case MESA_PRIM_LINES:
1258 case MESA_PRIM_LINE_LOOP:
1259 case MESA_PRIM_LINE_STRIP:
1260 return 2;
1261 case MESA_PRIM_TRIANGLES:
1262 case MESA_PRIM_TRIANGLE_STRIP:
1263 case MESA_PRIM_TRIANGLE_FAN:
1264 return 3;
1265 case MESA_PRIM_LINES_ADJACENCY:
1266 case MESA_PRIM_LINE_STRIP_ADJACENCY:
1267 return 4;
1268 case MESA_PRIM_TRIANGLES_ADJACENCY:
1269 case MESA_PRIM_TRIANGLE_STRIP_ADJACENCY:
1270 return 6;
1271
1272 case MESA_PRIM_QUADS:
1273 case MESA_PRIM_QUAD_STRIP:
1274 /* These won't be seen from geometry shaders but prim assembly might for
1275 * prim id.
1276 */
1277 return 4;
1278
1279 /* The following primitives should never be used with geometry or mesh
1280 * shaders and their size is undefined.
1281 */
1282 case MESA_PRIM_POLYGON:
1283 default:
1284 debug_printf("Unrecognized geometry or mesh shader primitive");
1285 return 3;
1286 }
1287 }
1288
1289 /**
1290 * Returns the number of decomposed primitives for the given
1291 * vertex count.
1292 * Parts of the pipline are invoked once for each triangle in
1293 * triangle strip, triangle fans and triangles and once
1294 * for each line in line strip, line loop, lines. Also
1295 * statistics depend on knowing the exact number of decomposed
1296 * primitives for a set of vertices.
1297 */
1298 static inline unsigned
u_decomposed_prims_for_vertices(enum mesa_prim primitive,int vertices)1299 u_decomposed_prims_for_vertices(enum mesa_prim primitive, int vertices)
1300 {
1301 switch (primitive) {
1302 case MESA_PRIM_POINTS:
1303 return vertices;
1304 case MESA_PRIM_LINES:
1305 return vertices / 2;
1306 case MESA_PRIM_LINE_LOOP:
1307 return (vertices >= 2) ? vertices : 0;
1308 case MESA_PRIM_LINE_STRIP:
1309 return (vertices >= 2) ? vertices - 1 : 0;
1310 case MESA_PRIM_TRIANGLES:
1311 return vertices / 3;
1312 case MESA_PRIM_TRIANGLE_STRIP:
1313 return (vertices >= 3) ? vertices - 2 : 0;
1314 case MESA_PRIM_TRIANGLE_FAN:
1315 return (vertices >= 3) ? vertices - 2 : 0;
1316 case MESA_PRIM_LINES_ADJACENCY:
1317 return vertices / 4;
1318 case MESA_PRIM_LINE_STRIP_ADJACENCY:
1319 return (vertices >= 4) ? vertices - 3 : 0;
1320 case MESA_PRIM_TRIANGLES_ADJACENCY:
1321 return vertices / 6;
1322 case MESA_PRIM_TRIANGLE_STRIP_ADJACENCY:
1323 return (vertices >= 6) ? 1 + (vertices - 6) / 2 : 0;
1324 case MESA_PRIM_QUADS:
1325 return vertices / 4;
1326 case MESA_PRIM_QUAD_STRIP:
1327 return (vertices >= 4) ? (vertices - 2) / 2 : 0;
1328 /* Polygons can't be decomposed
1329 * because the number of their vertices isn't known so
1330 * for them and whatever else we don't recognize just
1331 * return 1 if the number of vertices is greater than
1332 * or equal to 3 and zero otherwise */
1333 case MESA_PRIM_POLYGON:
1334 default:
1335 debug_printf("Invalid decomposition primitive!\n");
1336 return (vertices >= 3) ? 1 : 0;
1337 }
1338 }
1339
1340 /**
1341 * Decompose a primitive that is a loop, a strip, or a fan. Return the
1342 * original primitive if it is already decomposed.
1343 */
1344 static inline enum mesa_prim
u_decomposed_prim(enum mesa_prim prim)1345 u_decomposed_prim(enum mesa_prim prim)
1346 {
1347 switch (prim) {
1348 case MESA_PRIM_LINE_LOOP:
1349 case MESA_PRIM_LINE_STRIP:
1350 return MESA_PRIM_LINES;
1351 case MESA_PRIM_TRIANGLE_STRIP:
1352 case MESA_PRIM_TRIANGLE_FAN:
1353 return MESA_PRIM_TRIANGLES;
1354 case MESA_PRIM_QUAD_STRIP:
1355 return MESA_PRIM_QUADS;
1356 case MESA_PRIM_LINE_STRIP_ADJACENCY:
1357 return MESA_PRIM_LINES_ADJACENCY;
1358 case MESA_PRIM_TRIANGLE_STRIP_ADJACENCY:
1359 return MESA_PRIM_TRIANGLES_ADJACENCY;
1360 default:
1361 return prim;
1362 }
1363 }
1364
1365 /**
1366 * Reduce a primitive to one of MESA_PRIM_POINTS, MESA_PRIM_LINES, and
1367 * MESA_PRIM_TRIANGLES.
1368 */
1369 static inline enum mesa_prim
u_reduced_prim(enum mesa_prim prim)1370 u_reduced_prim(enum mesa_prim prim)
1371 {
1372 switch (prim) {
1373 case MESA_PRIM_POINTS:
1374 return MESA_PRIM_POINTS;
1375 case MESA_PRIM_LINES:
1376 case MESA_PRIM_LINE_LOOP:
1377 case MESA_PRIM_LINE_STRIP:
1378 case MESA_PRIM_LINES_ADJACENCY:
1379 case MESA_PRIM_LINE_STRIP_ADJACENCY:
1380 return MESA_PRIM_LINES;
1381 default:
1382 return MESA_PRIM_TRIANGLES;
1383 }
1384 }
1385
1386 /**
1387 * A compare function enum for use in compiler lowering passes. This is in
1388 * the same order as GL's compare functions (shifted down by GL_NEVER), and is
1389 * exactly the same as gallium's PIPE_FUNC_*.
1390 */
1391 enum compare_func
1392 {
1393 COMPARE_FUNC_NEVER,
1394 COMPARE_FUNC_LESS,
1395 COMPARE_FUNC_EQUAL,
1396 COMPARE_FUNC_LEQUAL,
1397 COMPARE_FUNC_GREATER,
1398 COMPARE_FUNC_NOTEQUAL,
1399 COMPARE_FUNC_GEQUAL,
1400 COMPARE_FUNC_ALWAYS,
1401 };
1402
1403 /**
1404 * Arrangements for grouping invocations from NV_compute_shader_derivatives.
1405 *
1406 * The extension provides new layout qualifiers that support two different
1407 * arrangements of compute shader invocations for the purpose of derivative
1408 * computation. When specifying
1409 *
1410 * layout(derivative_group_quadsNV) in;
1411 *
1412 * compute shader invocations are grouped into 2x2x1 arrays whose four local
1413 * invocation ID values follow the pattern:
1414 *
1415 * +-----------------+------------------+
1416 * | (2x+0, 2y+0, z) | (2x+1, 2y+0, z) |
1417 * +-----------------+------------------+
1418 * | (2x+0, 2y+1, z) | (2x+1, 2y+1, z) |
1419 * +-----------------+------------------+
1420 *
1421 * where Y increases from bottom to top. When specifying
1422 *
1423 * layout(derivative_group_linearNV) in;
1424 *
1425 * compute shader invocations are grouped into 2x2x1 arrays whose four local
1426 * invocation index values follow the pattern:
1427 *
1428 * +------+------+
1429 * | 4n+0 | 4n+1 |
1430 * +------+------+
1431 * | 4n+2 | 4n+3 |
1432 * +------+------+
1433 *
1434 * If neither layout qualifier is specified, derivatives in compute shaders
1435 * return zero, which is consistent with the handling of built-in texture
1436 * functions like texture() in GLSL 4.50 compute shaders.
1437 */
1438 enum gl_derivative_group {
1439 DERIVATIVE_GROUP_NONE = 0,
1440 DERIVATIVE_GROUP_QUADS,
1441 DERIVATIVE_GROUP_LINEAR,
1442 };
1443
1444 enum float_controls
1445 {
1446 /* The order of these matters. For float_controls2, only the first 9 bits
1447 * are used and stored per-instruction in nir_alu_instr::fp_fast_math.
1448 * Any changes in this enum need to be synchronized with that.
1449 */
1450 FLOAT_CONTROLS_DEFAULT_FLOAT_CONTROL_MODE = 0,
1451 FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE_FP16 = BITFIELD_BIT(0),
1452 FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE_FP32 = BITFIELD_BIT(1),
1453 FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE_FP64 = BITFIELD_BIT(2),
1454 FLOAT_CONTROLS_INF_PRESERVE_FP16 = BITFIELD_BIT(3),
1455 FLOAT_CONTROLS_INF_PRESERVE_FP32 = BITFIELD_BIT(4),
1456 FLOAT_CONTROLS_INF_PRESERVE_FP64 = BITFIELD_BIT(5),
1457 FLOAT_CONTROLS_NAN_PRESERVE_FP16 = BITFIELD_BIT(6),
1458 FLOAT_CONTROLS_NAN_PRESERVE_FP32 = BITFIELD_BIT(7),
1459 FLOAT_CONTROLS_NAN_PRESERVE_FP64 = BITFIELD_BIT(8),
1460 FLOAT_CONTROLS_DENORM_PRESERVE_FP16 = BITFIELD_BIT(9),
1461 FLOAT_CONTROLS_DENORM_PRESERVE_FP32 = BITFIELD_BIT(10),
1462 FLOAT_CONTROLS_DENORM_PRESERVE_FP64 = BITFIELD_BIT(11),
1463 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 = BITFIELD_BIT(12),
1464 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32 = BITFIELD_BIT(13),
1465 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64 = BITFIELD_BIT(14),
1466 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 = BITFIELD_BIT(15),
1467 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32 = BITFIELD_BIT(16),
1468 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64 = BITFIELD_BIT(17),
1469 FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 = BITFIELD_BIT(18),
1470 FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 = BITFIELD_BIT(19),
1471 FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 = BITFIELD_BIT(20),
1472
1473 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 =
1474 FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE_FP16 |
1475 FLOAT_CONTROLS_INF_PRESERVE_FP16 |
1476 FLOAT_CONTROLS_NAN_PRESERVE_FP16,
1477
1478 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32 =
1479 FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE_FP32 |
1480 FLOAT_CONTROLS_INF_PRESERVE_FP32 |
1481 FLOAT_CONTROLS_NAN_PRESERVE_FP32,
1482
1483 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64 =
1484 FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE_FP64 |
1485 FLOAT_CONTROLS_INF_PRESERVE_FP64 |
1486 FLOAT_CONTROLS_NAN_PRESERVE_FP64,
1487
1488 FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE =
1489 FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE_FP16 |
1490 FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE_FP32 |
1491 FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE_FP64,
1492
1493 FLOAT_CONTROLS_INF_PRESERVE =
1494 FLOAT_CONTROLS_INF_PRESERVE_FP16 |
1495 FLOAT_CONTROLS_INF_PRESERVE_FP32 |
1496 FLOAT_CONTROLS_INF_PRESERVE_FP64,
1497
1498 FLOAT_CONTROLS_NAN_PRESERVE =
1499 FLOAT_CONTROLS_NAN_PRESERVE_FP16 |
1500 FLOAT_CONTROLS_NAN_PRESERVE_FP32 |
1501 FLOAT_CONTROLS_NAN_PRESERVE_FP64,
1502 };
1503
1504 /**
1505 * Enums to describe sampler properties used by OpenCL's inline constant samplers.
1506 * These values match the meanings described in the SPIR-V spec.
1507 */
1508 enum cl_sampler_addressing_mode {
1509 SAMPLER_ADDRESSING_MODE_NONE = 0,
1510 SAMPLER_ADDRESSING_MODE_CLAMP_TO_EDGE = 1,
1511 SAMPLER_ADDRESSING_MODE_CLAMP = 2,
1512 SAMPLER_ADDRESSING_MODE_REPEAT = 3,
1513 SAMPLER_ADDRESSING_MODE_REPEAT_MIRRORED = 4,
1514 };
1515
1516 enum cl_sampler_filter_mode {
1517 SAMPLER_FILTER_MODE_NEAREST = 0,
1518 SAMPLER_FILTER_MODE_LINEAR = 1,
1519 };
1520
1521 /**
1522 * \name Bit flags used for updating material values.
1523 */
1524 /*@{*/
1525 #define MAT_ATTRIB_FRONT_AMBIENT 0
1526 #define MAT_ATTRIB_BACK_AMBIENT 1
1527 #define MAT_ATTRIB_FRONT_DIFFUSE 2
1528 #define MAT_ATTRIB_BACK_DIFFUSE 3
1529 #define MAT_ATTRIB_FRONT_SPECULAR 4
1530 #define MAT_ATTRIB_BACK_SPECULAR 5
1531 #define MAT_ATTRIB_FRONT_EMISSION 6
1532 #define MAT_ATTRIB_BACK_EMISSION 7
1533 #define MAT_ATTRIB_FRONT_SHININESS 8
1534 #define MAT_ATTRIB_BACK_SHININESS 9
1535 #define MAT_ATTRIB_FRONT_INDEXES 10
1536 #define MAT_ATTRIB_BACK_INDEXES 11
1537 #define MAT_ATTRIB_MAX 12
1538
1539 #define MAT_ATTRIB_AMBIENT(f) (MAT_ATTRIB_FRONT_AMBIENT+(f))
1540 #define MAT_ATTRIB_DIFFUSE(f) (MAT_ATTRIB_FRONT_DIFFUSE+(f))
1541 #define MAT_ATTRIB_SPECULAR(f) (MAT_ATTRIB_FRONT_SPECULAR+(f))
1542 #define MAT_ATTRIB_EMISSION(f) (MAT_ATTRIB_FRONT_EMISSION+(f))
1543 #define MAT_ATTRIB_SHININESS(f)(MAT_ATTRIB_FRONT_SHININESS+(f))
1544 #define MAT_ATTRIB_INDEXES(f) (MAT_ATTRIB_FRONT_INDEXES+(f))
1545
1546 #define MAT_BIT_FRONT_AMBIENT (1<<MAT_ATTRIB_FRONT_AMBIENT)
1547 #define MAT_BIT_BACK_AMBIENT (1<<MAT_ATTRIB_BACK_AMBIENT)
1548 #define MAT_BIT_FRONT_DIFFUSE (1<<MAT_ATTRIB_FRONT_DIFFUSE)
1549 #define MAT_BIT_BACK_DIFFUSE (1<<MAT_ATTRIB_BACK_DIFFUSE)
1550 #define MAT_BIT_FRONT_SPECULAR (1<<MAT_ATTRIB_FRONT_SPECULAR)
1551 #define MAT_BIT_BACK_SPECULAR (1<<MAT_ATTRIB_BACK_SPECULAR)
1552 #define MAT_BIT_FRONT_EMISSION (1<<MAT_ATTRIB_FRONT_EMISSION)
1553 #define MAT_BIT_BACK_EMISSION (1<<MAT_ATTRIB_BACK_EMISSION)
1554 #define MAT_BIT_FRONT_SHININESS (1<<MAT_ATTRIB_FRONT_SHININESS)
1555 #define MAT_BIT_BACK_SHININESS (1<<MAT_ATTRIB_BACK_SHININESS)
1556 #define MAT_BIT_FRONT_INDEXES (1<<MAT_ATTRIB_FRONT_INDEXES)
1557 #define MAT_BIT_BACK_INDEXES (1<<MAT_ATTRIB_BACK_INDEXES)
1558
1559 /** An enum representing what kind of input gl_SubgroupSize is. */
1560 enum ENUM_PACKED gl_subgroup_size
1561 {
1562 /** Actual subgroup size, whatever that happens to be */
1563 SUBGROUP_SIZE_VARYING = 0,
1564
1565 /** Subgroup size must appear to be draw or dispatch-uniform
1566 *
1567 * This is the OpenGL behavior
1568 */
1569 SUBGROUP_SIZE_UNIFORM,
1570
1571 /** Subgroup size must appear to be the API advertised constant
1572 *
1573 * This is the default Vulkan 1.1 behavior
1574 */
1575 SUBGROUP_SIZE_API_CONSTANT,
1576
1577 /** Subgroup size must actually be the API advertised constant
1578 *
1579 * Not only must the subgroup size match the API advertised constant as
1580 * with SUBGROUP_SIZE_API_CONSTANT but it must also be dispatched such that
1581 * all the subgroups are full if there are enough invocations.
1582 */
1583 SUBGROUP_SIZE_FULL_SUBGROUPS,
1584
1585 /* These enums are specifically chosen so that the value of the enum is
1586 * also the subgroup size. If any new values are added, they must respect
1587 * this invariant.
1588 */
1589 SUBGROUP_SIZE_REQUIRE_4 = 4, /**< VK_EXT_subgroup_size_control */
1590 SUBGROUP_SIZE_REQUIRE_8 = 8, /**< VK_EXT_subgroup_size_control */
1591 SUBGROUP_SIZE_REQUIRE_16 = 16, /**< VK_EXT_subgroup_size_control */
1592 SUBGROUP_SIZE_REQUIRE_32 = 32, /**< VK_EXT_subgroup_size_control */
1593 SUBGROUP_SIZE_REQUIRE_64 = 64, /**< VK_EXT_subgroup_size_control */
1594 SUBGROUP_SIZE_REQUIRE_128 = 128, /**< VK_EXT_subgroup_size_control */
1595 };
1596
1597 /* Ordered from narrower to wider scope. */
1598 typedef enum {
1599 SCOPE_NONE,
1600 SCOPE_INVOCATION,
1601 SCOPE_SUBGROUP,
1602 SCOPE_SHADER_CALL,
1603 SCOPE_WORKGROUP,
1604 SCOPE_QUEUE_FAMILY,
1605 SCOPE_DEVICE,
1606 } mesa_scope;
1607
1608 const char *mesa_scope_name(mesa_scope scope);
1609
1610 #ifdef __cplusplus
1611 } /* extern "C" */
1612 #endif
1613
1614 #endif /* SHADER_ENUMS_H */
1615